#' Estimation of parameter distributions from mmkin row objects
#'
#' This function sets up and attempts to fit a mixed effects model to
#' an mmkin row object which is essentially a list of mkinfit objects
#' that have been obtained by fitting the same model to a list of
#' datasets.
#'
#' @param object An mmkin row object containing several fits of the same model to different datasets
#' @param ... Additional arguments passed to \code{\link{nlme}}
#' @importFrom nlme nlme
#' @return A fitted object of class 'memkin'
#' @examples
#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
#' m_SFO <- mkinmod(parent = mkinsub("SFO"))
#' d_SFO_1 <- mkinpredict(m_SFO,
#' c(k_parent_sink = 0.1),
#' c(parent = 98), sampling_times)
#' d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time")
#' d_SFO_2 <- mkinpredict(m_SFO,
#' c(k_parent_sink = 0.05),
#' c(parent = 102), sampling_times)
#' d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time")
#' d_SFO_3 <- mkinpredict(m_SFO,
#' c(k_parent_sink = 0.02),
#' c(parent = 103), sampling_times)
#' d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time")
#'
#' d1 <- add_err(d_SFO_1, function(value) 3, n = 1)
#' d2 <- add_err(d_SFO_2, function(value) 2, n = 1)
#' d3 <- add_err(d_SFO_3, function(value) 4, n = 1)
#' ds <- c(d1 = d1, d2 = d2, d3 = d3)
#'
#' f <- mmkin("SFO", ds)
#' x <- memkin(f)
#'
#' @export
memkin <- function(object, ...) {
if (nrow(object) > 1) stop("Only row objects allowed")
ds_names <- colnames(object)
p_mat_start_trans <- sapply(object, parms, transformed = TRUE)
colnames(p_mat_start_trans) <- ds_names
p_names_mean_function <- setdiff(rownames(p_mat_start_trans), names(object[[1]]$errparms))
p_start_mean_function <- apply(p_mat_start_trans[p_names_mean_function, ], 1, mean)
ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
names(ds_list) <- ds_names
ds_nlme <- purrr::map_dfr(ds_list, function(x) x, .id = "ds")
ds_nlme_grouped <- groupedData(observed ~ time | ds, ds_nlme)
mkin_model <- object[[1]]$mkinmod
# Inspired by https://stackoverflow.com/a/12983961/3805440
# and https://stackoverflow.com/a/26280789/3805440
model_function_alist <- replicate(length(p_names_mean_function) + 2, substitute())
names(model_function_alist) <- c("name", "time", p_names_mean_function)
model_function_body <- quote({
arg_frame <- as.data.frame(as.list((environment())))
res <- parent_0 * exp( - exp(log_k_parent_sink) * time)
dump(c("arg_frame", "res"), file = "out_1.txt", append = TRUE)
return(res)
})
model_function <- as.function(c(model_function_alist, model_function_body))
f_nlme <- eval(parse(text = nlme_call_text))
model_function_body <- quote({
arg_frame <- as.data.frame(as.list((environment())))
res_frame <- arg_frame[1:2]
parm_frame <- arg_frame[-(1:2)]
parms_unique <- unique(parm_frame)
n_unique <- nrow(parms_unique)
times_ds <- list()
names_ds <- list()
for (i in 1:n_unique) {
times_ds[[i]] <-
arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "time"]
names_ds[[i]] <-
arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "name"]
}
res_list <- lapply(1:n_unique, function(x) {
parms <- unlist(parms_unique[x, , drop = TRUE])
odeini_parm_names <- grep('_0$', names(parms), value = TRUE)
odeparm_names <- setdiff(names(parms), odeini_parm_names)
odeini <- parms[odeini_parm_names]
names(odeini) <- gsub('_0$', '', odeini_parm_names)
odeparms <- backtransform_odeparms(parms[odeparm_names], mkin_model) # TBD rates/fractions
out_wide <- mkinpredict(mkin_model, odeparms = odeparms,
solution_type = "analytical",
odeini = odeini, outtimes = unique(times_ds[[x]]))
out_array <- out_wide[, -1, drop = FALSE]
rownames(out_array) <- as.character(unique(times_ds[[x]]))
out_times <- as.character(times_ds[[x]])
out_names <- names_ds[[x]]
out_values <- mapply(function(times, names) out_array[times, names],
out_times, out_names)
return(as.numeric(out_values))
})
res <- unlist(res_list)
#dump(c("arg_frame", "res"), file = "out_2.txt", append = TRUE)
return(res)
})
model_function <- as.function(c(model_function_alist, model_function_body))
debug(model_function)
f_nlme <- eval(parse(text = nlme_call_text))
undebug(model_function)
model_function(c(0, 0, 100), parent_0 = 100, log_k_parent_sink = log(0.1))
nlme_call_text <- paste0(
"nlme(observed ~ model_function(variable, time, ",
paste(p_names_mean_function, collapse = ", "), "),\n",
" data = ds_nlme_grouped,\n",
" fixed = ", paste(p_names_mean_function, collapse = " + "), " ~ 1,\n",
" random = pdDiag(", paste(p_names_mean_function, collapse = " + "), " ~ 1),\n",
#" start = c(parent_0 = 100, log_k_parent_sink = log(0.1)), verbose = TRUE)\n")
#" start = p_start_mean_function)\n")
" start = p_start_mean_function, verbose = TRUE)\n")
cat(nlme_call_text)
f_nlme <- eval(parse(text = nlme_call_text))
return(f_nlme)
}