aboutsummaryrefslogblamecommitdiff
path: root/docs/dev/articles/prebuilt/2022_cyan_pathway.html
blob: 1095dd289f69dd92069cf9c05061504b6a2936c8 (plain) (tree)
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208


































                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                        




                                                      
                                                    









                                                                                                                           

                                                                                               





                                                                                                    

                                                                                                      
         
                                                                                                              
        
                                                                                                                                                                       
         
                                                                                                                                                             
         
                                                                                                                                              
         
                                                                                                                                           
         





                                                                                                                                





                                                                                                 







                                                                                                                   






























                                                                   
                                           

















                                                                                                                                                                                                                           
                                                                     































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                          





























































































































                                                                             
                                          































































































































                                                                             
                                          














































































































































                                                                              
                                          







































































































































                                                                             
                                          















































































































































                                                                             
                                          















































































































































                                                                             
                                          


































































































































































                                                                               
                                          


































































































































































                                                                               
                                          











































































































































                                                                             
                                          

















































































































































                                                                                        
                                          

































































































































































                                                                              
                                          















































































































































                                                                             
                                          




























































































































































































                                                                              
                                          




























































































































































































                                                                              
                                          

































































































































































































                                                                               
                                          






































































































































































































                                                                                                                                
                                          












































































































































                                                                             
                                          



































































































































































                                                                             
                                          



































































































































































                                                                             
                                          








































































































































































                                                                               
                                          

























































































































































































                                                                                                 
                                               
                                          












                                                                            






































                                                                                                    
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Testing hierarchical pathway kinetics with residue data on cyantraniliprole • mkin</title>
<!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../../bootstrap-toc.css">
<script src="../../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous">
<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../../pkgdown.css" rel="stylesheet">
<script src="../../pkgdown.js"></script><meta property="og:title" content="Testing hierarchical pathway kinetics with residue data on cyantraniliprole">
<meta property="og:description" content="mkin">
<meta name="robots" content="noindex">
<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body data-spy="scroll" data-target="#toc">
    

    <div class="container template-article">
      <header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
        <span class="sr-only">Toggle navigation</span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <span class="navbar-brand">
        <a class="navbar-link" href="../../index.html">mkin</a>
        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.2.3</span>
      </span>
    </div>

    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav">
<li>
  <a href="../../reference/index.html">Reference</a>
</li>
<li class="dropdown">
  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
    Articles
     
    <span class="caret"></span>
  </a>
  <ul class="dropdown-menu" role="menu">
<li>
      <a href="../../articles/mkin.html">Introduction to mkin</a>
    </li>
    <li class="divider">
    </li>
<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>
    <li>
      <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
    </li>
    <li>
      <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
    </li>
    <li>
      <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
    </li>
    <li class="divider">
    </li>
<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>
    <li>
      <a href="../../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>
    </li>
    <li>
      <a href="../../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>
    </li>
    <li>
      <a href="../../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>
    </li>
    <li>
      <a href="../../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>
    </li>
    <li>
      <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a>
    </li>
    <li class="divider">
    </li>
<li class="dropdown-header">Performance</li>
    <li>
      <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
    </li>
    <li>
      <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a>
    </li>
    <li>
      <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>
    </li>
    <li class="divider">
    </li>
<li class="dropdown-header">Miscellaneous</li>
    <li>
      <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
    </li>
    <li>
      <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
    </li>
  </ul>
</li>
<li>
  <a href="../../news/index.html">News</a>
</li>
      </ul>
<ul class="nav navbar-nav navbar-right">
<li>
  <a href="https://github.com/jranke/mkin/" class="external-link">
    <span class="fab fa-github fa-lg"></span>
     
  </a>
</li>
      </ul>
</div>
<!--/.nav-collapse -->
  </div>
<!--/.container -->
</div>
<!--/.navbar -->

      

      </header><div class="row">
  <div class="col-md-9 contents">
    <div class="page-header toc-ignore">
      <h1 data-toc-skip>Testing hierarchical pathway kinetics with
residue data on cyantraniliprole</h1>
                        <h4 data-toc-skip class="author">Johannes
Ranke</h4>
            
            <h4 data-toc-skip class="date">Last change on 6 January
2023, last compiled on 17 Februar 2023</h4>
      
      <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/prebuilt/2022_cyan_pathway.rmd" class="external-link"><code>vignettes/prebuilt/2022_cyan_pathway.rmd</code></a></small>
      <div class="hidden name"><code>2022_cyan_pathway.rmd</code></div>

    </div>

    
    
<div class="section level2">
<h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a>
</h2>
<p>The purpose of this document is to test demonstrate how nonlinear
hierarchical models (NLHM) based on the parent degradation models SFO,
FOMC, DFOP and HS, with serial formation of two or more metabolites can
be fitted with the mkin package.</p>
<p>It was assembled in the course of work package 1.2 of Project Number
173340 (Application of nonlinear hierarchical models to the kinetic
evaluation of chemical degradation data) of the German Environment
Agency carried out in 2022 and 2023.</p>
<p>The mkin package is used in version 1.2.3 which is currently under
development. The newly introduced functionality that is used here is a
simplification of excluding random effects for a set of fits based on a
related set of fits with a reduced model, and the documentation of the
starting parameters of the fit, so that all starting parameters of
<code>saem</code> fits are now listed in the summary. The
<code>saemix</code> package is used as a backend for fitting the NLHM,
but is also loaded to make the convergence plot function available.</p>
<p>This document is processed with the <code>knitr</code> package, which
also provides the <code>kable</code> function that is used to improve
the display of tabular data in R markdown documents. For parallel
processing, the <code>parallel</code> package is used.</p>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://pkgdown.jrwb.de/mkin/">mkin</a></span><span class="op">)</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://yihui.org/knitr/" class="external-link">knitr</a></span><span class="op">)</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">saemix</span><span class="op">)</span></span>
<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">parallel</span><span class="op">)</span></span>
<span><span class="va">n_cores</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/detectCores.html" class="external-link">detectCores</a></span><span class="op">(</span><span class="op">)</span></span>
<span><span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/Sys.info.html" class="external-link">Sys.info</a></span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="st">"sysname"</span><span class="op">]</span> <span class="op">==</span> <span class="st">"Windows"</span><span class="op">)</span> <span class="op">{</span></span>
<span>  <span class="va">cl</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makePSOCKcluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span>
<span><span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span>
<span>  <span class="va">cl</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makeForkCluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span>
<span><span class="op">}</span></span></code></pre></div>
<div class="section level3">
<h3 id="test-data">Test data<a class="anchor" aria-label="anchor" href="#test-data"></a>
</h3>
<p>The example data are taken from the final addendum to the DAR from
2014 and are distributed with the mkin package. Residue data and time
step normalisation factors are read in using the function
<code>read_spreadsheet</code> from the mkin package. This function also
performs the time step normalisation.</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">data_file</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/system.file.html" class="external-link">system.file</a></span><span class="op">(</span></span>
<span>  <span class="st">"testdata"</span>, <span class="st">"cyantraniliprole_soil_efsa_2014.xlsx"</span>,</span>
<span>  package <span class="op">=</span> <span class="st">"mkin"</span><span class="op">)</span></span>
<span><span class="va">cyan_ds</span> <span class="op">&lt;-</span> <span class="fu"><a href="../../reference/read_spreadsheet.html">read_spreadsheet</a></span><span class="op">(</span><span class="va">data_file</span>, parent_only <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
<p>The following tables show the covariate data and the 5 datasets that
were read in from the spreadsheet file.</p>
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">pH</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/attr.html" class="external-link">attr</a></span><span class="op">(</span><span class="va">cyan_ds</span>, <span class="st">"covariates"</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="va">pH</span>, caption <span class="op">=</span> <span class="st">"Covariate data"</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<caption>Covariate data</caption>
<thead><tr class="header">
<th align="left"></th>
<th align="right">pH</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">Nambsheim</td>
<td align="right">7.90</td>
</tr>
<tr class="even">
<td align="left">Tama</td>
<td align="right">6.20</td>
</tr>
<tr class="odd">
<td align="left">Gross-Umstadt</td>
<td align="right">7.04</td>
</tr>
<tr class="even">
<td align="left">Sassafras</td>
<td align="right">4.62</td>
</tr>
<tr class="odd">
<td align="left">Lleida</td>
<td align="right">8.05</td>
</tr>
</tbody>
</table>
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="kw">for</span> <span class="op">(</span><span class="va">ds_name</span> <span class="kw">in</span> <span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">cyan_ds</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span>
<span>  <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span></span>
<span>    <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mkin_long_to_wide.html">mkin_long_to_wide</a></span><span class="op">(</span><span class="va">cyan_ds</span><span class="op">[[</span><span class="va">ds_name</span><span class="op">]</span><span class="op">]</span><span class="op">)</span>,</span>
<span>      caption <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste</a></span><span class="op">(</span><span class="st">"Dataset"</span>, <span class="va">ds_name</span><span class="op">)</span>,</span>
<span>      booktabs <span class="op">=</span> <span class="cn">TRUE</span>, row.names <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">)</span></span>
<span>    <span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="st">"\n\\clearpage\n"</span><span class="op">)</span></span>
<span><span class="op">}</span></span></code></pre></div>
<table class="table">
<caption>Dataset Nambsheim</caption>
<thead><tr class="header">
<th align="right">time</th>
<th align="right">cyan</th>
<th align="right">JCZ38</th>
<th align="right">J9C38</th>
<th align="right">JSE76</th>
<th align="right">J9Z38</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="right">0.000000</td>
<td align="right">105.79</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
</tr>
<tr class="even">
<td align="right">3.210424</td>
<td align="right">77.26</td>
<td align="right">7.92</td>
<td align="right">11.94</td>
<td align="right">5.58</td>
<td align="right">9.12</td>
</tr>
<tr class="odd">
<td align="right">7.490988</td>
<td align="right">57.13</td>
<td align="right">15.46</td>
<td align="right">16.58</td>
<td align="right">12.59</td>
<td align="right">11.74</td>
</tr>
<tr class="even">
<td align="right">17.122259</td>
<td align="right">37.74</td>
<td align="right">15.98</td>
<td align="right">13.36</td>
<td align="right">26.05</td>
<td align="right">10.77</td>
</tr>
<tr class="odd">
<td align="right">23.543105</td>
<td align="right">31.47</td>
<td align="right">6.05</td>
<td align="right">14.49</td>
<td align="right">34.71</td>
<td align="right">4.96</td>
</tr>
<tr class="even">
<td align="right">43.875788</td>
<td align="right">16.74</td>
<td align="right">6.07</td>
<td align="right">7.57</td>
<td align="right">40.38</td>
<td align="right">6.52</td>
</tr>
<tr class="odd">
<td align="right">67.418893</td>
<td align="right">8.85</td>
<td align="right">10.34</td>
<td align="right">6.39</td>
<td align="right">30.71</td>
<td align="right">8.90</td>
</tr>
<tr class="even">
<td align="right">107.014116</td>
<td align="right">5.19</td>
<td align="right">9.61</td>
<td align="right">1.95</td>
<td align="right">20.41</td>
<td align="right">12.93</td>
</tr>
<tr class="odd">
<td align="right">129.487080</td>
<td align="right">3.45</td>
<td align="right">6.18</td>
<td align="right">1.36</td>
<td align="right">21.78</td>
<td align="right">6.99</td>
</tr>
<tr class="even">
<td align="right">195.835832</td>
<td align="right">2.15</td>
<td align="right">9.13</td>
<td align="right">0.95</td>
<td align="right">16.29</td>
<td align="right">7.69</td>
</tr>
<tr class="odd">
<td align="right">254.693596</td>
<td align="right">1.92</td>
<td align="right">6.92</td>
<td align="right">0.20</td>
<td align="right">13.57</td>
<td align="right">7.16</td>
</tr>
<tr class="even">
<td align="right">321.042348</td>
<td align="right">2.26</td>
<td align="right">7.02</td>
<td align="right">NA</td>
<td align="right">11.12</td>
<td align="right">8.66</td>
</tr>
<tr class="odd">
<td align="right">383.110535</td>
<td align="right">NA</td>
<td align="right">5.05</td>
<td align="right">NA</td>
<td align="right">10.64</td>
<td align="right">5.56</td>
</tr>
<tr class="even">
<td align="right">0.000000</td>
<td align="right">105.57</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
</tr>
<tr class="odd">
<td align="right">3.210424</td>
<td align="right">78.88</td>
<td align="right">12.77</td>
<td align="right">11.94</td>
<td align="right">5.47</td>
<td align="right">9.12</td>
</tr>
<tr class="even">
<td align="right">7.490988</td>
<td align="right">59.94</td>
<td align="right">15.27</td>
<td align="right">16.58</td>
<td align="right">13.60</td>
<td align="right">11.74</td>
</tr>
<tr class="odd">
<td align="right">17.122259</td>
<td align="right">39.67</td>
<td align="right">14.26</td>
<td align="right">13.36</td>
<td align="right">29.44</td>
<td align="right">10.77</td>
</tr>
<tr class="even">
<td align="right">23.543105</td>
<td align="right">30.21</td>
<td align="right">16.07</td>
<td align="right">14.49</td>
<td align="right">35.90</td>
<td align="right">4.96</td>
</tr>
<tr class="odd">
<td align="right">43.875788</td>
<td align="right">18.06</td>
<td align="right">9.44</td>
<td align="right">7.57</td>
<td align="right">42.30</td>
<td align="right">6.52</td>
</tr>
<tr class="even">
<td align="right">67.418893</td>
<td align="right">8.54</td>
<td align="right">5.78</td>
<td align="right">6.39</td>
<td align="right">34.70</td>
<td align="right">8.90</td>
</tr>
<tr class="odd">
<td align="right">107.014116</td>
<td align="right">7.26</td>
<td align="right">4.54</td>
<td align="right">1.95</td>
<td align="right">23.33</td>
<td align="right">12.93</td>
</tr>
<tr class="even">
<td align="right">129.487080</td>
<td align="right">3.60</td>
<td align="right">4.22</td>
<td align="right">1.36</td>
<td align="right">23.56</td>
<td align="right">6.99</td>
</tr>
<tr class="odd">
<td align="right">195.835832</td>
<td align="right">2.84</td>
<td align="right">3.05</td>
<td align="right">0.95</td>
<td align="right">16.21</td>
<td align="right">7.69</td>
</tr>
<tr class="even">
<td align="right">254.693596</td>
<td align="right">2.00</td>
<td align="right">2.90</td>
<td align="right">0.20</td>
<td align="right">15.53</td>
<td align="right">7.16</td>
</tr>
<tr class="odd">
<td align="right">321.042348</td>
<td align="right">1.79</td>
<td align="right">0.94</td>
<td align="right">NA</td>
<td align="right">9.80</td>
<td align="right">8.66</td>
</tr>
<tr class="even">
<td align="right">383.110535</td>
<td align="right">NA</td>
<td align="right">1.82</td>
<td align="right">NA</td>
<td align="right">9.49</td>
<td align="right">5.56</td>
</tr>
</tbody>
</table>
<table class="table">
<caption>Dataset Tama</caption>
<thead><tr class="header">
<th align="right">time</th>
<th align="right">cyan</th>
<th align="right">JCZ38</th>
<th align="right">J9Z38</th>
<th align="right">JSE76</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="right">0.000000</td>
<td align="right">106.14</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
</tr>
<tr class="even">
<td align="right">2.400833</td>
<td align="right">93.47</td>
<td align="right">6.46</td>
<td align="right">2.85</td>
<td align="right">NA</td>
</tr>
<tr class="odd">
<td align="right">5.601943</td>
<td align="right">88.39</td>
<td align="right">10.86</td>
<td align="right">4.65</td>
<td align="right">3.85</td>
</tr>
<tr class="even">
<td align="right">12.804442</td>
<td align="right">72.29</td>
<td align="right">11.97</td>
<td align="right">4.91</td>
<td align="right">11.24</td>
</tr>
<tr class="odd">
<td align="right">17.606108</td>
<td align="right">65.79</td>
<td align="right">13.11</td>
<td align="right">6.63</td>
<td align="right">13.79</td>
</tr>
<tr class="even">
<td align="right">32.811382</td>
<td align="right">53.16</td>
<td align="right">11.24</td>
<td align="right">8.90</td>
<td align="right">23.40</td>
</tr>
<tr class="odd">
<td align="right">50.417490</td>
<td align="right">44.01</td>
<td align="right">11.34</td>
<td align="right">9.98</td>
<td align="right">29.56</td>
</tr>
<tr class="even">
<td align="right">80.027761</td>
<td align="right">33.23</td>
<td align="right">8.82</td>
<td align="right">11.31</td>
<td align="right">35.63</td>
</tr>
<tr class="odd">
<td align="right">96.833591</td>
<td align="right">40.68</td>
<td align="right">5.94</td>
<td align="right">8.32</td>
<td align="right">29.09</td>
</tr>
<tr class="even">
<td align="right">146.450803</td>
<td align="right">20.65</td>
<td align="right">4.49</td>
<td align="right">8.72</td>
<td align="right">36.88</td>
</tr>
<tr class="odd">
<td align="right">190.466072</td>
<td align="right">17.71</td>
<td align="right">4.66</td>
<td align="right">11.10</td>
<td align="right">40.97</td>
</tr>
<tr class="even">
<td align="right">240.083284</td>
<td align="right">14.86</td>
<td align="right">2.27</td>
<td align="right">11.62</td>
<td align="right">40.11</td>
</tr>
<tr class="odd">
<td align="right">286.499386</td>
<td align="right">12.02</td>
<td align="right">NA</td>
<td align="right">10.73</td>
<td align="right">42.58</td>
</tr>
<tr class="even">
<td align="right">0.000000</td>
<td align="right">109.11</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
</tr>
<tr class="odd">
<td align="right">2.400833</td>
<td align="right">96.84</td>
<td align="right">5.52</td>
<td align="right">2.04</td>
<td align="right">2.02</td>
</tr>
<tr class="even">
<td align="right">5.601943</td>
<td align="right">85.29</td>
<td align="right">9.65</td>
<td align="right">2.99</td>
<td align="right">4.39</td>
</tr>
<tr class="odd">
<td align="right">12.804442</td>
<td align="right">73.68</td>
<td align="right">12.48</td>
<td align="right">5.05</td>
<td align="right">11.47</td>
</tr>
<tr class="even">
<td align="right">17.606108</td>
<td align="right">64.89</td>
<td align="right">12.44</td>
<td align="right">6.29</td>
<td align="right">15.00</td>
</tr>
<tr class="odd">
<td align="right">32.811382</td>
<td align="right">52.27</td>
<td align="right">10.86</td>
<td align="right">7.65</td>
<td align="right">23.30</td>
</tr>
<tr class="even">
<td align="right">50.417490</td>
<td align="right">42.61</td>
<td align="right">10.54</td>
<td align="right">9.37</td>
<td align="right">31.06</td>
</tr>
<tr class="odd">
<td align="right">80.027761</td>
<td align="right">34.29</td>
<td align="right">10.02</td>
<td align="right">9.04</td>
<td align="right">37.87</td>
</tr>
<tr class="even">
<td align="right">96.833591</td>
<td align="right">30.50</td>
<td align="right">6.34</td>
<td align="right">8.14</td>
<td align="right">33.97</td>
</tr>
<tr class="odd">
<td align="right">146.450803</td>
<td align="right">19.21</td>
<td align="right">6.29</td>
<td align="right">8.52</td>
<td align="right">26.15</td>
</tr>
<tr class="even">
<td align="right">190.466072</td>
<td align="right">17.55</td>
<td align="right">5.81</td>
<td align="right">9.89</td>
<td align="right">32.08</td>
</tr>
<tr class="odd">
<td align="right">240.083284</td>
<td align="right">13.22</td>
<td align="right">5.99</td>
<td align="right">10.79</td>
<td align="right">40.66</td>
</tr>
<tr class="even">
<td align="right">286.499386</td>
<td align="right">11.09</td>
<td align="right">6.05</td>
<td align="right">8.82</td>
<td align="right">42.90</td>
</tr>
</tbody>
</table>
<table class="table">
<caption>Dataset Gross-Umstadt</caption>
<thead><tr class="header">
<th align="right">time</th>
<th align="right">cyan</th>
<th align="right">JCZ38</th>
<th align="right">J9Z38</th>
<th align="right">JSE76</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="right">0.0000000</td>
<td align="right">103.03</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
</tr>
<tr class="even">
<td align="right">2.1014681</td>
<td align="right">87.85</td>
<td align="right">4.79</td>
<td align="right">3.26</td>
<td align="right">0.62</td>
</tr>
<tr class="odd">
<td align="right">4.9034255</td>
<td align="right">77.35</td>
<td align="right">8.05</td>
<td align="right">9.89</td>
<td align="right">1.32</td>
</tr>
<tr class="even">
<td align="right">10.5073404</td>
<td align="right">69.33</td>
<td align="right">9.74</td>
<td align="right">12.32</td>
<td align="right">4.74</td>
</tr>
<tr class="odd">
<td align="right">21.0146807</td>
<td align="right">55.65</td>
<td align="right">14.57</td>
<td align="right">13.59</td>
<td align="right">9.84</td>
</tr>
<tr class="even">
<td align="right">31.5220211</td>
<td align="right">49.03</td>
<td align="right">14.66</td>
<td align="right">16.71</td>
<td align="right">12.32</td>
</tr>
<tr class="odd">
<td align="right">42.0293615</td>
<td align="right">41.86</td>
<td align="right">15.97</td>
<td align="right">13.64</td>
<td align="right">15.53</td>
</tr>
<tr class="even">
<td align="right">63.0440422</td>
<td align="right">34.88</td>
<td align="right">18.20</td>
<td align="right">14.12</td>
<td align="right">22.02</td>
</tr>
<tr class="odd">
<td align="right">84.0587230</td>
<td align="right">28.26</td>
<td align="right">15.64</td>
<td align="right">14.06</td>
<td align="right">25.60</td>
</tr>
<tr class="even">
<td align="right">0.0000000</td>
<td align="right">104.05</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
</tr>
<tr class="odd">
<td align="right">2.1014681</td>
<td align="right">85.25</td>
<td align="right">2.68</td>
<td align="right">7.32</td>
<td align="right">0.69</td>
</tr>
<tr class="even">
<td align="right">4.9034255</td>
<td align="right">77.22</td>
<td align="right">7.28</td>
<td align="right">8.37</td>
<td align="right">1.45</td>
</tr>
<tr class="odd">
<td align="right">10.5073404</td>
<td align="right">65.23</td>
<td align="right">10.73</td>
<td align="right">10.93</td>
<td align="right">4.74</td>
</tr>
<tr class="even">
<td align="right">21.0146807</td>
<td align="right">57.78</td>
<td align="right">12.29</td>
<td align="right">14.80</td>
<td align="right">9.05</td>
</tr>
<tr class="odd">
<td align="right">31.5220211</td>
<td align="right">54.83</td>
<td align="right">14.05</td>
<td align="right">12.01</td>
<td align="right">11.05</td>
</tr>
<tr class="even">
<td align="right">42.0293615</td>
<td align="right">45.17</td>
<td align="right">12.12</td>
<td align="right">17.89</td>
<td align="right">15.71</td>
</tr>
<tr class="odd">
<td align="right">63.0440422</td>
<td align="right">34.83</td>
<td align="right">12.90</td>
<td align="right">15.86</td>
<td align="right">22.52</td>
</tr>
<tr class="even">
<td align="right">84.0587230</td>
<td align="right">26.59</td>
<td align="right">14.28</td>
<td align="right">14.91</td>
<td align="right">28.48</td>
</tr>
<tr class="odd">
<td align="right">0.0000000</td>
<td align="right">104.62</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
</tr>
<tr class="even">
<td align="right">0.8145225</td>
<td align="right">97.21</td>
<td align="right">NA</td>
<td align="right">4.00</td>
<td align="right">NA</td>
</tr>
<tr class="odd">
<td align="right">1.9005525</td>
<td align="right">89.64</td>
<td align="right">3.59</td>
<td align="right">5.24</td>
<td align="right">NA</td>
</tr>
<tr class="even">
<td align="right">4.0726125</td>
<td align="right">87.90</td>
<td align="right">4.10</td>
<td align="right">9.58</td>
<td align="right">NA</td>
</tr>
<tr class="odd">
<td align="right">8.1452251</td>
<td align="right">86.90</td>
<td align="right">5.96</td>
<td align="right">9.45</td>
<td align="right">NA</td>
</tr>
<tr class="even">
<td align="right">12.2178376</td>
<td align="right">74.74</td>
<td align="right">7.83</td>
<td align="right">15.03</td>
<td align="right">5.33</td>
</tr>
<tr class="odd">
<td align="right">16.2904502</td>
<td align="right">74.13</td>
<td align="right">8.84</td>
<td align="right">14.41</td>
<td align="right">5.10</td>
</tr>
<tr class="even">
<td align="right">24.4356753</td>
<td align="right">65.26</td>
<td align="right">11.84</td>
<td align="right">18.33</td>
<td align="right">6.71</td>
</tr>
<tr class="odd">
<td align="right">32.5809004</td>
<td align="right">57.70</td>
<td align="right">12.74</td>
<td align="right">19.93</td>
<td align="right">9.74</td>
</tr>
<tr class="even">
<td align="right">0.0000000</td>
<td align="right">101.94</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
</tr>
<tr class="odd">
<td align="right">0.8145225</td>
<td align="right">99.94</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
</tr>
<tr class="even">
<td align="right">1.9005525</td>
<td align="right">94.87</td>
<td align="right">NA</td>
<td align="right">4.56</td>
<td align="right">NA</td>
</tr>
<tr class="odd">
<td align="right">4.0726125</td>
<td align="right">86.96</td>
<td align="right">6.75</td>
<td align="right">6.90</td>
<td align="right">NA</td>
</tr>
<tr class="even">
<td align="right">8.1452251</td>
<td align="right">80.51</td>
<td align="right">10.68</td>
<td align="right">7.43</td>
<td align="right">2.58</td>
</tr>
<tr class="odd">
<td align="right">12.2178376</td>
<td align="right">78.38</td>
<td align="right">10.35</td>
<td align="right">9.46</td>
<td align="right">3.69</td>
</tr>
<tr class="even">
<td align="right">16.2904502</td>
<td align="right">70.05</td>
<td align="right">13.73</td>
<td align="right">9.27</td>
<td align="right">7.18</td>
</tr>
<tr class="odd">
<td align="right">24.4356753</td>
<td align="right">61.28</td>
<td align="right">12.57</td>
<td align="right">13.28</td>
<td align="right">13.19</td>
</tr>
<tr class="even">
<td align="right">32.5809004</td>
<td align="right">52.85</td>
<td align="right">12.67</td>
<td align="right">12.95</td>
<td align="right">13.69</td>
</tr>
</tbody>
</table>
<table class="table">
<caption>Dataset Sassafras</caption>
<thead><tr class="header">
<th align="right">time</th>
<th align="right">cyan</th>
<th align="right">JCZ38</th>
<th align="right">J9Z38</th>
<th align="right">JSE76</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="right">0.000000</td>
<td align="right">102.17</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
</tr>
<tr class="even">
<td align="right">2.216719</td>
<td align="right">95.49</td>
<td align="right">1.11</td>
<td align="right">0.10</td>
<td align="right">0.83</td>
</tr>
<tr class="odd">
<td align="right">5.172343</td>
<td align="right">83.35</td>
<td align="right">6.43</td>
<td align="right">2.89</td>
<td align="right">3.30</td>
</tr>
<tr class="even">
<td align="right">11.083593</td>
<td align="right">78.18</td>
<td align="right">10.00</td>
<td align="right">5.59</td>
<td align="right">0.81</td>
</tr>
<tr class="odd">
<td align="right">22.167186</td>
<td align="right">70.44</td>
<td align="right">17.21</td>
<td align="right">4.23</td>
<td align="right">1.09</td>
</tr>
<tr class="even">
<td align="right">33.250779</td>
<td align="right">68.00</td>
<td align="right">20.45</td>
<td align="right">5.86</td>
<td align="right">1.17</td>
</tr>
<tr class="odd">
<td align="right">44.334371</td>
<td align="right">59.64</td>
<td align="right">24.64</td>
<td align="right">3.17</td>
<td align="right">2.72</td>
</tr>
<tr class="even">
<td align="right">66.501557</td>
<td align="right">50.73</td>
<td align="right">27.50</td>
<td align="right">6.19</td>
<td align="right">1.27</td>
</tr>
<tr class="odd">
<td align="right">88.668742</td>
<td align="right">45.65</td>
<td align="right">32.77</td>
<td align="right">5.69</td>
<td align="right">4.54</td>
</tr>
<tr class="even">
<td align="right">0.000000</td>
<td align="right">100.43</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
</tr>
<tr class="odd">
<td align="right">2.216719</td>
<td align="right">95.34</td>
<td align="right">3.21</td>
<td align="right">0.14</td>
<td align="right">0.46</td>
</tr>
<tr class="even">
<td align="right">5.172343</td>
<td align="right">84.38</td>
<td align="right">5.73</td>
<td align="right">4.75</td>
<td align="right">0.62</td>
</tr>
<tr class="odd">
<td align="right">11.083593</td>
<td align="right">78.50</td>
<td align="right">11.89</td>
<td align="right">3.99</td>
<td align="right">0.73</td>
</tr>
<tr class="even">
<td align="right">22.167186</td>
<td align="right">71.17</td>
<td align="right">17.28</td>
<td align="right">4.39</td>
<td align="right">0.66</td>
</tr>
<tr class="odd">
<td align="right">33.250779</td>
<td align="right">59.41</td>
<td align="right">18.73</td>
<td align="right">11.85</td>
<td align="right">2.65</td>
</tr>
<tr class="even">
<td align="right">44.334371</td>
<td align="right">64.57</td>
<td align="right">22.93</td>
<td align="right">5.13</td>
<td align="right">2.01</td>
</tr>
<tr class="odd">
<td align="right">66.501557</td>
<td align="right">49.08</td>
<td align="right">33.39</td>
<td align="right">5.67</td>
<td align="right">3.63</td>
</tr>
<tr class="even">
<td align="right">88.668742</td>
<td align="right">40.41</td>
<td align="right">39.60</td>
<td align="right">5.93</td>
<td align="right">6.17</td>
</tr>
</tbody>
</table>
<table class="table">
<caption>Dataset Lleida</caption>
<thead><tr class="header">
<th align="right">time</th>
<th align="right">cyan</th>
<th align="right">JCZ38</th>
<th align="right">J9Z38</th>
<th align="right">JSE76</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="right">0.000000</td>
<td align="right">102.71</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
</tr>
<tr class="even">
<td align="right">2.821051</td>
<td align="right">79.11</td>
<td align="right">5.70</td>
<td align="right">8.07</td>
<td align="right">0.97</td>
</tr>
<tr class="odd">
<td align="right">6.582451</td>
<td align="right">70.03</td>
<td align="right">7.17</td>
<td align="right">11.31</td>
<td align="right">4.72</td>
</tr>
<tr class="even">
<td align="right">14.105253</td>
<td align="right">50.93</td>
<td align="right">10.25</td>
<td align="right">14.84</td>
<td align="right">9.95</td>
</tr>
<tr class="odd">
<td align="right">28.210505</td>
<td align="right">33.43</td>
<td align="right">10.40</td>
<td align="right">14.82</td>
<td align="right">24.06</td>
</tr>
<tr class="even">
<td align="right">42.315758</td>
<td align="right">24.69</td>
<td align="right">9.75</td>
<td align="right">16.38</td>
<td align="right">29.38</td>
</tr>
<tr class="odd">
<td align="right">56.421010</td>
<td align="right">22.99</td>
<td align="right">10.06</td>
<td align="right">15.51</td>
<td align="right">29.25</td>
</tr>
<tr class="even">
<td align="right">84.631516</td>
<td align="right">14.63</td>
<td align="right">5.63</td>
<td align="right">14.74</td>
<td align="right">31.04</td>
</tr>
<tr class="odd">
<td align="right">112.842021</td>
<td align="right">12.43</td>
<td align="right">4.17</td>
<td align="right">13.53</td>
<td align="right">33.28</td>
</tr>
<tr class="even">
<td align="right">0.000000</td>
<td align="right">99.31</td>
<td align="right">NA</td>
<td align="right">NA</td>
<td align="right">NA</td>
</tr>
<tr class="odd">
<td align="right">2.821051</td>
<td align="right">82.07</td>
<td align="right">6.55</td>
<td align="right">5.60</td>
<td align="right">1.12</td>
</tr>
<tr class="even">
<td align="right">6.582451</td>
<td align="right">70.65</td>
<td align="right">7.61</td>
<td align="right">8.01</td>
<td align="right">3.21</td>
</tr>
<tr class="odd">
<td align="right">14.105253</td>
<td align="right">53.52</td>
<td align="right">11.48</td>
<td align="right">10.82</td>
<td align="right">12.24</td>
</tr>
<tr class="even">
<td align="right">28.210505</td>
<td align="right">35.60</td>
<td align="right">11.19</td>
<td align="right">15.43</td>
<td align="right">23.53</td>
</tr>
<tr class="odd">
<td align="right">42.315758</td>
<td align="right">34.26</td>
<td align="right">11.09</td>
<td align="right">13.26</td>
<td align="right">27.42</td>
</tr>
<tr class="even">
<td align="right">56.421010</td>
<td align="right">21.79</td>
<td align="right">4.80</td>
<td align="right">18.30</td>
<td align="right">30.20</td>
</tr>
<tr class="odd">
<td align="right">84.631516</td>
<td align="right">14.06</td>
<td align="right">6.30</td>
<td align="right">16.35</td>
<td align="right">32.32</td>
</tr>
<tr class="even">
<td align="right">112.842021</td>
<td align="right">11.51</td>
<td align="right">5.57</td>
<td align="right">12.64</td>
<td align="right">32.51</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="section level2">
<h2 id="parent-only-evaluations">Parent only evaluations<a class="anchor" aria-label="anchor" href="#parent-only-evaluations"></a>
</h2>
<p>As the pathway fits have very long run times, evaluations of the
parent data are performed first, in order to determine for each
hierarchical parent degradation model which random effects on the
degradation model parameters are ill-defined.</p>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">cyan_sep_const</span> <span class="op">&lt;-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span>, <span class="st">"DFOP"</span>, <span class="st">"SFORB"</span>, <span class="st">"HS"</span><span class="op">)</span>,</span>
<span>  <span class="va">cyan_ds</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>, cores <span class="op">=</span> <span class="va">n_cores</span><span class="op">)</span></span>
<span><span class="va">cyan_sep_tc</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">cyan_sep_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span>
<span><span class="va">cyan_saem_full</span> <span class="op">&lt;-</span> <span class="fu"><a href="../../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">cyan_sep_const</span>, <span class="va">cyan_sep_tc</span><span class="op">)</span><span class="op">)</span></span>
<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="left">const</th>
<th align="left">tc</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">SFO</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
<tr class="even">
<td align="left">FOMC</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
<tr class="odd">
<td align="left">DFOP</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
<tr class="even">
<td align="left">SFORB</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
<tr class="odd">
<td align="left">HS</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
</tbody>
</table>
<p>All fits converged successfully.</p>
<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="left">const</th>
<th align="left">tc</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">SFO</td>
<td align="left">sd(cyan_0)</td>
<td align="left">sd(cyan_0)</td>
</tr>
<tr class="even">
<td align="left">FOMC</td>
<td align="left">sd(log_beta)</td>
<td align="left">sd(cyan_0)</td>
</tr>
<tr class="odd">
<td align="left">DFOP</td>
<td align="left">sd(cyan_0)</td>
<td align="left">sd(cyan_0), sd(log_k1)</td>
</tr>
<tr class="even">
<td align="left">SFORB</td>
<td align="left">sd(cyan_free_0)</td>
<td align="left">sd(cyan_free_0), sd(log_k_cyan_free_bound)</td>
</tr>
<tr class="odd">
<td align="left">HS</td>
<td align="left">sd(cyan_0)</td>
<td align="left">sd(cyan_0)</td>
</tr>
</tbody>
</table>
<p>In almost all models, the random effect for the initial concentration
of the parent compound is ill-defined. For the biexponential models DFOP
and SFORB, the random effect of one additional parameter is ill-defined
when the two-component error model is used.</p>
<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="right">npar</th>
<th align="right">AIC</th>
<th align="right">BIC</th>
<th align="right">Lik</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">SFO const</td>
<td align="right">5</td>
<td align="right">833.9</td>
<td align="right">832.0</td>
<td align="right">-412.0</td>
</tr>
<tr class="even">
<td align="left">SFO tc</td>
<td align="right">6</td>
<td align="right">831.6</td>
<td align="right">829.3</td>
<td align="right">-409.8</td>
</tr>
<tr class="odd">
<td align="left">FOMC const</td>
<td align="right">7</td>
<td align="right">709.1</td>
<td align="right">706.4</td>
<td align="right">-347.6</td>
</tr>
<tr class="even">
<td align="left">FOMC tc</td>
<td align="right">8</td>
<td align="right">689.2</td>
<td align="right">686.1</td>
<td align="right">-336.6</td>
</tr>
<tr class="odd">
<td align="left">DFOP const</td>
<td align="right">9</td>
<td align="right">703.0</td>
<td align="right">699.5</td>
<td align="right">-342.5</td>
</tr>
<tr class="even">
<td align="left">SFORB const</td>
<td align="right">9</td>
<td align="right">701.3</td>
<td align="right">697.8</td>
<td align="right">-341.7</td>
</tr>
<tr class="odd">
<td align="left">HS const</td>
<td align="right">9</td>
<td align="right">718.6</td>
<td align="right">715.1</td>
<td align="right">-350.3</td>
</tr>
<tr class="even">
<td align="left">DFOP tc</td>
<td align="right">10</td>
<td align="right">703.1</td>
<td align="right">699.2</td>
<td align="right">-341.6</td>
</tr>
<tr class="odd">
<td align="left">SFORB tc</td>
<td align="right">10</td>
<td align="right">700.1</td>
<td align="right">696.2</td>
<td align="right">-340.1</td>
</tr>
<tr class="even">
<td align="left">HS tc</td>
<td align="right">10</td>
<td align="right">716.7</td>
<td align="right">712.8</td>
<td align="right">-348.3</td>
</tr>
</tbody>
</table>
<p>Model comparison based on AIC and BIC indicates that the
two-component error model is preferable for all parent models with the
exception of DFOP. The lowest AIC and BIC values are are obtained with
the FOMC model, followed by SFORB and DFOP.</p>
</div>
<div class="section level2">
<h2 id="pathway-fits">Pathway fits<a class="anchor" aria-label="anchor" href="#pathway-fits"></a>
</h2>
<div class="section level3">
<h3 id="evaluations-with-pathway-established-previously">Evaluations with pathway established previously<a class="anchor" aria-label="anchor" href="#evaluations-with-pathway-established-previously"></a>
</h3>
<p>To test the technical feasibility of coupling the relevant parent
degradation models with different transformation pathway models, a list
of <code>mkinmod</code> models is set up below. As in the EU evaluation,
parallel formation of metabolites JCZ38 and J9Z38 and secondary
formation of metabolite JSE76 from JCZ38 is used.</p>
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="kw">if</span> <span class="op">(</span><span class="op">!</span><span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.exists</a></span><span class="op">(</span><span class="st">"cyan_dlls"</span><span class="op">)</span><span class="op">)</span> <span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.create</a></span><span class="op">(</span><span class="st">"cyan_dlls"</span><span class="op">)</span></span>
<span><span class="va">cyan_path_1</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span></span>
<span>  sfo_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span>
<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span>
<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span>
<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span>
<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span>    name <span class="op">=</span> <span class="st">"sfo_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>,</span>
<span>  fomc_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span>
<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span>
<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span>
<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span>
<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span>    name <span class="op">=</span> <span class="st">"fomc_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>,</span>
<span>  dfop_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span>
<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span>
<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span>
<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span>
<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span>    name <span class="op">=</span> <span class="st">"dfop_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>,</span>
<span>  sforb_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span>
<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFORB"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span>
<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span>
<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span>
<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span>    name <span class="op">=</span> <span class="st">"sforb_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>,</span>
<span>  hs_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span>
<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"HS"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span>
<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span>
<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span>
<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span>    name <span class="op">=</span> <span class="st">"hs_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span><span class="op">)</span></span></code></pre></div>
<p>To obtain suitable starting values for the NLHM fits, separate
pathway fits are performed for all datasets.</p>
<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">f_sep_1_const</span> <span class="op">&lt;-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span></span>
<span>  <span class="va">cyan_path_1</span>,</span>
<span>  <span class="va">cyan_ds</span>,</span>
<span>  error_model <span class="op">=</span> <span class="st">"const"</span>,</span>
<span>  cluster <span class="op">=</span> <span class="va">cl</span>,</span>
<span>  quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_1_const</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="left">Nambsheim</th>
<th align="left">Tama</th>
<th align="left">Gross-Umstadt</th>
<th align="left">Sassafras</th>
<th align="left">Lleida</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">sfo_path_1</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
<tr class="even">
<td align="left">fomc_path_1</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
<tr class="odd">
<td align="left">dfop_path_1</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
<tr class="even">
<td align="left">sforb_path_1</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
<tr class="odd">
<td align="left">hs_path_1</td>
<td align="left">C</td>
<td align="left">C</td>
<td align="left">C</td>
<td align="left">C</td>
<td align="left">C</td>
</tr>
</tbody>
</table>
<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">f_sep_1_tc</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_sep_1_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span>
<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_1_tc</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="left">Nambsheim</th>
<th align="left">Tama</th>
<th align="left">Gross-Umstadt</th>
<th align="left">Sassafras</th>
<th align="left">Lleida</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">sfo_path_1</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
<tr class="even">
<td align="left">fomc_path_1</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">C</td>
</tr>
<tr class="odd">
<td align="left">dfop_path_1</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
<tr class="even">
<td align="left">sforb_path_1</td>
<td align="left">OK</td>
<td align="left">C</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
<tr class="odd">
<td align="left">hs_path_1</td>
<td align="left">C</td>
<td align="left">OK</td>
<td align="left">C</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
</tbody>
</table>
<p>Most separate fits converged successfully. The biggest convergence
problems are seen when using the HS model with constant variance.</p>
<p>For the hierarchical pathway fits, those random effects that could
not be quantified in the corresponding parent data analyses are
excluded.</p>
<p>In the code below, the output of the <code>illparms</code> function
for the parent only fits is used as an argument
<code>no_random_effect</code> to the <code>mhmkin</code> function. The
possibility to do so was introduced in mkin version <code>1.2.2</code>
which is currently under development.</p>
<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">f_saem_1</span> <span class="op">&lt;-</span> <span class="fu"><a href="../../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">f_sep_1_const</span>, <span class="va">f_sep_1_tc</span><span class="op">)</span>,</span>
<span>  no_random_effect <span class="op">=</span> <span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">)</span>,</span>
<span>  cluster <span class="op">=</span> <span class="va">cl</span><span class="op">)</span></span></code></pre></div>
<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="left">const</th>
<th align="left">tc</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">sfo_path_1</td>
<td align="left">Fth, FO</td>
<td align="left">Fth, FO</td>
</tr>
<tr class="even">
<td align="left">fomc_path_1</td>
<td align="left">OK</td>
<td align="left">Fth, FO</td>
</tr>
<tr class="odd">
<td align="left">dfop_path_1</td>
<td align="left">Fth, FO</td>
<td align="left">Fth, FO</td>
</tr>
<tr class="even">
<td align="left">sforb_path_1</td>
<td align="left">Fth, FO</td>
<td align="left">Fth, FO</td>
</tr>
<tr class="odd">
<td align="left">hs_path_1</td>
<td align="left">Fth, FO</td>
<td align="left">Fth, FO</td>
</tr>
</tbody>
</table>
<p>The status information from the individual fits shows that all fits
completed successfully. The matrix entries Fth and FO indicate that the
Fisher Information Matrix could not be inverted for the fixed effects
(theta) and the random effects (Omega), respectively. For the affected
fits, ill-defined parameters cannot be determined using the
<code>illparms</code> function, because it relies on the Fisher
Information Matrix.</p>
<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<colgroup>
<col width="18%">
<col width="77%">
<col width="4%">
</colgroup>
<thead><tr class="header">
<th align="left"></th>
<th align="left">const</th>
<th align="left">tc</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">sfo_path_1</td>
<td align="left">NA</td>
<td align="left">NA</td>
</tr>
<tr class="even">
<td align="left">fomc_path_1</td>
<td align="left">sd(log_k_J9Z38), sd(f_cyan_ilr_2),
sd(f_JCZ38_qlogis)</td>
<td align="left">NA</td>
</tr>
<tr class="odd">
<td align="left">dfop_path_1</td>
<td align="left">NA</td>
<td align="left">NA</td>
</tr>
<tr class="even">
<td align="left">sforb_path_1</td>
<td align="left">NA</td>
<td align="left">NA</td>
</tr>
<tr class="odd">
<td align="left">hs_path_1</td>
<td align="left">NA</td>
<td align="left">NA</td>
</tr>
</tbody>
</table>
<p>The model comparison below suggests that the pathway fits using DFOP
or SFORB for the parent compound provide the best fit.</p>
<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="right">npar</th>
<th align="right">AIC</th>
<th align="right">BIC</th>
<th align="right">Lik</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">sfo_path_1 const</td>
<td align="right">16</td>
<td align="right">2692.8</td>
<td align="right">2686.6</td>
<td align="right">-1330.4</td>
</tr>
<tr class="even">
<td align="left">sfo_path_1 tc</td>
<td align="right">17</td>
<td align="right">2657.7</td>
<td align="right">2651.1</td>
<td align="right">-1311.9</td>
</tr>
<tr class="odd">
<td align="left">fomc_path_1 const</td>
<td align="right">18</td>
<td align="right">2427.8</td>
<td align="right">2420.8</td>
<td align="right">-1195.9</td>
</tr>
<tr class="even">
<td align="left">fomc_path_1 tc</td>
<td align="right">19</td>
<td align="right">2423.4</td>
<td align="right">2416.0</td>
<td align="right">-1192.7</td>
</tr>
<tr class="odd">
<td align="left">dfop_path_1 const</td>
<td align="right">20</td>
<td align="right">2403.2</td>
<td align="right">2395.4</td>
<td align="right">-1181.6</td>
</tr>
<tr class="even">
<td align="left">sforb_path_1 const</td>
<td align="right">20</td>
<td align="right">2401.4</td>
<td align="right">2393.6</td>
<td align="right">-1180.7</td>
</tr>
<tr class="odd">
<td align="left">hs_path_1 const</td>
<td align="right">20</td>
<td align="right">2427.3</td>
<td align="right">2419.5</td>
<td align="right">-1193.7</td>
</tr>
<tr class="even">
<td align="left">dfop_path_1 tc</td>
<td align="right">20</td>
<td align="right">2398.0</td>
<td align="right">2390.2</td>
<td align="right">-1179.0</td>
</tr>
<tr class="odd">
<td align="left">sforb_path_1 tc</td>
<td align="right">20</td>
<td align="right">2399.8</td>
<td align="right">2392.0</td>
<td align="right">-1179.9</td>
</tr>
<tr class="even">
<td align="left">hs_path_1 tc</td>
<td align="right">21</td>
<td align="right">2422.3</td>
<td align="right">2414.1</td>
<td align="right">-1190.2</td>
</tr>
</tbody>
</table>
<p>For these two parent model, successful fits are shown below. Plots of
the fits with the other parent models are shown in the Appendix.</p>
<div class="sourceCode" id="cb15"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"dfop_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div>
<div class="figure" style="text-align: center">
<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-6-1.png" alt="DFOP pathway fit with two-component error" width="700"><p class="caption">
DFOP pathway fit with two-component error
</p>
</div>
<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div>
<div class="figure" style="text-align: center">
<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-7-1.png" alt="SFORB pathway fit with two-component error" width="700"><p class="caption">
SFORB pathway fit with two-component error
</p>
</div>
<p>A closer graphical analysis of these Figures shows that the residues
of transformation product JCZ38 in the soils Tama and Nambsheim observed
at later time points are strongly and systematically underestimated.</p>
</div>
<div class="section level3">
<h3 id="alternative-pathway-fits">Alternative pathway fits<a class="anchor" aria-label="anchor" href="#alternative-pathway-fits"></a>
</h3>
<p>To improve the fit for JCZ38, a back-reaction from JSE76 to JCZ38 was
introduced in an alternative version of the transformation pathway, in
analogy to the back-reaction from K5A78 to K5A77. Both pairs of
transformation products are pairs of an organic acid with its
corresponding amide (Addendum 2014, p. 109). As FOMC provided the best
fit for the parent, and the biexponential models DFOP and SFORB provided
the best initial pathway fits, these three parent models are used in the
alternative pathway fits.</p>
<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">cyan_path_2</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span></span>
<span>  fomc_path_2 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span>
<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span>
<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span>
<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span>
<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JCZ38"</span><span class="op">)</span>,</span>
<span>    name <span class="op">=</span> <span class="st">"fomc_path_2"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span>    dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>,</span>
<span>    overwrite <span class="op">=</span> <span class="cn">TRUE</span></span>
<span>  <span class="op">)</span>,</span>
<span>  dfop_path_2 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span>
<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span>
<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span>
<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span>
<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JCZ38"</span><span class="op">)</span>,</span>
<span>    name <span class="op">=</span> <span class="st">"dfop_path_2"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span>    dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>,</span>
<span>    overwrite <span class="op">=</span> <span class="cn">TRUE</span></span>
<span>  <span class="op">)</span>,</span>
<span>  sforb_path_2 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span>
<span>    cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFORB"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span>
<span>    JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span>
<span>    J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span>
<span>    JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JCZ38"</span><span class="op">)</span>,</span>
<span>    name <span class="op">=</span> <span class="st">"sforb_path_2"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span>    dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>,</span>
<span>    overwrite <span class="op">=</span> <span class="cn">TRUE</span></span>
<span>  <span class="op">)</span></span>
<span><span class="op">)</span></span>
<span><span class="va">f_sep_2_const</span> <span class="op">&lt;-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span></span>
<span>  <span class="va">cyan_path_2</span>,</span>
<span>  <span class="va">cyan_ds</span>,</span>
<span>  error_model <span class="op">=</span> <span class="st">"const"</span>,</span>
<span>  cluster <span class="op">=</span> <span class="va">cl</span>,</span>
<span>  quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span></span>
<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_2_const</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="left">Nambsheim</th>
<th align="left">Tama</th>
<th align="left">Gross-Umstadt</th>
<th align="left">Sassafras</th>
<th align="left">Lleida</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">fomc_path_2</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">C</td>
<td align="left">OK</td>
</tr>
<tr class="even">
<td align="left">dfop_path_2</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">C</td>
<td align="left">OK</td>
</tr>
<tr class="odd">
<td align="left">sforb_path_2</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">C</td>
<td align="left">OK</td>
</tr>
</tbody>
</table>
<p>Using constant variance, separate fits converge with the exception of
the fits to the Sassafras soil data.</p>
<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">f_sep_2_tc</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_sep_2_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span>
<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_2_tc</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="left">Nambsheim</th>
<th align="left">Tama</th>
<th align="left">Gross-Umstadt</th>
<th align="left">Sassafras</th>
<th align="left">Lleida</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">fomc_path_2</td>
<td align="left">OK</td>
<td align="left">C</td>
<td align="left">OK</td>
<td align="left">C</td>
<td align="left">OK</td>
</tr>
<tr class="even">
<td align="left">dfop_path_2</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">C</td>
<td align="left">OK</td>
</tr>
<tr class="odd">
<td align="left">sforb_path_2</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
</tbody>
</table>
<p>Using the two-component error model, all separate fits converge with
the exception of the alternative pathway fit with DFOP used for the
parent and the Sassafras dataset.</p>
<div class="sourceCode" id="cb19"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">f_saem_2</span> <span class="op">&lt;-</span> <span class="fu"><a href="../../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">f_sep_2_const</span>, <span class="va">f_sep_2_tc</span><span class="op">)</span>,</span>
<span>  no_random_effect <span class="op">=</span> <span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">[</span><span class="fl">2</span><span class="op">:</span><span class="fl">4</span>, <span class="op">]</span><span class="op">)</span>,</span>
<span>  cluster <span class="op">=</span> <span class="va">cl</span><span class="op">)</span></span></code></pre></div>
<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="left">const</th>
<th align="left">tc</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">fomc_path_2</td>
<td align="left">OK</td>
<td align="left">FO</td>
</tr>
<tr class="even">
<td align="left">dfop_path_2</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
<tr class="odd">
<td align="left">sforb_path_2</td>
<td align="left">OK</td>
<td align="left">OK</td>
</tr>
</tbody>
</table>
<p>The hierarchical fits for the alternative pathway completed
successfully.</p>
<div class="sourceCode" id="cb21"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<colgroup>
<col width="14%">
<col width="42%">
<col width="42%">
</colgroup>
<thead><tr class="header">
<th align="left"></th>
<th align="left">const</th>
<th align="left">tc</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">fomc_path_2</td>
<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td>
<td align="left">NA</td>
</tr>
<tr class="even">
<td align="left">dfop_path_2</td>
<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td>
<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td>
</tr>
<tr class="odd">
<td align="left">sforb_path_2</td>
<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td>
<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td>
</tr>
</tbody>
</table>
<p>In both fits, the random effects for the formation fractions for the
pathways from JCZ38 to JSE76, and for the reverse pathway from JSE76 to
JCZ38 are ill-defined.</p>
<div class="sourceCode" id="cb22"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="right">npar</th>
<th align="right">AIC</th>
<th align="right">BIC</th>
<th align="right">Lik</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">fomc_path_2 const</td>
<td align="right">20</td>
<td align="right">2308.3</td>
<td align="right">2300.5</td>
<td align="right">-1134.2</td>
</tr>
<tr class="even">
<td align="left">fomc_path_2 tc</td>
<td align="right">21</td>
<td align="right">2248.3</td>
<td align="right">2240.1</td>
<td align="right">-1103.2</td>
</tr>
<tr class="odd">
<td align="left">dfop_path_2 const</td>
<td align="right">22</td>
<td align="right">2289.6</td>
<td align="right">2281.0</td>
<td align="right">-1122.8</td>
</tr>
<tr class="even">
<td align="left">sforb_path_2 const</td>
<td align="right">22</td>
<td align="right">2284.1</td>
<td align="right">2275.5</td>
<td align="right">-1120.0</td>
</tr>
<tr class="odd">
<td align="left">dfop_path_2 tc</td>
<td align="right">22</td>
<td align="right">2234.4</td>
<td align="right">2225.8</td>
<td align="right">-1095.2</td>
</tr>
<tr class="even">
<td align="left">sforb_path_2 tc</td>
<td align="right">22</td>
<td align="right">2240.4</td>
<td align="right">2231.8</td>
<td align="right">-1098.2</td>
</tr>
</tbody>
</table>
<p>The variants using the biexponential models DFOP and SFORB for the
parent compound and the two-component error model give the lowest AIC
and BIC values and are plotted below. Compared with the original
pathway, the AIC and BIC values indicate a large improvement. This is
confirmed by the plots, which show that the metabolite JCZ38 is fitted
much better with this model.</p>
<div class="sourceCode" id="cb23"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">[[</span><span class="st">"fomc_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div>
<div class="figure" style="text-align: center">
<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-11-1.png" alt="FOMC pathway fit with two-component error, alternative pathway" width="700"><p class="caption">
FOMC pathway fit with two-component error, alternative pathway
</p>
</div>
<div class="sourceCode" id="cb24"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">[[</span><span class="st">"dfop_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div>
<div class="figure" style="text-align: center">
<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-12-1.png" alt="DFOP pathway fit with two-component error, alternative pathway" width="700"><p class="caption">
DFOP pathway fit with two-component error, alternative pathway
</p>
</div>
<div class="sourceCode" id="cb25"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">[[</span><span class="st">"sforb_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div>
<div class="figure" style="text-align: center">
<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-13-1.png" alt="SFORB pathway fit with two-component error, alternative pathway" width="700"><p class="caption">
SFORB pathway fit with two-component error, alternative pathway
</p>
</div>
</div>
<div class="section level3">
<h3 id="refinement-of-alternative-pathway-fits">Refinement of alternative pathway fits<a class="anchor" aria-label="anchor" href="#refinement-of-alternative-pathway-fits"></a>
</h3>
<p>All ill-defined random effects that were identified in the parent
only fits and in the above pathway fits, are excluded for the final
evaluations below. For this purpose, a list of character vectors is
created below that can be indexed by row and column indices, and which
contains the degradation parameter names for which random effects should
be excluded for each of the hierarchical fits contained in
<code>f_saem_2</code>.</p>
<div class="sourceCode" id="cb26"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">no_ranef</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/matrix.html" class="external-link">matrix</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="op">)</span>, nrow <span class="op">=</span> <span class="fl">3</span>, ncol <span class="op">=</span> <span class="fl">2</span>, dimnames <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/dimnames.html" class="external-link">dimnames</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span><span class="op">)</span></span>
<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"fomc_path_2"</span>, <span class="st">"const"</span><span class="op">]</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"log_beta"</span>, <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span>
<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"fomc_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_0"</span>, <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span>
<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"dfop_path_2"</span>, <span class="st">"const"</span><span class="op">]</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_0"</span>, <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span>
<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"dfop_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_0"</span>, <span class="st">"log_k1"</span>, <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span>
<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"sforb_path_2"</span>, <span class="st">"const"</span><span class="op">]</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_free_0"</span>,</span>
<span>  <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span>
<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"sforb_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_free_0"</span>, <span class="st">"log_k_cyan_free_bound"</span>,</span>
<span>  <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/parallel/clusterApply.html" class="external-link">clusterExport</a></span><span class="op">(</span><span class="va">cl</span>, <span class="st">"no_ranef"</span><span class="op">)</span></span>
<span></span>
<span><span class="va">f_saem_3</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_saem_2</span>,</span>
<span>  no_random_effect <span class="op">=</span> <span class="va">no_ranef</span>,</span>
<span>  cluster <span class="op">=</span> <span class="va">cl</span><span class="op">)</span></span></code></pre></div>
<div class="sourceCode" id="cb27"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_saem_3</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="left">const</th>
<th align="left">tc</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">fomc_path_2</td>
<td align="left">E</td>
<td align="left">Fth</td>
</tr>
<tr class="even">
<td align="left">dfop_path_2</td>
<td align="left">Fth</td>
<td align="left">Fth</td>
</tr>
<tr class="odd">
<td align="left">sforb_path_2</td>
<td align="left">Fth</td>
<td align="left">Fth</td>
</tr>
</tbody>
</table>
<p>With the exception of the FOMC pathway fit with constant variance,
all updated fits completed successfully. However, the Fisher Information
Matrix for the fixed effects (Fth) could not be inverted, so no
confidence intervals for the optimised parameters are available.</p>
<div class="sourceCode" id="cb28"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_3</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="left">const</th>
<th align="left">tc</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">fomc_path_2</td>
<td align="left">E</td>
<td align="left"></td>
</tr>
<tr class="even">
<td align="left">dfop_path_2</td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr class="odd">
<td align="left">sforb_path_2</td>
<td align="left"></td>
<td align="left"></td>
</tr>
</tbody>
</table>
<div class="sourceCode" id="cb29"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_3</span><span class="op">)</span> <span class="op">|&gt;</span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div>
<table class="table">
<thead><tr class="header">
<th align="left"></th>
<th align="right">npar</th>
<th align="right">AIC</th>
<th align="right">BIC</th>
<th align="right">Lik</th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">fomc_path_2 tc</td>
<td align="right">19</td>
<td align="right">2250.9</td>
<td align="right">2243.5</td>
<td align="right">-1106.5</td>
</tr>
<tr class="even">
<td align="left">dfop_path_2 const</td>
<td align="right">20</td>
<td align="right">2281.7</td>
<td align="right">2273.9</td>
<td align="right">-1120.8</td>
</tr>
<tr class="odd">
<td align="left">sforb_path_2 const</td>
<td align="right">20</td>
<td align="right">2279.5</td>
<td align="right">2271.7</td>
<td align="right">-1119.7</td>
</tr>
<tr class="even">
<td align="left">dfop_path_2 tc</td>
<td align="right">20</td>
<td align="right">2231.5</td>
<td align="right">2223.7</td>
<td align="right">-1095.8</td>
</tr>
<tr class="odd">
<td align="left">sforb_path_2 tc</td>
<td align="right">20</td>
<td align="right">2235.7</td>
<td align="right">2227.9</td>
<td align="right">-1097.9</td>
</tr>
</tbody>
</table>
<p>While the AIC and BIC values of the best fit (DFOP pathway fit with
two-component error) are lower than in the previous fits with the
alternative pathway, the practical value of these refined evaluations is
limited as no confidence intervals are obtained.</p>
</div>
</div>
<div class="section level2">
<h2 id="conclusion">Conclusion<a class="anchor" aria-label="anchor" href="#conclusion"></a>
</h2>
<p>It was demonstrated that a relatively complex transformation pathway
with parallel formation of two primary metabolites and one secondary
metabolite can be fitted even if the data in the individual datasets are
quite different and partly only cover the formation phase.</p>
<p>The run times of the pathway fits were several hours, limiting the
practical feasibility of iterative refinements based on ill-defined
parameters and of alternative checks of parameter identifiability based
on multistart runs.</p>
</div>
<div class="section level2">
<h2 id="acknowledgements">Acknowledgements<a class="anchor" aria-label="anchor" href="#acknowledgements"></a>
</h2>
<p>The helpful comments by Janina Wöltjen of the German Environment
Agency are gratefully acknowledged.</p>
</div>
<div class="section level2">
<h2 id="appendix">Appendix<a class="anchor" aria-label="anchor" href="#appendix"></a>
</h2>
<div class="section level3">
<h3 id="plots-of-fits-that-were-not-refined-further">Plots of fits that were not refined further<a class="anchor" aria-label="anchor" href="#plots-of-fits-that-were-not-refined-further"></a>
</h3>
<div class="sourceCode" id="cb30"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"sfo_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div>
<div class="figure" style="text-align: center">
<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-17-1.png" alt="SFO pathway fit with two-component error" width="700"><p class="caption">
SFO pathway fit with two-component error
</p>
</div>
<div class="sourceCode" id="cb31"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"fomc_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div>
<div class="figure" style="text-align: center">
<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-18-1.png" alt="FOMC pathway fit with two-component error" width="700"><p class="caption">
FOMC pathway fit with two-component error
</p>
</div>
<div class="sourceCode" id="cb32"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div>
<div class="figure" style="text-align: center">
<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-19-1.png" alt="HS pathway fit with two-component error" width="700"><p class="caption">
HS pathway fit with two-component error
</p>
</div>
</div>
<div class="section level3">
<h3 id="hierarchical-fit-listings">Hierarchical fit listings<a class="anchor" aria-label="anchor" href="#hierarchical-fit-listings"></a>
</h3>
<div class="section level4">
<h4 id="pathway-1">Pathway 1<a class="anchor" aria-label="anchor" href="#pathway-1"></a>
</h4>
<caption>
Hierarchical SFO path 1 fit with constant variance
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:07:38 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - k_cyan * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * k_cyan * cyan - k_JCZ38 * JCZ38
d_J9Z38/dt = + f_cyan_to_J9Z38 * k_cyan * cyan - k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1088.473 s
Using 300, 100 iterations and 10 chains

Variance model: Constant variance 

Starting values for degradation parameters:
        cyan_0     log_k_cyan    log_k_JCZ38    log_k_J9Z38    log_k_JSE76 
       95.3304        -3.8459        -3.1305        -5.0678        -5.3196 
  f_cyan_ilr_1   f_cyan_ilr_2 f_JCZ38_qlogis 
        0.8158        22.5404        10.4289 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76
cyan_0          4.797     0.0000       0.000       0.000      0.0000
log_k_cyan      0.000     0.9619       0.000       0.000      0.0000
log_k_JCZ38     0.000     0.0000       2.139       0.000      0.0000
log_k_J9Z38     0.000     0.0000       0.000       1.639      0.0000
log_k_JSE76     0.000     0.0000       0.000       0.000      0.7894
f_cyan_ilr_1    0.000     0.0000       0.000       0.000      0.0000
f_cyan_ilr_2    0.000     0.0000       0.000       0.000      0.0000
f_JCZ38_qlogis  0.000     0.0000       0.000       0.000      0.0000
               f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
cyan_0               0.0000        0.000           0.00
log_k_cyan           0.0000        0.000           0.00
log_k_JCZ38          0.0000        0.000           0.00
log_k_J9Z38          0.0000        0.000           0.00
log_k_JSE76          0.0000        0.000           0.00
f_cyan_ilr_1         0.7714        0.000           0.00
f_cyan_ilr_2         0.0000        8.684           0.00
f_JCZ38_qlogis       0.0000        0.000          13.48

Starting values for error model parameters:
a.1 
  1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2693 2687  -1330

Optimised parameters:
                     est. lower upper
cyan_0            95.0946    NA    NA
log_k_cyan        -3.8544    NA    NA
log_k_JCZ38       -3.0402    NA    NA
log_k_J9Z38       -5.0109    NA    NA
log_k_JSE76       -5.2857    NA    NA
f_cyan_ilr_1       0.8069    NA    NA
f_cyan_ilr_2      16.6623    NA    NA
f_JCZ38_qlogis     1.3602    NA    NA
a.1                4.8326    NA    NA
SD.log_k_cyan      0.5842    NA    NA
SD.log_k_JCZ38     1.2680    NA    NA
SD.log_k_J9Z38     0.3626    NA    NA
SD.log_k_JSE76     0.5244    NA    NA
SD.f_cyan_ilr_1    0.2752    NA    NA
SD.f_cyan_ilr_2    2.3556    NA    NA
SD.f_JCZ38_qlogis  0.2400    NA    NA

Correlation is not available

Random effects:
                    est. lower upper
SD.log_k_cyan     0.5842    NA    NA
SD.log_k_JCZ38    1.2680    NA    NA
SD.log_k_J9Z38    0.3626    NA    NA
SD.log_k_JSE76    0.5244    NA    NA
SD.f_cyan_ilr_1   0.2752    NA    NA
SD.f_cyan_ilr_2   2.3556    NA    NA
SD.f_JCZ38_qlogis 0.2400    NA    NA

Variance model:
     est. lower upper
a.1 4.833    NA    NA

Backtransformed parameters:
                      est. lower upper
cyan_0           95.094581    NA    NA
k_cyan            0.021186    NA    NA
k_JCZ38           0.047825    NA    NA
k_J9Z38           0.006665    NA    NA
k_JSE76           0.005063    NA    NA
f_cyan_to_JCZ38   0.757885    NA    NA
f_cyan_to_J9Z38   0.242115    NA    NA
f_JCZ38_to_JSE76  0.795792    NA    NA

Resulting formation fractions:
                   ff
cyan_JCZ38  7.579e-01
cyan_J9Z38  2.421e-01
cyan_sink   5.877e-10
JCZ38_JSE76 7.958e-01
JCZ38_sink  2.042e-01

Estimated disappearance times:
        DT50   DT90
cyan   32.72 108.68
JCZ38  14.49  48.15
J9Z38 103.99 345.46
JSE76 136.90 454.76

</code></pre>
<p></p>
<caption>
Hierarchical SFO path 1 fit with two-component error
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:08:17 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - k_cyan * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * k_cyan * cyan - k_JCZ38 * JCZ38
d_J9Z38/dt = + f_cyan_to_J9Z38 * k_cyan * cyan - k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1127.552 s
Using 300, 100 iterations and 10 chains

Variance model: Two-component variance function 

Starting values for degradation parameters:
        cyan_0     log_k_cyan    log_k_JCZ38    log_k_J9Z38    log_k_JSE76 
       96.0039        -3.8907        -3.1276        -5.0069        -4.9367 
  f_cyan_ilr_1   f_cyan_ilr_2 f_JCZ38_qlogis 
        0.7937        20.0030        15.1336 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76
cyan_0          4.859      0.000        0.00        0.00      0.0000
log_k_cyan      0.000      0.962        0.00        0.00      0.0000
log_k_JCZ38     0.000      0.000        2.04        0.00      0.0000
log_k_J9Z38     0.000      0.000        0.00        1.72      0.0000
log_k_JSE76     0.000      0.000        0.00        0.00      0.9076
f_cyan_ilr_1    0.000      0.000        0.00        0.00      0.0000
f_cyan_ilr_2    0.000      0.000        0.00        0.00      0.0000
f_JCZ38_qlogis  0.000      0.000        0.00        0.00      0.0000
               f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
cyan_0               0.0000        0.000           0.00
log_k_cyan           0.0000        0.000           0.00
log_k_JCZ38          0.0000        0.000           0.00
log_k_J9Z38          0.0000        0.000           0.00
log_k_JSE76          0.0000        0.000           0.00
f_cyan_ilr_1         0.7598        0.000           0.00
f_cyan_ilr_2         0.0000        7.334           0.00
f_JCZ38_qlogis       0.0000        0.000          11.78

Starting values for error model parameters:
a.1 b.1 
  1   1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2658 2651  -1312

Optimised parameters:
                      est. lower upper
cyan_0            94.72923    NA    NA
log_k_cyan        -3.91670    NA    NA
log_k_JCZ38       -3.12917    NA    NA
log_k_J9Z38       -5.06070    NA    NA
log_k_JSE76       -5.09254    NA    NA
f_cyan_ilr_1       0.81116    NA    NA
f_cyan_ilr_2      39.97850    NA    NA
f_JCZ38_qlogis     3.09728    NA    NA
a.1                3.95044    NA    NA
b.1                0.07998    NA    NA
SD.log_k_cyan      0.58855    NA    NA
SD.log_k_JCZ38     1.29753    NA    NA
SD.log_k_J9Z38     0.62851    NA    NA
SD.log_k_JSE76     0.37235    NA    NA
SD.f_cyan_ilr_1    0.37346    NA    NA
SD.f_cyan_ilr_2    1.41667    NA    NA
SD.f_JCZ38_qlogis  1.81467    NA    NA

Correlation is not available

Random effects:
                    est. lower upper
SD.log_k_cyan     0.5886    NA    NA
SD.log_k_JCZ38    1.2975    NA    NA
SD.log_k_J9Z38    0.6285    NA    NA
SD.log_k_JSE76    0.3724    NA    NA
SD.f_cyan_ilr_1   0.3735    NA    NA
SD.f_cyan_ilr_2   1.4167    NA    NA
SD.f_JCZ38_qlogis 1.8147    NA    NA

Variance model:
       est. lower upper
a.1 3.95044    NA    NA
b.1 0.07998    NA    NA

Backtransformed parameters:
                      est. lower upper
cyan_0           94.729229    NA    NA
k_cyan            0.019907    NA    NA
k_JCZ38           0.043754    NA    NA
k_J9Z38           0.006341    NA    NA
k_JSE76           0.006142    NA    NA
f_cyan_to_JCZ38   0.758991    NA    NA
f_cyan_to_J9Z38   0.241009    NA    NA
f_JCZ38_to_JSE76  0.956781    NA    NA

Resulting formation fractions:
                 ff
cyan_JCZ38  0.75899
cyan_J9Z38  0.24101
cyan_sink   0.00000
JCZ38_JSE76 0.95678
JCZ38_sink  0.04322

Estimated disappearance times:
        DT50   DT90
cyan   34.82 115.67
JCZ38  15.84  52.63
J9Z38 109.31 363.12
JSE76 112.85 374.87

</code></pre>
<p></p>
<caption>
Hierarchical FOMC path 1 fit with constant variance
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:09:12 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
           cyan - k_JCZ38 * JCZ38
d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
           cyan - k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1182.258 s
Using 300, 100 iterations and 10 chains

Variance model: Constant variance 

Starting values for degradation parameters:
        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1 
      101.2314        -3.3680        -5.1108        -5.9416         0.7144 
  f_cyan_ilr_2 f_JCZ38_qlogis      log_alpha       log_beta 
        7.3870        15.7604        -0.1791         2.9811 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
cyan_0          5.416       0.000         0.0       0.000       0.0000
log_k_JCZ38     0.000       2.439         0.0       0.000       0.0000
log_k_J9Z38     0.000       0.000         1.7       0.000       0.0000
log_k_JSE76     0.000       0.000         0.0       1.856       0.0000
f_cyan_ilr_1    0.000       0.000         0.0       0.000       0.7164
f_cyan_ilr_2    0.000       0.000         0.0       0.000       0.0000
f_JCZ38_qlogis  0.000       0.000         0.0       0.000       0.0000
log_alpha       0.000       0.000         0.0       0.000       0.0000
log_beta        0.000       0.000         0.0       0.000       0.0000
               f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta
cyan_0                 0.00           0.00    0.0000   0.0000
log_k_JCZ38            0.00           0.00    0.0000   0.0000
log_k_J9Z38            0.00           0.00    0.0000   0.0000
log_k_JSE76            0.00           0.00    0.0000   0.0000
f_cyan_ilr_1           0.00           0.00    0.0000   0.0000
f_cyan_ilr_2          12.33           0.00    0.0000   0.0000
f_JCZ38_qlogis         0.00          20.42    0.0000   0.0000
log_alpha              0.00           0.00    0.4144   0.0000
log_beta               0.00           0.00    0.0000   0.5077

Starting values for error model parameters:
a.1 
  1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2428 2421  -1196

Optimised parameters:
                      est.     lower    upper
cyan_0            101.0225 98.306270 103.7387
log_k_JCZ38        -3.3786 -4.770657  -1.9866
log_k_J9Z38        -5.2603 -5.902085  -4.6186
log_k_JSE76        -6.1427 -7.318336  -4.9671
f_cyan_ilr_1        0.7437  0.421215   1.0663
f_cyan_ilr_2        0.9108  0.267977   1.5537
f_JCZ38_qlogis      2.0487  0.524897   3.5724
log_alpha          -0.2268 -0.618049   0.1644
log_beta            2.8986  2.700701   3.0964
a.1                 3.4058  3.169913   3.6416
SD.cyan_0           2.5279  0.454190   4.6016
SD.log_k_JCZ38      1.5636  0.572824   2.5543
SD.log_k_J9Z38      0.5316 -0.004405   1.0677
SD.log_k_JSE76      0.9903  0.106325   1.8742
SD.f_cyan_ilr_1     0.3464  0.112066   0.5807
SD.f_cyan_ilr_2     0.2804 -0.393900   0.9546
SD.f_JCZ38_qlogis   0.9416 -0.152986   2.0362
SD.log_alpha        0.4273  0.161044   0.6936

Correlation: 
               cyan_0  l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 log_lph
log_k_JCZ38    -0.0156                                                        
log_k_J9Z38    -0.0493  0.0073                                                
log_k_JSE76    -0.0329  0.0018  0.0069                                        
f_cyan_ilr_1   -0.0086  0.0180 -0.1406  0.0012                                
f_cyan_ilr_2   -0.2629  0.0779  0.2826  0.0274  0.0099                        
f_JCZ38_qlogis  0.0713 -0.0747 -0.0505  0.1169 -0.1022 -0.4893                
log_alpha      -0.0556  0.0120  0.0336  0.0193  0.0036  0.0840 -0.0489        
log_beta       -0.2898  0.0460  0.1305  0.0768  0.0190  0.4071 -0.1981  0.2772

Random effects:
                    est.     lower  upper
SD.cyan_0         2.5279  0.454190 4.6016
SD.log_k_JCZ38    1.5636  0.572824 2.5543
SD.log_k_J9Z38    0.5316 -0.004405 1.0677
SD.log_k_JSE76    0.9903  0.106325 1.8742
SD.f_cyan_ilr_1   0.3464  0.112066 0.5807
SD.f_cyan_ilr_2   0.2804 -0.393900 0.9546
SD.f_JCZ38_qlogis 0.9416 -0.152986 2.0362
SD.log_alpha      0.4273  0.161044 0.6936

Variance model:
     est. lower upper
a.1 3.406  3.17 3.642

Backtransformed parameters:
                      est.     lower     upper
cyan_0           1.010e+02 9.831e+01 1.037e+02
k_JCZ38          3.409e-02 8.475e-03 1.372e-01
k_J9Z38          5.194e-03 2.734e-03 9.867e-03
k_JSE76          2.149e-03 6.633e-04 6.963e-03
f_cyan_to_JCZ38  6.481e-01        NA        NA
f_cyan_to_J9Z38  2.264e-01        NA        NA
f_JCZ38_to_JSE76 8.858e-01 6.283e-01 9.727e-01
alpha            7.971e-01 5.390e-01 1.179e+00
beta             1.815e+01 1.489e+01 2.212e+01

Resulting formation fractions:
                ff
cyan_JCZ38  0.6481
cyan_J9Z38  0.2264
cyan_sink   0.1255
JCZ38_JSE76 0.8858
JCZ38_sink  0.1142

Estimated disappearance times:
        DT50    DT90 DT50back
cyan   25.15  308.01    92.72
JCZ38  20.33   67.54       NA
J9Z38 133.46  443.35       NA
JSE76 322.53 1071.42       NA

</code></pre>
<p></p>
<caption>
Hierarchical FOMC path 1 fit with two-component error
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:09:18 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
           cyan - k_JCZ38 * JCZ38
d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
           cyan - k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1188.041 s
Using 300, 100 iterations and 10 chains

Variance model: Two-component variance function 

Starting values for degradation parameters:
        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1 
     101.13827       -3.32493       -5.08921       -5.93478        0.71330 
  f_cyan_ilr_2 f_JCZ38_qlogis      log_alpha       log_beta 
      10.05989       12.79248       -0.09621        3.10646 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
cyan_0          5.643       0.000       0.000        0.00       0.0000
log_k_JCZ38     0.000       2.319       0.000        0.00       0.0000
log_k_J9Z38     0.000       0.000       1.731        0.00       0.0000
log_k_JSE76     0.000       0.000       0.000        1.86       0.0000
f_cyan_ilr_1    0.000       0.000       0.000        0.00       0.7186
f_cyan_ilr_2    0.000       0.000       0.000        0.00       0.0000
f_JCZ38_qlogis  0.000       0.000       0.000        0.00       0.0000
log_alpha       0.000       0.000       0.000        0.00       0.0000
log_beta        0.000       0.000       0.000        0.00       0.0000
               f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta
cyan_0                 0.00           0.00    0.0000   0.0000
log_k_JCZ38            0.00           0.00    0.0000   0.0000
log_k_J9Z38            0.00           0.00    0.0000   0.0000
log_k_JSE76            0.00           0.00    0.0000   0.0000
f_cyan_ilr_1           0.00           0.00    0.0000   0.0000
f_cyan_ilr_2          12.49           0.00    0.0000   0.0000
f_JCZ38_qlogis         0.00          20.19    0.0000   0.0000
log_alpha              0.00           0.00    0.3142   0.0000
log_beta               0.00           0.00    0.0000   0.7331

Starting values for error model parameters:
a.1 b.1 
  1   1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2423 2416  -1193

Optimised parameters:
                       est. lower upper
cyan_0            100.57649    NA    NA
log_k_JCZ38        -3.46250    NA    NA
log_k_J9Z38        -5.24442    NA    NA
log_k_JSE76        -5.75229    NA    NA
f_cyan_ilr_1        0.68480    NA    NA
f_cyan_ilr_2        0.61670    NA    NA
f_JCZ38_qlogis     87.97407    NA    NA
log_alpha          -0.15699    NA    NA
log_beta            3.01540    NA    NA
a.1                 3.11518    NA    NA
b.1                 0.04445    NA    NA
SD.log_k_JCZ38      1.40732    NA    NA
SD.log_k_J9Z38      0.56510    NA    NA
SD.log_k_JSE76      0.72067    NA    NA
SD.f_cyan_ilr_1     0.31199    NA    NA
SD.f_cyan_ilr_2     0.36894    NA    NA
SD.f_JCZ38_qlogis   6.92892    NA    NA
SD.log_alpha        0.25662    NA    NA
SD.log_beta         0.35845    NA    NA

Correlation is not available

Random effects:
                    est. lower upper
SD.log_k_JCZ38    1.4073    NA    NA
SD.log_k_J9Z38    0.5651    NA    NA
SD.log_k_JSE76    0.7207    NA    NA
SD.f_cyan_ilr_1   0.3120    NA    NA
SD.f_cyan_ilr_2   0.3689    NA    NA
SD.f_JCZ38_qlogis 6.9289    NA    NA
SD.log_alpha      0.2566    NA    NA
SD.log_beta       0.3585    NA    NA

Variance model:
       est. lower upper
a.1 3.11518    NA    NA
b.1 0.04445    NA    NA

Backtransformed parameters:
                      est. lower upper
cyan_0           1.006e+02    NA    NA
k_JCZ38          3.135e-02    NA    NA
k_J9Z38          5.277e-03    NA    NA
k_JSE76          3.175e-03    NA    NA
f_cyan_to_JCZ38  5.991e-01    NA    NA
f_cyan_to_J9Z38  2.275e-01    NA    NA
f_JCZ38_to_JSE76 1.000e+00    NA    NA
alpha            8.547e-01    NA    NA
beta             2.040e+01    NA    NA

Resulting formation fractions:
                ff
cyan_JCZ38  0.5991
cyan_J9Z38  0.2275
cyan_sink   0.1734
JCZ38_JSE76 1.0000
JCZ38_sink  0.0000

Estimated disappearance times:
        DT50   DT90 DT50back
cyan   25.50 281.29    84.68
JCZ38  22.11  73.44       NA
J9Z38 131.36 436.35       NA
JSE76 218.28 725.11       NA

</code></pre>
<p></p>
<caption>
Hierarchical DFOP path 1 fit with constant variance
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:10:30 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
           * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
           exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38
d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
           exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1260.905 s
Using 300, 100 iterations and 10 chains

Variance model: Constant variance 

Starting values for degradation parameters:
        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1 
      102.0644        -3.4008        -5.0024        -5.8613         0.6855 
  f_cyan_ilr_2 f_JCZ38_qlogis         log_k1         log_k2       g_qlogis 
        1.2365        13.7245        -1.8641        -4.5063        -0.6468 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
cyan_0          4.466       0.000       0.000       0.000       0.0000
log_k_JCZ38     0.000       2.382       0.000       0.000       0.0000
log_k_J9Z38     0.000       0.000       1.595       0.000       0.0000
log_k_JSE76     0.000       0.000       0.000       1.245       0.0000
f_cyan_ilr_1    0.000       0.000       0.000       0.000       0.6852
f_cyan_ilr_2    0.000       0.000       0.000       0.000       0.0000
f_JCZ38_qlogis  0.000       0.000       0.000       0.000       0.0000
log_k1          0.000       0.000       0.000       0.000       0.0000
log_k2          0.000       0.000       0.000       0.000       0.0000
g_qlogis        0.000       0.000       0.000       0.000       0.0000
               f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis
cyan_0                 0.00           0.00 0.0000 0.0000    0.000
log_k_JCZ38            0.00           0.00 0.0000 0.0000    0.000
log_k_J9Z38            0.00           0.00 0.0000 0.0000    0.000
log_k_JSE76            0.00           0.00 0.0000 0.0000    0.000
f_cyan_ilr_1           0.00           0.00 0.0000 0.0000    0.000
f_cyan_ilr_2           1.28           0.00 0.0000 0.0000    0.000
f_JCZ38_qlogis         0.00          16.11 0.0000 0.0000    0.000
log_k1                 0.00           0.00 0.9866 0.0000    0.000
log_k2                 0.00           0.00 0.0000 0.5953    0.000
g_qlogis               0.00           0.00 0.0000 0.0000    1.583

Starting values for error model parameters:
a.1 
  1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2403 2395  -1182

Optimised parameters:
                      est. lower upper
cyan_0            102.6079    NA    NA
log_k_JCZ38        -3.4855    NA    NA
log_k_J9Z38        -5.1686    NA    NA
log_k_JSE76        -5.6697    NA    NA
f_cyan_ilr_1        0.6714    NA    NA
f_cyan_ilr_2        0.4986    NA    NA
f_JCZ38_qlogis     55.4760    NA    NA
log_k1             -1.8409    NA    NA
log_k2             -4.4915    NA    NA
g_qlogis           -0.6403    NA    NA
a.1                 3.2387    NA    NA
SD.log_k_JCZ38      1.4524    NA    NA
SD.log_k_J9Z38      0.5151    NA    NA
SD.log_k_JSE76      0.6514    NA    NA
SD.f_cyan_ilr_1     0.3023    NA    NA
SD.f_cyan_ilr_2     0.2959    NA    NA
SD.f_JCZ38_qlogis   1.9984    NA    NA
SD.log_k1           0.5188    NA    NA
SD.log_k2           0.3894    NA    NA
SD.g_qlogis         0.8579    NA    NA

Correlation is not available

Random effects:
                    est. lower upper
SD.log_k_JCZ38    1.4524    NA    NA
SD.log_k_J9Z38    0.5151    NA    NA
SD.log_k_JSE76    0.6514    NA    NA
SD.f_cyan_ilr_1   0.3023    NA    NA
SD.f_cyan_ilr_2   0.2959    NA    NA
SD.f_JCZ38_qlogis 1.9984    NA    NA
SD.log_k1         0.5188    NA    NA
SD.log_k2         0.3894    NA    NA
SD.g_qlogis       0.8579    NA    NA

Variance model:
     est. lower upper
a.1 3.239    NA    NA

Backtransformed parameters:
                      est. lower upper
cyan_0           1.026e+02    NA    NA
k_JCZ38          3.064e-02    NA    NA
k_J9Z38          5.692e-03    NA    NA
k_JSE76          3.449e-03    NA    NA
f_cyan_to_JCZ38  5.798e-01    NA    NA
f_cyan_to_J9Z38  2.243e-01    NA    NA
f_JCZ38_to_JSE76 1.000e+00    NA    NA
k1               1.587e-01    NA    NA
k2               1.120e-02    NA    NA
g                3.452e-01    NA    NA

Resulting formation fractions:
                ff
cyan_JCZ38  0.5798
cyan_J9Z38  0.2243
cyan_sink   0.1958
JCZ38_JSE76 1.0000
JCZ38_sink  0.0000

Estimated disappearance times:
        DT50   DT90 DT50back DT50_k1 DT50_k2
cyan   25.21 167.73    50.49   4.368   61.87
JCZ38  22.62  75.15       NA      NA      NA
J9Z38 121.77 404.50       NA      NA      NA
JSE76 200.98 667.64       NA      NA      NA

</code></pre>
<p></p>
<caption>
Hierarchical DFOP path 1 fit with two-component error
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:16:28 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
           * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
           exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38
d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
           exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1617.774 s
Using 300, 100 iterations and 10 chains

Variance model: Two-component variance function 

Starting values for degradation parameters:
        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1 
      101.3964        -3.3626        -4.9792        -5.8727         0.6814 
  f_cyan_ilr_2 f_JCZ38_qlogis         log_k1         log_k2       g_qlogis 
        6.7799        13.7245        -1.9222        -4.5035        -0.7172 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
cyan_0          5.317       0.000       0.000       0.000       0.0000
log_k_JCZ38     0.000       2.272       0.000       0.000       0.0000
log_k_J9Z38     0.000       0.000       1.633       0.000       0.0000
log_k_JSE76     0.000       0.000       0.000       1.271       0.0000
f_cyan_ilr_1    0.000       0.000       0.000       0.000       0.6838
f_cyan_ilr_2    0.000       0.000       0.000       0.000       0.0000
f_JCZ38_qlogis  0.000       0.000       0.000       0.000       0.0000
log_k1          0.000       0.000       0.000       0.000       0.0000
log_k2          0.000       0.000       0.000       0.000       0.0000
g_qlogis        0.000       0.000       0.000       0.000       0.0000
               f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis
cyan_0                 0.00           0.00 0.0000 0.0000    0.000
log_k_JCZ38            0.00           0.00 0.0000 0.0000    0.000
log_k_J9Z38            0.00           0.00 0.0000 0.0000    0.000
log_k_JSE76            0.00           0.00 0.0000 0.0000    0.000
f_cyan_ilr_1           0.00           0.00 0.0000 0.0000    0.000
f_cyan_ilr_2          11.77           0.00 0.0000 0.0000    0.000
f_JCZ38_qlogis         0.00          16.11 0.0000 0.0000    0.000
log_k1                 0.00           0.00 0.9496 0.0000    0.000
log_k2                 0.00           0.00 0.0000 0.5846    0.000
g_qlogis               0.00           0.00 0.0000 0.0000    1.719

Starting values for error model parameters:
a.1 b.1 
  1   1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2398 2390  -1179

Optimised parameters:
                      est. lower upper
cyan_0            100.8076    NA    NA
log_k_JCZ38        -3.4684    NA    NA
log_k_J9Z38        -5.0844    NA    NA
log_k_JSE76        -5.5743    NA    NA
f_cyan_ilr_1        0.6669    NA    NA
f_cyan_ilr_2        0.7912    NA    NA
f_JCZ38_qlogis     84.1825    NA    NA
log_k1             -2.1671    NA    NA
log_k2             -4.5447    NA    NA
g_qlogis           -0.5631    NA    NA
a.1                 2.9627    NA    NA
b.1                 0.0444    NA    NA
SD.log_k_JCZ38      1.4044    NA    NA
SD.log_k_J9Z38      0.6410    NA    NA
SD.log_k_JSE76      0.5391    NA    NA
SD.f_cyan_ilr_1     0.3203    NA    NA
SD.f_cyan_ilr_2     0.5038    NA    NA
SD.f_JCZ38_qlogis   3.5865    NA    NA
SD.log_k2           0.3119    NA    NA
SD.g_qlogis         0.8276    NA    NA

Correlation is not available

Random effects:
                    est. lower upper
SD.log_k_JCZ38    1.4044    NA    NA
SD.log_k_J9Z38    0.6410    NA    NA
SD.log_k_JSE76    0.5391    NA    NA
SD.f_cyan_ilr_1   0.3203    NA    NA
SD.f_cyan_ilr_2   0.5038    NA    NA
SD.f_JCZ38_qlogis 3.5865    NA    NA
SD.log_k2         0.3119    NA    NA
SD.g_qlogis       0.8276    NA    NA

Variance model:
      est. lower upper
a.1 2.9627    NA    NA
b.1 0.0444    NA    NA

Backtransformed parameters:
                      est. lower upper
cyan_0           1.008e+02    NA    NA
k_JCZ38          3.117e-02    NA    NA
k_J9Z38          6.193e-03    NA    NA
k_JSE76          3.794e-03    NA    NA
f_cyan_to_JCZ38  6.149e-01    NA    NA
f_cyan_to_J9Z38  2.395e-01    NA    NA
f_JCZ38_to_JSE76 1.000e+00    NA    NA
k1               1.145e-01    NA    NA
k2               1.062e-02    NA    NA
g                3.628e-01    NA    NA

Resulting formation fractions:
                ff
cyan_JCZ38  0.6149
cyan_J9Z38  0.2395
cyan_sink   0.1456
JCZ38_JSE76 1.0000
JCZ38_sink  0.0000

Estimated disappearance times:
        DT50   DT90 DT50back DT50_k1 DT50_k2
cyan   26.26 174.32    52.47   6.053   65.25
JCZ38  22.24  73.88       NA      NA      NA
J9Z38 111.93 371.82       NA      NA      NA
JSE76 182.69 606.88       NA      NA      NA

</code></pre>
<p></p>
<caption>
Hierarchical SFORB path 1 fit with constant variance
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:10:49 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
           cyan_free + k_cyan_bound_free * cyan_bound
d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
           cyan_bound
d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
           * JCZ38
d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
           * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1279.472 s
Using 300, 100 iterations and 10 chains

Variance model: Constant variance 

Starting values for degradation parameters:
          cyan_free_0       log_k_cyan_free log_k_cyan_free_bound 
             102.0643               -2.8987               -2.7077 
log_k_cyan_bound_free           log_k_JCZ38           log_k_J9Z38 
              -3.4717               -3.4008               -5.0024 
          log_k_JSE76          f_cyan_ilr_1          f_cyan_ilr_2 
              -5.8613                0.6855                1.2366 
       f_JCZ38_qlogis 
              13.7418 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
                      cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
cyan_free_0                 4.466          0.0000                 0.000
log_k_cyan_free             0.000          0.6158                 0.000
log_k_cyan_free_bound       0.000          0.0000                 1.463
log_k_cyan_bound_free       0.000          0.0000                 0.000
log_k_JCZ38                 0.000          0.0000                 0.000
log_k_J9Z38                 0.000          0.0000                 0.000
log_k_JSE76                 0.000          0.0000                 0.000
f_cyan_ilr_1                0.000          0.0000                 0.000
f_cyan_ilr_2                0.000          0.0000                 0.000
f_JCZ38_qlogis              0.000          0.0000                 0.000
                      log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
cyan_free_0                           0.000       0.000       0.000       0.000
log_k_cyan_free                       0.000       0.000       0.000       0.000
log_k_cyan_free_bound                 0.000       0.000       0.000       0.000
log_k_cyan_bound_free                 1.058       0.000       0.000       0.000
log_k_JCZ38                           0.000       2.382       0.000       0.000
log_k_J9Z38                           0.000       0.000       1.595       0.000
log_k_JSE76                           0.000       0.000       0.000       1.245
f_cyan_ilr_1                          0.000       0.000       0.000       0.000
f_cyan_ilr_2                          0.000       0.000       0.000       0.000
f_JCZ38_qlogis                        0.000       0.000       0.000       0.000
                      f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
cyan_free_0                 0.0000         0.00           0.00
log_k_cyan_free             0.0000         0.00           0.00
log_k_cyan_free_bound       0.0000         0.00           0.00
log_k_cyan_bound_free       0.0000         0.00           0.00
log_k_JCZ38                 0.0000         0.00           0.00
log_k_J9Z38                 0.0000         0.00           0.00
log_k_JSE76                 0.0000         0.00           0.00
f_cyan_ilr_1                0.6852         0.00           0.00
f_cyan_ilr_2                0.0000         1.28           0.00
f_JCZ38_qlogis              0.0000         0.00          16.14

Starting values for error model parameters:
a.1 
  1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2401 2394  -1181

Optimised parameters:
                             est. lower upper
cyan_free_0              102.7803    NA    NA
log_k_cyan_free           -2.8068    NA    NA
log_k_cyan_free_bound     -2.5714    NA    NA
log_k_cyan_bound_free     -3.4426    NA    NA
log_k_JCZ38               -3.4994    NA    NA
log_k_J9Z38               -5.1148    NA    NA
log_k_JSE76               -5.6335    NA    NA
f_cyan_ilr_1               0.6597    NA    NA
f_cyan_ilr_2               0.5132    NA    NA
f_JCZ38_qlogis            37.2090    NA    NA
a.1                        3.2367    NA    NA
SD.log_k_cyan_free         0.3161    NA    NA
SD.log_k_cyan_free_bound   0.8103    NA    NA
SD.log_k_cyan_bound_free   0.5554    NA    NA
SD.log_k_JCZ38             1.4858    NA    NA
SD.log_k_J9Z38             0.5859    NA    NA
SD.log_k_JSE76             0.6195    NA    NA
SD.f_cyan_ilr_1            0.3118    NA    NA
SD.f_cyan_ilr_2            0.3344    NA    NA
SD.f_JCZ38_qlogis          0.5518    NA    NA

Correlation is not available

Random effects:
                           est. lower upper
SD.log_k_cyan_free       0.3161    NA    NA
SD.log_k_cyan_free_bound 0.8103    NA    NA
SD.log_k_cyan_bound_free 0.5554    NA    NA
SD.log_k_JCZ38           1.4858    NA    NA
SD.log_k_J9Z38           0.5859    NA    NA
SD.log_k_JSE76           0.6195    NA    NA
SD.f_cyan_ilr_1          0.3118    NA    NA
SD.f_cyan_ilr_2          0.3344    NA    NA
SD.f_JCZ38_qlogis        0.5518    NA    NA

Variance model:
     est. lower upper
a.1 3.237    NA    NA

Backtransformed parameters:
                          est. lower upper
cyan_free_0          1.028e+02    NA    NA
k_cyan_free          6.040e-02    NA    NA
k_cyan_free_bound    7.643e-02    NA    NA
k_cyan_bound_free    3.198e-02    NA    NA
k_JCZ38              3.022e-02    NA    NA
k_J9Z38              6.007e-03    NA    NA
k_JSE76              3.576e-03    NA    NA
f_cyan_free_to_JCZ38 5.787e-01    NA    NA
f_cyan_free_to_J9Z38 2.277e-01    NA    NA
f_JCZ38_to_JSE76     1.000e+00    NA    NA

Estimated Eigenvalues of SFORB model(s):
cyan_b1 cyan_b2  cyan_g 
0.15646 0.01235 0.33341 

Resulting formation fractions:
                    ff
cyan_free_JCZ38 0.5787
cyan_free_J9Z38 0.2277
cyan_free_sink  0.1936
cyan_free       1.0000
JCZ38_JSE76     1.0000
JCZ38_sink      0.0000

Estimated disappearance times:
        DT50  DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
cyan   24.48 153.7    46.26         4.43        56.15
JCZ38  22.94  76.2       NA           NA           NA
J9Z38 115.39 383.3       NA           NA           NA
JSE76 193.84 643.9       NA           NA           NA

</code></pre>
<p></p>
<caption>
Hierarchical SFORB path 1 fit with two-component error
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:17:00 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
           cyan_free + k_cyan_bound_free * cyan_bound
d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
           cyan_bound
d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
           * JCZ38
d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
           * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1649.941 s
Using 300, 100 iterations and 10 chains

Variance model: Two-component variance function 

Starting values for degradation parameters:
          cyan_free_0       log_k_cyan_free log_k_cyan_free_bound 
             101.3964               -2.9881               -2.7949 
log_k_cyan_bound_free           log_k_JCZ38           log_k_J9Z38 
              -3.4376               -3.3626               -4.9792 
          log_k_JSE76          f_cyan_ilr_1          f_cyan_ilr_2 
              -5.8727                0.6814                6.8139 
       f_JCZ38_qlogis 
              13.7419 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
                      cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
cyan_free_0                 5.317          0.0000                 0.000
log_k_cyan_free             0.000          0.7301                 0.000
log_k_cyan_free_bound       0.000          0.0000                 1.384
log_k_cyan_bound_free       0.000          0.0000                 0.000
log_k_JCZ38                 0.000          0.0000                 0.000
log_k_J9Z38                 0.000          0.0000                 0.000
log_k_JSE76                 0.000          0.0000                 0.000
f_cyan_ilr_1                0.000          0.0000                 0.000
f_cyan_ilr_2                0.000          0.0000                 0.000
f_JCZ38_qlogis              0.000          0.0000                 0.000
                      log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
cyan_free_0                           0.000       0.000       0.000       0.000
log_k_cyan_free                       0.000       0.000       0.000       0.000
log_k_cyan_free_bound                 0.000       0.000       0.000       0.000
log_k_cyan_bound_free                 1.109       0.000       0.000       0.000
log_k_JCZ38                           0.000       2.272       0.000       0.000
log_k_J9Z38                           0.000       0.000       1.633       0.000
log_k_JSE76                           0.000       0.000       0.000       1.271
f_cyan_ilr_1                          0.000       0.000       0.000       0.000
f_cyan_ilr_2                          0.000       0.000       0.000       0.000
f_JCZ38_qlogis                        0.000       0.000       0.000       0.000
                      f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
cyan_free_0                 0.0000         0.00           0.00
log_k_cyan_free             0.0000         0.00           0.00
log_k_cyan_free_bound       0.0000         0.00           0.00
log_k_cyan_bound_free       0.0000         0.00           0.00
log_k_JCZ38                 0.0000         0.00           0.00
log_k_J9Z38                 0.0000         0.00           0.00
log_k_JSE76                 0.0000         0.00           0.00
f_cyan_ilr_1                0.6838         0.00           0.00
f_cyan_ilr_2                0.0000        11.84           0.00
f_JCZ38_qlogis              0.0000         0.00          16.14

Starting values for error model parameters:
a.1 b.1 
  1   1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2400 2392  -1180

Optimised parameters:
                              est. lower upper
cyan_free_0              100.69983    NA    NA
log_k_cyan_free           -3.11584    NA    NA
log_k_cyan_free_bound     -3.15216    NA    NA
log_k_cyan_bound_free     -3.65986    NA    NA
log_k_JCZ38               -3.47811    NA    NA
log_k_J9Z38               -5.08835    NA    NA
log_k_JSE76               -5.55514    NA    NA
f_cyan_ilr_1               0.66764    NA    NA
f_cyan_ilr_2               0.78329    NA    NA
f_JCZ38_qlogis            25.35245    NA    NA
a.1                        2.99088    NA    NA
b.1                        0.04346    NA    NA
SD.log_k_cyan_free         0.48797    NA    NA
SD.log_k_cyan_bound_free   0.27243    NA    NA
SD.log_k_JCZ38             1.42450    NA    NA
SD.log_k_J9Z38             0.63496    NA    NA
SD.log_k_JSE76             0.55951    NA    NA
SD.f_cyan_ilr_1            0.32687    NA    NA
SD.f_cyan_ilr_2            0.48056    NA    NA
SD.f_JCZ38_qlogis          0.43818    NA    NA

Correlation is not available

Random effects:
                           est. lower upper
SD.log_k_cyan_free       0.4880    NA    NA
SD.log_k_cyan_bound_free 0.2724    NA    NA
SD.log_k_JCZ38           1.4245    NA    NA
SD.log_k_J9Z38           0.6350    NA    NA
SD.log_k_JSE76           0.5595    NA    NA
SD.f_cyan_ilr_1          0.3269    NA    NA
SD.f_cyan_ilr_2          0.4806    NA    NA
SD.f_JCZ38_qlogis        0.4382    NA    NA

Variance model:
       est. lower upper
a.1 2.99088    NA    NA
b.1 0.04346    NA    NA

Backtransformed parameters:
                          est. lower upper
cyan_free_0          1.007e+02    NA    NA
k_cyan_free          4.434e-02    NA    NA
k_cyan_free_bound    4.276e-02    NA    NA
k_cyan_bound_free    2.574e-02    NA    NA
k_JCZ38              3.087e-02    NA    NA
k_J9Z38              6.168e-03    NA    NA
k_JSE76              3.868e-03    NA    NA
f_cyan_free_to_JCZ38 6.143e-01    NA    NA
f_cyan_free_to_J9Z38 2.389e-01    NA    NA
f_JCZ38_to_JSE76     1.000e+00    NA    NA

Estimated Eigenvalues of SFORB model(s):
cyan_b1 cyan_b2  cyan_g 
0.10161 0.01123 0.36636 

Resulting formation fractions:
                       ff
cyan_free_JCZ38 6.143e-01
cyan_free_J9Z38 2.389e-01
cyan_free_sink  1.468e-01
cyan_free       1.000e+00
JCZ38_JSE76     1.000e+00
JCZ38_sink      9.763e-12

Estimated disappearance times:
        DT50  DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
cyan   25.91 164.4    49.49        6.822        61.72
JCZ38  22.46  74.6       NA           NA           NA
J9Z38 112.37 373.3       NA           NA           NA
JSE76 179.22 595.4       NA           NA           NA

</code></pre>
<p></p>
<caption>
Hierarchical HS path 1 fit with constant variance
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:11:04 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - ifelse(time &lt;= tb, k1, k2) * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * ifelse(time &lt;= tb, k1, k2) * cyan -
           k_JCZ38 * JCZ38
d_J9Z38/dt = + f_cyan_to_J9Z38 * ifelse(time &lt;= tb, k1, k2) * cyan -
           k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1294.259 s
Using 300, 100 iterations and 10 chains

Variance model: Constant variance 

Starting values for degradation parameters:
        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1 
      102.8738        -3.4490        -4.9348        -5.5989         0.6469 
  f_cyan_ilr_2 f_JCZ38_qlogis         log_k1         log_k2         log_tb 
        1.2854         9.7193        -2.9084        -4.1810         1.7813 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
cyan_0          5.409        0.00        0.00       0.000       0.0000
log_k_JCZ38     0.000        2.33        0.00       0.000       0.0000
log_k_J9Z38     0.000        0.00        1.59       0.000       0.0000
log_k_JSE76     0.000        0.00        0.00       1.006       0.0000
f_cyan_ilr_1    0.000        0.00        0.00       0.000       0.6371
f_cyan_ilr_2    0.000        0.00        0.00       0.000       0.0000
f_JCZ38_qlogis  0.000        0.00        0.00       0.000       0.0000
log_k1          0.000        0.00        0.00       0.000       0.0000
log_k2          0.000        0.00        0.00       0.000       0.0000
log_tb          0.000        0.00        0.00       0.000       0.0000
               f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb
cyan_0                0.000           0.00 0.0000 0.0000 0.0000
log_k_JCZ38           0.000           0.00 0.0000 0.0000 0.0000
log_k_J9Z38           0.000           0.00 0.0000 0.0000 0.0000
log_k_JSE76           0.000           0.00 0.0000 0.0000 0.0000
f_cyan_ilr_1          0.000           0.00 0.0000 0.0000 0.0000
f_cyan_ilr_2          2.167           0.00 0.0000 0.0000 0.0000
f_JCZ38_qlogis        0.000          10.22 0.0000 0.0000 0.0000
log_k1                0.000           0.00 0.7003 0.0000 0.0000
log_k2                0.000           0.00 0.0000 0.8928 0.0000
log_tb                0.000           0.00 0.0000 0.0000 0.6774

Starting values for error model parameters:
a.1 
  1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2427 2420  -1194

Optimised parameters:
                       est. lower upper
cyan_0            101.84849    NA    NA
log_k_JCZ38        -3.47365    NA    NA
log_k_J9Z38        -5.10562    NA    NA
log_k_JSE76        -5.60318    NA    NA
f_cyan_ilr_1        0.66127    NA    NA
f_cyan_ilr_2        0.60283    NA    NA
f_JCZ38_qlogis     45.06408    NA    NA
log_k1             -3.10124    NA    NA
log_k2             -4.39028    NA    NA
log_tb              2.32256    NA    NA
a.1                 3.32683    NA    NA
SD.log_k_JCZ38      1.41427    NA    NA
SD.log_k_J9Z38      0.54767    NA    NA
SD.log_k_JSE76      0.62147    NA    NA
SD.f_cyan_ilr_1     0.30189    NA    NA
SD.f_cyan_ilr_2     0.34960    NA    NA
SD.f_JCZ38_qlogis   0.04644    NA    NA
SD.log_k1           0.39534    NA    NA
SD.log_k2           0.43468    NA    NA
SD.log_tb           0.60781    NA    NA

Correlation is not available

Random effects:
                     est. lower upper
SD.log_k_JCZ38    1.41427    NA    NA
SD.log_k_J9Z38    0.54767    NA    NA
SD.log_k_JSE76    0.62147    NA    NA
SD.f_cyan_ilr_1   0.30189    NA    NA
SD.f_cyan_ilr_2   0.34960    NA    NA
SD.f_JCZ38_qlogis 0.04644    NA    NA
SD.log_k1         0.39534    NA    NA
SD.log_k2         0.43468    NA    NA
SD.log_tb         0.60781    NA    NA

Variance model:
     est. lower upper
a.1 3.327    NA    NA

Backtransformed parameters:
                      est. lower upper
cyan_0           1.018e+02    NA    NA
k_JCZ38          3.100e-02    NA    NA
k_J9Z38          6.063e-03    NA    NA
k_JSE76          3.686e-03    NA    NA
f_cyan_to_JCZ38  5.910e-01    NA    NA
f_cyan_to_J9Z38  2.320e-01    NA    NA
f_JCZ38_to_JSE76 1.000e+00    NA    NA
k1               4.499e-02    NA    NA
k2               1.240e-02    NA    NA
tb               1.020e+01    NA    NA

Resulting formation fractions:
               ff
cyan_JCZ38  0.591
cyan_J9Z38  0.232
cyan_sink   0.177
JCZ38_JSE76 1.000
JCZ38_sink  0.000

Estimated disappearance times:
        DT50   DT90 DT50back DT50_k1 DT50_k2
cyan   29.09 158.91    47.84   15.41   55.91
JCZ38  22.36  74.27       NA      NA      NA
J9Z38 114.33 379.80       NA      NA      NA
JSE76 188.04 624.66       NA      NA      NA

</code></pre>
<p></p>
<caption>
Hierarchical HS path 1 fit with two-component error
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:11:24 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - ifelse(time &lt;= tb, k1, k2) * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * ifelse(time &lt;= tb, k1, k2) * cyan -
           k_JCZ38 * JCZ38
d_J9Z38/dt = + f_cyan_to_J9Z38 * ifelse(time &lt;= tb, k1, k2) * cyan -
           k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1313.805 s
Using 300, 100 iterations and 10 chains

Variance model: Two-component variance function 

Starting values for degradation parameters:
        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1 
       101.168         -3.358         -4.941         -5.794          0.676 
  f_cyan_ilr_2 f_JCZ38_qlogis         log_k1         log_k2         log_tb 
         5.740         13.863         -3.147         -4.262          2.173 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
cyan_0           5.79       0.000       0.000       0.000       0.0000
log_k_JCZ38      0.00       2.271       0.000       0.000       0.0000
log_k_J9Z38      0.00       0.000       1.614       0.000       0.0000
log_k_JSE76      0.00       0.000       0.000       1.264       0.0000
f_cyan_ilr_1     0.00       0.000       0.000       0.000       0.6761
f_cyan_ilr_2     0.00       0.000       0.000       0.000       0.0000
f_JCZ38_qlogis   0.00       0.000       0.000       0.000       0.0000
log_k1           0.00       0.000       0.000       0.000       0.0000
log_k2           0.00       0.000       0.000       0.000       0.0000
log_tb           0.00       0.000       0.000       0.000       0.0000
               f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb
cyan_0                0.000           0.00 0.0000 0.0000  0.000
log_k_JCZ38           0.000           0.00 0.0000 0.0000  0.000
log_k_J9Z38           0.000           0.00 0.0000 0.0000  0.000
log_k_JSE76           0.000           0.00 0.0000 0.0000  0.000
f_cyan_ilr_1          0.000           0.00 0.0000 0.0000  0.000
f_cyan_ilr_2          9.572           0.00 0.0000 0.0000  0.000
f_JCZ38_qlogis        0.000          19.19 0.0000 0.0000  0.000
log_k1                0.000           0.00 0.8705 0.0000  0.000
log_k2                0.000           0.00 0.0000 0.9288  0.000
log_tb                0.000           0.00 0.0000 0.0000  1.065

Starting values for error model parameters:
a.1 b.1 
  1   1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2422 2414  -1190

Optimised parameters:
                      est. lower upper
cyan_0            100.9521    NA    NA
log_k_JCZ38        -3.4629    NA    NA
log_k_J9Z38        -5.0346    NA    NA
log_k_JSE76        -5.5722    NA    NA
f_cyan_ilr_1        0.6560    NA    NA
f_cyan_ilr_2        0.7983    NA    NA
f_JCZ38_qlogis     42.7949    NA    NA
log_k1             -3.1721    NA    NA
log_k2             -4.4039    NA    NA
log_tb              2.3994    NA    NA
a.1                 3.0586    NA    NA
b.1                 0.0380    NA    NA
SD.log_k_JCZ38      1.3754    NA    NA
SD.log_k_J9Z38      0.6703    NA    NA
SD.log_k_JSE76      0.5876    NA    NA
SD.f_cyan_ilr_1     0.3272    NA    NA
SD.f_cyan_ilr_2     0.5300    NA    NA
SD.f_JCZ38_qlogis   6.4465    NA    NA
SD.log_k1           0.4135    NA    NA
SD.log_k2           0.4182    NA    NA
SD.log_tb           0.6035    NA    NA

Correlation is not available

Random effects:
                    est. lower upper
SD.log_k_JCZ38    1.3754    NA    NA
SD.log_k_J9Z38    0.6703    NA    NA
SD.log_k_JSE76    0.5876    NA    NA
SD.f_cyan_ilr_1   0.3272    NA    NA
SD.f_cyan_ilr_2   0.5300    NA    NA
SD.f_JCZ38_qlogis 6.4465    NA    NA
SD.log_k1         0.4135    NA    NA
SD.log_k2         0.4182    NA    NA
SD.log_tb         0.6035    NA    NA

Variance model:
     est. lower upper
a.1 3.059    NA    NA
b.1 0.038    NA    NA

Backtransformed parameters:
                      est. lower upper
cyan_0           1.010e+02    NA    NA
k_JCZ38          3.134e-02    NA    NA
k_J9Z38          6.509e-03    NA    NA
k_JSE76          3.802e-03    NA    NA
f_cyan_to_JCZ38  6.127e-01    NA    NA
f_cyan_to_J9Z38  2.423e-01    NA    NA
f_JCZ38_to_JSE76 1.000e+00    NA    NA
k1               4.191e-02    NA    NA
k2               1.223e-02    NA    NA
tb               1.102e+01    NA    NA

Resulting formation fractions:
                ff
cyan_JCZ38  0.6127
cyan_J9Z38  0.2423
cyan_sink   0.1449
JCZ38_JSE76 1.0000
JCZ38_sink  0.0000

Estimated disappearance times:
        DT50   DT90 DT50back DT50_k1 DT50_k2
cyan   29.94 161.54    48.63   16.54   56.68
JCZ38  22.12  73.47       NA      NA      NA
J9Z38 106.50 353.77       NA      NA      NA
JSE76 182.30 605.60       NA      NA      NA

</code></pre>
<p></p>
</div>
<div class="section level4">
<h4 id="pathway-2">Pathway 2<a class="anchor" aria-label="anchor" href="#pathway-2"></a>
</h4>
<caption>
Hierarchical FOMC path 2 fit with constant variance
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:34:28 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
           cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
           cyan - k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1030.246 s
Using 300, 100 iterations and 10 chains

Variance model: Constant variance 

Starting values for degradation parameters:
        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1 
      101.8173        -1.8998        -5.1449        -2.5415         0.6705 
  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis      log_alpha       log_beta 
        4.4669        16.1281        13.3327        -0.2314         2.8738 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
cyan_0          5.742       0.000       0.000        0.00       0.0000
log_k_JCZ38     0.000       1.402       0.000        0.00       0.0000
log_k_J9Z38     0.000       0.000       1.718        0.00       0.0000
log_k_JSE76     0.000       0.000       0.000        3.57       0.0000
f_cyan_ilr_1    0.000       0.000       0.000        0.00       0.5926
f_cyan_ilr_2    0.000       0.000       0.000        0.00       0.0000
f_JCZ38_qlogis  0.000       0.000       0.000        0.00       0.0000
f_JSE76_qlogis  0.000       0.000       0.000        0.00       0.0000
log_alpha       0.000       0.000       0.000        0.00       0.0000
log_beta        0.000       0.000       0.000        0.00       0.0000
               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
cyan_0                 0.00           0.00           0.00    0.0000   0.0000
log_k_JCZ38            0.00           0.00           0.00    0.0000   0.0000
log_k_J9Z38            0.00           0.00           0.00    0.0000   0.0000
log_k_JSE76            0.00           0.00           0.00    0.0000   0.0000
f_cyan_ilr_1           0.00           0.00           0.00    0.0000   0.0000
f_cyan_ilr_2          10.56           0.00           0.00    0.0000   0.0000
f_JCZ38_qlogis         0.00          12.04           0.00    0.0000   0.0000
f_JSE76_qlogis         0.00           0.00          15.26    0.0000   0.0000
log_alpha              0.00           0.00           0.00    0.4708   0.0000
log_beta               0.00           0.00           0.00    0.0000   0.4432

Starting values for error model parameters:
a.1 
  1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2308 2301  -1134

Optimised parameters:
                      est.    lower     upper
cyan_0            101.9586 99.22024 104.69700
log_k_JCZ38        -2.4861 -3.17661  -1.79560
log_k_J9Z38        -5.3926 -6.08842  -4.69684
log_k_JSE76        -3.1193 -4.12904  -2.10962
f_cyan_ilr_1        0.7368  0.42085   1.05276
f_cyan_ilr_2        0.6196  0.06052   1.17861
f_JCZ38_qlogis      4.8970 -4.68003  14.47398
f_JSE76_qlogis      4.4066 -1.02087   9.83398
log_alpha          -0.3021 -0.68264   0.07838
log_beta            2.7438  2.57970   2.90786
a.1                 2.9008  2.69920   3.10245
SD.cyan_0           2.7081  0.64216   4.77401
SD.log_k_JCZ38      0.7043  0.19951   1.20907
SD.log_k_J9Z38      0.6248  0.05790   1.19180
SD.log_k_JSE76      1.0750  0.33157   1.81839
SD.f_cyan_ilr_1     0.3429  0.11688   0.56892
SD.f_cyan_ilr_2     0.4774  0.09381   0.86097
SD.f_JCZ38_qlogis   1.5565 -7.83970  10.95279
SD.f_JSE76_qlogis   1.6871 -1.25577   4.63000
SD.log_alpha        0.4216  0.15913   0.68405

Correlation: 
               cyan_0  l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76
log_k_JCZ38    -0.0167                                                        
log_k_J9Z38    -0.0307  0.0057                                                
log_k_JSE76    -0.0032  0.1358  0.0009                                        
f_cyan_ilr_1   -0.0087  0.0206 -0.1158 -0.0009                                
f_cyan_ilr_2   -0.1598  0.0690  0.1770  0.0002 -0.0007                        
f_JCZ38_qlogis  0.0966 -0.1132 -0.0440  0.0182 -0.1385 -0.4583                
f_JSE76_qlogis -0.0647  0.1157  0.0333 -0.0026  0.1110  0.3620 -0.8586        
log_alpha      -0.0389  0.0113  0.0209  0.0021  0.0041  0.0451 -0.0605  0.0412
log_beta       -0.2508  0.0533  0.0977  0.0098  0.0220  0.2741 -0.2934  0.1999
               log_lph
log_k_JCZ38           
log_k_J9Z38           
log_k_JSE76           
f_cyan_ilr_1          
f_cyan_ilr_2          
f_JCZ38_qlogis        
f_JSE76_qlogis        
log_alpha             
log_beta        0.2281

Random effects:
                    est.    lower   upper
SD.cyan_0         2.7081  0.64216  4.7740
SD.log_k_JCZ38    0.7043  0.19951  1.2091
SD.log_k_J9Z38    0.6248  0.05790  1.1918
SD.log_k_JSE76    1.0750  0.33157  1.8184
SD.f_cyan_ilr_1   0.3429  0.11688  0.5689
SD.f_cyan_ilr_2   0.4774  0.09381  0.8610
SD.f_JCZ38_qlogis 1.5565 -7.83970 10.9528
SD.f_JSE76_qlogis 1.6871 -1.25577  4.6300
SD.log_alpha      0.4216  0.15913  0.6840

Variance model:
     est. lower upper
a.1 2.901 2.699 3.102

Backtransformed parameters:
                      est.     lower     upper
cyan_0           101.95862 99.220240 1.047e+02
k_JCZ38            0.08323  0.041727 1.660e-01
k_J9Z38            0.00455  0.002269 9.124e-03
k_JSE76            0.04419  0.016098 1.213e-01
f_cyan_to_JCZ38    0.61318        NA        NA
f_cyan_to_J9Z38    0.21630        NA        NA
f_JCZ38_to_JSE76   0.99259  0.009193 1.000e+00
f_JSE76_to_JCZ38   0.98795  0.264857 9.999e-01
alpha              0.73924  0.505281 1.082e+00
beta              15.54568 13.193194 1.832e+01

Resulting formation fractions:
                  ff
cyan_JCZ38  0.613182
cyan_J9Z38  0.216298
cyan_sink   0.170519
JCZ38_JSE76 0.992586
JCZ38_sink  0.007414
JSE76_JCZ38 0.987950
JSE76_sink  0.012050

Estimated disappearance times:
         DT50   DT90 DT50back
cyan   24.157 334.68    100.7
JCZ38   8.328  27.66       NA
J9Z38 152.341 506.06       NA
JSE76  15.687  52.11       NA

</code></pre>
<p></p>
<caption>
Hierarchical FOMC path 2 fit with two-component error
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:37:36 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
           cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
           cyan - k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1217.619 s
Using 300, 100 iterations and 10 chains

Variance model: Two-component variance function 

Starting values for degradation parameters:
        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1 
      101.9028        -1.9055        -5.0249        -2.5646         0.6807 
  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis      log_alpha       log_beta 
        4.8883        16.0676         9.3923        -0.1346         3.0364 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
cyan_0          6.321       0.000       0.000       0.000       0.0000
log_k_JCZ38     0.000       1.392       0.000       0.000       0.0000
log_k_J9Z38     0.000       0.000       1.561       0.000       0.0000
log_k_JSE76     0.000       0.000       0.000       3.614       0.0000
f_cyan_ilr_1    0.000       0.000       0.000       0.000       0.6339
f_cyan_ilr_2    0.000       0.000       0.000       0.000       0.0000
f_JCZ38_qlogis  0.000       0.000       0.000       0.000       0.0000
f_JSE76_qlogis  0.000       0.000       0.000       0.000       0.0000
log_alpha       0.000       0.000       0.000       0.000       0.0000
log_beta        0.000       0.000       0.000       0.000       0.0000
               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
cyan_0                 0.00           0.00           0.00    0.0000   0.0000
log_k_JCZ38            0.00           0.00           0.00    0.0000   0.0000
log_k_J9Z38            0.00           0.00           0.00    0.0000   0.0000
log_k_JSE76            0.00           0.00           0.00    0.0000   0.0000
f_cyan_ilr_1           0.00           0.00           0.00    0.0000   0.0000
f_cyan_ilr_2          10.41           0.00           0.00    0.0000   0.0000
f_JCZ38_qlogis         0.00          12.24           0.00    0.0000   0.0000
f_JSE76_qlogis         0.00           0.00          15.13    0.0000   0.0000
log_alpha              0.00           0.00           0.00    0.3701   0.0000
log_beta               0.00           0.00           0.00    0.0000   0.5662

Starting values for error model parameters:
a.1 b.1 
  1   1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2248 2240  -1103

Optimised parameters:
                       est.      lower      upper
cyan_0            101.55545  9.920e+01  1.039e+02
log_k_JCZ38        -2.37354 -2.928e+00 -1.819e+00
log_k_J9Z38        -5.14736 -5.960e+00 -4.335e+00
log_k_JSE76        -3.07802 -4.243e+00 -1.913e+00
f_cyan_ilr_1        0.71263  3.655e-01  1.060e+00
f_cyan_ilr_2        0.95202  2.701e-01  1.634e+00
f_JCZ38_qlogis      3.58473  1.251e+00  5.919e+00
f_JSE76_qlogis     19.03623 -1.037e+07  1.037e+07
log_alpha          -0.15297 -4.490e-01  1.431e-01
log_beta            2.99230  2.706e+00  3.278e+00
a.1                 2.04816         NA         NA
b.1                 0.06886         NA         NA
SD.log_k_JCZ38      0.56174         NA         NA
SD.log_k_J9Z38      0.86509         NA         NA
SD.log_k_JSE76      1.28450         NA         NA
SD.f_cyan_ilr_1     0.38705         NA         NA
SD.f_cyan_ilr_2     0.54153         NA         NA
SD.f_JCZ38_qlogis   1.65311         NA         NA
SD.f_JSE76_qlogis   7.51468         NA         NA
SD.log_alpha        0.31586         NA         NA
SD.log_beta         0.24696         NA         NA

Correlation is not available

Random effects:
                    est. lower upper
SD.log_k_JCZ38    0.5617    NA    NA
SD.log_k_J9Z38    0.8651    NA    NA
SD.log_k_JSE76    1.2845    NA    NA
SD.f_cyan_ilr_1   0.3870    NA    NA
SD.f_cyan_ilr_2   0.5415    NA    NA
SD.f_JCZ38_qlogis 1.6531    NA    NA
SD.f_JSE76_qlogis 7.5147    NA    NA
SD.log_alpha      0.3159    NA    NA
SD.log_beta       0.2470    NA    NA

Variance model:
       est. lower upper
a.1 2.04816    NA    NA
b.1 0.06886    NA    NA

Backtransformed parameters:
                      est.    lower    upper
cyan_0           1.016e+02 99.20301 103.9079
k_JCZ38          9.315e-02  0.05349   0.1622
k_J9Z38          5.815e-03  0.00258   0.0131
k_JSE76          4.605e-02  0.01436   0.1477
f_cyan_to_JCZ38  6.438e-01       NA       NA
f_cyan_to_J9Z38  2.350e-01       NA       NA
f_JCZ38_to_JSE76 9.730e-01  0.77745   0.9973
f_JSE76_to_JCZ38 1.000e+00  0.00000   1.0000
alpha            8.582e-01  0.63824   1.1538
beta             1.993e+01 14.97621  26.5262

Resulting formation fractions:
                   ff
cyan_JCZ38  6.438e-01
cyan_J9Z38  2.350e-01
cyan_sink   1.212e-01
JCZ38_JSE76 9.730e-01
JCZ38_sink  2.700e-02
JSE76_JCZ38 1.000e+00
JSE76_sink  5.403e-09

Estimated disappearance times:
         DT50   DT90 DT50back
cyan   24.771 271.70    81.79
JCZ38   7.441  24.72       NA
J9Z38 119.205 395.99       NA
JSE76  15.052  50.00       NA

</code></pre>
<p></p>
<caption>
Hierarchical DFOP path 2 fit with constant variance
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:38:34 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
           * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
           exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +
           f_JSE76_to_JCZ38 * k_JSE76 * JSE76
d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
           exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1276.128 s
Using 300, 100 iterations and 10 chains

Variance model: Constant variance 

Starting values for degradation parameters:
        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1 
      102.4358        -2.3107        -5.3123        -3.7120         0.6753 
  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis         log_k1         log_k2 
        1.1462        12.4095        12.3630        -1.9317        -4.4557 
      g_qlogis 
       -0.5648 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
cyan_0          4.594      0.0000       0.000         0.0       0.0000
log_k_JCZ38     0.000      0.7966       0.000         0.0       0.0000
log_k_J9Z38     0.000      0.0000       1.561         0.0       0.0000
log_k_JSE76     0.000      0.0000       0.000         0.8       0.0000
f_cyan_ilr_1    0.000      0.0000       0.000         0.0       0.6349
f_cyan_ilr_2    0.000      0.0000       0.000         0.0       0.0000
f_JCZ38_qlogis  0.000      0.0000       0.000         0.0       0.0000
f_JSE76_qlogis  0.000      0.0000       0.000         0.0       0.0000
log_k1          0.000      0.0000       0.000         0.0       0.0000
log_k2          0.000      0.0000       0.000         0.0       0.0000
g_qlogis        0.000      0.0000       0.000         0.0       0.0000
               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
cyan_0                0.000           0.00            0.0  0.000 0.0000
log_k_JCZ38           0.000           0.00            0.0  0.000 0.0000
log_k_J9Z38           0.000           0.00            0.0  0.000 0.0000
log_k_JSE76           0.000           0.00            0.0  0.000 0.0000
f_cyan_ilr_1          0.000           0.00            0.0  0.000 0.0000
f_cyan_ilr_2          1.797           0.00            0.0  0.000 0.0000
f_JCZ38_qlogis        0.000          13.85            0.0  0.000 0.0000
f_JSE76_qlogis        0.000           0.00           14.1  0.000 0.0000
log_k1                0.000           0.00            0.0  1.106 0.0000
log_k2                0.000           0.00            0.0  0.000 0.6141
g_qlogis              0.000           0.00            0.0  0.000 0.0000
               g_qlogis
cyan_0            0.000
log_k_JCZ38       0.000
log_k_J9Z38       0.000
log_k_JSE76       0.000
f_cyan_ilr_1      0.000
f_cyan_ilr_2      0.000
f_JCZ38_qlogis    0.000
f_JSE76_qlogis    0.000
log_k1            0.000
log_k2            0.000
g_qlogis          1.595

Starting values for error model parameters:
a.1 
  1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2290 2281  -1123

Optimised parameters:
                      est.     lower    upper
cyan_0            102.6903 101.44420 103.9365
log_k_JCZ38        -2.4018  -2.98058  -1.8230
log_k_J9Z38        -5.1865  -5.92931  -4.4437
log_k_JSE76        -3.0784  -4.25226  -1.9045
f_cyan_ilr_1        0.7157   0.37625   1.0551
f_cyan_ilr_2        0.7073   0.20136   1.2132
f_JCZ38_qlogis      4.6797   0.43240   8.9269
f_JSE76_qlogis      5.0080  -1.01380  11.0299
log_k1             -1.9620  -2.62909  -1.2949
log_k2             -4.4894  -4.94958  -4.0292
g_qlogis           -0.4658  -1.34443   0.4129
a.1                 2.7158   2.52576   2.9059
SD.log_k_JCZ38      0.5818   0.15679   1.0067
SD.log_k_J9Z38      0.7421   0.16751   1.3167
SD.log_k_JSE76      1.2841   0.43247   2.1356
SD.f_cyan_ilr_1     0.3748   0.13040   0.6192
SD.f_cyan_ilr_2     0.4550   0.08396   0.8261
SD.f_JCZ38_qlogis   2.0862  -0.73390   4.9062
SD.f_JSE76_qlogis   1.9585  -3.14773   7.0647
SD.log_k1           0.7389   0.25761   1.2201
SD.log_k2           0.5132   0.18143   0.8450
SD.g_qlogis         0.9870   0.35773   1.6164

Correlation: 
               cyan_0  l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76
log_k_JCZ38    -0.0170                                                        
log_k_J9Z38    -0.0457  0.0016                                                
log_k_JSE76    -0.0046  0.1183  0.0005                                        
f_cyan_ilr_1    0.0079  0.0072 -0.0909  0.0003                                
f_cyan_ilr_2   -0.3114  0.0343  0.1542  0.0023 -0.0519                        
f_JCZ38_qlogis  0.0777 -0.0601 -0.0152  0.0080 -0.0520 -0.2524                
f_JSE76_qlogis -0.0356  0.0817  0.0073  0.0051  0.0388  0.1959 -0.6236        
log_k1          0.0848 -0.0028  0.0010 -0.0010 -0.0014 -0.0245  0.0121 -0.0177
log_k2          0.0274 -0.0001  0.0075  0.0000 -0.0023 -0.0060  0.0000 -0.0130
g_qlogis        0.0159  0.0002 -0.0095  0.0002  0.0029 -0.0140 -0.0001  0.0149
               log_k1  log_k2 
log_k_JCZ38                   
log_k_J9Z38                   
log_k_JSE76                   
f_cyan_ilr_1                  
f_cyan_ilr_2                  
f_JCZ38_qlogis                
f_JSE76_qlogis                
log_k1                        
log_k2          0.0280        
g_qlogis       -0.0278 -0.0310

Random effects:
                    est.    lower  upper
SD.log_k_JCZ38    0.5818  0.15679 1.0067
SD.log_k_J9Z38    0.7421  0.16751 1.3167
SD.log_k_JSE76    1.2841  0.43247 2.1356
SD.f_cyan_ilr_1   0.3748  0.13040 0.6192
SD.f_cyan_ilr_2   0.4550  0.08396 0.8261
SD.f_JCZ38_qlogis 2.0862 -0.73390 4.9062
SD.f_JSE76_qlogis 1.9585 -3.14773 7.0647
SD.log_k1         0.7389  0.25761 1.2201
SD.log_k2         0.5132  0.18143 0.8450
SD.g_qlogis       0.9870  0.35773 1.6164

Variance model:
     est. lower upper
a.1 2.716 2.526 2.906

Backtransformed parameters:
                      est.     lower     upper
cyan_0           1.027e+02 1.014e+02 103.93649
k_JCZ38          9.056e-02 5.076e-02   0.16154
k_J9Z38          5.591e-03 2.660e-03   0.01175
k_JSE76          4.603e-02 1.423e-02   0.14890
f_cyan_to_JCZ38  6.184e-01        NA        NA
f_cyan_to_J9Z38  2.248e-01        NA        NA
f_JCZ38_to_JSE76 9.908e-01 6.064e-01   0.99987
f_JSE76_to_JCZ38 9.934e-01 2.662e-01   0.99998
k1               1.406e-01 7.214e-02   0.27393
k2               1.123e-02 7.086e-03   0.01779
g                3.856e-01 2.068e-01   0.60177

Resulting formation fractions:
                  ff
cyan_JCZ38  0.618443
cyan_J9Z38  0.224770
cyan_sink   0.156787
JCZ38_JSE76 0.990803
JCZ38_sink  0.009197
JSE76_JCZ38 0.993360
JSE76_sink  0.006640

Estimated disappearance times:
         DT50   DT90 DT50back DT50_k1 DT50_k2
cyan   21.674 161.70    48.68   4.931   61.74
JCZ38   7.654  25.43       NA      NA      NA
J9Z38 123.966 411.81       NA      NA      NA
JSE76  15.057  50.02       NA      NA      NA

</code></pre>
<p></p>
<caption>
Hierarchical DFOP path 2 fit with two-component error
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:45:32 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
           * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
           exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +
           f_JSE76_to_JCZ38 * k_JSE76 * JSE76
d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
           exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1693.767 s
Using 300, 100 iterations and 10 chains

Variance model: Two-component variance function 

Starting values for degradation parameters:
        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1 
      101.7523        -1.5948        -5.0119        -2.2723         0.6719 
  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis         log_k1         log_k2 
        5.1681        12.8238        12.4130        -2.0057        -4.5526 
      g_qlogis 
       -0.5805 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
cyan_0          5.627       0.000       0.000       0.000       0.0000
log_k_JCZ38     0.000       2.327       0.000       0.000       0.0000
log_k_J9Z38     0.000       0.000       1.664       0.000       0.0000
log_k_JSE76     0.000       0.000       0.000       4.566       0.0000
f_cyan_ilr_1    0.000       0.000       0.000       0.000       0.6519
f_cyan_ilr_2    0.000       0.000       0.000       0.000       0.0000
f_JCZ38_qlogis  0.000       0.000       0.000       0.000       0.0000
f_JSE76_qlogis  0.000       0.000       0.000       0.000       0.0000
log_k1          0.000       0.000       0.000       0.000       0.0000
log_k2          0.000       0.000       0.000       0.000       0.0000
g_qlogis        0.000       0.000       0.000       0.000       0.0000
               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
cyan_0                  0.0           0.00           0.00 0.0000 0.0000
log_k_JCZ38             0.0           0.00           0.00 0.0000 0.0000
log_k_J9Z38             0.0           0.00           0.00 0.0000 0.0000
log_k_JSE76             0.0           0.00           0.00 0.0000 0.0000
f_cyan_ilr_1            0.0           0.00           0.00 0.0000 0.0000
f_cyan_ilr_2           10.1           0.00           0.00 0.0000 0.0000
f_JCZ38_qlogis          0.0          13.99           0.00 0.0000 0.0000
f_JSE76_qlogis          0.0           0.00          14.15 0.0000 0.0000
log_k1                  0.0           0.00           0.00 0.8452 0.0000
log_k2                  0.0           0.00           0.00 0.0000 0.5968
g_qlogis                0.0           0.00           0.00 0.0000 0.0000
               g_qlogis
cyan_0            0.000
log_k_JCZ38       0.000
log_k_J9Z38       0.000
log_k_JSE76       0.000
f_cyan_ilr_1      0.000
f_cyan_ilr_2      0.000
f_JCZ38_qlogis    0.000
f_JSE76_qlogis    0.000
log_k1            0.000
log_k2            0.000
g_qlogis          1.691

Starting values for error model parameters:
a.1 b.1 
  1   1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2234 2226  -1095

Optimised parameters:
                       est.      lower      upper
cyan_0            101.10667  9.903e+01  103.18265
log_k_JCZ38        -2.49437 -3.297e+00   -1.69221
log_k_J9Z38        -5.08171 -5.875e+00   -4.28846
log_k_JSE76        -3.20072 -4.180e+00   -2.22163
f_cyan_ilr_1        0.71059  3.639e-01    1.05727
f_cyan_ilr_2        1.15398  2.981e-01    2.00984
f_JCZ38_qlogis      3.18027  1.056e+00    5.30452
f_JSE76_qlogis      5.61578 -2.505e+01   36.28077
log_k1             -2.38875 -2.517e+00   -2.26045
log_k2             -4.67246 -4.928e+00   -4.41715
g_qlogis           -0.28231 -1.135e+00    0.57058
a.1                 2.08190  1.856e+00    2.30785
b.1                 0.06114  5.015e-02    0.07214
SD.log_k_JCZ38      0.84622  2.637e-01    1.42873
SD.log_k_J9Z38      0.84564  2.566e-01    1.43464
SD.log_k_JSE76      1.04385  3.242e-01    1.76351
SD.f_cyan_ilr_1     0.38568  1.362e-01    0.63514
SD.f_cyan_ilr_2     0.68046  7.166e-02    1.28925
SD.f_JCZ38_qlogis   1.25244 -4.213e-02    2.54700
SD.f_JSE76_qlogis   0.28202 -1.515e+03 1515.87968
SD.log_k2           0.25749  7.655e-02    0.43843
SD.g_qlogis         0.94535  3.490e-01    1.54174

Correlation: 
               cyan_0  l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76
log_k_JCZ38    -0.0086                                                        
log_k_J9Z38    -0.0363 -0.0007                                                
log_k_JSE76     0.0015  0.1210 -0.0017                                        
f_cyan_ilr_1   -0.0048  0.0095 -0.0572  0.0030                                
f_cyan_ilr_2   -0.4788  0.0328  0.1143  0.0027 -0.0316                        
f_JCZ38_qlogis  0.0736 -0.0664 -0.0137  0.0145 -0.0444 -0.2175                
f_JSE76_qlogis -0.0137  0.0971  0.0035  0.0009  0.0293  0.1333 -0.6767        
log_k1          0.2345 -0.0350 -0.0099 -0.0113 -0.0126 -0.1652  0.1756 -0.2161
log_k2          0.0440 -0.0133  0.0199 -0.0040 -0.0097 -0.0119  0.0604 -0.1306
g_qlogis        0.0438  0.0078 -0.0123  0.0029  0.0046 -0.0363 -0.0318  0.0736
               log_k1  log_k2 
log_k_JCZ38                   
log_k_J9Z38                   
log_k_JSE76                   
f_cyan_ilr_1                  
f_cyan_ilr_2                  
f_JCZ38_qlogis                
f_JSE76_qlogis                
log_k1                        
log_k2          0.3198        
g_qlogis       -0.1666 -0.0954

Random effects:
                    est.      lower     upper
SD.log_k_JCZ38    0.8462  2.637e-01    1.4287
SD.log_k_J9Z38    0.8456  2.566e-01    1.4346
SD.log_k_JSE76    1.0439  3.242e-01    1.7635
SD.f_cyan_ilr_1   0.3857  1.362e-01    0.6351
SD.f_cyan_ilr_2   0.6805  7.166e-02    1.2893
SD.f_JCZ38_qlogis 1.2524 -4.213e-02    2.5470
SD.f_JSE76_qlogis 0.2820 -1.515e+03 1515.8797
SD.log_k2         0.2575  7.655e-02    0.4384
SD.g_qlogis       0.9453  3.490e-01    1.5417

Variance model:
       est.   lower   upper
a.1 2.08190 1.85595 2.30785
b.1 0.06114 0.05015 0.07214

Backtransformed parameters:
                      est.     lower     upper
cyan_0           1.011e+02 9.903e+01 103.18265
k_JCZ38          8.255e-02 3.701e-02   0.18411
k_J9Z38          6.209e-03 2.809e-03   0.01373
k_JSE76          4.073e-02 1.530e-02   0.10843
f_cyan_to_JCZ38  6.608e-01        NA        NA
f_cyan_to_J9Z38  2.419e-01        NA        NA
f_JCZ38_to_JSE76 9.601e-01 7.419e-01   0.99506
f_JSE76_to_JCZ38 9.964e-01 1.322e-11   1.00000
k1               9.174e-02 8.070e-02   0.10430
k2               9.349e-03 7.243e-03   0.01207
g                4.299e-01 2.432e-01   0.63890

Resulting formation fractions:
                  ff
cyan_JCZ38  0.660808
cyan_J9Z38  0.241904
cyan_sink   0.097288
JCZ38_JSE76 0.960085
JCZ38_sink  0.039915
JSE76_JCZ38 0.996373
JSE76_sink  0.003627

Estimated disappearance times:
         DT50   DT90 DT50back DT50_k1 DT50_k2
cyan   24.359 186.18    56.05   7.555   74.14
JCZ38   8.397  27.89       NA      NA      NA
J9Z38 111.631 370.83       NA      NA      NA
JSE76  17.017  56.53       NA      NA      NA

</code></pre>
<p></p>
<caption>
Hierarchical SFORB path 2 fit with constant variance
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:38:37 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
           cyan_free + k_cyan_bound_free * cyan_bound
d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
           cyan_bound
d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
           * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
           * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1279.102 s
Using 300, 100 iterations and 10 chains

Variance model: Constant variance 

Starting values for degradation parameters:
          cyan_free_0       log_k_cyan_free log_k_cyan_free_bound 
             102.4394               -2.7673               -2.8942 
log_k_cyan_bound_free           log_k_JCZ38           log_k_J9Z38 
              -3.6201               -2.3107               -5.3123 
          log_k_JSE76          f_cyan_ilr_1          f_cyan_ilr_2 
              -3.7120                0.6754                1.1448 
       f_JCZ38_qlogis        f_JSE76_qlogis 
              13.2672               13.3538 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
                      cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
cyan_free_0                 4.589          0.0000                  0.00
log_k_cyan_free             0.000          0.4849                  0.00
log_k_cyan_free_bound       0.000          0.0000                  1.62
log_k_cyan_bound_free       0.000          0.0000                  0.00
log_k_JCZ38                 0.000          0.0000                  0.00
log_k_J9Z38                 0.000          0.0000                  0.00
log_k_JSE76                 0.000          0.0000                  0.00
f_cyan_ilr_1                0.000          0.0000                  0.00
f_cyan_ilr_2                0.000          0.0000                  0.00
f_JCZ38_qlogis              0.000          0.0000                  0.00
f_JSE76_qlogis              0.000          0.0000                  0.00
                      log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
cyan_free_0                           0.000      0.0000       0.000         0.0
log_k_cyan_free                       0.000      0.0000       0.000         0.0
log_k_cyan_free_bound                 0.000      0.0000       0.000         0.0
log_k_cyan_bound_free                 1.197      0.0000       0.000         0.0
log_k_JCZ38                           0.000      0.7966       0.000         0.0
log_k_J9Z38                           0.000      0.0000       1.561         0.0
log_k_JSE76                           0.000      0.0000       0.000         0.8
f_cyan_ilr_1                          0.000      0.0000       0.000         0.0
f_cyan_ilr_2                          0.000      0.0000       0.000         0.0
f_JCZ38_qlogis                        0.000      0.0000       0.000         0.0
f_JSE76_qlogis                        0.000      0.0000       0.000         0.0
                      f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis
cyan_free_0                 0.0000        0.000           0.00           0.00
log_k_cyan_free             0.0000        0.000           0.00           0.00
log_k_cyan_free_bound       0.0000        0.000           0.00           0.00
log_k_cyan_bound_free       0.0000        0.000           0.00           0.00
log_k_JCZ38                 0.0000        0.000           0.00           0.00
log_k_J9Z38                 0.0000        0.000           0.00           0.00
log_k_JSE76                 0.0000        0.000           0.00           0.00
f_cyan_ilr_1                0.6349        0.000           0.00           0.00
f_cyan_ilr_2                0.0000        1.797           0.00           0.00
f_JCZ38_qlogis              0.0000        0.000          13.84           0.00
f_JSE76_qlogis              0.0000        0.000           0.00          14.66

Starting values for error model parameters:
a.1 
  1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2284 2275  -1120

Optimised parameters:
                             est.      lower      upper
cyan_free_0              102.7730  1.015e+02  1.041e+02
log_k_cyan_free           -2.8530 -3.167e+00 -2.539e+00
log_k_cyan_free_bound     -2.7326 -3.543e+00 -1.922e+00
log_k_cyan_bound_free     -3.5582 -4.126e+00 -2.990e+00
log_k_JCZ38               -2.3810 -2.921e+00 -1.841e+00
log_k_J9Z38               -5.2301 -5.963e+00 -4.497e+00
log_k_JSE76               -3.0286 -4.286e+00 -1.771e+00
f_cyan_ilr_1               0.7081  3.733e-01  1.043e+00
f_cyan_ilr_2               0.5847  7.846e-03  1.162e+00
f_JCZ38_qlogis             9.5676 -1.323e+03  1.342e+03
f_JSE76_qlogis             3.7042  7.254e-02  7.336e+00
a.1                        2.7222  2.532e+00  2.913e+00
SD.log_k_cyan_free         0.3338  1.086e-01  5.589e-01
SD.log_k_cyan_free_bound   0.8888  3.023e-01  1.475e+00
SD.log_k_cyan_bound_free   0.6220  2.063e-01  1.038e+00
SD.log_k_JCZ38             0.5221  1.334e-01  9.108e-01
SD.log_k_J9Z38             0.7104  1.371e-01  1.284e+00
SD.log_k_JSE76             1.3837  4.753e-01  2.292e+00
SD.f_cyan_ilr_1            0.3620  1.248e-01  5.992e-01
SD.f_cyan_ilr_2            0.4259  8.145e-02  7.704e-01
SD.f_JCZ38_qlogis          3.5332 -1.037e+05  1.037e+05
SD.f_JSE76_qlogis          1.6990 -2.771e-01  3.675e+00

Correlation: 
                      cyn_f_0 lg_k_c_ lg_k_cyn_f_ lg_k_cyn_b_ l__JCZ3 l__J9Z3
log_k_cyan_free        0.2126                                                
log_k_cyan_free_bound  0.0894  0.0871                                        
log_k_cyan_bound_free  0.0033  0.0410  0.0583                                
log_k_JCZ38           -0.0708 -0.0280 -0.0147      0.0019                    
log_k_J9Z38           -0.0535 -0.0138  0.0012      0.0148      0.0085        
log_k_JSE76           -0.0066 -0.0030 -0.0021     -0.0005      0.1090  0.0010
f_cyan_ilr_1          -0.0364 -0.0157 -0.0095     -0.0015      0.0458 -0.0960
f_cyan_ilr_2          -0.3814 -0.1104 -0.0423      0.0146      0.1540  0.1526
f_JCZ38_qlogis         0.2507  0.0969  0.0482     -0.0097     -0.2282 -0.0363
f_JSE76_qlogis        -0.1648 -0.0710 -0.0443     -0.0087      0.2002  0.0226
                      l__JSE7 f_cy__1 f_cy__2 f_JCZ38
log_k_cyan_free                                      
log_k_cyan_free_bound                                
log_k_cyan_bound_free                                
log_k_JCZ38                                          
log_k_J9Z38                                          
log_k_JSE76                                          
f_cyan_ilr_1           0.0001                        
f_cyan_ilr_2           0.0031  0.0586                
f_JCZ38_qlogis         0.0023 -0.1867 -0.6255        
f_JSE76_qlogis         0.0082  0.1356  0.4519 -0.7951

Random effects:
                           est.      lower     upper
SD.log_k_cyan_free       0.3338  1.086e-01 5.589e-01
SD.log_k_cyan_free_bound 0.8888  3.023e-01 1.475e+00
SD.log_k_cyan_bound_free 0.6220  2.063e-01 1.038e+00
SD.log_k_JCZ38           0.5221  1.334e-01 9.108e-01
SD.log_k_J9Z38           0.7104  1.371e-01 1.284e+00
SD.log_k_JSE76           1.3837  4.753e-01 2.292e+00
SD.f_cyan_ilr_1          0.3620  1.248e-01 5.992e-01
SD.f_cyan_ilr_2          0.4259  8.145e-02 7.704e-01
SD.f_JCZ38_qlogis        3.5332 -1.037e+05 1.037e+05
SD.f_JSE76_qlogis        1.6990 -2.771e-01 3.675e+00

Variance model:
     est. lower upper
a.1 2.722 2.532 2.913

Backtransformed parameters:
                          est.     lower     upper
cyan_free_0          1.028e+02 1.015e+02 104.06475
k_cyan_free          5.767e-02 4.213e-02   0.07894
k_cyan_free_bound    6.505e-02 2.892e-02   0.14633
k_cyan_bound_free    2.849e-02 1.614e-02   0.05028
k_JCZ38              9.246e-02 5.390e-02   0.15859
k_J9Z38              5.353e-03 2.572e-03   0.01114
k_JSE76              4.838e-02 1.376e-02   0.17009
f_cyan_free_to_JCZ38 6.011e-01 5.028e-01   0.83792
f_cyan_free_to_J9Z38 2.208e-01 5.028e-01   0.83792
f_JCZ38_to_JSE76     9.999e-01 0.000e+00   1.00000
f_JSE76_to_JCZ38     9.760e-01 5.181e-01   0.99935

Estimated Eigenvalues of SFORB model(s):
cyan_b1 cyan_b2  cyan_g 
0.13942 0.01178 0.35948 

Resulting formation fractions:
                       ff
cyan_free_JCZ38 6.011e-01
cyan_free_J9Z38 2.208e-01
cyan_free_sink  1.780e-01
cyan_free       1.000e+00
JCZ38_JSE76     9.999e-01
JCZ38_sink      6.996e-05
JSE76_JCZ38     9.760e-01
JSE76_sink      2.403e-02

Estimated disappearance times:
         DT50   DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
cyan   23.390 157.60    47.44        4.971        58.82
JCZ38   7.497  24.90       NA           NA           NA
J9Z38 129.482 430.13       NA           NA           NA
JSE76  14.326  47.59       NA           NA           NA

</code></pre>
<p></p>
<caption>
Hierarchical SFORB path 2 fit with two-component error
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 10:46:02 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
           cyan_free + k_cyan_bound_free * cyan_bound
d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
           cyan_bound
d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
           * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
           * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1723.343 s
Using 300, 100 iterations and 10 chains

Variance model: Two-component variance function 

Starting values for degradation parameters:
          cyan_free_0       log_k_cyan_free log_k_cyan_free_bound 
              101.751                -2.837                -3.016 
log_k_cyan_bound_free           log_k_JCZ38           log_k_J9Z38 
               -3.660                -2.299                -5.313 
          log_k_JSE76          f_cyan_ilr_1          f_cyan_ilr_2 
               -3.699                 0.672                 5.873 
       f_JCZ38_qlogis        f_JSE76_qlogis 
               13.216                13.338 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
                      cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
cyan_free_0                 5.629           0.000                 0.000
log_k_cyan_free             0.000           0.446                 0.000
log_k_cyan_free_bound       0.000           0.000                 1.449
log_k_cyan_bound_free       0.000           0.000                 0.000
log_k_JCZ38                 0.000           0.000                 0.000
log_k_J9Z38                 0.000           0.000                 0.000
log_k_JSE76                 0.000           0.000                 0.000
f_cyan_ilr_1                0.000           0.000                 0.000
f_cyan_ilr_2                0.000           0.000                 0.000
f_JCZ38_qlogis              0.000           0.000                 0.000
f_JSE76_qlogis              0.000           0.000                 0.000
                      log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
cyan_free_0                           0.000      0.0000       0.000      0.0000
log_k_cyan_free                       0.000      0.0000       0.000      0.0000
log_k_cyan_free_bound                 0.000      0.0000       0.000      0.0000
log_k_cyan_bound_free                 1.213      0.0000       0.000      0.0000
log_k_JCZ38                           0.000      0.7801       0.000      0.0000
log_k_J9Z38                           0.000      0.0000       1.575      0.0000
log_k_JSE76                           0.000      0.0000       0.000      0.8078
f_cyan_ilr_1                          0.000      0.0000       0.000      0.0000
f_cyan_ilr_2                          0.000      0.0000       0.000      0.0000
f_JCZ38_qlogis                        0.000      0.0000       0.000      0.0000
f_JSE76_qlogis                        0.000      0.0000       0.000      0.0000
                      f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis
cyan_free_0                 0.0000         0.00           0.00           0.00
log_k_cyan_free             0.0000         0.00           0.00           0.00
log_k_cyan_free_bound       0.0000         0.00           0.00           0.00
log_k_cyan_bound_free       0.0000         0.00           0.00           0.00
log_k_JCZ38                 0.0000         0.00           0.00           0.00
log_k_J9Z38                 0.0000         0.00           0.00           0.00
log_k_JSE76                 0.0000         0.00           0.00           0.00
f_cyan_ilr_1                0.6519         0.00           0.00           0.00
f_cyan_ilr_2                0.0000        10.78           0.00           0.00
f_JCZ38_qlogis              0.0000         0.00          13.96           0.00
f_JSE76_qlogis              0.0000         0.00           0.00          14.69

Starting values for error model parameters:
a.1 b.1 
  1   1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2240 2232  -1098

Optimised parameters:
                              est.     lower    upper
cyan_free_0              101.10205  98.99221 103.2119
log_k_cyan_free           -3.16929  -3.61395  -2.7246
log_k_cyan_free_bound     -3.38259  -3.63022  -3.1350
log_k_cyan_bound_free     -3.81075  -4.13888  -3.4826
log_k_JCZ38               -2.42057  -3.00756  -1.8336
log_k_J9Z38               -5.07501  -5.85138  -4.2986
log_k_JSE76               -3.12442  -4.21277  -2.0361
f_cyan_ilr_1               0.70577   0.35788   1.0537
f_cyan_ilr_2               1.14824   0.15810   2.1384
f_JCZ38_qlogis             3.52245   0.43257   6.6123
f_JSE76_qlogis             5.65140 -21.22295  32.5257
a.1                        2.07062   1.84329   2.2980
b.1                        0.06227   0.05124   0.0733
SD.log_k_cyan_free         0.49468   0.18566   0.8037
SD.log_k_cyan_bound_free   0.28972   0.07188   0.5076
SD.log_k_JCZ38             0.58852   0.16800   1.0090
SD.log_k_J9Z38             0.82500   0.24730   1.4027
SD.log_k_JSE76             1.19201   0.40313   1.9809
SD.f_cyan_ilr_1            0.38534   0.13640   0.6343
SD.f_cyan_ilr_2            0.72463   0.10076   1.3485
SD.f_JCZ38_qlogis          1.38223  -0.20997   2.9744
SD.f_JSE76_qlogis          2.07989 -72.53027  76.6901

Correlation: 
                      cyn_f_0 lg_k_c_ lg_k_cyn_f_ lg_k_cyn_b_ l__JCZ3 l__J9Z3
log_k_cyan_free        0.1117                                                
log_k_cyan_free_bound  0.1763  0.1828                                        
log_k_cyan_bound_free  0.0120  0.0593  0.5030                                
log_k_JCZ38           -0.0459 -0.0230 -0.0931     -0.0337                    
log_k_J9Z38           -0.0381 -0.0123 -0.0139      0.0237      0.0063        
log_k_JSE76           -0.0044 -0.0038 -0.0175     -0.0072      0.1120  0.0003
f_cyan_ilr_1          -0.0199 -0.0087 -0.0407     -0.0233      0.0268 -0.0552
f_cyan_ilr_2          -0.4806 -0.1015 -0.2291     -0.0269      0.1156  0.1113
f_JCZ38_qlogis         0.1805  0.0825  0.3085      0.0963     -0.1674 -0.0314
f_JSE76_qlogis        -0.1586 -0.0810 -0.3560     -0.1563      0.2025  0.0278
                      l__JSE7 f_cy__1 f_cy__2 f_JCZ38
log_k_cyan_free                                      
log_k_cyan_free_bound                                
log_k_cyan_bound_free                                
log_k_JCZ38                                          
log_k_J9Z38                                          
log_k_JSE76                                          
f_cyan_ilr_1           0.0024                        
f_cyan_ilr_2           0.0087  0.0172                
f_JCZ38_qlogis        -0.0016 -0.1047 -0.4656        
f_JSE76_qlogis         0.0119  0.1034  0.4584 -0.8137

Random effects:
                           est.     lower   upper
SD.log_k_cyan_free       0.4947   0.18566  0.8037
SD.log_k_cyan_bound_free 0.2897   0.07188  0.5076
SD.log_k_JCZ38           0.5885   0.16800  1.0090
SD.log_k_J9Z38           0.8250   0.24730  1.4027
SD.log_k_JSE76           1.1920   0.40313  1.9809
SD.f_cyan_ilr_1          0.3853   0.13640  0.6343
SD.f_cyan_ilr_2          0.7246   0.10076  1.3485
SD.f_JCZ38_qlogis        1.3822  -0.20997  2.9744
SD.f_JSE76_qlogis        2.0799 -72.53027 76.6901

Variance model:
       est.   lower  upper
a.1 2.07062 1.84329 2.2980
b.1 0.06227 0.05124 0.0733

Backtransformed parameters:
                          est.     lower     upper
cyan_free_0          1.011e+02 9.899e+01 103.21190
k_cyan_free          4.203e-02 2.695e-02   0.06557
k_cyan_free_bound    3.396e-02 2.651e-02   0.04350
k_cyan_bound_free    2.213e-02 1.594e-02   0.03073
k_JCZ38              8.887e-02 4.941e-02   0.15984
k_J9Z38              6.251e-03 2.876e-03   0.01359
k_JSE76              4.396e-02 1.481e-02   0.13054
f_cyan_free_to_JCZ38 6.590e-01 5.557e-01   0.95365
f_cyan_free_to_J9Z38 2.429e-01 5.557e-01   0.95365
f_JCZ38_to_JSE76     9.713e-01 6.065e-01   0.99866
f_JSE76_to_JCZ38     9.965e-01 6.067e-10   1.00000

Estimated Eigenvalues of SFORB model(s):
cyan_b1 cyan_b2  cyan_g 
0.08749 0.01063 0.40855 

Resulting formation fractions:
                     ff
cyan_free_JCZ38 0.65905
cyan_free_J9Z38 0.24291
cyan_free_sink  0.09805
cyan_free       1.00000
JCZ38_JSE76     0.97132
JCZ38_sink      0.02868
JSE76_JCZ38     0.99650
JSE76_sink      0.00350

Estimated disappearance times:
        DT50   DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
cyan   24.91 167.16    50.32        7.922        65.19
JCZ38   7.80  25.91       NA           NA           NA
J9Z38 110.89 368.36       NA           NA           NA
JSE76  15.77  52.38       NA           NA           NA

</code></pre>
<p></p>
</div>
<div class="section level4">
<h4 id="pathway-2-refined-fits">Pathway 2, refined fits<a class="anchor" aria-label="anchor" href="#pathway-2-refined-fits"></a>
</h4>
<caption>
Hierarchical FOMC path 2 fit with reduced random effects, two-component
error
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 11:18:41 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
           cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
           cyan - k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1957.271 s
Using 300, 100 iterations and 10 chains

Variance model: Two-component variance function 

Starting values for degradation parameters:
        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1 
      101.9028        -1.9055        -5.0249        -2.5646         0.6807 
  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis      log_alpha       log_beta 
        4.8883        16.0676         9.3923        -0.1346         3.0364 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
cyan_0          6.321       0.000       0.000       0.000       0.0000
log_k_JCZ38     0.000       1.392       0.000       0.000       0.0000
log_k_J9Z38     0.000       0.000       1.561       0.000       0.0000
log_k_JSE76     0.000       0.000       0.000       3.614       0.0000
f_cyan_ilr_1    0.000       0.000       0.000       0.000       0.6339
f_cyan_ilr_2    0.000       0.000       0.000       0.000       0.0000
f_JCZ38_qlogis  0.000       0.000       0.000       0.000       0.0000
f_JSE76_qlogis  0.000       0.000       0.000       0.000       0.0000
log_alpha       0.000       0.000       0.000       0.000       0.0000
log_beta        0.000       0.000       0.000       0.000       0.0000
               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
cyan_0                 0.00           0.00           0.00    0.0000   0.0000
log_k_JCZ38            0.00           0.00           0.00    0.0000   0.0000
log_k_J9Z38            0.00           0.00           0.00    0.0000   0.0000
log_k_JSE76            0.00           0.00           0.00    0.0000   0.0000
f_cyan_ilr_1           0.00           0.00           0.00    0.0000   0.0000
f_cyan_ilr_2          10.41           0.00           0.00    0.0000   0.0000
f_JCZ38_qlogis         0.00          12.24           0.00    0.0000   0.0000
f_JSE76_qlogis         0.00           0.00          15.13    0.0000   0.0000
log_alpha              0.00           0.00           0.00    0.3701   0.0000
log_beta               0.00           0.00           0.00    0.0000   0.5662

Starting values for error model parameters:
a.1 b.1 
  1   1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2251 2244  -1106

Optimised parameters:
                      est.   lower   upper
cyan_0           101.05768      NA      NA
log_k_JCZ38       -2.73252      NA      NA
log_k_J9Z38       -5.07399      NA      NA
log_k_JSE76       -3.52863      NA      NA
f_cyan_ilr_1       0.72176      NA      NA
f_cyan_ilr_2       1.34610      NA      NA
f_JCZ38_qlogis     2.08337      NA      NA
f_JSE76_qlogis  1590.31880      NA      NA
log_alpha         -0.09336      NA      NA
log_beta           3.10191      NA      NA
a.1                2.08557 1.85439 2.31675
b.1                0.06998 0.05800 0.08197
SD.log_k_JCZ38     1.20053 0.43329 1.96777
SD.log_k_J9Z38     0.85854 0.26708 1.45000
SD.log_k_JSE76     0.62528 0.16061 1.08995
SD.f_cyan_ilr_1    0.35190 0.12340 0.58039
SD.f_cyan_ilr_2    0.85385 0.15391 1.55378
SD.log_alpha       0.28971 0.08718 0.49225
SD.log_beta        0.31614 0.05938 0.57290

Correlation is not available

Random effects:
                  est.   lower  upper
SD.log_k_JCZ38  1.2005 0.43329 1.9678
SD.log_k_J9Z38  0.8585 0.26708 1.4500
SD.log_k_JSE76  0.6253 0.16061 1.0900
SD.f_cyan_ilr_1 0.3519 0.12340 0.5804
SD.f_cyan_ilr_2 0.8538 0.15391 1.5538
SD.log_alpha    0.2897 0.08718 0.4923
SD.log_beta     0.3161 0.05938 0.5729

Variance model:
       est. lower   upper
a.1 2.08557 1.854 2.31675
b.1 0.06998 0.058 0.08197

Backtransformed parameters:
                      est. lower upper
cyan_0           1.011e+02    NA    NA
k_JCZ38          6.506e-02    NA    NA
k_J9Z38          6.257e-03    NA    NA
k_JSE76          2.935e-02    NA    NA
f_cyan_to_JCZ38  6.776e-01    NA    NA
f_cyan_to_J9Z38  2.442e-01    NA    NA
f_JCZ38_to_JSE76 8.893e-01    NA    NA
f_JSE76_to_JCZ38 1.000e+00    NA    NA
alpha            9.109e-01    NA    NA
beta             2.224e+01    NA    NA

Resulting formation fractions:
                 ff
cyan_JCZ38  0.67761
cyan_J9Z38  0.24417
cyan_sink   0.07822
JCZ38_JSE76 0.88928
JCZ38_sink  0.11072
JSE76_JCZ38 1.00000
JSE76_sink  0.00000

Estimated disappearance times:
        DT50   DT90 DT50back
cyan   25.36 256.37    77.18
JCZ38  10.65  35.39       NA
J9Z38 110.77 367.98       NA
JSE76  23.62  78.47       NA

</code></pre>
<p></p>
<caption>
Hierarchical DFOP path 2 fit with reduced random effects, constant
variance
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 11:16:32 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
           * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
           exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +
           f_JSE76_to_JCZ38 * k_JSE76 * JSE76
d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
           exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1828.403 s
Using 300, 100 iterations and 10 chains

Variance model: Constant variance 

Starting values for degradation parameters:
        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1 
      102.4358        -2.3107        -5.3123        -3.7120         0.6753 
  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis         log_k1         log_k2 
        1.1462        12.4095        12.3630        -1.9317        -4.4557 
      g_qlogis 
       -0.5648 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
cyan_0          4.594      0.0000       0.000         0.0       0.0000
log_k_JCZ38     0.000      0.7966       0.000         0.0       0.0000
log_k_J9Z38     0.000      0.0000       1.561         0.0       0.0000
log_k_JSE76     0.000      0.0000       0.000         0.8       0.0000
f_cyan_ilr_1    0.000      0.0000       0.000         0.0       0.6349
f_cyan_ilr_2    0.000      0.0000       0.000         0.0       0.0000
f_JCZ38_qlogis  0.000      0.0000       0.000         0.0       0.0000
f_JSE76_qlogis  0.000      0.0000       0.000         0.0       0.0000
log_k1          0.000      0.0000       0.000         0.0       0.0000
log_k2          0.000      0.0000       0.000         0.0       0.0000
g_qlogis        0.000      0.0000       0.000         0.0       0.0000
               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
cyan_0                0.000           0.00            0.0  0.000 0.0000
log_k_JCZ38           0.000           0.00            0.0  0.000 0.0000
log_k_J9Z38           0.000           0.00            0.0  0.000 0.0000
log_k_JSE76           0.000           0.00            0.0  0.000 0.0000
f_cyan_ilr_1          0.000           0.00            0.0  0.000 0.0000
f_cyan_ilr_2          1.797           0.00            0.0  0.000 0.0000
f_JCZ38_qlogis        0.000          13.85            0.0  0.000 0.0000
f_JSE76_qlogis        0.000           0.00           14.1  0.000 0.0000
log_k1                0.000           0.00            0.0  1.106 0.0000
log_k2                0.000           0.00            0.0  0.000 0.6141
g_qlogis              0.000           0.00            0.0  0.000 0.0000
               g_qlogis
cyan_0            0.000
log_k_JCZ38       0.000
log_k_J9Z38       0.000
log_k_JSE76       0.000
f_cyan_ilr_1      0.000
f_cyan_ilr_2      0.000
f_JCZ38_qlogis    0.000
f_JSE76_qlogis    0.000
log_k1            0.000
log_k2            0.000
g_qlogis          1.595

Starting values for error model parameters:
a.1 
  1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2282 2274  -1121

Optimised parameters:
                     est.   lower  upper
cyan_0           102.5254      NA     NA
log_k_JCZ38       -2.9358      NA     NA
log_k_J9Z38       -5.1424      NA     NA
log_k_JSE76       -3.6458      NA     NA
f_cyan_ilr_1       0.6957      NA     NA
f_cyan_ilr_2       0.6635      NA     NA
f_JCZ38_qlogis  4984.8163      NA     NA
f_JSE76_qlogis     1.9415      NA     NA
log_k1            -1.9456      NA     NA
log_k2            -4.4705      NA     NA
g_qlogis          -0.5117      NA     NA
a.1                2.7455 2.55392 2.9370
SD.log_k_JCZ38     1.3163 0.47635 2.1563
SD.log_k_J9Z38     0.7162 0.16133 1.2711
SD.log_k_JSE76     0.6457 0.15249 1.1390
SD.f_cyan_ilr_1    0.3424 0.11714 0.5677
SD.f_cyan_ilr_2    0.4524 0.09709 0.8077
SD.log_k1          0.7353 0.25445 1.2161
SD.log_k2          0.5137 0.18206 0.8453
SD.g_qlogis        0.9857 0.35651 1.6148

Correlation is not available

Random effects:
                  est.   lower  upper
SD.log_k_JCZ38  1.3163 0.47635 2.1563
SD.log_k_J9Z38  0.7162 0.16133 1.2711
SD.log_k_JSE76  0.6457 0.15249 1.1390
SD.f_cyan_ilr_1 0.3424 0.11714 0.5677
SD.f_cyan_ilr_2 0.4524 0.09709 0.8077
SD.log_k1       0.7353 0.25445 1.2161
SD.log_k2       0.5137 0.18206 0.8453
SD.g_qlogis     0.9857 0.35651 1.6148

Variance model:
     est. lower upper
a.1 2.745 2.554 2.937

Backtransformed parameters:
                      est. lower upper
cyan_0           1.025e+02    NA    NA
k_JCZ38          5.309e-02    NA    NA
k_J9Z38          5.844e-03    NA    NA
k_JSE76          2.610e-02    NA    NA
f_cyan_to_JCZ38  6.079e-01    NA    NA
f_cyan_to_J9Z38  2.272e-01    NA    NA
f_JCZ38_to_JSE76 1.000e+00    NA    NA
f_JSE76_to_JCZ38 8.745e-01    NA    NA
k1               1.429e-01    NA    NA
k2               1.144e-02    NA    NA
g                3.748e-01    NA    NA

Resulting formation fractions:
                ff
cyan_JCZ38  0.6079
cyan_J9Z38  0.2272
cyan_sink   0.1649
JCZ38_JSE76 1.0000
JCZ38_sink  0.0000
JSE76_JCZ38 0.8745
JSE76_sink  0.1255

Estimated disappearance times:
        DT50   DT90 DT50back DT50_k1 DT50_k2
cyan   22.29 160.20    48.22    4.85   60.58
JCZ38  13.06  43.37       NA      NA      NA
J9Z38 118.61 394.02       NA      NA      NA
JSE76  26.56  88.22       NA      NA      NA

</code></pre>
<p></p>
<caption>
Hierarchical DFOP path 2 fit with reduced random effects, two-component
error
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 11:22:28 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
           * cyan
d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
           exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +
           f_JSE76_to_JCZ38 * k_JSE76 * JSE76
d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
           g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
           exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 2183.989 s
Using 300, 100 iterations and 10 chains

Variance model: Two-component variance function 

Starting values for degradation parameters:
        cyan_0    log_k_JCZ38    log_k_J9Z38    log_k_JSE76   f_cyan_ilr_1 
      101.7523        -1.5948        -5.0119        -2.2723         0.6719 
  f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis         log_k1         log_k2 
        5.1681        12.8238        12.4130        -2.0057        -4.5526 
      g_qlogis 
       -0.5805 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
               cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
cyan_0          5.627       0.000       0.000       0.000       0.0000
log_k_JCZ38     0.000       2.327       0.000       0.000       0.0000
log_k_J9Z38     0.000       0.000       1.664       0.000       0.0000
log_k_JSE76     0.000       0.000       0.000       4.566       0.0000
f_cyan_ilr_1    0.000       0.000       0.000       0.000       0.6519
f_cyan_ilr_2    0.000       0.000       0.000       0.000       0.0000
f_JCZ38_qlogis  0.000       0.000       0.000       0.000       0.0000
f_JSE76_qlogis  0.000       0.000       0.000       0.000       0.0000
log_k1          0.000       0.000       0.000       0.000       0.0000
log_k2          0.000       0.000       0.000       0.000       0.0000
g_qlogis        0.000       0.000       0.000       0.000       0.0000
               f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
cyan_0                  0.0           0.00           0.00 0.0000 0.0000
log_k_JCZ38             0.0           0.00           0.00 0.0000 0.0000
log_k_J9Z38             0.0           0.00           0.00 0.0000 0.0000
log_k_JSE76             0.0           0.00           0.00 0.0000 0.0000
f_cyan_ilr_1            0.0           0.00           0.00 0.0000 0.0000
f_cyan_ilr_2           10.1           0.00           0.00 0.0000 0.0000
f_JCZ38_qlogis          0.0          13.99           0.00 0.0000 0.0000
f_JSE76_qlogis          0.0           0.00          14.15 0.0000 0.0000
log_k1                  0.0           0.00           0.00 0.8452 0.0000
log_k2                  0.0           0.00           0.00 0.0000 0.5968
g_qlogis                0.0           0.00           0.00 0.0000 0.0000
               g_qlogis
cyan_0            0.000
log_k_JCZ38       0.000
log_k_J9Z38       0.000
log_k_JSE76       0.000
f_cyan_ilr_1      0.000
f_cyan_ilr_2      0.000
f_JCZ38_qlogis    0.000
f_JSE76_qlogis    0.000
log_k1            0.000
log_k2            0.000
g_qlogis          1.691

Starting values for error model parameters:
a.1 b.1 
  1   1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2232 2224  -1096

Optimised parameters:
                     est.   lower   upper
cyan_0          101.20051      NA      NA
log_k_JCZ38      -2.93542      NA      NA
log_k_J9Z38      -5.03151      NA      NA
log_k_JSE76      -3.67679      NA      NA
f_cyan_ilr_1      0.67290      NA      NA
f_cyan_ilr_2      0.99787      NA      NA
f_JCZ38_qlogis  348.32484      NA      NA
f_JSE76_qlogis    1.87846      NA      NA
log_k1           -2.32738      NA      NA
log_k2           -4.61295      NA      NA
g_qlogis         -0.38342      NA      NA
a.1               2.06184 1.83746 2.28622
b.1               0.06329 0.05211 0.07447
SD.log_k_JCZ38    1.29042 0.47468 2.10617
SD.log_k_J9Z38    0.84235 0.25903 1.42566
SD.log_k_JSE76    0.56930 0.13934 0.99926
SD.f_cyan_ilr_1   0.35183 0.12298 0.58068
SD.f_cyan_ilr_2   0.77269 0.17908 1.36631
SD.log_k2         0.28549 0.09210 0.47888
SD.g_qlogis       0.93830 0.34568 1.53093

Correlation is not available

Random effects:
                  est.  lower  upper
SD.log_k_JCZ38  1.2904 0.4747 2.1062
SD.log_k_J9Z38  0.8423 0.2590 1.4257
SD.log_k_JSE76  0.5693 0.1393 0.9993
SD.f_cyan_ilr_1 0.3518 0.1230 0.5807
SD.f_cyan_ilr_2 0.7727 0.1791 1.3663
SD.log_k2       0.2855 0.0921 0.4789
SD.g_qlogis     0.9383 0.3457 1.5309

Variance model:
       est.   lower   upper
a.1 2.06184 1.83746 2.28622
b.1 0.06329 0.05211 0.07447

Backtransformed parameters:
                      est. lower upper
cyan_0           1.012e+02    NA    NA
k_JCZ38          5.311e-02    NA    NA
k_J9Z38          6.529e-03    NA    NA
k_JSE76          2.530e-02    NA    NA
f_cyan_to_JCZ38  6.373e-01    NA    NA
f_cyan_to_J9Z38  2.461e-01    NA    NA
f_JCZ38_to_JSE76 1.000e+00    NA    NA
f_JSE76_to_JCZ38 8.674e-01    NA    NA
k1               9.755e-02    NA    NA
k2               9.922e-03    NA    NA
g                4.053e-01    NA    NA

Resulting formation fractions:
                ff
cyan_JCZ38  0.6373
cyan_J9Z38  0.2461
cyan_sink   0.1167
JCZ38_JSE76 1.0000
JCZ38_sink  0.0000
JSE76_JCZ38 0.8674
JSE76_sink  0.1326

Estimated disappearance times:
        DT50   DT90 DT50back DT50_k1 DT50_k2
cyan   24.93 179.68    54.09   7.105   69.86
JCZ38  13.05  43.36       NA      NA      NA
J9Z38 106.16 352.67       NA      NA      NA
JSE76  27.39  91.00       NA      NA      NA

</code></pre>
<p></p>
<caption>
Hierarchical SFORB path 2 fit with reduced random effects, constant
variance
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 11:17:37 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
           cyan_free + k_cyan_bound_free * cyan_bound
d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
           cyan_bound
d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
           * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
           * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 1893.29 s
Using 300, 100 iterations and 10 chains

Variance model: Constant variance 

Starting values for degradation parameters:
          cyan_free_0       log_k_cyan_free log_k_cyan_free_bound 
             102.4394               -2.7673               -2.8942 
log_k_cyan_bound_free           log_k_JCZ38           log_k_J9Z38 
              -3.6201               -2.3107               -5.3123 
          log_k_JSE76          f_cyan_ilr_1          f_cyan_ilr_2 
              -3.7120                0.6754                1.1448 
       f_JCZ38_qlogis        f_JSE76_qlogis 
              13.2672               13.3538 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
                      cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
cyan_free_0                 4.589          0.0000                  0.00
log_k_cyan_free             0.000          0.4849                  0.00
log_k_cyan_free_bound       0.000          0.0000                  1.62
log_k_cyan_bound_free       0.000          0.0000                  0.00
log_k_JCZ38                 0.000          0.0000                  0.00
log_k_J9Z38                 0.000          0.0000                  0.00
log_k_JSE76                 0.000          0.0000                  0.00
f_cyan_ilr_1                0.000          0.0000                  0.00
f_cyan_ilr_2                0.000          0.0000                  0.00
f_JCZ38_qlogis              0.000          0.0000                  0.00
f_JSE76_qlogis              0.000          0.0000                  0.00
                      log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
cyan_free_0                           0.000      0.0000       0.000         0.0
log_k_cyan_free                       0.000      0.0000       0.000         0.0
log_k_cyan_free_bound                 0.000      0.0000       0.000         0.0
log_k_cyan_bound_free                 1.197      0.0000       0.000         0.0
log_k_JCZ38                           0.000      0.7966       0.000         0.0
log_k_J9Z38                           0.000      0.0000       1.561         0.0
log_k_JSE76                           0.000      0.0000       0.000         0.8
f_cyan_ilr_1                          0.000      0.0000       0.000         0.0
f_cyan_ilr_2                          0.000      0.0000       0.000         0.0
f_JCZ38_qlogis                        0.000      0.0000       0.000         0.0
f_JSE76_qlogis                        0.000      0.0000       0.000         0.0
                      f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis
cyan_free_0                 0.0000        0.000           0.00           0.00
log_k_cyan_free             0.0000        0.000           0.00           0.00
log_k_cyan_free_bound       0.0000        0.000           0.00           0.00
log_k_cyan_bound_free       0.0000        0.000           0.00           0.00
log_k_JCZ38                 0.0000        0.000           0.00           0.00
log_k_J9Z38                 0.0000        0.000           0.00           0.00
log_k_JSE76                 0.0000        0.000           0.00           0.00
f_cyan_ilr_1                0.6349        0.000           0.00           0.00
f_cyan_ilr_2                0.0000        1.797           0.00           0.00
f_JCZ38_qlogis              0.0000        0.000          13.84           0.00
f_JSE76_qlogis              0.0000        0.000           0.00          14.66

Starting values for error model parameters:
a.1 
  1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2279 2272  -1120

Optimised parameters:
                              est.   lower  upper
cyan_free_0               102.5621      NA     NA
log_k_cyan_free            -2.8531      NA     NA
log_k_cyan_free_bound      -2.6916      NA     NA
log_k_cyan_bound_free      -3.5032      NA     NA
log_k_JCZ38                -2.9436      NA     NA
log_k_J9Z38                -5.1140      NA     NA
log_k_JSE76                -3.6472      NA     NA
f_cyan_ilr_1                0.6887      NA     NA
f_cyan_ilr_2                0.6874      NA     NA
f_JCZ38_qlogis           4063.6389      NA     NA
f_JSE76_qlogis              1.9556      NA     NA
a.1                         2.7460 2.55451 2.9376
SD.log_k_cyan_free          0.3131 0.09841 0.5277
SD.log_k_cyan_free_bound    0.8850 0.29909 1.4710
SD.log_k_cyan_bound_free    0.6167 0.20391 1.0295
SD.log_k_JCZ38              1.3555 0.49101 2.2200
SD.log_k_J9Z38              0.7200 0.16166 1.2783
SD.log_k_JSE76              0.6252 0.14619 1.1042
SD.f_cyan_ilr_1             0.3386 0.11447 0.5627
SD.f_cyan_ilr_2             0.4699 0.09810 0.8417

Correlation is not available

Random effects:
                           est.   lower  upper
SD.log_k_cyan_free       0.3131 0.09841 0.5277
SD.log_k_cyan_free_bound 0.8850 0.29909 1.4710
SD.log_k_cyan_bound_free 0.6167 0.20391 1.0295
SD.log_k_JCZ38           1.3555 0.49101 2.2200
SD.log_k_J9Z38           0.7200 0.16166 1.2783
SD.log_k_JSE76           0.6252 0.14619 1.1042
SD.f_cyan_ilr_1          0.3386 0.11447 0.5627
SD.f_cyan_ilr_2          0.4699 0.09810 0.8417

Variance model:
     est. lower upper
a.1 2.746 2.555 2.938

Backtransformed parameters:
                          est. lower upper
cyan_free_0          1.026e+02    NA    NA
k_cyan_free          5.767e-02    NA    NA
k_cyan_free_bound    6.777e-02    NA    NA
k_cyan_bound_free    3.010e-02    NA    NA
k_JCZ38              5.267e-02    NA    NA
k_J9Z38              6.012e-03    NA    NA
k_JSE76              2.606e-02    NA    NA
f_cyan_free_to_JCZ38 6.089e-01    NA    NA
f_cyan_free_to_J9Z38 2.299e-01    NA    NA
f_JCZ38_to_JSE76     1.000e+00    NA    NA
f_JSE76_to_JCZ38     8.761e-01    NA    NA

Estimated Eigenvalues of SFORB model(s):
cyan_b1 cyan_b2  cyan_g 
 0.1434  0.0121  0.3469 

Resulting formation fractions:
                    ff
cyan_free_JCZ38 0.6089
cyan_free_J9Z38 0.2299
cyan_free_sink  0.1612
cyan_free       1.0000
JCZ38_JSE76     1.0000
JCZ38_sink      0.0000
JSE76_JCZ38     0.8761
JSE76_sink      0.1239

Estimated disappearance times:
        DT50   DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
cyan   23.94 155.06    46.68        4.832        57.28
JCZ38  13.16  43.71       NA           NA           NA
J9Z38 115.30 383.02       NA           NA           NA
JSE76  26.59  88.35       NA           NA           NA

</code></pre>
<p></p>
<caption>
Hierarchical SFORB path 2 fit with reduced random effects, two-component
error
</caption>
<pre><code>
saemix version used for fitting:      3.2 
mkin version used for pre-fitting:  1.2.2 
R version used for fitting:         4.2.2 
Date of fit:     Sat Jan 28 11:21:01 2023 
Date of summary: Fri Feb 17 22:24:33 2023 

Equations:
d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
           cyan_free + k_cyan_bound_free * cyan_bound
d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
           cyan_bound
d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
           * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
           * J9Z38
d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76

Data:
433 observations of 4 variable(s) grouped in 5 datasets

Model predictions using solution type deSolve 

Fitted in 2097.842 s
Using 300, 100 iterations and 10 chains

Variance model: Two-component variance function 

Starting values for degradation parameters:
          cyan_free_0       log_k_cyan_free log_k_cyan_free_bound 
              101.751                -2.837                -3.016 
log_k_cyan_bound_free           log_k_JCZ38           log_k_J9Z38 
               -3.660                -2.299                -5.313 
          log_k_JSE76          f_cyan_ilr_1          f_cyan_ilr_2 
               -3.699                 0.672                 5.873 
       f_JCZ38_qlogis        f_JSE76_qlogis 
               13.216                13.338 

Fixed degradation parameter values:
None

Starting values for random effects (square root of initial entries in omega):
                      cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
cyan_free_0                 5.629           0.000                 0.000
log_k_cyan_free             0.000           0.446                 0.000
log_k_cyan_free_bound       0.000           0.000                 1.449
log_k_cyan_bound_free       0.000           0.000                 0.000
log_k_JCZ38                 0.000           0.000                 0.000
log_k_J9Z38                 0.000           0.000                 0.000
log_k_JSE76                 0.000           0.000                 0.000
f_cyan_ilr_1                0.000           0.000                 0.000
f_cyan_ilr_2                0.000           0.000                 0.000
f_JCZ38_qlogis              0.000           0.000                 0.000
f_JSE76_qlogis              0.000           0.000                 0.000
                      log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
cyan_free_0                           0.000      0.0000       0.000      0.0000
log_k_cyan_free                       0.000      0.0000       0.000      0.0000
log_k_cyan_free_bound                 0.000      0.0000       0.000      0.0000
log_k_cyan_bound_free                 1.213      0.0000       0.000      0.0000
log_k_JCZ38                           0.000      0.7801       0.000      0.0000
log_k_J9Z38                           0.000      0.0000       1.575      0.0000
log_k_JSE76                           0.000      0.0000       0.000      0.8078
f_cyan_ilr_1                          0.000      0.0000       0.000      0.0000
f_cyan_ilr_2                          0.000      0.0000       0.000      0.0000
f_JCZ38_qlogis                        0.000      0.0000       0.000      0.0000
f_JSE76_qlogis                        0.000      0.0000       0.000      0.0000
                      f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis
cyan_free_0                 0.0000         0.00           0.00           0.00
log_k_cyan_free             0.0000         0.00           0.00           0.00
log_k_cyan_free_bound       0.0000         0.00           0.00           0.00
log_k_cyan_bound_free       0.0000         0.00           0.00           0.00
log_k_JCZ38                 0.0000         0.00           0.00           0.00
log_k_J9Z38                 0.0000         0.00           0.00           0.00
log_k_JSE76                 0.0000         0.00           0.00           0.00
f_cyan_ilr_1                0.6519         0.00           0.00           0.00
f_cyan_ilr_2                0.0000        10.78           0.00           0.00
f_JCZ38_qlogis              0.0000         0.00          13.96           0.00
f_JSE76_qlogis              0.0000         0.00           0.00          14.69

Starting values for error model parameters:
a.1 b.1 
  1   1 

Results:

Likelihood computed by importance sampling
   AIC  BIC logLik
  2236 2228  -1098

Optimised parameters:
                              est.   lower   upper
cyan_free_0              100.72760      NA      NA
log_k_cyan_free           -3.18281      NA      NA
log_k_cyan_free_bound     -3.37924      NA      NA
log_k_cyan_bound_free     -3.77107      NA      NA
log_k_JCZ38               -2.92811      NA      NA
log_k_J9Z38               -5.02759      NA      NA
log_k_JSE76               -3.65835      NA      NA
f_cyan_ilr_1               0.67390      NA      NA
f_cyan_ilr_2               1.15106      NA      NA
f_JCZ38_qlogis           827.82299      NA      NA
f_JSE76_qlogis             1.83064      NA      NA
a.1                        2.06921 1.84443 2.29399
b.1                        0.06391 0.05267 0.07515
SD.log_k_cyan_free         0.50518 0.18962 0.82075
SD.log_k_cyan_bound_free   0.30991 0.08170 0.53813
SD.log_k_JCZ38             1.26661 0.46578 2.06744
SD.log_k_J9Z38             0.88272 0.27813 1.48730
SD.log_k_JSE76             0.53050 0.12561 0.93538
SD.f_cyan_ilr_1            0.35547 0.12461 0.58633
SD.f_cyan_ilr_2            0.91446 0.20131 1.62761

Correlation is not available

Random effects:
                           est.  lower  upper
SD.log_k_cyan_free       0.5052 0.1896 0.8207
SD.log_k_cyan_bound_free 0.3099 0.0817 0.5381
SD.log_k_JCZ38           1.2666 0.4658 2.0674
SD.log_k_J9Z38           0.8827 0.2781 1.4873
SD.log_k_JSE76           0.5305 0.1256 0.9354
SD.f_cyan_ilr_1          0.3555 0.1246 0.5863
SD.f_cyan_ilr_2          0.9145 0.2013 1.6276

Variance model:
       est.   lower   upper
a.1 2.06921 1.84443 2.29399
b.1 0.06391 0.05267 0.07515

Backtransformed parameters:
                          est. lower upper
cyan_free_0          1.007e+02    NA    NA
k_cyan_free          4.147e-02    NA    NA
k_cyan_free_bound    3.407e-02    NA    NA
k_cyan_bound_free    2.303e-02    NA    NA
k_JCZ38              5.350e-02    NA    NA
k_J9Z38              6.555e-03    NA    NA
k_JSE76              2.578e-02    NA    NA
f_cyan_free_to_JCZ38 6.505e-01    NA    NA
f_cyan_free_to_J9Z38 2.508e-01    NA    NA
f_JCZ38_to_JSE76     1.000e+00    NA    NA
f_JSE76_to_JCZ38     8.618e-01    NA    NA

Estimated Eigenvalues of SFORB model(s):
cyan_b1 cyan_b2  cyan_g 
0.08768 0.01089 0.39821 

Resulting formation fractions:
                     ff
cyan_free_JCZ38 0.65053
cyan_free_J9Z38 0.25082
cyan_free_sink  0.09864
cyan_free       1.00000
JCZ38_JSE76     1.00000
JCZ38_sink      0.00000
JSE76_JCZ38     0.86184
JSE76_sink      0.13816

Estimated disappearance times:
        DT50   DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
cyan   25.32 164.79    49.61        7.906        63.64
JCZ38  12.96  43.04       NA           NA           NA
J9Z38 105.75 351.29       NA           NA           NA
JSE76  26.89  89.33       NA           NA           NA

</code></pre>
<p></p>
</div>
</div>
<div class="section level3">
<h3 id="session-info">Session info<a class="anchor" aria-label="anchor" href="#session-info"></a>
</h3>
<pre><code>R version 4.2.2 Patched (2022-11-10 r83330)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Debian GNU/Linux bookworm/sid

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so

locale:
 [1] LC_CTYPE=de_DE.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=de_DE.UTF-8        LC_COLLATE=de_DE.UTF-8    
 [5] LC_MONETARY=de_DE.UTF-8    LC_MESSAGES=de_DE.UTF-8   
 [7] LC_PAPER=de_DE.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
[1] saemix_3.2 npde_3.3   knitr_1.41 mkin_1.2.3

loaded via a namespace (and not attached):
 [1] pillar_1.8.1      bslib_0.4.2       compiler_4.2.2    jquerylib_0.1.4  
 [5] tools_4.2.2       mclust_6.0.0      digest_0.6.31     tibble_3.1.8     
 [9] jsonlite_1.8.4    evaluate_0.19     memoise_2.0.1     lifecycle_1.0.3  
[13] nlme_3.1-162      gtable_0.3.1      lattice_0.20-45   pkgconfig_2.0.3  
[17] rlang_1.0.6       DBI_1.1.3         cli_3.5.0         yaml_2.3.6       
[21] pkgdown_2.0.7     xfun_0.35         fastmap_1.1.0     gridExtra_2.3    
[25] dplyr_1.0.10      stringr_1.5.0     generics_0.1.3    desc_1.4.2       
[29] fs_1.5.2          vctrs_0.5.1       sass_0.4.4        systemfonts_1.0.4
[33] tidyselect_1.2.0  rprojroot_2.0.3   lmtest_0.9-40     grid_4.2.2       
[37] inline_0.3.19     glue_1.6.2        R6_2.5.1          textshaping_0.3.6
[41] fansi_1.0.3       rmarkdown_2.19    purrr_1.0.0       ggplot2_3.4.0    
[45] magrittr_2.0.3    scales_1.2.1      htmltools_0.5.4   assertthat_0.2.1 
[49] colorspace_2.0-3  ragg_1.2.4        utf8_1.2.2        stringi_1.7.8    
[53] munsell_0.5.0     cachem_1.0.6      zoo_1.8-11       </code></pre>
</div>
<div class="section level3">
<h3 id="hardware-info">Hardware info<a class="anchor" aria-label="anchor" href="#hardware-info"></a>
</h3>
<pre><code>CPU model: AMD Ryzen 9 7950X 16-Core Processor</code></pre>
<pre><code>MemTotal:       64940452 kB</code></pre>
</div>
</div>
  </div>

  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">

        <nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2>
    </nav>
</div>

</div>



      <footer><div class="copyright">
  <p></p>
<p>Developed by Johannes Ranke.</p>
</div>

<div class="pkgdown">
  <p></p>
<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>
</div>

      </footer>
</div>

  


  

  </body>
</html>

Contact - Imprint