<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title>Example evaluation of FOCUS Laboratory Data L1 to L3</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<!-- MathJax scripts -->
<script type="text/javascript" src="https://c328740.ssl.cf1.rackcdn.com/mathjax/2.0-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</head>
<body>
<!--
%\VignetteEngine{knitr::knitr}
%\VignetteIndexEntry{Example evaluation of FOCUS Laboratory Data L1 to L3}
-->
<h1>Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
<h2>Laboratory Data L1</h2>
<p>The following code defines example dataset L1 from the FOCUS kinetics
report, p. 284</p>
<pre><code class="r">library("mkin")
FOCUS_2006_L1 = data.frame(
t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2),
parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6,
72.0, 71.9, 50.3, 59.4, 47.0, 45.1,
27.7, 27.3, 10.0, 10.4, 2.9, 4.0))
FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)
</code></pre>
<p>The next step is to set up the models used for the kinetic analysis. Note that
the model definitions contain the names of the observed variables in the data.
In this case, there is only one variable called <code>parent</code>.</p>
<pre><code class="r">SFO <- mkinmod(parent = list(type = "SFO"))
FOMC <- mkinmod(parent = list(type = "FOMC"))
DFOP <- mkinmod(parent = list(type = "DFOP"))
</code></pre>
<p>The three models cover the first assumption of simple first order (SFO),
the case of declining rate constant over time (FOMC) and the case of two
different phases of the kinetics (DFOP). For a more detailed discussion
of the models, please see the FOCUS kinetics report.</p>
<p>The following two lines fit the model and produce the summary report
of the model fit. This covers the numerical analysis given in the
FOCUS report.</p>
<pre><code class="r">m.L1.SFO <- mkinfit(SFO, FOCUS_2006_L1_mkin, quiet=TRUE)
summary(m.L1.SFO)
</code></pre>
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
## Date of fit: Mon Jul 14 19:59:26 2014
## Date of summary: Mon Jul 14 19:59:26 2014
##
## Equations:
## [1] d_parent = - k_parent_sink * parent
##
## Method used for solution of differential equation system:
## analytical
##
## Weighting: none
##
## Starting values for parameters to be optimised:
## value type
## parent_0 100.0 state
## k_parent_sink 0.1 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 100.000 -Inf Inf
## log_k_parent_sink -2.303 -Inf Inf
##
## Fixed parameter values:
## None
##
## Optimised, transformed parameters:
## Estimate Std. Error Lower Upper t value Pr(>|t|)
## parent_0 92.50 1.3700 89.60 95.40 67.6 4.34e-21
## log_k_parent_sink -2.35 0.0406 -2.43 -2.26 -57.9 5.15e-20
## Pr(>t)
## parent_0 2.17e-21
## log_k_parent_sink 2.58e-20
##
## Parameter correlation:
## parent_0 log_k_parent_sink
## parent_0 1.000 0.625
## log_k_parent_sink 0.625 1.000
##
## Residual standard error: 2.95 on 16 degrees of freedom
##
## Backtransformed parameters:
## Estimate Lower Upper
## parent_0 92.5000 89.6000 95.400
## k_parent_sink 0.0956 0.0877 0.104
##
## Chi2 error levels in percent:
## err.min n.optim df
## All data 3.42 2 7
## parent 3.42 2 7
##
## Resulting formation fractions:
## ff
## parent_sink 1
##
## Estimated disappearance times:
## DT50 DT90
## parent 7.25 24.1
##
## Data:
## time variable observed predicted residual
## 0 parent 88.3 92.47 -4.171
## 0 parent 91.4 92.47 -1.071
## 1 parent 85.6 84.04 1.561
## 1 parent 84.5 84.04 0.461
## 2 parent 78.9 76.38 2.524
## 2 parent 77.6 76.38 1.224
## 3 parent 72.0 69.41 2.588
## 3 parent 71.9 69.41 2.488
## 5 parent 50.3 57.33 -7.030
## 5 parent 59.4 57.33 2.070
## 7 parent 47.0 47.35 -0.352
## 7 parent 45.1 47.35 -2.252
## 14 parent 27.7 24.25 3.453
## 14 parent 27.3 24.25 3.053
## 21 parent 10.0 12.42 -2.416
## 21 parent 10.4 12.42 -2.016
## 30 parent 2.9 5.25 -2.351
## 30 parent 4.0 5.25 -1.251
</code></pre>
<p>A plot of the fit is obtained with the plot function for mkinfit objects.</p>
<pre><code class="r">plot(m.L1.SFO)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-5"/> </p>
<p>The residual plot can be easily obtained by</p>
<pre><code class="r">mkinresplot(m.L1.SFO, ylab = "Observed", xlab = "Time")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-6"/> </p>
<p>For comparison, the FOMC model is fitted as well, and the chi<sup>2</sup> error level
is checked.</p>
<pre><code class="r">m.L1.FOMC <- mkinfit(FOMC, FOCUS_2006_L1_mkin, quiet=TRUE)
summary(m.L1.FOMC, data = FALSE)
</code></pre>
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
## Date of fit: Mon Jul 14 19:59:26 2014
## Date of summary: Mon Jul 14 19:59:26 2014
##
## Equations:
## [1] d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Method used for solution of differential equation system:
## analytical
##
## Weighting: none
##
## Starting values for parameters to be optimised:
## value type
## parent_0 100 state
## alpha 1 deparm
## beta 10 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 100.000 -Inf Inf
## log_alpha 0.000 -Inf Inf
## log_beta 2.303 -Inf Inf
##
## Fixed parameter values:
## None
##
## Optimised, transformed parameters:
## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t)
## parent_0 92.5 NA NA NA NA NA NA
## log_alpha 25.6 NA NA NA NA NA NA
## log_beta 28.0 NA NA NA NA NA NA
##
## Parameter correlation:
## Could not estimate covariance matrix; singular system:
##
## Residual standard error: 3.05 on 15 degrees of freedom
##
## Backtransformed parameters:
## Estimate Lower Upper
## parent_0 9.25e+01 NA NA
## alpha 1.35e+11 NA NA
## beta 1.41e+12 NA NA
##
## Chi2 error levels in percent:
## err.min n.optim df
## All data 3.62 3 6
## parent 3.62 3 6
##
## Estimated disappearance times:
## DT50 DT90 DT50back
## parent 7.25 24.1 7.25
</code></pre>
<p>Due to the higher number of parameters, and the lower number of degrees of
freedom of the fit, the chi<sup>2</sup> error level is actually higher for the FOMC
model (3.6%) than for the SFO model (3.4%). Additionally, the covariance
matrix can not be obtained, indicating overparameterisation of the model.
As a consequence, no standard errors for transformed parameters nor
confidence intervals for backtransformed parameters are available.</p>
<p>The chi<sup>2</sup> error levels reported in Appendix 3 and Appendix 7 to the FOCUS
kinetics report are rounded to integer percentages and partly deviate by one
percentage point from the results calculated by mkin. The reason for
this is not known. However, mkin gives the same chi<sup>2</sup> error levels
as the kinfit package.</p>
<p>Furthermore, the calculation routines of the kinfit package have been extensively
compared to the results obtained by the KinGUI software, as documented in the
kinfit package vignette. KinGUI is a widely used standard package in this field.
Therefore, the reason for the difference was not investigated further.</p>
<h2>Laboratory Data L2</h2>
<p>The following code defines example dataset L2 from the FOCUS kinetics
report, p. 287</p>
<pre><code class="r">FOCUS_2006_L2 = data.frame(
t = rep(c(0, 1, 3, 7, 14, 28), each = 2),
parent = c(96.1, 91.8, 41.4, 38.7,
19.3, 22.3, 4.6, 4.6,
2.6, 1.2, 0.3, 0.6))
FOCUS_2006_L2_mkin <- mkin_wide_to_long(FOCUS_2006_L2)
</code></pre>
<p>Again, the SFO model is fitted and a summary is obtained.</p>
<pre><code class="r">m.L2.SFO <- mkinfit(SFO, FOCUS_2006_L2_mkin, quiet=TRUE)
summary(m.L2.SFO)
</code></pre>
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
## Date of fit: Mon Jul 14 19:59:27 2014
## Date of summary: Mon Jul 14 19:59:27 2014
##
## Equations:
## [1] d_parent = - k_parent_sink * parent
##
## Method used for solution of differential equation system:
## analytical
##
## Weighting: none
##
## Starting values for parameters to be optimised:
## value type
## parent_0 100.0 state
## k_parent_sink 0.1 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 100.000 -Inf Inf
## log_k_parent_sink -2.303 -Inf Inf
##
## Fixed parameter values:
## None
##
## Optimised, transformed parameters:
## Estimate Std. Error Lower Upper t value Pr(>|t|)
## parent_0 91.500 3.810 83.000 99.900 24.00 3.55e-10
## log_k_parent_sink -0.411 0.107 -0.651 -0.172 -3.83 3.33e-03
## Pr(>t)
## parent_0 1.77e-10
## log_k_parent_sink 1.66e-03
##
## Parameter correlation:
## parent_0 log_k_parent_sink
## parent_0 1.00 0.43
## log_k_parent_sink 0.43 1.00
##
## Residual standard error: 5.51 on 10 degrees of freedom
##
## Backtransformed parameters:
## Estimate Lower Upper
## parent_0 91.500 83.000 99.900
## k_parent_sink 0.663 0.522 0.842
##
## Chi2 error levels in percent:
## err.min n.optim df
## All data 14.4 2 4
## parent 14.4 2 4
##
## Resulting formation fractions:
## ff
## parent_sink 1
##
## Estimated disappearance times:
## DT50 DT90
## parent 1.05 3.47
##
## Data:
## time variable observed predicted residual
## 0 parent 96.1 9.15e+01 4.634
## 0 parent 91.8 9.15e+01 0.334
## 1 parent 41.4 4.71e+01 -5.740
## 1 parent 38.7 4.71e+01 -8.440
## 3 parent 19.3 1.25e+01 6.779
## 3 parent 22.3 1.25e+01 9.779
## 7 parent 4.6 8.83e-01 3.717
## 7 parent 4.6 8.83e-01 3.717
## 14 parent 2.6 8.53e-03 2.591
## 14 parent 1.2 8.53e-03 1.191
## 28 parent 0.3 7.96e-07 0.300
## 28 parent 0.6 7.96e-07 0.600
</code></pre>
<p>The chi<sup>2</sup> error level of 14% suggests that the model does not fit very well.
This is also obvious from the plots of the fit and the residuals.</p>
<pre><code class="r">par(mfrow = c(2, 1))
plot(m.L2.SFO)
mkinresplot(m.L2.SFO)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-10"/> </p>
<p>In the FOCUS kinetics report, it is stated that there is no apparent systematic
error observed from the residual plot up to the measured DT90 (approximately at
day 5), and there is an underestimation beyond that point.</p>
<p>We may add that it is difficult to judge the random nature of the residuals just
from the three samplings at days 0, 1 and 3. Also, it is not clear <em>a
priori</em> why a consistent underestimation after the approximate DT90 should be
irrelevant. However, this can be rationalised by the fact that the FOCUS fate
models generally only implement SFO kinetics.</p>
<p>For comparison, the FOMC model is fitted as well, and the chi<sup>2</sup> error level
is checked.</p>
<pre><code class="r">m.L2.FOMC <- mkinfit(FOMC, FOCUS_2006_L2_mkin, quiet = TRUE)
par(mfrow = c(2, 1))
plot(m.L2.FOMC)
mkinresplot(m.L2.FOMC)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-11"/> </p>
<pre><code class="r">summary(m.L2.FOMC, data = FALSE)
</code></pre>
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
## Date of fit: Mon Jul 14 19:59:28 2014
## Date of summary: Mon Jul 14 19:59:28 2014
##
## Equations:
## [1] d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Method used for solution of differential equation system:
## analytical
##
## Weighting: none
##
## Starting values for parameters to be optimised:
## value type
## parent_0 100 state
## alpha 1 deparm
## beta 10 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 100.000 -Inf Inf
## log_alpha 0.000 -Inf Inf
## log_beta 2.303 -Inf Inf
##
## Fixed parameter values:
## None
##
## Optimised, transformed parameters:
## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t)
## parent_0 93.800 1.860 89.600 98.000 50.500 2.35e-12 1.17e-12
## log_alpha 0.318 0.187 -0.104 0.740 1.700 1.23e-01 6.14e-02
## log_beta 0.210 0.294 -0.456 0.876 0.714 4.93e-01 2.47e-01
##
## Parameter correlation:
## parent_0 log_alpha log_beta
## parent_0 1.0000 -0.0955 -0.186
## log_alpha -0.0955 1.0000 0.976
## log_beta -0.1863 0.9757 1.000
##
## Residual standard error: 2.63 on 9 degrees of freedom
##
## Backtransformed parameters:
## Estimate Lower Upper
## parent_0 93.80 89.600 98.0
## alpha 1.37 0.901 2.1
## beta 1.23 0.634 2.4
##
## Chi2 error levels in percent:
## err.min n.optim df
## All data 6.2 3 3
## parent 6.2 3 3
##
## Estimated disappearance times:
## DT50 DT90 DT50back
## parent 0.809 5.36 1.61
</code></pre>
<p>The error level at which the chi<sup>2</sup> test passes is much lower in this case.
Therefore, the FOMC model provides a better description of the data, as less
experimental error has to be assumed in order to explain the data.</p>
<p>Fitting the four parameter DFOP model further reduces the chi<sup>2</sup> error level. </p>
<pre><code class="r">m.L2.DFOP <- mkinfit(DFOP, FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.DFOP)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-12"/> </p>
<p>Here, the default starting parameters for the DFOP model obviously do not lead
to a reasonable solution. Therefore the fit is repeated with different starting
parameters.</p>
<pre><code class="r">m.L2.DFOP <- mkinfit(DFOP, FOCUS_2006_L2_mkin,
parms.ini = c(k1 = 1, k2 = 0.01, g = 0.8),
quiet=TRUE)
plot(m.L2.DFOP)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-13"/> </p>
<pre><code class="r">summary(m.L2.DFOP, data = FALSE)
</code></pre>
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
## Date of fit: Mon Jul 14 19:59:28 2014
## Date of summary: Mon Jul 14 19:59:28 2014
##
## Equations:
## [1] d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) * parent
##
## Method used for solution of differential equation system:
## analytical
##
## Weighting: none
##
## Starting values for parameters to be optimised:
## value type
## parent_0 1e+02 state
## k1 1e+00 deparm
## k2 1e-02 deparm
## g 8e-01 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 100.0000 -Inf Inf
## log_k1 0.0000 -Inf Inf
## log_k2 -4.6052 -Inf Inf
## g_ilr 0.9803 -Inf Inf
##
## Fixed parameter values:
## None
##
## Optimised, transformed parameters:
## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t)
## parent_0 93.900 NA NA NA NA NA NA
## log_k1 4.960 NA NA NA NA NA NA
## log_k2 -1.090 NA NA NA NA NA NA
## g_ilr -0.282 NA NA NA NA NA NA
##
## Parameter correlation:
## Could not estimate covariance matrix; singular system:
##
## Residual standard error: 1.73 on 8 degrees of freedom
##
## Backtransformed parameters:
## Estimate Lower Upper
## parent_0 93.900 NA NA
## k1 142.000 NA NA
## k2 0.337 NA NA
## g 0.402 NA NA
##
## Chi2 error levels in percent:
## err.min n.optim df
## All data 2.53 4 2
## parent 2.53 4 2
##
## Estimated disappearance times:
## DT50 DT90 DT50_k1 DT50_k2
## parent NA NA 0.00487 2.06
</code></pre>
<p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the
chi<sup>2</sup> error level criterion. However, the failure to calculate the covariance
matrix indicates that the parameter estimates correlate excessively. Therefore,
the FOMC model may be preferred for this dataset.</p>
<h2>Laboratory Data L3</h2>
<p>The following code defines example dataset L3 from the FOCUS kinetics report,
p. 290.</p>
<pre><code class="r">FOCUS_2006_L3 = data.frame(
t = c(0, 3, 7, 14, 30, 60, 91, 120),
parent = c(97.8, 60, 51, 43, 35, 22, 15, 12))
FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3)
</code></pre>
<p>SFO model, summary and plot:</p>
<pre><code class="r">m.L3.SFO <- mkinfit(SFO, FOCUS_2006_L3_mkin, quiet = TRUE)
plot(m.L3.SFO)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-15"/> </p>
<pre><code class="r">summary(m.L3.SFO)
</code></pre>
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
## Date of fit: Mon Jul 14 19:59:29 2014
## Date of summary: Mon Jul 14 19:59:29 2014
##
## Equations:
## [1] d_parent = - k_parent_sink * parent
##
## Method used for solution of differential equation system:
## analytical
##
## Weighting: none
##
## Starting values for parameters to be optimised:
## value type
## parent_0 100.0 state
## k_parent_sink 0.1 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 100.000 -Inf Inf
## log_k_parent_sink -2.303 -Inf Inf
##
## Fixed parameter values:
## None
##
## Optimised, transformed parameters:
## Estimate Std. Error Lower Upper t value Pr(>|t|)
## parent_0 74.90 8.460 54.20 95.60 8.85 0.000116
## log_k_parent_sink -3.68 0.326 -4.48 -2.88 -11.30 0.000029
## Pr(>t)
## parent_0 5.78e-05
## log_k_parent_sink 1.45e-05
##
## Parameter correlation:
## parent_0 log_k_parent_sink
## parent_0 1.000 0.548
## log_k_parent_sink 0.548 1.000
##
## Residual standard error: 12.9 on 6 degrees of freedom
##
## Backtransformed parameters:
## Estimate Lower Upper
## parent_0 74.9000 54.2000 95.6000
## k_parent_sink 0.0253 0.0114 0.0561
##
## Chi2 error levels in percent:
## err.min n.optim df
## All data 21.2 2 6
## parent 21.2 2 6
##
## Resulting formation fractions:
## ff
## parent_sink 1
##
## Estimated disappearance times:
## DT50 DT90
## parent 27.4 91.1
##
## Data:
## time variable observed predicted residual
## 0 parent 97.8 74.87 22.9273
## 3 parent 60.0 69.41 -9.4065
## 7 parent 51.0 62.73 -11.7340
## 14 parent 43.0 52.56 -9.5634
## 30 parent 35.0 35.08 -0.0828
## 60 parent 22.0 16.44 5.5614
## 91 parent 15.0 7.51 7.4896
## 120 parent 12.0 3.61 8.3908
</code></pre>
<p>The chi<sup>2</sup> error level of 21% as well as the plot suggest that the model
does not fit very well. </p>
<p>The FOMC model performs better:</p>
<pre><code class="r">m.L3.FOMC <- mkinfit(FOMC, FOCUS_2006_L3_mkin, quiet = TRUE)
plot(m.L3.FOMC)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-16"/> </p>
<pre><code class="r">summary(m.L3.FOMC, data = FALSE)
</code></pre>
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
## Date of fit: Mon Jul 14 19:59:29 2014
## Date of summary: Mon Jul 14 19:59:29 2014
##
## Equations:
## [1] d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Method used for solution of differential equation system:
## analytical
##
## Weighting: none
##
## Starting values for parameters to be optimised:
## value type
## parent_0 100 state
## alpha 1 deparm
## beta 10 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 100.000 -Inf Inf
## log_alpha 0.000 -Inf Inf
## log_beta 2.303 -Inf Inf
##
## Fixed parameter values:
## None
##
## Optimised, transformed parameters:
## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t)
## parent_0 97.000 4.550 85.3 109.000 21.30 4.22e-06 2.11e-06
## log_alpha -0.862 0.170 -1.3 -0.424 -5.06 3.91e-03 1.96e-03
## log_beta 0.619 0.474 -0.6 1.840 1.31 2.49e-01 1.24e-01
##
## Parameter correlation:
## parent_0 log_alpha log_beta
## parent_0 1.000 -0.151 -0.427
## log_alpha -0.151 1.000 0.911
## log_beta -0.427 0.911 1.000
##
## Residual standard error: 4.57 on 5 degrees of freedom
##
## Backtransformed parameters:
## Estimate Lower Upper
## parent_0 97.000 85.300 109.000
## alpha 0.422 0.273 0.655
## beta 1.860 0.549 6.290
##
## Chi2 error levels in percent:
## err.min n.optim df
## All data 7.32 3 5
## parent 7.32 3 5
##
## Estimated disappearance times:
## DT50 DT90 DT50back
## parent 7.73 431 130
</code></pre>
<p>The error level at which the chi<sup>2</sup> test passes is 7% in this case.</p>
<p>Fitting the four parameter DFOP model further reduces the chi<sup>2</sup> error level
considerably:</p>
<pre><code class="r">m.L3.DFOP <- mkinfit(DFOP, FOCUS_2006_L3_mkin, quiet = TRUE)
plot(m.L3.DFOP)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-17"/> </p>
<pre><code class="r">summary(m.L3.DFOP, data = FALSE)
</code></pre>
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
## Date of fit: Mon Jul 14 19:59:30 2014
## Date of summary: Mon Jul 14 19:59:30 2014
##
## Equations:
## [1] d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) * parent
##
## Method used for solution of differential equation system:
## analytical
##
## Weighting: none
##
## Starting values for parameters to be optimised:
## value type
## parent_0 1e+02 state
## k1 1e-01 deparm
## k2 1e-02 deparm
## g 5e-01 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 100.000 -Inf Inf
## log_k1 -2.303 -Inf Inf
## log_k2 -4.605 -Inf Inf
## g_ilr 0.000 -Inf Inf
##
## Fixed parameter values:
## None
##
## Optimised, transformed parameters:
## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t)
## parent_0 97.700 1.4400 93.800 102.0000 68.00 2.81e-07 1.40e-07
## log_k1 -0.661 0.1330 -1.030 -0.2910 -4.96 7.72e-03 3.86e-03
## log_k2 -4.290 0.0590 -4.450 -4.1200 -72.60 2.15e-07 1.08e-07
## g_ilr -0.123 0.0512 -0.265 0.0193 -2.40 7.43e-02 3.72e-02
##
## Parameter correlation:
## parent_0 log_k1 log_k2 g_ilr
## parent_0 1.0000 0.164 0.0131 0.425
## log_k1 0.1640 1.000 0.4648 -0.553
## log_k2 0.0131 0.465 1.0000 -0.663
## g_ilr 0.4253 -0.553 -0.6631 1.000
##
## Residual standard error: 1.44 on 4 degrees of freedom
##
## Backtransformed parameters:
## Estimate Lower Upper
## parent_0 97.7000 93.8000 102.0000
## k1 0.5160 0.3560 0.7480
## k2 0.0138 0.0117 0.0162
## g 0.4570 0.4070 0.5070
##
## Chi2 error levels in percent:
## err.min n.optim df
## All data 2.23 4 4
## parent 2.23 4 4
##
## Estimated disappearance times:
## DT50 DT90 DT50_k1 DT50_k2
## parent 7.46 123 1.34 50.4
</code></pre>
<p>Here, a look to the model plot, the confidence intervals of the parameters
and the correlation matrix suggest that the parameter estimates are reliable, and
the DFOP model can be used as the best-fit model based on the chi<sup>2</sup> error
level criterion for laboratory data L3.</p>
<h2>Laboratory Data L4</h2>
<p>The following code defines example dataset L4 from the FOCUS kinetics
report, p. 293</p>
<pre><code class="r">FOCUS_2006_L4 = data.frame(
t = c(0, 3, 7, 14, 30, 60, 91, 120),
parent = c(96.6, 96.3, 94.3, 88.8, 74.9, 59.9, 53.5, 49.0))
FOCUS_2006_L4_mkin <- mkin_wide_to_long(FOCUS_2006_L4)
</code></pre>
<p>SFO model, summary and plot:</p>
<pre><code class="r">m.L4.SFO <- mkinfit(SFO, FOCUS_2006_L4_mkin, quiet = TRUE)
plot(m.L4.SFO)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-19"/> </p>
<pre><code class="r">summary(m.L4.SFO, data = FALSE)
</code></pre>
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
## Date of fit: Mon Jul 14 19:59:30 2014
## Date of summary: Mon Jul 14 19:59:30 2014
##
## Equations:
## [1] d_parent = - k_parent_sink * parent
##
## Method used for solution of differential equation system:
## analytical
##
## Weighting: none
##
## Starting values for parameters to be optimised:
## value type
## parent_0 100.0 state
## k_parent_sink 0.1 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 100.000 -Inf Inf
## log_k_parent_sink -2.303 -Inf Inf
##
## Fixed parameter values:
## None
##
## Optimised, transformed parameters:
## Estimate Std. Error Lower Upper t value Pr(>|t|)
## parent_0 96.40 1.95 91.70 101.00 49.5 4.57e-09
## log_k_parent_sink -5.03 0.08 -5.23 -4.83 -62.9 1.09e-09
## Pr(>t)
## parent_0 2.28e-09
## log_k_parent_sink 5.44e-10
##
## Parameter correlation:
## parent_0 log_k_parent_sink
## parent_0 1.000 0.587
## log_k_parent_sink 0.587 1.000
##
## Residual standard error: 3.65 on 6 degrees of freedom
##
## Backtransformed parameters:
## Estimate Lower Upper
## parent_0 96.40000 91.70000 1.01e+02
## k_parent_sink 0.00654 0.00538 7.95e-03
##
## Chi2 error levels in percent:
## err.min n.optim df
## All data 3.29 2 6
## parent 3.29 2 6
##
## Resulting formation fractions:
## ff
## parent_sink 1
##
## Estimated disappearance times:
## DT50 DT90
## parent 106 352
</code></pre>
<p>The chi<sup>2</sup> error level of 3.3% as well as the plot suggest that the model
fits very well. </p>
<p>The FOMC model for comparison</p>
<pre><code class="r">m.L4.FOMC <- mkinfit(FOMC, FOCUS_2006_L4_mkin, quiet = TRUE)
plot(m.L4.FOMC)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-20"/> </p>
<pre><code class="r">summary(m.L4.FOMC, data = FALSE)
</code></pre>
<pre><code>## mkin version: 0.9.32
## R version: 3.1.1
## Date of fit: Mon Jul 14 19:59:31 2014
## Date of summary: Mon Jul 14 19:59:31 2014
##
## Equations:
## [1] d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Method used for solution of differential equation system:
## analytical
##
## Weighting: none
##
## Starting values for parameters to be optimised:
## value type
## parent_0 100 state
## alpha 1 deparm
## beta 10 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 100.000 -Inf Inf
## log_alpha 0.000 -Inf Inf
## log_beta 2.303 -Inf Inf
##
## Fixed parameter values:
## None
##
## Optimised, transformed parameters:
## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t)
## parent_0 99.100 1.680 94.80 103.000 59.000 2.64e-08 1.32e-08
## log_alpha -0.351 0.372 -1.31 0.607 -0.941 3.90e-01 1.95e-01
## log_beta 4.170 0.564 2.73 5.620 7.410 7.06e-04 3.53e-04
##
## Parameter correlation:
## parent_0 log_alpha log_beta
## parent_0 1.000 -0.536 -0.608
## log_alpha -0.536 1.000 0.991
## log_beta -0.608 0.991 1.000
##
## Residual standard error: 2.31 on 5 degrees of freedom
##
## Backtransformed parameters:
## Estimate Lower Upper
## parent_0 99.100 94.80 103.00
## alpha 0.704 0.27 1.83
## beta 65.000 15.30 277.00
##
## Chi2 error levels in percent:
## err.min n.optim df
## All data 2.03 3 5
## parent 2.03 3 5
##
## Estimated disappearance times:
## DT50 DT90 DT50back
## parent 109 1644 495
</code></pre>
<p>The error level at which the chi<sup>2</sup> test passes is slightly lower for the FOMC
model. However, the difference appears negligible.</p>
</body>
</html>