#' Calculate the AIC for a column of an mmkin object
#'
#' Provides a convenient way to compare different kinetic models fitted to the
#' same dataset.
#'
#' @importFrom stats AIC BIC
#' @param object An object of class \code{\link{mmkin}}, containing only one
#' column.
#' @param \dots For compatibility with the generic method
#' @param k As in the generic method
#' @return As in the generic method (a numeric value for single fits, or a
#' dataframe if there are several fits in the column).
#' @author Johannes Ranke
#' @examples
#'
#' \dontrun{ # skip, as it takes > 10 s on winbuilder
#' f <- mmkin(c("SFO", "FOMC", "DFOP"),
#' list("FOCUS A" = FOCUS_2006_A,
#' "FOCUS C" = FOCUS_2006_C), cores = 1, quiet = TRUE)
#' AIC(f[1, "FOCUS A"]) # We get a single number for a single fit
#'
#' # For FOCUS A, the models fit almost equally well, so the higher the number
#' # of parameters, the higher (worse) the AIC
#' AIC(f[, "FOCUS A"])
#' AIC(f[, "FOCUS A"], k = 0) # If we do not penalize additional parameters, we get nearly the same
#'
#' # For FOCUS C, the more complex models fit better
#' AIC(f[, "FOCUS C"])
#' }
#'
#' @export
AIC.mmkin <- function(object, ..., k = 2)
{
# We can only handle a single column
if (ncol(object) != 1) stop("Please provide a single column object")
n.fits <- length(object)
model_names <- rownames(object)
code <- paste0("AIC(",
paste0("object[[", 1:n.fits, "]]", collapse = ", "),
", k = k)")
res <- eval(parse(text = code))
if (n.fits > 1) rownames(res) <- model_names
return(res)
}
#' @rdname AIC.mmkin
#' @export
BIC.mmkin <- function(object, ...)
{
# We can only handle a single column
if (ncol(object) != 1) stop("Please provide a single column object")
n.fits <- length(object)
model_names <- rownames(object)
code <- paste0("BIC(",
paste0("object[[", 1:n.fits, "]]", collapse = ", "),
")")
res <- eval(parse(text = code))
if (n.fits > 1) rownames(res) <- model_names
return(res)
}