blob: 2f911d5b0c0be403e4f4090e41625c47e4f7c933 (
plain) (
tree)
|
|
\name{logLik.mkinfit}
\alias{logLik.mkinfit}
\title{
Calculated the log-likelihood of a fitted mkinfit object
}
\description{
This function simply calculates the product of the likelihood densities
calc
}
\usage{
\method{logLik}{mkinfit}(object, ...)
}
\arguments{
\item{object}{
An object of class \code{\link{mkinfit}}.
}
\item{\dots}{
For compatibility with the generic method
}
}
\value{
An object of class \code{\link{logLik}} with the number of
estimated parameters (degradation model parameters plus variance
model parameters) as attribute.
}
\examples{
sfo_sfo <- mkinmod(
parent = mkinsub("SFO", to = "m1"),
m1 = mkinsub("SFO")
)
d_t <- FOCUS_2006_D
d_t[23:24, "value"] <- c(NA, NA) # can't cope with zero values at the moment
f_nw <- mkinfit(sfo_sfo, d_t, quiet = TRUE) # no weighting (weights are unity)
f_obs <- mkinfit(sfo_sfo, d_t, reweight.method = "obs", quiet = TRUE)
f_tc <- mkinfit(sfo_sfo, d_t, reweight.method = "tc", quiet = TRUE)
d_t$err <- d_t$value # Manual weighting assuming sigma ~ y
f_man <- mkinfit(sfo_sfo, d_t, err = "err", quiet = TRUE)
AIC(f_nw, f_obs, f_tc, f_man)
}
\author{
Johannes Ranke
}
|