aboutsummaryrefslogblamecommitdiff
path: root/man/ilr.Rd
blob: 0cbd7e2c735d892f650e45b835e585fd9b59edd8 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
                                            

              
                                                              
       

         
           
                                                                        
 
       

                                                                  
 

                                                                         
          
 





                                                               
                                                          










                                                                                   
 











                                                                 
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ilr.R
\name{ilr}
\alias{ilr}
\alias{invilr}
\title{Function to perform isometric log-ratio transformation}
\usage{
ilr(x)

invilr(x)
}
\arguments{
\item{x}{A numeric vector. Naturally, the forward transformation is only
sensible for vectors with all elements being greater than zero.}
}
\value{
The result of the forward or backward transformation. The returned
  components always sum to 1 for the case of the inverse log-ratio
  transformation.
}
\description{
This implementation is a special case of the class of isometric log-ratio
transformations.
}
\examples{

# Order matters
ilr(c(0.1, 1, 10))
ilr(c(10, 1, 0.1))
# Equal entries give ilr transformations with zeros as elements
ilr(c(3, 3, 3))
# Almost equal entries give small numbers
ilr(c(0.3, 0.4, 0.3))
# Only the ratio between the numbers counts, not their sum
invilr(ilr(c(0.7, 0.29, 0.01)))
invilr(ilr(2.1 * c(0.7, 0.29, 0.01)))
# Inverse transformation of larger numbers gives unequal elements
invilr(-10)
invilr(c(-10, 0))
# The sum of the elements of the inverse ilr is 1
sum(invilr(c(-10, 0)))
# This is why we do not need all elements of the inverse transformation to go back:
a <- c(0.1, 0.3, 0.5)
b <- invilr(a)
length(b) # Four elements
ilr(c(b[1:3], 1 - sum(b[1:3]))) # Gives c(0.1, 0.3, 0.5)

}
\references{
Peter Filzmoser, Karel Hron (2008) Outlier Detection for
  Compositional Data Using Robust Methods. Math Geosci 40 233-248
}
\seealso{
Another implementation can be found in R package
  \code{robCompositions}.
}
\author{
René Lehmann and Johannes Ranke
}
\keyword{manip}

Contact - Imprint