1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
mkinfit <- function(mkinmod, observed,
parms.ini = rep(0.1, length(mkinmod$parms)),
state.ini = c(100, rep(0, length(mkinmod$diffs) - 1)),
lower = 0, upper = Inf,
fixed_parms = NULL,
fixed_initials = names(mkinmod$diffs)[-1],
plot = FALSE, quiet = FALSE,
err = NULL, weight = "none", scaleVar = FALSE,
...)
{
mod_vars <- names(mkinmod$diffs)
# Subset dataframe with mapped (modelled) variables
observed <- subset(observed, name %in% names(mkinmod$map))
# Get names of observed variables
obs_vars = unique(as.character(observed$name))
# Name the parameters if they are not named yet
if(is.null(names(parms.ini))) names(parms.ini) <- mkinmod$parms
# Create a function calculating the differentials specified by the model
mkindiff <- function(t, state, parms) {
time <- t
diffs <- vector()
for (box in mod_vars)
{
diffname <- paste("d", box, sep="_")
diffs[diffname] <- with(as.list(c(time,state, parms)),
eval(parse(text=mkinmod$diffs[[box]])))
}
return(list(c(diffs)))
}
# Name the inital parameter values if they are not named yet
if(is.null(names(state.ini))) names(state.ini) <- mod_vars
# Parameters to be optimised
parms.fixed <- parms.ini[fixed_parms]
optim_parms <- setdiff(names(parms.ini), fixed_parms)
parms.optim <- parms.ini[optim_parms]
state.ini.fixed <- state.ini[fixed_initials]
optim_initials <- setdiff(names(state.ini), fixed_initials)
state.ini.optim <- state.ini[optim_initials]
state.ini.optim.boxnames <- names(state.ini.optim)
if(length(state.ini.optim) > 0) {
names(state.ini.optim) <- paste(names(state.ini.optim), "0", sep="_")
}
cost.old <- 1e100
calls <- 0
out_predicted <- NA
# Define the model cost function
cost <- function(P)
{
assign("calls", calls+1, inherits=TRUE)
if(length(state.ini.optim) > 0) {
odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed)
names(odeini) <- c(state.ini.optim.boxnames, names(state.ini.fixed))
} else odeini <- state.ini.fixed
odeparms <- c(P[(length(state.ini.optim) + 1):length(P)], parms.fixed)
outtimes = unique(observed$time)
# Solve the ode
out <- ode(
y = odeini,
times = outtimes,
func = mkindiff,
parms = odeparms)
# Output transformation for models with unobserved compartments like SFORB
out_transformed <- data.frame(time = out[,"time"])
for (var in names(mkinmod$map)) {
if(length(mkinmod$map[[var]]) == 1) {
out_transformed[var] <- out[, var]
} else {
out_transformed[var] <- rowSums(out[, mkinmod$map[[var]]])
}
}
assign("out_predicted", out_transformed, inherits=TRUE)
mC <- modCost(out_transformed, observed, y = "value",
err = err, weight = weight, scaleVar = scaleVar)
# Report and/or plot if the model is improved
if (mC$model < cost.old) {
if(!quiet) cat("Model cost at call ", calls, ": ", mC$model, "\n")
# Plot the data and current model output if requested
if(plot) {
outtimes_plot = seq(min(observed$time), max(observed$time), length.out=100)
out_plot <- ode(
y = odeini,
times = outtimes_plot,
func = mkindiff,
parms = odeparms)
out_transformed_plot <- data.frame(time = out_plot[,"time"])
for (var in names(mkinmod$map)) {
if(length(mkinmod$map[[var]]) == 1) {
out_transformed_plot[var] <- out_plot[, var]
} else {
out_transformed_plot[var] <- rowSums(out_plot[, mkinmod$map[[var]]])
}
}
plot(0, type="n",
xlim = range(observed$time), ylim = range(observed$value, na.rm=TRUE),
xlab = "Time", ylab = "Observed")
col_obs <- pch_obs <- 1:length(obs_vars)
names(col_obs) <- names(pch_obs) <- obs_vars
for (obs_var in obs_vars) {
points(subset(observed, name == obs_var, c(time, value)),
pch = pch_obs[obs_var], col = col_obs[obs_var])
}
matlines(out_transformed_plot$time, out_transformed_plot[-1])
legend("topright", inset=c(0.05, 0.05), legend=obs_vars,
col=col_obs, pch=pch_obs, lty=1:length(pch_obs))
}
assign("cost.old", mC$model, inherits=TRUE)
}
return(mC)
}
fit <- modFit(cost, c(state.ini.optim, parms.optim), lower = lower, upper = upper, ...)
# We need the function for plotting
fit$mkindiff <- mkindiff
# We also need various other information for summary and plotting
fit$map <- mkinmod$map
fit$diffs <- mkinmod$diffs
fit$observed <- mkin_long_to_wide(observed)
predicted_long <- mkin_wide_to_long(out_predicted, time = "time")
fit$predicted <- out_predicted
# Collect initial parameter values in two dataframes
fit$start <- data.frame(initial = c(state.ini.optim, parms.optim))
fit$start$type = c(rep("state", length(state.ini.optim)), rep("deparm", length(parms.optim)))
fit$start$lower <- lower
fit$start$upper <- upper
fit$fixed <- data.frame(
value = c(state.ini.fixed, parms.fixed))
fit$fixed$type = c(rep("state", length(state.ini.fixed)), rep("deparm", length(parms.fixed)))
# Calculate chi2 error levels according to FOCUS (2006)
means <- aggregate(value ~ time + name, data = observed, mean, na.rm=TRUE)
errdata <- merge(means, predicted_long, by = c("time", "name"), suffixes = c("_mean", "_pred"))
errdata <- errdata[order(errdata$time, errdata$name), ]
errmin.overall <- mkinerrmin(errdata, length(parms.optim) + length(state.ini.optim))
errmin <- data.frame(err.min = errmin.overall$err.min,
n.optim = errmin.overall$n.optim, df = errmin.overall$df)
rownames(errmin) <- "All data"
for (obs_var in obs_vars)
{
errdata.var <- subset(errdata, name == obs_var)
n.k.optim <- length(grep(paste("k", obs_var, sep="_"), names(parms.optim)))
n.initials.optim <- length(grep(paste(obs_var, ".*", "_0", sep=""), names(state.ini.optim)))
n.optim <- n.k.optim + n.initials.optim
if ("alpha" %in% names(parms.optim)) n.optim <- n.optim + 1
if ("beta" %in% names(parms.optim)) n.optim <- n.optim + 1
errmin.tmp <- mkinerrmin(errdata.var, n.optim)
errmin[obs_var, c("err.min", "n.optim", "df")] <- errmin.tmp
}
fit$errmin <- errmin
# Calculate dissipation times DT50 and DT90
parms.all = c(fit$par, parms.fixed)
fit$distimes <- data.frame(DT50 = rep(NA, length(obs_vars)), DT90 = rep(NA, length(obs_vars)),
row.names = obs_vars)
for (obs_var in obs_vars) {
type = names(mkinmod$map[[obs_var]])[1]
if (type == "SFO") {
k_names = grep(paste("k", obs_var, sep="_"), names(parms.all), value=TRUE)
k_tot = sum(parms.all[k_names])
DT50 = log(2)/k_tot
DT90 = log(10)/k_tot
}
if (type == "FOMC") {
alpha = parms.all["alpha"]
beta = parms.all["beta"]
DT50 = beta * (2^(1/alpha) - 1)
DT90 = beta * (10^(1/alpha) - 1)
}
if (type == "SFORB") {
# FOCUS kinetics (2006), p. 60 f
k_out_names = grep(paste("k", obs_var, "free", sep="_"), names(parms.all), value=TRUE)
k_out_names = setdiff(k_out_names, paste("k", obs_var, "free", "bound", sep="_"))
k_1output = sum(parms.all[[k_out_names]])
k_12 = parms.all[[paste("k", obs_var, "free", "bound", sep="_")]]
k_21 = parms.all[[paste("k", obs_var, "bound", "free", sep="_")]]
sqrt_exp = sqrt(1/4 * (k_12 + k_21 + k_1output)^2 + k_12 * k_21 - (k_12 + k_1output) * k_21)
b1 = 0.5 * (k_12 + k_21 + k_1output) + sqrt_exp
b2 = 0.5 * (k_12 + k_21 + k_1output) - sqrt_exp
SFORB_fraction = function(t) {
((k_12 + k_21 - b1)/(b2 - b1)) * exp(-b1 * t) +
((k_12 + k_21 - b2)/(b1 - b2)) * exp(-b2 * t)
}
f_50 <- function(t) (SFORB_fraction(t) - 0.5)^2
max_DT <- 1000
DT50.o <- optimize(f_50, c(0.01, max_DT))$minimum
if (abs(DT50.o - max_DT) < 0.01) DT50 = NA else DT50 = DT50.o
f_90 <- function(t) (SFORB_fraction(t) - 0.1)^2
DT90.o <- optimize(f_90, c(0.01, 1000))$minimum
if (abs(DT90.o - max_DT) < 0.01) DT90 = NA else DT90 = DT90.o
}
fit$distimes[obs_var, ] = c(DT50, DT90)
}
# Collect observed, predicted and residuals
data <- merge(observed, predicted_long, by = c("time", "name"))
names(data) <- c("time", "variable", "observed", "predicted")
data$residual <- data$observed - data$predicted
data$variable <- ordered(data$variable, levels = obs_vars)
fit$data <- data[order(data$variable, data$time), ]
class(fit) <- c("mkinfit", "modFit")
return(fit)
}
summary.mkinfit <- function(object, data = TRUE, distimes = TRUE, cov = FALSE,...) {
ans <- FME:::summary.modFit(object, cov = cov)
ans$diffs <- object$diffs
if(data) ans$data <- object$data
ans$start <- object$start
ans$fixed <- object$fixed
ans$errmin <- object$errmin
if(distimes) ans$distimes <- object$distimes
class(ans) <- c("summary.mkinfit", "summary.modFit")
return(ans)
}
# Expanded from print.summary.modFit
print.summary.mkinfit <- function(x, digits = max(3, getOption("digits") - 3), ...) {
cat("\nEquations:\n")
print(noquote(as.character(x[["diffs"]])))
df <- x$df
rdf <- df[2]
cat("\nStarting values for optimised parameters:\n")
print(x$start)
cat("\nFixed parameter values:\n")
if(length(x$fixed$value) == 0) cat("None\n")
else print(x$fixed)
cat("\nOptimised parameters:\n")
printCoefmat(x$par, digits = digits, ...)
cat("\nResidual standard error:",
format(signif(x$sigma, digits)), "on", rdf, "degrees of freedom\n")
cat("\nChi2 error levels in percent:\n")
x$errmin$err.min <- 100 * x$errmin$err.min
print(x$errmin, digits=digits,...)
printdistimes <- !is.null(x$distimes)
if(printdistimes){
cat("\nEstimated disappearance times\n")
print(x$distimes, digits=digits,...)
}
printcor <- !is.null(x$cov.unscaled)
if (printcor){
Corr <- cov2cor(x$cov.unscaled)
rownames(Corr) <- colnames(Corr) <- rownames(x$par)
cat("\nParameter correlation:\n")
print(Corr, digits = digits, ...)
}
printdata <- !is.null(x$data)
if (printdata){
cat("\nData:\n")
print(format(x$data, digits = digits, scientific = FALSE,...), row.names = FALSE)
}
invisible(x)
}
|