blob: 55d89709d9c9d2b68509e80910975e088074ff06 (
plain) (
tree)
|
|
\name{FOMC.solution}
\alias{FOMC.solution}
\title{ First-Order Multi-Compartment kinetics }
\description{
Function describing exponential decline from a defined starting value, with
a decreasing rate constant.
The form given here differs slightly from the original reference by Gustafson
and Holden (1990). The parameter \code{beta} corresponds to 1/beta in the
original equation.
}
\usage{
FOMC.solution(t, parent.0, alpha, beta)
}
\arguments{
\item{t}{ Time. }
\item{parent.0}{ Starting value for the response variable at time zero. }
\item{alpha}{
Shape parameter determined by coefficient of variation of rate constant
values. }
\item{beta}{
Location parameter.
}
}
\note{
The solution of the FOMC kinetic model reduces to the
\code{\link{SFO.solution}} for large values of \code{alpha} and
\code{beta} with
\eqn{k = \frac{\beta}{\alpha}}{k = beta/alpha}.
}
\value{
The value of the response variable at time \code{t}.
}
\references{
FOCUS (2006) \dQuote{Guidance Document on Estimating Persistence and
Degradation Kinetics from Environmental Fate Studies on Pesticides in EU
Registration} Report of the FOCUS Work Group on Degradation Kinetics,
EC Document Reference Sanco/10058/2005 version 2.0, 434 pp,
\url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics}
Gustafson DI and Holden LR (1990) Nonlinear pesticide dissipation in soil: A
new model based on spatial variability. \emph{Environmental Science and
Technology} \bold{24}, 1032-1038
}
\examples{
plot(function(x) FOMC.solution(x, 100, 10, 2), 0, 2, ylim = c(0, 100))
}
\keyword{ manip }
|