aboutsummaryrefslogblamecommitdiff
path: root/tests/testthat/test_plots_summary_twa.R
blob: 13d1dd0f7ef53976ff68a278c08c2e1067f9be57 (plain) (tree)
1
2
3
4
5
6
7





                                                                             














                                                                          



                  
                                         
                                  
                              


                                                            
                                
                                                   
                                                 

                                                      
                                                                             
                                                                      
 
                                            







                                                              
                                            

                                                                               










                                                                              
                                                                               
                                                                                


                   
                                                                 
                
                                                                                          
                                                                         
                                                                       
                                                                             
                                                                             
                                                     




                                                                                                        
                                                            
                                                                          
 
                                                                                                            
                                                                             
                                                                                               
                                                                                     
                                                                                     
                                                                              
                                                                                  

                                                                                                
                                                                       
                                                                                    
                                                                                      
  

                                      
                                                                                    
                                                                                    
                                               
                                                   

                                                                                    
  
context("Calculation of maximum time weighted average concentrations (TWAs)")

test_that("Time weighted average concentrations are correct", {
  skip_on_cran()

  outtimes_10 <- seq(0, 10, length.out = 10000)

  ds <- "FOCUS_C"
  for (model in models) {
    fit <- fits[[model, ds]]
    bpar <- summary(fit)$bpar[, "Estimate"]
    pred_10 <- mkinpredict(fit$mkinmod,
                odeparms = bpar[2:length(bpar)],
                odeini = c(parent = bpar[[1]]),
                outtimes = outtimes_10)
    twa_num <- mean(pred_10$parent)
    names(twa_num) <- 10
    twa_ana <- max_twa_parent(fit, 10)

    # Test for absolute difference (scale = 1)
    # The tolerance can be reduced if the length of outtimes is increased,
    # but this needs more computing time so we stay with lenght.out = 10k
    expect_equal(twa_num, twa_ana, tolerance = 0.003, scale = 1)
  }
})

context("Summary")

test_that("Summaries are reproducible", {
  fit <- fits[["DFOP", "FOCUS_C"]]
  test_summary <- summary(fit)
  test_summary$fit_version <- "Dummy 0.0 for testing"
  test_summary$fit_Rversion <- "Dummy R version for testing"
  test_summary$date.fit <- "Dummy date for testing"
  test_summary$date.summary <- "Dummy date for testing"
  test_summary$calls <- "test 0"
  test_summary$Corr <- signif(test_summary$Corr, 1)
  test_summary$time <- c(elapsed = "test time 0")
  # The correlation matrix is quite platform dependent
  # It differs between i386 and amd64 on Windows
  # and between Travis and my own Linux system
  test_summary$Corr <- "Correlation matrix is platform dependent, not tested"
  expect_known_output(print(test_summary), "summary_DFOP_FOCUS_C.txt")

  test_summary_2 <- summary(f_sfo_sfo_eigen)
  test_summary_2$fit_version <- "Dummy 0.0 for testing"
  test_summary_2$fit_Rversion <- "Dummy R version for testing"
  test_summary_2$date.fit <- "Dummy date for testing"
  test_summary_2$date.summary <- "Dummy date for testing"
  test_summary_2$calls <- "test 0"
  test_summary_2$time <- c(elapsed = "test time 0")
  # The correlation matrix is quite platform dependent
  # It differs between i386 and amd64 on Windows
  # and between Travis and my own Linux system
  # Even more so when using the Eigen method
  test_summary_2$Corr <- "Correlation matrix is platform dependent, not tested"
  # The residuals for this method are also platform sensitive
  test_summary_2$data$residual <- "not tested"
  expect_known_output(print(test_summary_2), "summary_DFOP_FOCUS_D_eigen.txt")

  test_summary_3 <- summary(f_sfo_sfo_desolve)
  test_summary_3$fit_version <- "Dummy 0.0 for testing"
  test_summary_3$fit_Rversion <- "Dummy R version for testing"
  test_summary_3$date.fit <- "Dummy date for testing"
  test_summary_3$date.summary <- "Dummy date for testing"
  test_summary_3$calls <- "test 0"
  test_summary_3$time <- c(elapsed = "test time 0")
  # The correlation matrix is quite platform dependent
  # It differs between i386 and amd64 on Windows
  # and between Travis and my own Linux system
  test_summary_3$Corr <- "Correlation matrix is platform dependent, not tested"
  expect_known_output(print(test_summary_3), "summary_DFOP_FOCUS_D_deSolve.txt")
})

context("Plotting")

test_that("Plotting mkinfit and mmkin objects is reproducible", {
  skip_on_cran()
  plot_default_FOCUS_C_SFO <- function() plot(fits[["SFO", "FOCUS_C"]])
  plot_res_FOCUS_C_SFO <- function() plot(fits[["SFO", "FOCUS_C"]], show_residuals = TRUE)
  plot_res_FOCUS_C_SFO_2 <- function() plot_res(fits[["SFO", "FOCUS_C"]])
  plot_sep_FOCUS_C_SFO <- function() plot_sep(fits[["SFO", "FOCUS_C"]])
  mkinparplot_FOCUS_C_SFO <- function() mkinparplot(fits[["SFO", "FOCUS_C"]])
  mkinerrplot_FOCUS_C_SFO <- function() mkinerrplot(fits[["SFO", "FOCUS_C"]])
  mmkin_FOCUS_C <- function() plot(fits[, "FOCUS_C"])
  mmkin_SFO <- function() plot(fits["SFO",])
  fit_D_obs_eigen <- suppressWarnings(mkinfit(SFO_SFO, FOCUS_2006_D, error_model = "obs", quiet = TRUE))
  fit_C_tc <- mkinfit("SFO", FOCUS_2006_C, error_model = "tc", quiet = TRUE)

  plot_errmod_fit_D_obs_eigen <- function() plot_err(fit_D_obs_eigen, sep_obs = FALSE)
  plot_errmod_fit_C_tc <- function() plot_err(fit_C_tc)

  plot_res_sfo_sfo <- function() plot_res(f_sfo_sfo_desolve)
  plot_err_sfo_sfo <- function() plot_err(f_sfo_sfo_desolve)
  plot_errmod_fit_obs_1 <- function() plot_err(fit_obs_1, sep_obs = FALSE)
  plot_errmod_fit_tc_1 <- function() plot_err(fit_tc_1, sep_obs = FALSE)

  vdiffr::expect_doppelganger("mkinfit plot for FOCUS C with defaults", plot_default_FOCUS_C_SFO)
  vdiffr::expect_doppelganger("mkinfit plot for FOCUS C with residuals like in gmkin", plot_res_FOCUS_C_SFO)
  vdiffr::expect_doppelganger("plot_res for FOCUS C", plot_res_FOCUS_C_SFO_2)
  vdiffr::expect_doppelganger("mkinfit plot for FOCUS C with sep = TRUE", plot_sep_FOCUS_C_SFO)
  vdiffr::expect_doppelganger("mkinparplot for FOCUS C SFO", mkinparplot_FOCUS_C_SFO)
  vdiffr::expect_doppelganger("mkinerrplot for FOCUS C SFO", mkinerrplot_FOCUS_C_SFO)
  vdiffr::expect_doppelganger("mmkin plot for FOCUS C", mmkin_FOCUS_C)
  vdiffr::expect_doppelganger("mmkin plot for SFO (FOCUS C and D)", mmkin_SFO)
  vdiffr::expect_doppelganger("plot_errmod with FOCUS C tc", plot_errmod_fit_C_tc)
  skip_on_travis() # Still not working on Travis, maybe because of deSolve producing
  # different results when not working with a compiled model or eigenvalues
  vdiffr::expect_doppelganger("plot_errmod with FOCUS D obs eigen", plot_errmod_fit_D_obs_eigen)
  vdiffr::expect_doppelganger("plot_res for FOCUS D", plot_res_sfo_sfo)
  vdiffr::expect_doppelganger("plot_err for FOCUS D", plot_err_sfo_sfo)
  vdiffr::expect_doppelganger("plot_errmod with SFO_lin_a_tc", plot_errmod_fit_tc_1)
  vdiffr::expect_doppelganger("plot_errmod with SFO_lin_a_obs", plot_errmod_fit_obs_1)
})

context("AIC calculation")

test_that("The AIC is reproducible", {
  expect_equivalent(AIC(fits[["SFO", "FOCUS_C"]]), 59.3, scale = 1, tolerance = 0.1)
  expect_equivalent(AIC(fits[, "FOCUS_C"]),
                    data.frame(df = c(3, 4, 5, 5), AIC = c(59.3, 44.7, 29.0, 39.2)),
                    scale = 1, tolerance = 0.1)
  expect_error(AIC(fits["SFO", ]), "column object")
  expect_equivalent(BIC(fits[, "FOCUS_C"]),
                    data.frame(df = c(3, 4, 5, 5), AIC = c(59.9, 45.5, 30.0, 40.2)),
                    scale = 1, tolerance = 0.1)
})

Contact - Imprint