diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2014-05-07 14:47:28 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2014-05-07 14:47:28 +0200 |
commit | e959fde98f95f3595e01490b67892678bbcd1b27 (patch) | |
tree | 992c56223a31c6937091dd5f9eeef63c2dd9e579 /man/ilr.Rd | |
parent | d846ac7691ab648afbb5a98bbca91911396a95bf (diff) |
Fork the gmkin GUI from mkin. See ChangeLog for details
Diffstat (limited to 'man/ilr.Rd')
-rw-r--r-- | man/ilr.Rd | 56 |
1 files changed, 0 insertions, 56 deletions
diff --git a/man/ilr.Rd b/man/ilr.Rd deleted file mode 100644 index cedb49c..0000000 --- a/man/ilr.Rd +++ /dev/null @@ -1,56 +0,0 @@ -\name{ilr} -\alias{ilr} -\alias{invilr} -\title{ - Function to perform isotropic log-ratio transformation -} -\description{ - This implementation is a special case of the class of isotropic log-ratio transformations. -} -\usage{ - ilr(x) - invilr(x) -} -\arguments{ - \item{x}{ - A numeric vector. Naturally, the forward transformation is only sensible for - vectors with all elements being greater than zero. - } -} -\value{ - The result of the forward or backward transformation. The returned components always - sum to 1 for the case of the inverse log-ratio transformation. -} -\references{ - Peter Filzmoser, Karel Hron (2008) Outlier Detection for Compositional Data Using Robust Methods. Math Geosci 40 233-248 -} -\author{ - René Lehmann and Johannes Ranke -} -\seealso{ - Other implementations are in R packages \code{compositions} and \code{robCompositions}. -} -\examples{ -# Order matters -ilr(c(0.1, 1, 10)) -ilr(c(10, 1, 0.1)) -# Equal entries give ilr transformations with zeros as elements -ilr(c(3, 3, 3)) -# Almost equal entries give small numbers -ilr(c(0.3, 0.4, 0.3)) -# Only the ratio between the numbers counts, not their sum -invilr(ilr(c(0.7, 0.29, 0.01))) -invilr(ilr(2.1 * c(0.7, 0.29, 0.01))) -# Inverse transformation of larger numbers gives unequal elements -invilr(-10) -invilr(c(-10, 0)) -# The sum of the elements of the inverse ilr is 1 -sum(invilr(c(-10, 0))) -# This is why we do not need all elements of the inverse transformation to go back: -a <- c(0.1, 0.3, 0.5) -b <- invilr(a) -length(b) # Four elements -ilr(c(b[1:3], 1 - sum(b[1:3]))) # Gives c(0.1, 0.3, 0.5) -} - -\keyword{ manip } |