# $Id: mkinGUI.R 122 2013-10-21 20:19:57Z jranke $ {{{1
# gWidgetsWWW2 GUI for mkin
# Copyright (C) 2013 Johannes Ranke
# Contact: jranke@uni-bremen.de, johannesranke@eurofins.com
# This file is part of the R package mkin
# mkin is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <http://www.gnu.org/licenses/>
require(mkin) # {{{1
# Set the GUI title and create the basic widget layout {{{1
w <- gwindow("Browser based GUI for kinetic evaluations using mkin")
sb <- gstatusbar("Powered by gWidgetsWWW2 and Rook", cont = w)
pg <- gpanedgroup(cont = w, default.size = 300)
center <- gnotebook(cont = pg)
left <- gvbox(cont = pg)
# Helper functions {{{1
# Override function for making it possible to override original data in the GUI {{{2
override <- function(d) {
data.frame(name = d$name, time = d$time,
value = ifelse(is.na(d$override), d$value, d$override),
err = d$err)
}
# Set default values for project data {{{1
# Initial project file name {{{2
project_file <- "mkin_FOCUS_2006.RData"
# Initial studies {{{2
studies.df <- data.frame(Index = as.integer(1),
Citation = "FOCUS (2006) Guidance on degradation kinetics",
stringsAsFactors = FALSE)
# Initial datasets {{{2
ds <- list()
observed.all <- vector()
for (i in 1:2) {
ds.letter = LETTERS[i + 2]
ds.index <- as.character(i)
ds.name = paste0("FOCUS_2006_", ds.letter)
ds[[ds.index]] <- list(
study_nr = 1,
title = paste("FOCUS example dataset", ds.letter),
sampling_times = unique(get(ds.name)$time),
time_unit = "",
observed = as.character(unique(get(ds.name)$name)),
unit = "% AR",
replicates = 1,
data = get(ds.name)
)
ds[[ds.index]]$data$name <- as.character(ds[[ds.index]]$data$name)
ds[[ds.index]]$data$override = as.numeric(NA)
ds[[ds.index]]$data$err = 1
}
# Dataframe with datasets for selection {{{2
update_ds.df <- function() {
ds.n <- length(ds)
ds.df <<- data.frame(Index = 1:ds.n,
Title = character(ds.n),
Study = character(ds.n),
stringsAsFactors = FALSE)
for (i in 1:ds.n)
{
ds.index <- names(ds)[[i]]
ds.df[i, "Title"] <<- ds[[ds.index]]$title
ds.df[i, "Study"] <<- ds[[ds.index]]$study_nr
observed = as.character(unique(ds[[ds.index]]$data$name))
observed.all <<- union(observed, observed.all)
}
}
ds.df <- data.frame()
update_ds.df()
ds.cur = "1"
# Initial models {{{2
m <- list()
m[["1"]] <- mkinmod(parent = list(type = "SFO"))
m[["1"]]$name = "SFO"
m[["2"]] <- mkinmod(parent = list(type = "FOMC"))
m[["2"]]$name = "FOMC"
m[["3"]] <- mkinmod(parent = list(type = "DFOP"))
m[["3"]]$name = "DFOP"
m[["4"]] <- mkinmod(parent = list(type = "SFO", to = "m1"),
m1 = list(type = "SFO"),
use_of_ff = "max")
m[["4"]]$name = "SFO_SFO"
# Dataframe with models for selection {{{2
update_m.df <- function() {
m.n <- length(m)
m.df <<- data.frame(Index = 1:m.n,
Name = character(m.n),
stringsAsFactors = FALSE)
for (i in 1:m.n) {
m.index <- names(m)[[i]]
m.df[i, "Name"] <<- m[[m.index]]$name
}
}
m.df <- data.frame()
update_m.df()
m.cur = "1"
# Initial fit lists {{{2
# The fits and summaries are collected in lists of lists
f <- s <- list()
# Dataframe with fits for selection {{{2
update_f.df <- function() {
f.df <<- data.frame(Fit = character(),
Dataset = character(),
Model = character(),
stringsAsFactors = FALSE)
f.count <- 0
for (fit.index in names(f)) {
f.count <- f.count + 1
ftmp <- f[[fit.index]]
f.df[f.count, ] <<- c(as.character(f.count), ftmp$ds.index, ftmp$mkinmod$name)
}
}
f.df.empty <- f.df <- data.frame(Fit = "0",
Dataset = "",
Model = "",
stringsAsFactors = FALSE)
# Widgets and handlers for project data {{{1
prg <- gexpandgroup("Project file management", cont = left, horizontal = FALSE)
# Project data management handler functions {{{2
upload_file_handler <- function(h, ...)
{
# General
tmpfile <- normalizePath(svalue(h$obj), winslash = "/")
try(load(tmpfile))
project_file <<- pr.gf$filename
svalue(pr.ge) <- project_file
# Studies
studies.gdf[,] <- studies.df
# Datasets
ds.cur <<- ds.cur
ds <<- ds
update_ds.df()
ds.gtable[,] <- ds.df
update_ds_editor()
# Models
m.cur <<- ds.cur
m <<- m
update_m.df()
m.gtable[,] <- m.df
update_m_editor()
# Fits
f.cur <<- f.cur
f <<- f
s <<- s
if (length(f) > 0) update_f.df()
else f.df <- f.df.empty
f.gtable[,] <- f.df
ftmp <<- f[[f.cur]]
stmp <<- s[[f.cur]]
ds.i <<- ds.cur
update_plotting_and_fitting()
}
save_to_file_handler <- function(h, ...)
{
studies.df <- data.frame(studies.gdf[,], stringsAsFactors = FALSE)
save(studies.df, ds, ds.cur, m, m.cur, f, s, f.cur, file = project_file)
galert(paste("Saved project contents to", project_file), parent = w)
}
change_project_file_handler = function(h, ...) {
project_file <<- as.character(svalue(h$obj))
}
# Project data management GUI elements {{{2
pr.gf <- gfile(text = "Select project file", cont = prg,
handler = upload_file_handler)
pr.ge <- gedit(project_file, cont = prg,
handler = change_project_file_handler)
# The save button is always visible {{{1
gbutton("Save current project contents", cont = left,
handler = save_to_file_handler)
# GUI widgets and a function for Studies {{{1
stg <- gexpandgroup("Studies", cont = left)
visible(stg) <- FALSE
update_study_selector <- function(h, ...) {
delete(ds.e.1, ds.study.gc)
ds.study.gc <<- gcombobox(paste("Study", studies.gdf[,1]), cont = ds.e.1)
svalue(ds.study.gc, index = TRUE) <- ds[[ds.cur]]$study_nr
}
studies.gdf <- gdf(studies.df, name = "Edit studies in the project",
width = 290, height = 200, cont = stg)
studies.gdf$set_column_width(1, 40)
studies.gdf$set_column_width(2, 240)
addHandlerChanged(studies.gdf, update_study_selector)
# Datasets and models {{{1
dsm <- gframe("Datasets and models", cont = left, horizontal = FALSE)
# Dataset table with handler {{{2
ds.switcher <- function(h, ...) {
ds.cur <<- as.character(svalue(h$obj))
update_ds_editor()
svalue(center) <- 1
}
ds.gtable <- gtable(ds.df, width = 290, cont = dsm)
addHandlerDoubleClick(ds.gtable, ds.switcher)
size(ds.gtable) <- list(columnWidths = c(40, 200, 40))
ds.gtable$value <- 1
# Model table with handler {{{2
m.switcher <- function(h, ...) {
m.cur <<- as.character(svalue(h$obj))
update_m_editor()
svalue(center) <- 2
}
m.gtable <- gtable(m.df, width = 290, cont = dsm)
addHandlerDoubleClick(m.gtable, m.switcher)
size(m.gtable) <- list(columnWidths = c(40, 240))
m.gtable$value <- 1
# Button for setting up a fit for the selected dataset and model
gbutton("Configure fit for selected model and dataset", cont = dsm,
handler = function(h, ...) {
ds.i <<- as.character(svalue(ds.gtable))
m.i <<- as.character(svalue(m.gtable))
ftmp <<- suppressWarnings(mkinfit(m[[m.i]],
override(ds[[ds.i]]$data),
err = "err",
control.modFit = list(maxiter = 0)))
ftmp$ds.index <<- ds.i
ftmp$ds <<- ds[[ds.i]]
stmp <<- summary(ftmp)
svalue(pf) <- paste0("Dataset ", ds.i, ", Model ", m[[m.i]]$name)
show_plot("Initial", default = TRUE)
svalue(f.gg.opts.st) <<- "auto"
f.gg.parms[,] <- get_Parameters(stmp, FALSE)
svalue(f.gg.summary) <- capture.output(stmp)
svalue(center) <- 3
})
# Fits {{{1
f.gf <- gframe("Fits", cont = left, horizontal = FALSE)
# Fit table with handler {{{2
f.switcher <- function(h, ...) {
if (svalue(h$obj) != "0") {
f.cur <<- svalue(h$obj)
ftmp <<- f[[f.cur]]
stmp <<- s[[f.cur]]
ds.i <<- ftmp$ds.index
update_plotting_and_fitting()
}
svalue(center) <- 3
}
f.gtable <- gtable(f.df, width = 290, cont = f.gf)
addHandlerDoubleClick(f.gtable, f.switcher)
size(f.gtable) <- list(columnWidths = c(40, 60, 180))
# Dataset editor {{{1
ds.editor <- gframe("Dataset 1", horizontal = FALSE, cont = center, label = "Dataset editor")
# Handler functions {{{3
copy_dataset_handler <- function(h, ...) {
ds.old <- ds.cur
ds.cur <<- as.character(1 + length(ds))
svalue(ds.editor) <- paste("Dataset", ds.cur)
ds[[ds.cur]] <<- ds[[ds.old]]
update_ds.df()
ds.gtable[,] <- ds.df
}
delete_dataset_handler <- function(h, ...) {
ds[[ds.cur]] <<- NULL
names(ds) <<- as.character(1:length(ds))
ds.cur <<- names(ds)[[1]]
update_ds.df()
ds.gtable[,] <- ds.df
update_ds_editor()
}
new_dataset_handler <- function(h, ...) {
ds.cur <<- as.character(1 + length(ds))
ds[[ds.cur]] <<- list(
study_nr = 1,
title = "",
sampling_times = c(0, 1),
time_unit = "",
observed = "parent",
unit = "",
replicates = 1,
data = data.frame(
name = "parent",
time = c(0, 1),
value = c(100, NA),
override = "NA",
err = 1,
stringsAsFactors = FALSE
)
)
update_ds.df()
ds.gtable[,] <- ds.df
update_ds_editor()
}
new_ds_from_csv_handler <- function(h, ...) {
tmpfile <- normalizePath(svalue(h$obj), winslash = "/")
tmpd <- try(read.table(tmpfile, sep = "\t", header = TRUE, stringsAsFactors = FALSE))
tmpdw <- mkin_wide_to_long(tmpd)
if (class(tmpd) != "try-error") {
ds.cur <<- as.character(1 + length(ds))
ds[[ds.cur]] <<- list(
study_nr = NA,
title = "New upload",
sampling_times = sort(unique(tmpd$t)),
time_unit = "",
observed = unique(tmpdw$name),
unit = "",
replicates = max(aggregate(tmpdw$time,
list(tmpdw$time,
tmpdw$name),
length)$x),
data = tmpdw)
ds[[ds.cur]]$data$override <<- as.numeric(NA)
ds[[ds.cur]]$data$err <<- 1
update_ds.df()
ds.gtable[,] <- ds.df
update_ds_editor()
} else {
galert("Uploading failed", parent = "w")
}
}
empty_grid_handler <- function(h, ...) {
obs <- strsplit(svalue(ds.e.obs), ", ")[[1]]
sampling_times <- strsplit(svalue(ds.e.st), ", ")[[1]]
replicates <- as.numeric(svalue(ds.e.rep))
new.data = data.frame(
name = rep(obs, each = replicates * length(sampling_times)),
time = as.numeric(rep(sampling_times, each = replicates, times = length(obs))),
value = as.numeric(NA),
override = as.numeric(NA),
err = 1,
stringsAsFactors = FALSE
)
ds.e.gdf[,] <- new.data
}
keep_ds_changes_handler <- function(h, ...) {
ds[[ds.cur]]$title <<- svalue(ds.title.ge)
ds[[ds.cur]]$study_nr <<- as.numeric(gsub("Study ", "", svalue(ds.study.gc)))
update_ds.df()
ds.gtable[,] <- ds.df
tmpd <- ds.e.gdf[,]
ds[[ds.cur]]$data <<- tmpd
ds[[ds.cur]]$sampling_times <<- sort(unique(tmpd$time))
ds[[ds.cur]]$time_unit <<- svalue(ds.e.stu)
ds[[ds.cur]]$observed <<- unique(tmpd$name)
ds[[ds.cur]]$unit <<- svalue(ds.e.obu)
ds[[ds.cur]]$replicates <<- max(aggregate(tmpd$time,
list(tmpd$time, tmpd$name), length)$x)
update_ds_editor()
}
# Widget setup {{{3
# Line 1 {{{4
ds.e.1 <- ggroup(cont = ds.editor, horizontal = TRUE)
glabel("Title: ", cont = ds.e.1)
ds.title.ge <- gedit(ds[[ds.cur]]$title, cont = ds.e.1)
glabel(" from ", cont = ds.e.1)
ds.study.gc <- gcombobox(paste("Study", studies.gdf[,1]), cont = ds.e.1)
# Line 2 {{{4
ds.e.2 <- ggroup(cont = ds.editor, horizontal = TRUE)
gbutton("Copy dataset", cont = ds.e.2, handler = copy_dataset_handler)
gbutton("Delete dataset", cont = ds.e.2, handler = delete_dataset_handler)
gbutton("New dataset", cont = ds.e.2, handler = new_dataset_handler)
upload_dataset.gf <- gfile(text = "Upload text file", cont = ds.e.2,
handler = new_ds_from_csv_handler)
# Line 3 with forms {{{4
ds.e.forms <- ggroup(cont= ds.editor, horizontal = TRUE)
ds.e.3a <- gvbox(cont = ds.e.forms)
ds.e.3a.gfl <- gformlayout(cont = ds.e.3a)
ds.e.st <- gedit(paste(ds[[ds.cur]]$sampling_times, collapse = ", "),
width = 40,
label = "Sampling times",
cont = ds.e.3a.gfl)
ds.e.stu <- gedit(ds[[ds.cur]]$time_unit,
width = 20,
label = "Unit", cont = ds.e.3a.gfl)
ds.e.rep <- gedit(ds[[ds.cur]]$replicates,
width = 20,
label = "Replicates", cont = ds.e.3a.gfl)
ds.e.3b <- gvbox(cont = ds.e.forms)
ds.e.3b.gfl <- gformlayout(cont = ds.e.3b)
ds.e.obs <- gedit(paste(ds[[ds.cur]]$observed, collapse = ", "),
width = 50,
label = "Observed", cont = ds.e.3b.gfl)
ds.e.obu <- gedit(ds[[ds.cur]]$unit,
width = 20, label = "Unit",
cont = ds.e.3b.gfl)
generate_grid.gb <- gbutton("Generate empty grid for kinetic data", cont = ds.e.3b,
handler = empty_grid_handler)
tooltip(generate_grid.gb) <- "Overwrites the kinetic data shown below"
# Keep button {{{4
gbutton("Keep changes", cont = ds.editor, handler = keep_ds_changes_handler)
# Kinetic Data {{{4
ds.e.gdf <- gdf(ds[[ds.cur]]$data, name = "Kinetic data",
width = 500, height = 700, cont = ds.editor)
ds.e.gdf$set_column_width(2, 70)
# Update the dataset editor {{{3
update_ds_editor <- function() {
svalue(ds.editor) <- paste("Dataset", ds.cur)
svalue(ds.title.ge) <- ds[[ds.cur]]$title
svalue(ds.study.gc, index = TRUE) <- ds[[ds.cur]]$study_nr
svalue(ds.e.st) <- paste(ds[[ds.cur]]$sampling_times, collapse = ", ")
svalue(ds.e.stu) <- ds[[ds.cur]]$time_unit
svalue(ds.e.obs) <- paste(ds[[ds.cur]]$observed, collapse = ", ")
svalue(ds.e.obu) <- ds[[ds.cur]]$unit
svalue(ds.e.rep) <- ds[[ds.cur]]$replicates
ds.e.gdf[,] <- ds[[ds.cur]]$data
}
# Model editor {{{1
m.editor <- gframe("Model 1", horizontal = FALSE, cont = center, label = "Model editor")
# Handler functions {{{3
copy_model_handler <- function(h, ...) {
m.old <- m.cur
m.cur <<- as.character(1 + length(m))
svalue(m.editor) <- paste("Model", m.cur)
m[[m.cur]] <<- m[[m.old]]
update_m.df()
m.gtable[,] <- m.df
}
delete_model_handler <- function(h, ...) {
m[[m.cur]] <<- NULL
names(m) <<- as.character(1:length(m))
m.cur <<- "1"
update_m.df()
m.gtable[,] <- m.df
update_m_editor()
}
add_observed_handler <- function(h, ...) {
obs.i <- length(m.e.rows) + 1
m.e.rows[[obs.i]] <<- ggroup(cont = m.editor, horizontal = TRUE)
m.e.obs[[obs.i]] <<- gcombobox(observed.all, selected = obs.i,
cont = m.e.rows[[obs.i]])
m.e.type[[obs.i]] <<- gcombobox(c("SFO", "FOMC", "DFOP", "HS", "SFORB"),
cont = m.e.rows[[obs.i]])
svalue(m.e.type[[obs.i]]) <- "SFO"
glabel("to", cont = m.e.rows[[obs.i]])
m.e.to[[obs.i]] <<- gedit("", cont = m.e.rows[[obs.i]])
m.e.sink[[obs.i]] <<- gcheckbox("Path to sink",
checked = TRUE, cont = m.e.rows[[obs.i]])
gbutton("Remove compound", handler = remove_compound_handler,
action = obs.i, cont = m.e.rows[[obs.i]])
}
remove_compound_handler <- function(h, ...) {
m[[m.cur]]$spec[[h$action]] <<- NULL
update_m_editor()
}
keep_m_changes_handler <- function(h, ...) {
spec <- list()
for (obs.i in 1:length(m.e.rows)) {
to_vector = strsplit(svalue(m.e.to[[obs.i]]), ", ")[[1]]
if (length(to_vector) == 0) to_vector = ""
spec[[obs.i]] <- list(type = svalue(m.e.type[[obs.i]]),
to = to_vector,
sink = svalue(m.e.sink[[obs.i]]))
if(spec[[obs.i]]$to == "") spec[[obs.i]]$to = NULL
names(spec)[[obs.i]] <- svalue(m.e.obs[[obs.i]])
}
m[[m.cur]] <<- mkinmod(use_of_ff = svalue(m.ff.gc),
speclist = spec)
m[[m.cur]]$name <<- svalue(m.name.ge)
update_m.df()
m.gtable[,] <- m.df
}
# Widget setup {{{3
m.e.0 <- ggroup(cont = m.editor, horizontal = TRUE)
glabel("Model name: ", cont = m.e.0)
m.name.ge <- gedit(m[[m.cur]]$name, cont = m.e.0)
glabel("Use of formation fractions: ", cont = m.e.0)
m.ff.gc <- gcombobox(c("min", "max"), cont = m.e.0)
svalue(m.ff.gc) <- m[[m.cur]]$use_of_ff
# Model handling buttons {{{4
m.e.b <- ggroup(cont = m.editor, horizontal = TRUE)
gbutton("Copy model", cont = m.e.b, handler = copy_model_handler)
gbutton("Delete model", cont = m.e.b, handler = delete_model_handler)
gbutton("Add transformation product", cont = m.e.b,
handler = add_observed_handler)
gbutton("Keep changes", cont = m.e.b, handler = keep_m_changes_handler)
m.observed <- names(m[[m.cur]]$spec)
m.e.rows <- m.e.obs <- m.e.type <- m.e.to <- m.e.sink <- list()
obs.to <- ""
# Show the model specification {{{4
show_m_spec <- function() {
for (obs.i in 1:length(m[[m.cur]]$spec)) {
obs.name <- names(m[[m.cur]]$spec)[[obs.i]]
m.e.rows[[obs.i]] <<- ggroup(cont = m.editor, horizontal = TRUE)
m.e.obs[[obs.i]] <<- gcombobox(observed.all, selected = 0,
cont = m.e.rows[[obs.i]])
svalue(m.e.obs[[obs.i]]) <<- obs.name
m.e.type[[obs.i]] <<- gcombobox(c("SFO", "FOMC", "DFOP", "HS", "SFORB"),
cont = m.e.rows[[obs.i]])
svalue(m.e.type[[obs.i]]) <<- m[[m.cur]]$spec[[obs.i]]$type
glabel("to", cont = m.e.rows[[obs.i]])
obs.to <<- ifelse(is.null(m[[m.cur]]$spec[[obs.i]]$to), "",
paste(m[[m.cur]]$spec[[obs.i]]$to, collapse = ", "))
m.e.to[[obs.i]] <<- gedit(obs.to, cont = m.e.rows[[obs.i]])
m.e.sink[[obs.i]] <<- gcheckbox("Path to sink", checked = m[[m.cur]]$spec[[obs.i]]$sink,
cont = m.e.rows[[obs.i]])
if (obs.i > 1) {
gbutton("Remove compound", handler = remove_compound_handler,
action = obs.i, cont = m.e.rows[[obs.i]])
}
}
}
show_m_spec()
# Update the model editor {{{3
update_m_editor <- function() {
svalue(m.editor) <- paste("Model", m.cur)
svalue(m.name.ge) <- m[[m.cur]]$name
svalue(m.ff.gc) <- m[[m.cur]]$use_of_ff
for (oldrow.i in 1:length(m.e.rows)) {
delete(m.editor, m.e.rows[[oldrow.i]])
}
m.observed <<- names(m[[m.cur]]$spec)
m.e.rows <<- m.e.obs <<- m.e.type <<- m.e.to <<- m.e.sink <<- list()
show_m_spec()
}
# 3}}}
# 2}}}
# Plotting and fitting {{{1
show_plot <- function(type, default = FALSE) {
Parameters <- f.gg.parms[,]
Parameters.de <- subset(Parameters, Type == "deparm", type)
stateparms <- subset(Parameters, Type == "state")[[type]]
deparms <- as.numeric(Parameters.de[[type]])
names(deparms) <- rownames(Parameters.de)
if (type == "Initial" & default == FALSE) {
ftmp <<- suppressWarnings(mkinfit(ftmp$mkinmod,
override(ds[[ds.i]]$data),
state.ini = stateparms,
parms.ini = deparms,
err = "err",
control.modFit = list(maxiter = 0)))
ftmp$ds.index <<- ds.i
ftmp$ds <<- ds[[ds.i]]
}
#tmp <- get_tempfile(ext=".svg")
svg(tf, width = 7, height = 5)
plot(ftmp, main = ftmp$ds$title,
xlab = ifelse(ftmp$ds$time_unit == "", "Time",
paste("Time in", ftmp$ds$time_unit)),
ylab = ifelse(ds[[ds.i]]$unit == "", "Observed",
paste("Observed in", ftmp$ds$unit)))
dev.off()
svalue(plot.gs) <<- tf
}
get_Parameters <- function(stmp, optimised)
{
pars <- rbind(stmp$start[1:2], stmp$fixed)
pars$fixed <- c(rep(FALSE, length(stmp$start$value)),
rep(TRUE, length(stmp$fixed$value)))
pars$name <- rownames(pars)
Parameters <- data.frame(Name = pars$name,
Type = pars$type,
Initial = pars$value,
Fixed = pars$fixed,
Optimised = as.numeric(NA))
Parameters <- rbind(subset(Parameters, Type == "state"),
subset(Parameters, Type == "deparm"))
rownames(Parameters) <- Parameters$Name
if (optimised) {
Parameters[rownames(stmp$bpar), "Optimised"] <- stmp$bpar[, "Estimate"]
}
return(Parameters)
}
run_fit <- function() {
Parameters <- f.gg.parms[,]
Parameters.de <- subset(Parameters, Type == "deparm")
deparms <- Parameters.de$Initial
names(deparms) <- Parameters.de$Name
defixed <- names(deparms[Parameters.de$Fixed])
Parameters.ini <- subset(Parameters, Type == "state")
iniparms <- Parameters.ini$Initial
names(iniparms) <- sub("_0", "", Parameters.ini$Name)
inifixed <- names(iniparms[Parameters.ini$Fixed])
ftmp <<- mkinfit(ftmp$mkinmod, override(ds[[ds.i]]$data),
state.ini = iniparms,
fixed_initials = inifixed,
parms.ini = deparms,
fixed_parms = defixed,
solution_type = svalue(f.gg.opts.st),
err = "err")
ftmp$ds.index <<- ds.i
ftmp$ds <<- ds[[ds.i]]
stmp <<- summary(ftmp)
show_plot("Optimised")
svalue(f.gg.opts.st) <- ftmp$solution_type
f.gg.parms[,] <- get_Parameters(stmp, TRUE)
svalue(f.gg.summary) <- capture.output(stmp)
}
ds.i <- m.i <- "1"
f.cur <- "0"
# GUI widgets {{{2
pf <- gframe("Dataset 1, Model SFO", horizontal = FALSE,
cont = center, label = "Plotting and fitting")
# Mid group with plot and options {{{3
f.gg.mid <- ggroup(cont = pf)
ftmp <- suppressWarnings(mkinfit(m[[m.cur]], override(ds[[ds.i]]$data),
err = "err",
control.modFit = list(maxiter = 0)))
ftmp$ds.index = ds.i
ftmp$ds = ds[[ds.i]]
stmp <- summary(ftmp)
Parameters <- get_Parameters(stmp, FALSE)
tf <- get_tempfile(ext=".svg")
svg(tf, width = 7, height = 5)
plot(ftmp)
dev.off()
plot.gs <- gsvg(tf, container = f.gg.mid, width = 490, height = 350)
f.gg.opts <- gformlayout(cont = f.gg.mid)
solution_types <- c("auto", "analytical", "eigen", "deSolve")
f.gg.opts.st <- gcombobox(solution_types, selected = 1,
label = "solution_type", width = 200,
cont = f.gg.opts)
# Dataframe with initial and optimised parameters {{{3
f.gg.parms <- gdf(Parameters, width = 420, height = 300, cont = pf,
do_add_remove_buttons = FALSE)
f.gg.parms$set_column_width(1, 200)
f.gg.parms$set_column_width(2, 50)
f.gg.parms$set_column_width(3, 60)
f.gg.parms$set_column_width(4, 50)
f.gg.parms$set_column_width(5, 60)
# Row with buttons {{{3
f.gg.buttons <- ggroup(cont = pf)
show.initial.gb <- gbutton("Show initial",
handler = function(h, ...) show_plot("Initial"),
cont = f.gg.buttons)
tooltip(show.initial.gb) <- "Show model with current inital settings for current dataset"
run.fit.gb <- gbutton("Run",
handler = function(h, ...) run_fit(), cont =
f.gg.buttons)
tooltip(run.fit.gb) <- "Fit with current settings on the current dataset, with the original model"
keep.fit.gb <- gbutton("Keep",
handler = function(h, ...) {
f.cur <<- as.character(length(f) + 1)
f[[f.cur]] <<- ftmp
s[[f.cur]] <<- stmp
update_f.df()
f.gtable[,] <<- f.df
}, cont = f.gg.buttons)
tooltip(keep.fit.gb) <- "Store the optimised model with all settings and the current dataset in the fit list"
show.plots.gb <- gbutton("Show plots",
handler = function(h, ...) show_plot_window(),
cont = f.gg.buttons)
tooltip(show.plots.gb) <- "Show a window with plots including residual plots"
# Summary {{{3
f.gg.summary <- gtext(capture.output(stmp), cont = pf,
use.codemirror = TRUE)
delete.fit.gb <- gbutton("Delete", handler = function(h, ...) {
if (length(f) > 0) {
f[[f.cur]] <<- NULL
s[[f.cur]] <<- NULL
}
if (length(f) > 0) {
names(f) <<- as.character(1:length(f))
names(s) <<- as.character(1:length(f))
update_f.df()
f.cur <<- "1"
ftmp <<- f[[f.cur]]
stmp <<- s[[f.cur]]
ds.i <<- ftmp$ds.index
update_plotting_and_fitting()
} else {
f.df <<- f.df.empty
f.cur <<- "0"
}
f.gtable[,] <<- f.df
}, cont = f.gg.buttons)
tooltip(delete.fit.gb) <- "Delete the currently loaded fit from the fit list"
# Update the plotting and fitting area {{{3
update_plotting_and_fitting <- function() {
svalue(pf) <- paste0("Fit ", f.cur, ": Dataset ", ftmp$ds.index,
", Model ", ftmp$mkinmod$name)
show_plot("Optimised")
svalue(f.gg.opts.st) <- ftmp$solution_type
f.gg.parms[,] <- get_Parameters(stmp, TRUE)
svalue(f.gg.summary) <- capture.output(stmp)
}
# Show plot window with residual plots {{{3
show_plot_window <- function(h, ...) {
n.obs = length(ftmp$mkinmod$spec)
obs.vars = names(ftmp$mkinmod$spec)
parent = obs.vars[1]
if(n.obs == 1) {
n.rows = 1
ps = 7
} else {
n.rows = 1 + ceiling(n.obs / 2)
ps = 10
}
imgwidth = 800
imgheight = 360 * n.rows
pw <- gwindow("Plot window", parent = w,
width = imgwidth + 20, height = imgheight + 100)
pwg <- ggroup(cont = pw, horizontal = FALSE)
make_plots <- function() {
par(mfrow = c(n.rows, 2))
plot(ftmp, main = ftmp$ds$title,
xlab = ifelse(ftmp$ds$time_unit == "", "Time",
paste("Time in", ftmp$ds$time_unit)),
ylab = ifelse(ds[[ds.i]]$unit == "", "Observed",
paste("Observed in", ftmp$ds$unit)))
if (n.obs > 1) {
plot(ftmp, legend = FALSE,
main = paste0("Zoomed in on metabolite",
ifelse(n.obs > 2, "s", "")),
xlab = ifelse(ftmp$ds$time_unit == "", "Time",
paste("Time in", ftmp$ds$time_unit)),
ylab = ifelse(ds[[ds.i]]$unit == "", "Observed",
paste("Observed in", ftmp$ds$unit)),
ylim = c(0, max(subset(ftmp$data,
variable != parent)$observed)))
for (met in obs.vars[-1]) {
mkinresplot(ftmp, met, legend = FALSE,
main = paste("Residual plot for", met))
}
} else {
mkinresplot(ftmp, parent, legend = FALSE,
main = paste("Residual plot for", parent),
xlab = ifelse(ftmp$ds$time_unit == "", "Time",
paste("Time in", ftmp$ds$time_unit)),
ylab = ifelse(ds[[ds.i]]$unit == "", "Residuals",
paste("Residuals in", ftmp$ds$unit)))
}
}
tf2 <- get_tempfile(ext = ".png")
png(tf2, width = imgwidth / 50 , height = imgheight / 50,
units = "cm", res = 300, pointsize = ps)
make_plots()
dev.off()
ghtml(paste0("<img width='", imgwidth, "' height='", imgheight,
"' src='", get_tempfile_url(tf2), "' />"),
cont = pwg)
}
# vim: set foldmethod=marker ts=2 sw=2 expandtab: {{{1