#' Fit one or more kinetic models with one or more state variables to one or
#' more datasets
#'
#' This function calls \code{\link{mkinfit}} on all combinations of models and
#' datasets specified in its first two arguments.
#'
#' @param models Either a character vector of shorthand names like
#' \code{c("SFO", "FOMC", "DFOP", "HS", "SFORB")}, or an optionally named
#' list of \code{\link{mkinmod}} objects.
#' @param datasets An optionally named list of datasets suitable as observed
#' data for \code{\link{mkinfit}}.
#' @param cores The number of cores to be used for multicore processing. This
#' is only used when the \code{cluster} argument is \code{NULL}. On Windows
#' machines, cores > 1 is not supported, you need to use the \code{cluster}
#' argument to use multiple logical processors. Per default, all cores
#' detected by [parallel::detectCores()] are used.
#' @param cluster A cluster as returned by \code{\link{makeCluster}} to be used
#' for parallel execution.
#' @param \dots Further arguments that will be passed to \code{\link{mkinfit}}.
#' @importFrom parallel mclapply parLapply detectCores
#' @return A two-dimensional \code{\link{array}} of \code{\link{mkinfit}}
#' objects that can be indexed using the model names for the first index (row index)
#' and the dataset names for the second index (column index).
#' @author Johannes Ranke
#' @seealso \code{\link{[.mmkin}} for subsetting, \code{\link{plot.mmkin}} for
#' plotting.
#' @keywords optimize
#' @examples
#'
#' \dontrun{
#' m_synth_SFO_lin <- mkinmod(parent = mkinsub("SFO", "M1"),
#' M1 = mkinsub("SFO", "M2"),
#' M2 = mkinsub("SFO"), use_of_ff = "max")
#'
#' m_synth_FOMC_lin <- mkinmod(parent = mkinsub("FOMC", "M1"),
#' M1 = mkinsub("SFO", "M2"),
#' M2 = mkinsub("SFO"), use_of_ff = "max")
#'
#' models <- list(SFO_lin = m_synth_SFO_lin, FOMC_lin = m_synth_FOMC_lin)
#' datasets <- lapply(synthetic_data_for_UBA_2014[1:3], function(x) x$data)
#' names(datasets) <- paste("Dataset", 1:3)
#'
#' time_default <- system.time(fits.0 <- mmkin(models, datasets, quiet = TRUE))
#' time_1 <- system.time(fits.4 <- mmkin(models, datasets, cores = 1, quiet = TRUE))
#'
#' time_default
#' time_1
#'
#' endpoints(fits.0[["SFO_lin", 2]])
#'
#' # plot.mkinfit handles rows or columns of mmkin result objects
#' plot(fits.0[1, ])
#' plot(fits.0[1, ], obs_var = c("M1", "M2"))
#' plot(fits.0[, 1])
#' # Use double brackets to extract a single mkinfit object, which will be plotted
#' # by plot.mkinfit and can be plotted using plot_sep
#' plot(fits.0[[1, 1]], sep_obs = TRUE, show_residuals = TRUE, show_errmin = TRUE)
#' plot_sep(fits.0[[1, 1]])
#' # Plotting with mmkin (single brackets, extracting an mmkin object) does not
#' # allow to plot the observed variables separately
#' plot(fits.0[1, 1])
#' }
#'
#' @export mmkin
mmkin <- function(models = c("SFO", "FOMC", "DFOP"), datasets,
cores = detectCores(), cluster = NULL, ...)
{
parent_models_available = c("SFO", "FOMC", "DFOP", "HS", "SFORB", "IORE", "logistic")
n.m <- length(models)
n.d <- length(datasets)
n.fits <- n.m * n.d
fit_indices <- matrix(1:n.fits, ncol = n.d)
# Check models and define their names
if (!all(sapply(models, function(x) inherits(x, "mkinmod")))) {
if (!all(models %in% parent_models_available)) {
stop("Please supply models as a list of mkinmod objects or a vector combined of\n ",
paste(parent_models_available, collapse = ", "))
} else {
names(models) <- models
}
} else {
if (is.null(names(models))) names(models) <- as.character(1:n.m)
}
# Check datasets and define their names
if (is.null(names(datasets))) names(datasets) <- as.character(1:n.d)
# Define names for fit index
dimnames(fit_indices) <- list(model = names(models),
dataset = names(datasets))
fit_function <- function(fit_index) {
w <- which(fit_indices == fit_index, arr.ind = TRUE)
model_index <- w[1]
dataset_index <- w[2]
res <- try(mkinfit(models[[model_index]], datasets[[dataset_index]], ...))
}
if (is.null(cluster)) {
results <- mclapply(as.list(1:n.fits), fit_function, mc.cores = cores)
} else {
results <- parLapply(cluster, as.list(1:n.fits), fit_function)
}
attributes(results) <- attributes(fit_indices)
class(results) <- "mmkin"
return(results)
}
#' Subsetting method for mmkin objects
#'
#' Subsetting method for mmkin objects.
#'
#' @param x An \code{\link{mmkin} object}
#' @param i Row index selecting the fits for specific models
#' @param j Column index selecting the fits to specific datasets
#' @param ... Not used, only there to satisfy the generic method definition
#' @param drop If FALSE, the method always returns an mmkin object, otherwise
#' either a list of mkinfit objects or a single mkinfit object.
#' @return An object of class \code{\link{mmkin}}.
#' @author Johannes Ranke
#' @rdname Extract.mmkin
#' @examples
#'
#' # Only use one core, to pass R CMD check --as-cran
#' fits <- mmkin(c("SFO", "FOMC"), list(B = FOCUS_2006_B, C = FOCUS_2006_C),
#' cores = 1, quiet = TRUE)
#' fits["FOMC", ]
#' fits[, "B"]
#' fits["SFO", "B"]
#'
#' head(
#' # This extracts an mkinfit object with lots of components
#' fits[["FOMC", "B"]]
#' )
#'
#' @export
`[.mmkin` <- function(x, i, j, ..., drop = FALSE) {
class(x) <- NULL
x_sub <- x[i, j, drop = drop]
if (!drop) class(x_sub) <- "mmkin"
return(x_sub)
}