|
|
<!-- Generated by pkgdown: do not edit by hand -->
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>
— ilr • mkin</title>
<!-- jquery -->
<script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script>
<!-- Bootstrap -->
<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<!-- Font Awesome icons -->
<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous">
<!-- pkgdown -->
<link href="../pkgdown.css" rel="stylesheet">
<script src="../jquery.sticky-kit.min.js"></script>
<script src="../pkgdown.js"></script>
<!-- mathjax -->
<script src='https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script>
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<div class="container template-reference-topic">
<header>
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="../index.html">mkin</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="../index.html">Home</a>
</li>
<li>
<a href="../reference/index.html">Reference</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin">
<span class="fa fa-github fa-lg"></span>
</a>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header>
<div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>
</h1>
</div>
<p>This implementation is a special case of the class of isometric log-ratio transformations.</p>
<pre><span class='fu'>ilr</span>(<span class='no'>x</span>)
<span class='fu'>invilr</span>(<span class='no'>x</span>)</pre>
<h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a> Arguments</h2>
<dl class="dl-horizontal">
<dt>x</dt>
<dd>
A numeric vector. Naturally, the forward transformation is only sensible for
vectors with all elements being greater than zero.
</dd>
</dl>
<h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
<p>The result of the forward or backward transformation. The returned components always
sum to 1 for the case of the inverse log-ratio transformation.</p>
<h2 class="hasAnchor" id="references"><a class="anchor" href="#references"></a>References</h2>
<p>Peter Filzmoser, Karel Hron (2008) Outlier Detection for Compositional Data Using Robust Methods. Math Geosci 40 233-248</p>
<h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2>
<p>Another implementation can be found in R package <code>robCompositions</code>.</p>
<h2 class="hasAnchor" id="examples">
<a class="anchor" href="#examples"></a>
Examples
</h2>
<pre class="examples"><div class='input'><span class='co'># Order matters</span>
<span class='fu'>ilr</span>(<span class='fu'>c</span>(<span class='fl'>0.1</span>, <span class='fl'>1</span>, <span class='fl'>10</span>))</div><div class='output co'>#> [1] -1.628174 -2.820079
#> </div><div class='input'><span class='fu'>ilr</span>(<span class='fu'>c</span>(<span class='fl'>10</span>, <span class='fl'>1</span>, <span class='fl'>0.1</span>))</div><div class='output co'>#> [1] 1.628174 2.820079
#> </div><div class='input'><span class='co'># Equal entries give ilr transformations with zeros as elements</span>
<span class='fu'>ilr</span>(<span class='fu'>c</span>(<span class='fl'>3</span>, <span class='fl'>3</span>, <span class='fl'>3</span>))</div><div class='output co'>#> [1] 0 0
#> </div><div class='input'><span class='co'># Almost equal entries give small numbers</span>
<span class='fu'>ilr</span>(<span class='fu'>c</span>(<span class='fl'>0.3</span>, <span class='fl'>0.4</span>, <span class='fl'>0.3</span>))</div><div class='output co'>#> [1] -0.2034219 0.1174457
#> </div><div class='input'><span class='co'># Only the ratio between the numbers counts, not their sum</span>
<span class='fu'>invilr</span>(<span class='fu'>ilr</span>(<span class='fu'>c</span>(<span class='fl'>0.7</span>, <span class='fl'>0.29</span>, <span class='fl'>0.01</span>)))</div><div class='output co'>#> [1] 0.70 0.29 0.01
#> </div><div class='input'><span class='fu'>invilr</span>(<span class='fu'>ilr</span>(<span class='fl'>2.1</span> * <span class='fu'>c</span>(<span class='fl'>0.7</span>, <span class='fl'>0.29</span>, <span class='fl'>0.01</span>)))</div><div class='output co'>#> [1] 0.70 0.29 0.01
#> </div><div class='input'><span class='co'># Inverse transformation of larger numbers gives unequal elements</span>
<span class='fu'>invilr</span>(-<span class='fl'>10</span>)</div><div class='output co'>#> [1] 7.213536e-07 9.999993e-01
#> </div><div class='input'><span class='fu'>invilr</span>(<span class='fu'>c</span>(-<span class='fl'>10</span>, <span class='fl'>0</span>))</div><div class='output co'>#> [1] 7.207415e-07 9.991507e-01 8.486044e-04
#> </div><div class='input'><span class='co'># The sum of the elements of the inverse ilr is 1</span>
<span class='fu'>sum</span>(<span class='fu'>invilr</span>(<span class='fu'>c</span>(-<span class='fl'>10</span>, <span class='fl'>0</span>)))</div><div class='output co'>#> [1] 1
#> </div><div class='input'><span class='co'># This is why we do not need all elements of the inverse transformation to go back:</span>
<span class='no'>a</span> <span class='kw'><-</span> <span class='fu'>c</span>(<span class='fl'>0.1</span>, <span class='fl'>0.3</span>, <span class='fl'>0.5</span>)
<span class='no'>b</span> <span class='kw'><-</span> <span class='fu'>invilr</span>(<span class='no'>a</span>)
<span class='fu'>length</span>(<span class='no'>b</span>) <span class='co'># Four elements</span></div><div class='output co'>#> [1] 4
#> </div><div class='input'><span class='fu'>ilr</span>(<span class='fu'>c</span>(<span class='no'>b</span>[<span class='fl'>1</span>:<span class='fl'>3</span>], <span class='fl'>1</span> - <span class='fu'>sum</span>(<span class='no'>b</span>[<span class='fl'>1</span>:<span class='fl'>3</span>]))) <span class='co'># Gives c(0.1, 0.3, 0.5)</span></div><div class='output co'>#> [1] 0.1 0.3 0.5
#> </div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="sidebar">
<h2>Contents</h2>
<ul class="nav nav-pills nav-stacked">
<li><a href="#arguments">Arguments</a></li>
<li><a href="#value">Value</a></li>
<li><a href="#references">References</a></li>
<li><a href="#see-also">See also</a></li>
<li><a href="#examples">Examples</a></li>
</ul>
<h2>Author</h2>
René Lehmann and Johannes Ranke
</div>
</div>
<footer>
<div class="copyright">
<p>Developed by Johannes Ranke, Eurofins Regulatory AG.</p>
</div>
<div class="pkgdown">
<p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p>
</div>
</footer>
</div>
</body>
</html>
|