blob: bb2c2957831347264faecda6e47d45e0dcc75af7 (
plain) (
tree)
|
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/logLik.mkinfit.R
\name{logLik.mkinfit}
\alias{logLik.mkinfit}
\title{Calculated the log-likelihood of a fitted mkinfit object}
\usage{
\method{logLik}{mkinfit}(object, ...)
}
\arguments{
\item{object}{An object of class \code{\link{mkinfit}}.}
\item{\dots}{For compatibility with the generic method}
}
\value{
An object of class \code{\link{logLik}} with the number of estimated
parameters (degradation model parameters plus variance model parameters)
as attribute.
}
\description{
This function simply calculates the product of the likelihood densities
calculated using \code{\link{dnorm}}, i.e. assuming normal distribution,
with of the mean predicted by the degradation model, and the standard
deviation predicted by the error model.
}
\details{
The total number of estimated parameters returned with the value of the
likelihood is calculated as the sum of fitted degradation model parameters
and the fitted error model parameters.
}
\examples{
\dontrun{
sfo_sfo <- mkinmod(
parent = mkinsub("SFO", to = "m1"),
m1 = mkinsub("SFO")
)
d_t <- FOCUS_2006_D
f_nw <- mkinfit(sfo_sfo, d_t, quiet = TRUE) # no weighting (weights are unity)
f_obs <- mkinfit(sfo_sfo, d_t, error_model = "obs", quiet = TRUE)
f_tc <- mkinfit(sfo_sfo, d_t, error_model = "tc", quiet = TRUE)
AIC(f_nw, f_obs, f_tc)
}
}
\seealso{
Compare the AIC of columns of \code{\link{mmkin}} objects using
\code{\link{AIC.mmkin}}.
}
\author{
Johannes Ranke
}
|