diff options
Diffstat (limited to 'R/mkinfit.R')
-rw-r--r-- | R/mkinfit.R | 66 |
1 files changed, 66 insertions, 0 deletions
diff --git a/R/mkinfit.R b/R/mkinfit.R new file mode 100644 index 0000000..9651fd6 --- /dev/null +++ b/R/mkinfit.R @@ -0,0 +1,66 @@ +mkinfit <- function(mkinmod, observed,
+ parms.ini = rep(0.1, length(mkinmod$parms)),
+ state.ini = c(100, rep(0, length(mkinmod$diffs) - 1)),
+ fixed_parms = rep(FALSE, length(mkinmod$parms)),
+ fixed_initials = c(FALSE, rep(TRUE, length(mkinmod$diffs) - 1)),
+ plot = NULL,
+ err = NULL, weight = "none", scaleVar = FALSE,
+ ...)
+{
+ # Name the parameters if they are not named yet
+ if(is.null(names(parms.ini))) names(parms.ini) <- mkinmod$parms
+ # Create a function calculating the differentials specified by the model
+ mkindiff <- function(t, state, parms) {
+ diffs <- vector()
+ for (box in names(mkinmod$diffs))
+ {
+ diffname <- paste("d", box, sep="_")
+ diffs[diffname] <- with(as.list(c(state, parms)),
+ eval(parse(text=mkinmod$diffs[[box]])))
+ }
+ return(list(c(diffs)))
+ }
+
+ # Name the inital parameter values if they are not named yet
+ if(is.null(names(state.ini))) names(state.ini) <- names(mkinmod$diffs)
+
+ # TODO: Collect parameters to be optimised
+ parms.optim <- parms.ini[!fixed_parms]
+ parms.fixed <- parms.ini[fixed_parms]
+
+ state.ini.optim <- state.ini[!fixed_initials]
+ state.ini.optim.boxnames <- names(state.ini.optim)
+ names(state.ini.optim) <- paste(names(state.ini.optim), "0", sep="_")
+ state.ini.fixed <- state.ini[fixed_initials]
+
+ # Define the model cost function
+ cost <- function(P)
+ {
+ if(length(state.ini.optim) > 0) {
+ odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed)
+ names(odeini) <- c(state.ini.optim.boxnames, names(state.ini.fixed))
+ } else odeini <- state.ini.fixed
+
+ odeparms <- c(P[(length(state.ini.optim) + 1):length(P)], parms.fixed)
+ # Solve the ODE
+ out <- ode(
+ y = odeini,
+ times = unique(observed$time),
+ func = mkindiff,
+ parms = odeparms)
+
+ # Output transformation for models with ghost compartments like SFORB
+ out_transformed <- data.frame(time = out[,"time"])
+ for (var in names(mkinmod$map)) {
+ if(length(mkinmod$map[[var]]) == 1) {
+ out_transformed[var] <- out[, var]
+ } else {
+ out_transformed[var] <- rowSums(out[, mkinmod$map[[var]]])
+ }
+ }
+
+ return(modCost(out_transformed, observed, y = "value",
+ err = err, weight = weight, scaleVar = scaleVar))
+ }
+ modFit(cost, c(state.ini.optim, parms.optim), ...)
+}
|