1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
% $Id: examples.Rnw 66 2010-09-03 08:50:26Z jranke $
%%\VignetteIndexEntry{Examples for kinetic evaluations using mkin}
%%VignetteDepends{FME}
%%\usepackage{Sweave}
\documentclass[12pt,a4paper]{article}
\usepackage{a4wide}
%%\usepackage[lists,heads]{endfloat}
\input{header}
\hypersetup{
pdftitle = {Examples for kinetic evaluations using mkin},
pdfsubject = {Manuscript},
pdfauthor = {Johannes Ranke},
colorlinks = {true},
linkcolor = {blue},
citecolor = {blue},
urlcolor = {red},
hyperindex = {true},
linktocpage = {true},
}
\SweaveOpts{engine=R, eps=FALSE, keep.source = TRUE}
<<setup, echo = FALSE, results = hide>>=
options(prompt = "R> ")
options(SweaveHooks = list(
cex = function() par(cex.lab = 1.3, cex.axis = 1.3)))
@
\begin{document}
\title{Examples for kinetic evaluations using mkin}
\author{\textbf{Johannes Ranke} \\[0.5cm]
%EndAName
Eurofins Regulatory AG\\
Weidenweg 15, CH--4310 Rheinfelden, Switzerland\\[0.5cm]
and\\[0.5cm]
University of Bremen\\
}
\maketitle
%\begin{abstract}
%\end{abstract}
\thispagestyle{empty} \setcounter{page}{0}
\clearpage
\tableofcontents
\textbf{Key words}: Kinetics, FOCUS, nonlinear optimisation
\section{Kinetic evaluations for parent compounds}
\label{intro}
These examples are also evaluated in a parallel vignette of the
\Rpackage{kinfit} package \citep{pkg:kinfit}. The datasets are from Appendix 3,
of the FOCUS kinetics report \citep{FOCUS2006, FOCUSkinetics2011}.
\subsection{Laboratory Data L1}
The following code defines example dataset L1 from the FOCUS kinetics
report, p. 284
<<FOCUS_2006_L1_data, echo=TRUE, eval=TRUE>>=
library("mkin")
FOCUS_2006_L1 = data.frame(
t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2),
parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6,
72.0, 71.9, 50.3, 59.4, 47.0, 45.1,
27.7, 27.3, 10.0, 10.4, 2.9, 4.0))
FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)
@
The next step is to set up the models used for the kinetic analysis. Note that
the model definitions contain the names of the observed variables in the data.
In this case, there is only one variable called \Robject{parent}.
<<Simple_models, echo=TRUE>>=
SFO <- mkinmod(parent = list(type = "SFO"))
FOMC <- mkinmod(parent = list(type = "FOMC"))
DFOP <- mkinmod(parent = list(type = "DFOP"))
@
The three models cover the first assumption of simple first order (SFO),
the case of declining rate constant over time (FOMC) and the case of two
different phases of the kinetics (DFOP). For a more detailed discussion
of the models, please see the FOCUS kinetics report.
The following two lines fit the model and produce the summary report
of the model fit. This covers the numerical analysis given in the
FOCUS report.
<<L1_SFO, echo=TRUE>>=
m.L1.SFO <- mkinfit(SFO, FOCUS_2006_L1_mkin, quiet=TRUE)
summary(m.L1.SFO)
@
A plot of the fit is obtained with the plot function for mkinfit objects.
<<L1_SFO_plot, fig=TRUE, echo=TRUE>>=
plot(m.L1.SFO)
@
The residual plot can be easily obtained by
<<L1_SFO_residuals, fig=TRUE, echo=TRUE>>=
mkinresplot(m.L1.SFO, ylab = "Observed", xlab = "Time")
@
For comparison, the FOMC model is fitted as well, and the $\chi^2$ error level
is checked.
<<L1_FOMC, echo=TRUE>>=
m.L1.FOMC <- mkinfit(FOMC, FOCUS_2006_L1_mkin, quiet=TRUE)
s.m.L1.FOMC <- summary(m.L1.FOMC)
s.m.L1.FOMC$errmin
@
Due to the higher number of parameters, and the lower number of degrees of freedom
of the fit, the $\chi^2$ error level is actually higher for the FOMC model (3.6\%) than
for the SFO model (3.4\%).
\subsection{Laboratory Data L2}
The following code defines example dataset L2 from the FOCUS kinetics
report, p. 287
<<FOCUS_2006_L2_data, echo=TRUE, eval=TRUE>>=
FOCUS_2006_L2 = data.frame(
t = rep(c(0, 1, 3, 7, 14, 28), each = 2),
parent = c(96.1, 91.8, 41.4, 38.7,
19.3, 22.3, 4.6, 4.6,
2.6, 1.2, 0.3, 0.6))
FOCUS_2006_L2_mkin <- mkin_wide_to_long(FOCUS_2006_L2)
@
Again, the SFO model is fitted and a summary is obtained.
<<L2_SFO, echo=TRUE>>=
m.L2.SFO <- mkinfit(SFO, FOCUS_2006_L2_mkin, quiet=TRUE)
summary(m.L2.SFO)
@
The $\chi^2$ error level of 14\% suggests that the model does not fit very well.
This is also obvious from the plots of the fit and the residuals.
<<L2_SFO_plot, fig=TRUE, echo=TRUE>>=
plot(m.L2.SFO)
@
In the FOCUS kinetics report, it is stated that there is no apparent systematic
error observed from the residual plot up to the measured DT90 (approximately at
day 5), and there is an underestimation beyond that point.
<<L2_SFO_residuals, fig=TRUE, echo=TRUE>>=
mkinresplot(m.L2.SFO, ylab = "Observed", xlab = "Time")
@
We may add that it is difficult to judge the random nature of the residuals just
from the three samplings at days 0, 1 and 3. Also, it is not clear why a
consistent underestimation after the approximate DT90 should be irrelevant.
For comparison, the FOMC model is fitted as well, and the $\chi^2$ error level
is checked.
<<L2_FOMC, echo=TRUE, fig=TRUE>>=
m.L2.FOMC <- mkinfit(FOMC, FOCUS_2006_L2_mkin, quiet=TRUE)
plot(m.L2.FOMC)
s.m.L2.FOMC <- summary(m.L2.FOMC)
s.m.L2.FOMC$errmin
@
The error level at which the $\chi^2$ test passes is much lower in this case.
Therefore, the FOMC model provides a better description of the data, as less
experimental error has to be assumed in order to explain the data.
Fitting the four parameter DFOP model does not further reduce the
$\chi^2$ error level.
<<L2_DFOP, echo=TRUE, fig=TRUE>>=
m.L2.DFOP <- mkinfit(DFOP, FOCUS_2006_L2_mkin, quiet=TRUE)
plot(m.L2.DFOP)
@
Here, the default starting parameters for the DFOP model obviously do not lead
to a reasonable solution. Therefore the fit is repeated with different starting
parameters.
<<L2_DFOP_2, echo=TRUE, fig=TRUE>>=
m.L2.DFOP <- mkinfit(DFOP, FOCUS_2006_L2_mkin,
parms.ini = c(k1 = 1, k2 = 0.01, g = 0.8),
quiet=TRUE)
plot(m.L2.DFOP)
summary(m.L2.DFOP)
s.m.L2.DFOP <- summary(m.L2.DFOP)
s.m.L2.DFOP$errmin
@
Therefore, the FOMC model is clearly the best-fit model based on the
$\chi^2$ error level criterion.
\subsection{Laboratory Data L3}
The following code defines example dataset L3 from the FOCUS kinetics
report, p. 290
<<FOCUS_2006_L3_data, echo=TRUE, eval=TRUE>>=
FOCUS_2006_L3 = data.frame(
t = c(0, 3, 7, 14, 30, 60, 91, 120),
parent = c(97.8, 60, 51, 43, 35, 22, 15, 12))
FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3)
@
SFO model, summary and plot:
<<L3_SFO, echo=TRUE, fig=TRUE>>=
m.L3.SFO <- mkinfit(SFO, FOCUS_2006_L3_mkin, quiet=TRUE)
summary(m.L3.SFO)
plot(m.L3.SFO)
@
The $\chi^2$ error level of 22\% as well as the plot suggest that the model
does not fit very well.
The FOMC model performs better:
<<L3_FOMC, echo=TRUE, fig=TRUE>>=
m.L3.FOMC <- mkinfit(FOMC, FOCUS_2006_L3_mkin, quiet=TRUE)
plot(m.L3.FOMC)
s.m.L3.FOMC <- summary(m.L3.FOMC)
s.m.L3.FOMC$errmin
endpoints(m.L3.FOMC)
@
The error level at which the $\chi^2$ test passes is 7\% in this case.
Fitting the four parameter DFOP model further reduces the $\chi^2$ error level
considerably:
<<L3_DFOP, echo=TRUE, fig=TRUE>>=
m.L3.DFOP <- mkinfit(DFOP, FOCUS_2006_L3_mkin, quiet=TRUE)
plot(m.L3.DFOP)
s.m.L3.DFOP <- summary(m.L3.DFOP)
s.m.L3.DFOP$errmin
@
Therefore, the DFOP model is the best-fit model based on the $\chi^2$ error
level criterion for laboratory data L3.
\subsection{Laboratory Data L4}
The following code defines example dataset L4 from the FOCUS kinetics
report, p. 293
<<FOCUS_2006_L4_data, echo=TRUE, eval=TRUE>>=
FOCUS_2006_L4 = data.frame(
t = c(0, 3, 7, 14, 30, 60, 91, 120),
parent = c(96.6, 96.3, 94.3, 88.8, 74.9, 59.9, 53.5, 49.0))
FOCUS_2006_L4_mkin <- mkin_wide_to_long(FOCUS_2006_L4)
@
SFO model, summary and plot:
<<L4_SFO, echo=TRUE, fig=TRUE>>=
m.L4.SFO <- mkinfit(SFO, FOCUS_2006_L4_mkin, quiet=TRUE)
summary(m.L4.SFO)
plot(m.L4.SFO)
@
The $\chi^2$ error level of 3.3\% as well as the plot suggest that the model
fits very well.
The FOMC model for comparison
<<L4_FOMC, echo=TRUE, fig=TRUE>>=
m.L4.FOMC <- mkinfit(FOMC, FOCUS_2006_L4_mkin, quiet=TRUE)
plot(m.L4.FOMC)
s.m.L4.FOMC <- summary(m.L4.FOMC)
s.m.L4.FOMC$errmin
@
The error level at which the $\chi^2$ test passes is slightly lower for the FOMC
model. However, the difference appears negligible.
\bibliographystyle{plainnat}
\bibliography{references}
\end{document}
% vim: set foldmethod=syntax:
|