utils::globalVariables(c("predicted", "std"))
#' Fit nonlinear mixed models with SAEM
#'
#' This function uses [saemix::saemix()] as a backend for fitting nonlinear mixed
#' effects models created from [mmkin] row objects using the Stochastic Approximation
#' Expectation Maximisation algorithm (SAEM).
#'
#' An mmkin row object is essentially a list of mkinfit objects that have been
#' obtained by fitting the same model to a list of datasets using [mkinfit].
#'
#' Starting values for the fixed effects (population mean parameters, argument
#' psi0 of [saemix::saemixModel()] are the mean values of the parameters found
#' using [mmkin].
#'
#' @importFrom utils packageVersion
#' @importFrom saemix saemix
#' @param object An [mmkin] row object containing several fits of the same
#' [mkinmod] model to different datasets
#' @param verbose Should we print information about created objects of
#' type [saemix::SaemixModel] and [saemix::SaemixData]?
#' @param transformations Per default, all parameter transformations are done
#' in mkin. If this argument is set to 'saemix', parameter transformations
#' are done in 'saemix' for the supported cases, i.e. (as of version 1.1.2)
#' SFO, FOMC, DFOP and HS without fixing `parent_0`, and SFO or DFOP with
#' one SFO metabolite.
#' @param error_model Possibility to override the error model used in the mmkin object
#' @param degparms_start Parameter values given as a named numeric vector will
#' be used to override the starting values obtained from the 'mmkin' object.
#' @param test_log_parms If TRUE, an attempt is made to use more robust starting
#' values for population parameters fitted as log parameters in mkin (like
#' rate constants) by only considering rate constants that pass the t-test
#' when calculating mean degradation parameters using [mean_degparms].
#' @param conf.level Possibility to adjust the required confidence level
#' for parameter that are tested if requested by 'test_log_parms'.
#' @param solution_type Possibility to specify the solution type in case the
#' automatic choice is not desired
#' @param no_random_effect Character vector of degradation parameters for
#' which there should be no variability over the groups. Only used
#' if the covariance model is not explicitly specified.
#' @param covariance.model Will be passed to [saemix::saemixModel()]. Per
#' default, uncorrelated random effects are specified for all degradation
#' parameters.
#' @param omega.init Will be passed to [saemix::saemixModel()]. If using
#' mkin transformations and the default covariance model with optionally
#' excluded random effects, the variances of the degradation parameters
#' are estimated using [mean_degparms], with testing of untransformed
#' log parameters for significant difference from zero. If not using
#' mkin transformations or a custom covariance model, the default
#' initialisation of [saemix::saemixModel] is used for omega.init.
#' @param covariates A data frame with covariate data for use in
#' 'covariate_models', with dataset names as row names.
#' @param covariate_models A list containing linear model formulas with one explanatory
#' variable, i.e. of the type 'parameter ~ covariate'. Covariates must be available
#' in the 'covariates' data frame.
#' @param error.init Will be passed to [saemix::saemixModel()].
#' @param quiet Should we suppress the messages saemix prints at the beginning
#' and the end of the optimisation process?
#' @param nbiter.saemix Convenience option to increase the number of
#' iterations
#' @param control Passed to [saemix::saemix].
#' @param \dots Further parameters passed to [saemix::saemixModel].
#' @return An S3 object of class 'saem.mmkin', containing the fitted
#' [saemix::SaemixObject] as a list component named 'so'. The
#' object also inherits from 'mixed.mmkin'.
#' @seealso [summary.saem.mmkin] [plot.mixed.mmkin]
#' @examples
#' \dontrun{
#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) subset(x$data[c("name", "time", "value")]))
#' names(ds) <- paste("Dataset", 6:10)
#' f_mmkin_parent_p0_fixed <- mmkin("FOMC", ds,
#' state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
#' f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)
#'
#' f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
#' f_saem_sfo <- saem(f_mmkin_parent["SFO", ])
#' f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
#' f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
#' anova(f_saem_sfo, f_saem_fomc, f_saem_dfop)
#' anova(f_saem_sfo, f_saem_dfop, test = TRUE)
#' illparms(f_saem_dfop)
#' f_saem_dfop_red <- update(f_saem_dfop, no_random_effect = "g_qlogis")
#' anova(f_saem_dfop, f_saem_dfop_red, test = TRUE)
#'
#' anova(f_saem_sfo, f_saem_fomc, f_saem_dfop)
#' # The returned saem.mmkin object contains an SaemixObject, therefore we can use
#' # functions from saemix
#' library(saemix)
#' compare.saemix(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so)
#' plot(f_saem_fomc$so, plot.type = "convergence")
#' plot(f_saem_fomc$so, plot.type = "individual.fit")
#' plot(f_saem_fomc$so, plot.type = "npde")
#' plot(f_saem_fomc$so, plot.type = "vpc")
#'
#' f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
#' f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
#' anova(f_saem_fomc, f_saem_fomc_tc, test = TRUE)
#'
#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"))
#' fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
#' A1 = mkinsub("SFO"))
#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
#' A1 = mkinsub("SFO"))
#' # The following fit uses analytical solutions for SFO-SFO and DFOP-SFO,
#' # and compiled ODEs for FOMC that are much slower
#' f_mmkin <- mmkin(list(
#' "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
#' ds, quiet = TRUE)
#' # saem fits of SFO-SFO and DFOP-SFO to these data take about five seconds
#' # each on this system, as we use analytical solutions written for saemix.
#' # When using the analytical solutions written for mkin this took around
#' # four minutes
#' f_saem_sfo_sfo <- saem(f_mmkin["SFO-SFO", ])
#' f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
#' # We can use print, plot and summary methods to check the results
#' print(f_saem_dfop_sfo)
#' plot(f_saem_dfop_sfo)
#' summary(f_saem_dfop_sfo, data = TRUE)
#'
#' # The following takes about 6 minutes
#' f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve",
#' nbiter.saemix = c(200, 80))
#'
#' #anova(
#' # f_saem_dfop_sfo,
#' # f_saem_dfop_sfo_deSolve))
#'
#' # If the model supports it, we can also use eigenvalue based solutions, which
#' # take a similar amount of time
#' #f_saem_sfo_sfo_eigen <- saem(f_mmkin["SFO-SFO", ], solution_type = "eigen",
#' # control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))
#' }
#' @export
saem <- function(object, ...) UseMethod("saem")
#' @rdname saem
#' @export
saem.mmkin <- function(object,
transformations = c("mkin", "saemix"),
error_model = "auto",
degparms_start = numeric(),
test_log_parms = TRUE,
conf.level = 0.6,
solution_type = "auto",
covariance.model = "auto",
omega.init = "auto",
covariates = NULL,
covariate_models = NULL,
no_random_effect = NULL,
error.init = c(1, 1),
nbiter.saemix = c(300, 100),
control = list(displayProgress = FALSE, print = FALSE,
nbiter.saemix = nbiter.saemix,
save = FALSE, save.graphs = FALSE),
verbose = FALSE, quiet = FALSE, ...)
{
call <- match.call()
transformations <- match.arg(transformations)
m_saemix <- saemix_model(object, verbose = verbose,
error_model = error_model,
degparms_start = degparms_start,
test_log_parms = test_log_parms, conf.level = conf.level,
solution_type = solution_type,
transformations = transformations,
covariance.model = covariance.model,
omega.init = omega.init,
covariates = covariates,
covariate_models = covariate_models,
error.init = error.init,
no_random_effect = no_random_effect,
...)
d_saemix <- saemix_data(object, covariates = covariates, verbose = verbose)
fit_failed <- FALSE
FIM_failed <- NULL
fit_time <- system.time({
utils::capture.output(f_saemix <- try(saemix(m_saemix, d_saemix, control)), split = !quiet)
if (inherits(f_saemix, "try-error")) fit_failed <- TRUE
})
return_data <- nlme_data(object)
if (!fit_failed) {
if (any(is.na(f_saemix@results@se.fixed))) FIM_failed <- c(FIM_failed, "fixed effects")
if (any(is.na(c(f_saemix@results@se.omega, f_saemix@results@se.respar)))) {
FIM_failed <- c(FIM_failed, "random effects and error model parameters")
}
transparms_optim <- f_saemix@results@fixed.effects
names(transparms_optim) <- f_saemix@results@name.fixed
if (transformations == "mkin") {
bparms_optim <- backtransform_odeparms(transparms_optim,
object[[1]]$mkinmod,
object[[1]]$transform_rates,
object[[1]]$transform_fractions)
} else {
bparms_optim <- transparms_optim
}
saemix_data_ds <- f_saemix@data@data$ds
mkin_ds_order <- as.character(unique(return_data$ds))
saemix_ds_order <- unique(saemix_data_ds)
psi <- saemix::psi(f_saemix)
rownames(psi) <- saemix_ds_order
return_data$predicted <- f_saemix@model@model(
psi = psi[mkin_ds_order, ],
id = as.numeric(return_data$ds),
xidep = return_data[c("time", "name")])
return_data <- transform(return_data,
residual = value - predicted,
std = sigma_twocomp(predicted,
f_saemix@results@respar[1], f_saemix@results@respar[2]))
return_data <- transform(return_data,
standardized = residual / std)
}
result <- list(
mkinmod = object[[1]]$mkinmod,
mmkin = object,
solution_type = object[[1]]$solution_type,
transformations = transformations,
transform_rates = object[[1]]$transform_rates,
transform_fractions = object[[1]]$transform_fractions,
covariates = covariates,
covariate_models = covariate_models,
sm = m_saemix,
so = f_saemix,
call = call,
time = fit_time,
FIM_failed = FIM_failed,
mean_dp_start = attr(m_saemix, "mean_dp_start"),
bparms.fixed = object[[1]]$bparms.fixed,
data = return_data,
err_mod = object[[1]]$err_mod,
date.fit = date(),
saemixversion = as.character(utils::packageVersion("saemix")),
mkinversion = as.character(utils::packageVersion("mkin")),
Rversion = paste(R.version$major, R.version$minor, sep=".")
)
if (!fit_failed) {
result$mkin_ds_order <- mkin_ds_order
result$saemix_ds_order <- saemix_ds_order
result$bparms.optim <- bparms_optim
}
class(result) <- c("saem.mmkin", "mixed.mmkin")
return(result)
}
#' @export
#' @rdname saem
#' @param x An saem.mmkin object to print
#' @param digits Number of digits to use for printing
print.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) {
cat( "Kinetic nonlinear mixed-effects model fit by SAEM" )
cat("\nStructural model:\n")
diffs <- x$mmkin[[1]]$mkinmod$diffs
nice_diffs <- gsub("^(d.*) =", "\\1/dt =", diffs)
writeLines(strwrap(nice_diffs, exdent = 11))
cat("\nData:\n")
cat(nrow(x$data), "observations of",
length(unique(x$data$name)), "variable(s) grouped in",
length(unique(x$data$ds)), "datasets\n")
if (inherits(x$so, "try-error")) {
cat("\nFit did not terminate successfully\n")
} else {
cat("\nLikelihood computed by importance sampling\n")
ll <- try(logLik(x$so, type = "is"), silent = TRUE)
if (inherits(ll, "try-error")) {
cat("Not available\n")
} else {
print(data.frame(
AIC = AIC(x$so, type = "is"),
BIC = BIC(x$so, type = "is"),
logLik = logLik(x$so, type = "is"),
row.names = " "), digits = digits)
}
cat("\nFitted parameters:\n")
conf.int <- parms(x, ci = TRUE)
print(conf.int, digits = digits)
}
invisible(x)
}
#' @rdname saem
#' @return An [saemix::SaemixModel] object.
#' @export
saemix_model <- function(object, solution_type = "auto",
transformations = c("mkin", "saemix"), error_model = "auto",
degparms_start = numeric(),
covariance.model = "auto", no_random_effect = NULL,
omega.init = "auto",
covariates = NULL, covariate_models = NULL,
error.init = numeric(),
test_log_parms = FALSE, conf.level = 0.6, verbose = FALSE, ...)
{
if (nrow(object) > 1) stop("Only row objects allowed")
mkin_model <- object[[1]]$mkinmod
if (length(mkin_model$spec) > 1 & solution_type[1] == "analytical") {
stop("mkin analytical solutions not supported for more thane one observed variable")
}
degparms_optim <- mean_degparms(object, test_log_parms = test_log_parms)
na_degparms <- names(which(is.na(degparms_optim)))
if (length(na_degparms) > 0) {
message("Did not find valid starting values for ", paste(na_degparms, collapse = ", "), "\n",
"Now trying with test_log_parms = FALSE")
degparms_optim <- mean_degparms(object, test_log_parms = FALSE)
}
if (transformations == "saemix") {
degparms_optim <- backtransform_odeparms(degparms_optim,
object[[1]]$mkinmod,
object[[1]]$transform_rates,
object[[1]]$transform_fractions)
}
degparms_fixed <- object[[1]]$bparms.fixed
# Transformations are done in the degradation function by default
# (transformations = "mkin")
transform.par = rep(0, length(degparms_optim))
odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE)
odeini_fixed_parm_names <- grep('_0$', names(degparms_fixed), value = TRUE)
odeparms_fixed_names <- setdiff(names(degparms_fixed), odeini_fixed_parm_names)
odeparms_fixed <- degparms_fixed[odeparms_fixed_names]
odeini_fixed <- degparms_fixed[odeini_fixed_parm_names]
names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names)
model_function <- FALSE
# Model functions with analytical solutions
# Fixed parameters, use_of_ff = "min" and turning off sinks currently not supported here
# In general, we need to consider exactly how the parameters in mkinfit were specified,
# as the parameters are currently mapped by position in these solutions
sinks <- sapply(mkin_model$spec, function(x) x$sink)
if (length(odeparms_fixed) == 0 & mkin_model$use_of_ff == "max" & all(sinks)) {
# Parent only
if (length(mkin_model$spec) == 1) {
parent_type <- mkin_model$spec[[1]]$type
if (length(odeini_fixed) == 1 && !grepl("_bound$", names(odeini_fixed))) {
if (transformations == "saemix") {
stop("saemix transformations are not supported for parent fits with fixed initial parent value")
}
if (parent_type == "SFO") {
stop("saemix needs at least two parameters to work on.")
}
if (parent_type == "FOMC") {
model_function <- function(psi, id, xidep) {
odeini_fixed / (xidep[, "time"]/exp(psi[id, 2]) + 1)^exp(psi[id, 1])
}
}
if (parent_type == "DFOP") {
model_function <- function(psi, id, xidep) {
g <- plogis(psi[id, 3])
t <- xidep[, "time"]
odeini_fixed * (g * exp(- exp(psi[id, 1]) * t) +
(1 - g) * exp(- exp(psi[id, 2]) * t))
}
}
if (parent_type == "HS") {
model_function <- function(psi, id, xidep) {
tb <- exp(psi[id, 3])
t <- xidep[, "time"]
k1 = exp(psi[id, 1])
odeini_fixed * ifelse(t <= tb,
exp(- k1 * t),
exp(- k1 * tb) * exp(- exp(psi[id, 2]) * (t - tb)))
}
}
} else {
if (length(odeini_fixed) == 2) {
stop("SFORB with fixed initial parent value is not supported")
}
if (parent_type == "SFO") {
if (transformations == "mkin") {
model_function <- function(psi, id, xidep) {
psi[id, 1] * exp( - exp(psi[id, 2]) * xidep[, "time"])
}
} else {
model_function <- function(psi, id, xidep) {
psi[id, 1] * exp( - psi[id, 2] * xidep[, "time"])
}
transform.par = c(0, 1)
}
}
if (parent_type == "FOMC") {
if (transformations == "mkin") {
model_function <- function(psi, id, xidep) {
psi[id, 1] / (xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, 2])
}
} else {
model_function <- function(psi, id, xidep) {
psi[id, 1] / (xidep[, "time"]/psi[id, 3] + 1)^psi[id, 2]
}
transform.par = c(0, 1, 1)
}
}
if (parent_type == "DFOP") {
if (transformations == "mkin") {
model_function <- function(psi, id, xidep) {
g <- plogis(psi[id, 4])
t <- xidep[, "time"]
psi[id, 1] * (g * exp(- exp(psi[id, 2]) * t) +
(1 - g) * exp(- exp(psi[id, 3]) * t))
}
} else {
model_function <- function(psi, id, xidep) {
g <- psi[id, 4]
t <- xidep[, "time"]
psi[id, 1] * (g * exp(- psi[id, 2] * t) +
(1 - g) * exp(- psi[id, 3] * t))
}
transform.par = c(0, 1, 1, 3)
}
}
if (parent_type == "SFORB") {
if (transformations == "mkin") {
model_function <- function(psi, id, xidep) {
k_12 <- exp(psi[id, 3])
k_21 <- exp(psi[id, 4])
k_1output <- exp(psi[id, 2])
t <- xidep[, "time"]
sqrt_exp = sqrt(1/4 * (k_12 + k_21 + k_1output)^2 - k_1output * k_21)
b1 = 0.5 * (k_12 + k_21 + k_1output) + sqrt_exp
b2 = 0.5 * (k_12 + k_21 + k_1output) - sqrt_exp
psi[id, 1] * (((k_12 + k_21 - b1)/(b2 - b1)) * exp(-b1 * t) +
((k_12 + k_21 - b2)/(b1 - b2)) * exp(-b2 * t))
}
} else {
model_function <- function(psi, id, xidep) {
k_12 <- psi[id, 3]
k_21 <- psi[id, 4]
k_1output <- psi[id, 2]
t <- xidep[, "time"]
sqrt_exp = sqrt(1/4 * (k_12 + k_21 + k_1output)^2 - k_1output * k_21)
b1 = 0.5 * (k_12 + k_21 + k_1output) + sqrt_exp
b2 = 0.5 * (k_12 + k_21 + k_1output) - sqrt_exp
psi[id, 1] * (((k_12 + k_21 - b1)/(b2 - b1)) * exp(-b1 * t) +
((k_12 + k_21 - b2)/(b1 - b2)) * exp(-b2 * t))
}
transform.par = c(0, 1, 1, 1)
}
}
if (parent_type == "HS") {
if (transformations == "mkin") {
model_function <- function(psi, id, xidep) {
tb <- exp(psi[id, 4])
t <- xidep[, "time"]
k1 <- exp(psi[id, 2])
psi[id, 1] * ifelse(t <= tb,
exp(- k1 * t),
exp(- k1 * tb) * exp(- exp(psi[id, 3]) * (t - tb)))
}
} else {
model_function <- function(psi, id, xidep) {
tb <- psi[id, 4]
t <- xidep[, "time"]
psi[id, 1] * ifelse(t <= tb,
exp(- psi[id, 2] * t),
exp(- psi[id, 2] * tb) * exp(- psi[id, 3] * (t - tb)))
}
transform.par = c(0, 1, 1, 1)
}
}
}
}
# Parent with one metabolite
# Parameter names used in the model functions are as in
# https://nbviewer.jupyter.org/urls/jrwb.de/nb/Symbolic%20ODE%20solutions%20for%20mkin.ipynb
types <- unname(sapply(mkin_model$spec, function(x) x$type))
if (length(mkin_model$spec) == 2 &! "SFORB" %in% types ) {
# Initial value for the metabolite (n20) must be fixed
if (names(odeini_fixed) == names(mkin_model$spec)[2]) {
n20 <- odeini_fixed
parent_name <- names(mkin_model$spec)[1]
if (identical(types, c("SFO", "SFO"))) {
if (transformations == "mkin") {
model_function <- function(psi, id, xidep) {
t <- xidep[, "time"]
n10 <- psi[id, 1]
k1 <- exp(psi[id, 2])
k2 <- exp(psi[id, 3])
f12 <- plogis(psi[id, 4])
ifelse(xidep[, "name"] == parent_name,
n10 * exp(- k1 * t),
(((k2 - k1) * n20 - f12 * k1 * n10) * exp(- k2 * t)) / (k2 - k1) +
(f12 * k1 * n10 * exp(- k1 * t)) / (k2 - k1)
)
}
} else {
model_function <- function(psi, id, xidep) {
t <- xidep[, "time"]
n10 <- psi[id, 1]
k1 <- psi[id, 2]
k2 <- psi[id, 3]
f12 <- psi[id, 4]
ifelse(xidep[, "name"] == parent_name,
n10 * exp(- k1 * t),
(((k2 - k1) * n20 - f12 * k1 * n10) * exp(- k2 * t)) / (k2 - k1) +
(f12 * k1 * n10 * exp(- k1 * t)) / (k2 - k1)
)
}
transform.par = c(0, 1, 1, 3)
}
}
if (identical(types, c("DFOP", "SFO"))) {
if (transformations == "mkin") {
model_function <- function(psi, id, xidep) {
t <- xidep[, "time"]
n10 <- psi[id, 1]
k2 <- exp(psi[id, 2])
f12 <- plogis(psi[id, 3])
l1 <- exp(psi[id, 4])
l2 <- exp(psi[id, 5])
g <- plogis(psi[id, 6])
ifelse(xidep[, "name"] == parent_name,
n10 * (g * exp(- l1 * t) + (1 - g) * exp(- l2 * t)),
((f12 * g - f12) * l2 * n10 * exp(- l2 * t)) / (l2 - k2) -
(f12 * g * l1 * n10 * exp(- l1 * t)) / (l1 - k2) +
((((l1 - k2) * l2 - k2 * l1 + k2^2) * n20 +
((f12 * l1 + (f12 * g - f12) * k2) * l2 -
f12 * g * k2 * l1) * n10) * exp( - k2 * t)) /
((l1 - k2) * l2 - k2 * l1 + k2^2)
)
}
} else {
model_function <- function(psi, id, xidep) {
t <- xidep[, "time"]
n10 <- psi[id, 1]
k2 <- psi[id, 2]
f12 <- psi[id, 3]
l1 <- psi[id, 4]
l2 <- psi[id, 5]
g <- psi[id, 6]
ifelse(xidep[, "name"] == parent_name,
n10 * (g * exp(- l1 * t) + (1 - g) * exp(- l2 * t)),
((f12 * g - f12) * l2 * n10 * exp(- l2 * t)) / (l2 - k2) -
(f12 * g * l1 * n10 * exp(- l1 * t)) / (l1 - k2) +
((((l1 - k2) * l2 - k2 * l1 + k2^2) * n20 +
((f12 * l1 + (f12 * g - f12) * k2) * l2 -
f12 * g * k2 * l1) * n10) * exp( - k2 * t)) /
((l1 - k2) * l2 - k2 * l1 + k2^2)
)
}
transform.par = c(0, 1, 3, 1, 1, 3)
}
}
}
}
}
if (is.function(model_function) & solution_type == "auto") {
solution_type = "analytical saemix"
} else {
if (transformations == "saemix") {
stop("Using saemix transformations is only supported if an analytical solution is implemented for saemix")
}
if (solution_type == "auto")
solution_type <- object[[1]]$solution_type
# Define some variables to avoid function calls in model function
transparms_optim_names <- names(degparms_optim)
odeini_optim_names <- gsub('_0$', '', odeini_optim_parm_names)
diff_names <- names(mkin_model$diffs)
ode_transparms_optim_names <- setdiff(transparms_optim_names, odeini_optim_parm_names)
transform_rates <- object[[1]]$transform_rates
transform_fractions <- object[[1]]$transform_fractions
# Get native symbol info for speed
use_symbols = FALSE
if (solution_type == "deSolve" & !is.null(mkin_model$cf)) {
mkin_model$symbols <- try(deSolve::checkDLL(
dllname = mkin_model$dll_info[["name"]],
func = "diffs", initfunc = "initpar",
jacfunc = NULL, nout = 0, outnames = NULL))
if (!inherits(mkin_model$symbols, "try-error")) {
use_symbols = TRUE
}
}
# Define the model function
model_function <- function(psi, id, xidep) {
uid <- unique(id)
res_list <- lapply(uid, function(i) {
transparms_optim <- as.numeric(psi[i, ]) # psi[i, ] is a dataframe when called in saemix.predict
names(transparms_optim) <- transparms_optim_names
odeini_optim <- transparms_optim[odeini_optim_parm_names]
names(odeini_optim) <- odeini_optim_names
odeini <- c(odeini_optim, odeini_fixed)[diff_names]
odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model,
transform_rates = transform_rates,
transform_fractions = transform_fractions)
odeparms <- c(odeparms_optim, odeparms_fixed)
xidep_i <- xidep[which(id == i), ]
if (solution_type[1] == "analytical") {
out_values <- mkin_model$deg_func(xidep_i, odeini, odeparms)
} else {
i_time <- xidep_i$time
i_name <- xidep_i$name
out_wide <- mkinpredict(mkin_model,
odeparms = odeparms, odeini = odeini,
solution_type = solution_type,
outtimes = sort(unique(i_time)),
na_stop = FALSE
)
out_index <- cbind(as.character(i_time), as.character(i_name))
out_values <- out_wide[out_index]
}
return(out_values)
})
res <- unlist(res_list)
return(res)
}
}
if (identical(error_model, "auto")) {
error_model = object[[1]]$err_mod
}
error.model <- switch(error_model,
const = "constant",
tc = "combined",
obs = "constant")
if (error_model == "obs") {
warning("The error model 'obs' (variance by variable) can currently not be transferred to an saemix model")
}
degparms_psi0 <- degparms_optim
degparms_psi0[names(degparms_start)] <- degparms_start
psi0_matrix <- matrix(degparms_psi0, nrow = 1,
dimnames = list("(Intercept)", names(degparms_psi0)))
if (covariance.model[1] == "auto") {
covariance_diagonal <- rep(1, length(degparms_optim))
if (!is.null(no_random_effect)) {
degparms_no_random <- which(names(degparms_psi0) %in% no_random_effect)
covariance_diagonal[degparms_no_random] <- 0
}
covariance.model = diag(covariance_diagonal)
}
if (omega.init[1] == "auto") {
if (transformations == "mkin") {
degparms_eta_ini <- as.numeric( # remove names
mean_degparms(object,
random = TRUE, test_log_parms = TRUE)$eta)
omega.init <- 2 * diag(degparms_eta_ini^2)
} else {
omega.init <- matrix(nrow = 0, ncol = 0)
}
}
if (is.null(covariate_models)) {
covariate.model <- matrix(nrow = 0, ncol = 0) # default in saemixModel()
} else {
degparms_dependent <- sapply(covariate_models, function(x) as.character(x[[2]]))
covariates_in_models = unique(unlist(lapply(
covariate_models, function(x)
colnames(attr(terms(x), "factors"))
)))
covariates_not_available <- setdiff(covariates_in_models, names(covariates))
if (length(covariates_not_available) > 0) {
stop("Covariate(s) ", paste(covariates_not_available, collapse = ", "),
" used in the covariate models not available in the covariate data")
}
psi0_matrix <- rbind(psi0_matrix,
matrix(0, nrow = length(covariates), ncol = ncol(psi0_matrix),
dimnames = list(names(covariates), colnames(psi0_matrix))))
covariate.model <- matrix(0, nrow = length(covariates),
ncol = ncol(psi0_matrix),
dimnames = list(
covariates = names(covariates),
degparms = colnames(psi0_matrix)))
if (transformations == "saemix") {
stop("Covariate models with saemix transformations currently not supported")
}
parms_trans <- as.data.frame(t(sapply(object, parms, transformed = TRUE)))
for (covariate_model in covariate_models) {
covariate_name <- as.character(covariate_model[[2]])
model_data <- cbind(parms_trans, covariates)
ini_model <- lm(covariate_model, data = model_data)
ini_coef <- coef(ini_model)
psi0_matrix[names(ini_coef), covariate_name] <- ini_coef
covariate.model[names(ini_coef)[-1], covariate_name] <- as.numeric(as.logical(ini_coef[-1]))
}
}
res <- saemix::saemixModel(model_function,
psi0 = psi0_matrix,
"Mixed model generated from mmkin object",
transform.par = transform.par,
error.model = error.model,
verbose = verbose,
covariance.model = covariance.model,
covariate.model = covariate.model,
omega.init = omega.init,
error.init = error.init,
...
)
attr(res, "mean_dp_start") <- degparms_optim
return(res)
}
#' @rdname saem
#' @importFrom rlang !!!
#' @return An [saemix::SaemixData] object.
#' @export
saemix_data <- function(object, covariates = NULL, verbose = FALSE, ...) {
if (nrow(object) > 1) stop("Only row objects allowed")
ds_names <- colnames(object)
ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
names(ds_list) <- ds_names
ds_saemix_all <- vctrs::vec_rbind(!!!ds_list, .names_to = "ds")
ds_saemix <- data.frame(ds = ds_saemix_all$ds,
name = as.character(ds_saemix_all$variable),
time = ds_saemix_all$time,
value = ds_saemix_all$observed,
stringsAsFactors = FALSE)
if (!is.null(covariates)) {
name.covariates <- names(covariates)
covariates$ds <- rownames(covariates)
ds_saemix <- merge(ds_saemix, covariates, sort = FALSE)
} else {
name.covariates <- character(0)
}
res <- saemix::saemixData(ds_saemix,
name.group = "ds",
name.predictors = c("time", "name"),
name.response = "value",
name.covariates = name.covariates,
verbose = verbose,
...)
return(res)
}
#' logLik method for saem.mmkin objects
#'
#' @param object The fitted [saem.mmkin] object
#' @param \dots Passed to [saemix::logLik.SaemixObject]
#' @param method Passed to [saemix::logLik.SaemixObject]
#' @export
logLik.saem.mmkin <- function(object, ..., method = c("is", "lin", "gq")) {
method <- match.arg(method)
return(logLik(object$so, method = method))
}
#' @export
update.saem.mmkin <- function(object, ..., evaluate = TRUE) {
call <- object$call
# For some reason we get saem.mmkin in the call when using mhmkin
# so we need to fix this so we do not have to export saem.mmkin in
# addition to the S3 method
call[[1]] <- saem
# We also need to provide the mmkin object in the call, so it
# will also be found when called by testthat or pkgdown
call[[2]] <- object$mmkin
update_arguments <- match.call(expand.dots = FALSE)$...
if (length(update_arguments) > 0) {
update_arguments_in_call <- !is.na(match(names(update_arguments), names(call)))
}
for (a in names(update_arguments)[update_arguments_in_call]) {
call[[a]] <- update_arguments[[a]]
}
update_arguments_not_in_call <- !update_arguments_in_call
if(any(update_arguments_not_in_call)) {
call <- c(as.list(call), update_arguments[update_arguments_not_in_call])
call <- as.call(call)
}
if(evaluate) eval(call, parent.frame())
else call
}
#' @export
#' @rdname parms
#' @param ci Should a matrix with estimates and confidence interval boundaries
#' be returned? If FALSE (default), a vector of estimates is returned if no
#' covariates are given, otherwise a matrix of estimates is returned, with
#' each column corresponding to a row of the data frame holding the covariates
#' @param covariates A data frame holding covariate values for which to
#' return parameter values. Only has an effect if 'ci' is FALSE.
parms.saem.mmkin <- function(object, ci = FALSE, covariates = NULL, ...) {
cov.mod <- object$sm@covariance.model
n_cov_mod_parms <- sum(cov.mod[upper.tri(cov.mod, diag = TRUE)])
n_parms <- length(object$sm@name.modpar) +
n_cov_mod_parms +
length(object$sm@name.sigma)
if (inherits(object$so, "try-error")) {
conf.int <- matrix(rep(NA, 3 * n_parms), ncol = 3)
colnames(conf.int) <- c("estimate", "lower", "upper")
} else {
conf.int <- object$so@results@conf.int[c("estimate", "lower", "upper")]
rownames(conf.int) <- object$so@results@conf.int[["name"]]
conf.int.var <- grepl("^Var\\.", rownames(conf.int))
conf.int <- conf.int[!conf.int.var, ]
conf.int.cov <- grepl("^Cov\\.", rownames(conf.int))
conf.int <- conf.int[!conf.int.cov, ]
}
estimate <- conf.int[, "estimate"]
names(estimate) <- rownames(conf.int)
if (ci) {
return(conf.int)
} else {
if (is.null(covariates)) {
return(estimate)
} else {
est_for_cov <- matrix(NA,
nrow = length(object$sm@name.modpar), ncol = nrow(covariates),
dimnames = (list(object$sm@name.modpar, rownames(covariates))))
covmods <- object$covariate_models
names(covmods) <- sapply(covmods, function(x) as.character(x[[2]]))
for (deg_parm_name in rownames(est_for_cov)) {
if (deg_parm_name %in% names(covmods)) {
covariate <- covmods[[deg_parm_name]][[3]]
beta_degparm_name <- paste0("beta_", covariate,
"(", deg_parm_name, ")")
est_for_cov[deg_parm_name, ] <- estimate[deg_parm_name] +
covariates[[covariate]] * estimate[beta_degparm_name]
} else {
est_for_cov[deg_parm_name, ] <- estimate[deg_parm_name]
}
}
return(est_for_cov)
}
}
}