aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2014-07-14 18:25:53 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2014-07-14 18:25:53 +0200
commit759e693e9af8e794bbfa62b001117fabbdbc8bfa (patch)
tree2c4fb2232763595924090c76ae95e0b87dd76f40
parenta9a3b38a2ca5bc7223435f43814cfc6c7a1077bd (diff)
Bugfix release version 0.9-31
-rw-r--r--.gitignore1
-rw-r--r--DESCRIPTION2
-rw-r--r--NEWS.md8
-rw-r--r--R/mkinerrmin.R29
-rw-r--r--R/mkinfit.R36
-rw-r--r--vignettes/FOCUS_L.html1090
-rw-r--r--vignettes/FOCUS_Z.pdfbin213000 -> 212998 bytes
-rw-r--r--vignettes/mkin.pdfbin160326 -> 160326 bytes
8 files changed, 1136 insertions, 30 deletions
diff --git a/.gitignore b/.gitignore
index 9dc50c23..2c416f60 100644
--- a/.gitignore
+++ b/.gitignore
@@ -7,5 +7,4 @@ vignettes/*.log
vignettes/*.out
vignettes/*.toc
vignettes/mkin.tex
-vignettes/FOCUS_L.html
vignettes/FOCUS_Z.tex
diff --git a/DESCRIPTION b/DESCRIPTION
index 245f1643..69889b21 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -3,7 +3,7 @@ Type: Package
Title: Routines for fitting kinetic models with one or more state
variables to chemical degradation data
Version: 0.9-31
-Date: 2014-07-11
+Date: 2014-07-14
Authors@R: c(person("Johannes", "Ranke", role = c("aut", "cre", "cph"),
email = "jranke@uni-bremen.de"),
person("Katrin", "Lindenberger", role = "ctb"),
diff --git a/NEWS.md b/NEWS.md
index 6c23f316..94bc566a 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -1,3 +1,11 @@
+# CHANGES in mkin VERSION 0.9-31
+
+## BUG FIXES
+
+- The internal renaming of optimised parameters in Version 0.9-30 led to errors in the determination of the degrees of freedom for the chi2 error level calulations in `mkinerrmin()` used by the summary function.
+
+- Initial values for formation fractions were not set in all cases
+
# CHANGES in mkin VERSION 0.9-30
## NEW FEATURES
diff --git a/R/mkinerrmin.R b/R/mkinerrmin.R
index 671bcaab..9ebac6a4 100644
--- a/R/mkinerrmin.R
+++ b/R/mkinerrmin.R
@@ -48,6 +48,7 @@ mkinerrmin <- function(fit, alpha = 0.05)
n.optim = errmin.overall$n.optim, df = errmin.overall$df)
rownames(errmin) <- "All data"
+ # The degrees of freedom are counted according to FOCUS kinetics (2011, p. 164)
for (obs_var in fit$obs_vars)
{
errdata.var <- subset(errdata, name == obs_var)
@@ -57,21 +58,31 @@ mkinerrmin <- function(fit, alpha = 0.05)
# Rate constants are attributed to the source variable
n.k.optim <- length(grep(paste("^k", obs_var, sep="_"), names(parms.optim)))
-
- # Formation fractions are attributed to the target variable
- n.ff.optim <- length(grep(paste("^f", ".*", obs_var, "$", sep=""), names(parms.optim)))
+ n.k.optim <- n.k.optim + length(grep(paste("^log_k", obs_var, sep="_"),
+ names(parms.optim)))
+
+ n.ff.optim <- 0
+ # Formation fractions are attributed to the target variable, so look
+ # for source compartments with formation fractions
+ for (source_var in fit$obs_vars) {
+ for (target_var in fit$mkinmod$spec[[source_var]]$to) {
+ if (obs_var == target_var) {
+ n.ff.optim <- n.ff.optim +
+ length(grep(paste("^f", source_var, sep = "_"),
+ names(parms.optim)))
+ }
+ }
+ }
n.optim <- n.k.optim + n.initials.optim + n.ff.optim
# FOMC, DFOP and HS parameters are only counted if we are looking at the
# first variable in the model which is always the source variable
if (obs_var == fit$obs_vars[[1]]) {
- if ("alpha" %in% names(parms.optim)) n.optim <- n.optim + 1
- if ("beta" %in% names(parms.optim)) n.optim <- n.optim + 1
- if ("k1" %in% names(parms.optim)) n.optim <- n.optim + 1
- if ("k2" %in% names(parms.optim)) n.optim <- n.optim + 1
- if ("g" %in% names(parms.optim)) n.optim <- n.optim + 1
- if ("tb" %in% names(parms.optim)) n.optim <- n.optim + 1
+ special_parms = c("alpha", "log_alpha", "beta", "log_beta",
+ "k1", "log_k1", "k2", "log_k2",
+ "g", "g_ilr", "tb", "log_tb")
+ n.optim <- n.optim + length(intersect(special_parms, names(parms.optim)))
}
# Calculate and add a line to the results
diff --git a/R/mkinfit.R b/R/mkinfit.R
index b7ca1d74..c6e13b97 100644
--- a/R/mkinfit.R
+++ b/R/mkinfit.R
@@ -105,26 +105,24 @@ mkinfit <- function(mkinmod, observed,
if (parmname == "tb") parms.ini[parmname] = 5
if (parmname == "g") parms.ini[parmname] = 0.5
}
- # Default values for formation fractions in case they are used
- if (mkinmod$use_of_ff == "max") {
- for (box in mod_vars) {
- f_names <- mkinmod$parms[grep(paste0("^f_", box), mkinmod$parms)]
- if (length(f_names) > 0) {
- # We need to differentiate between default and specified fractions
- # and set the unspecified to 1 - sum(specified)/n_unspecified
- f_default_names <- intersect(f_names, defaultpar.names)
- f_specified_names <- setdiff(f_names, defaultpar.names)
- sum_f_specified = sum(parms.ini[f_specified_names])
- if (sum_f_specified > 1) {
- stop("Starting values for the formation fractions originating from ",
- box, " sum up to more than 1.")
- }
- if (mkinmod$spec[[box]]$sink) n_unspecified = length(f_default_names) + 1
- else {
- n_unspecified = length(f_default_names)
- }
- parms.ini[f_default_names] <- (1 - sum_f_specified) / n_unspecified
+ # Default values for formation fractions in case they are present
+ for (box in mod_vars) {
+ f_names <- mkinmod$parms[grep(paste0("^f_", box), mkinmod$parms)]
+ if (length(f_names) > 0) {
+ # We need to differentiate between default and specified fractions
+ # and set the unspecified to 1 - sum(specified)/n_unspecified
+ f_default_names <- intersect(f_names, defaultpar.names)
+ f_specified_names <- setdiff(f_names, defaultpar.names)
+ sum_f_specified = sum(parms.ini[f_specified_names])
+ if (sum_f_specified > 1) {
+ stop("Starting values for the formation fractions originating from ",
+ box, " sum up to more than 1.")
+ }
+ if (mkinmod$spec[[box]]$sink) n_unspecified = length(f_default_names) + 1
+ else {
+ n_unspecified = length(f_default_names)
}
+ parms.ini[f_default_names] <- (1 - sum_f_specified) / n_unspecified
}
}
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
new file mode 100644
index 00000000..b44481e9
--- /dev/null
+++ b/vignettes/FOCUS_L.html
@@ -0,0 +1,1090 @@
+<!DOCTYPE html>
+<html>
+<head>
+<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
+
+<title>Example evaluation of FOCUS Laboratory Data L1 to L3</title>
+
+<!-- Styles for R syntax highlighter -->
+<style type="text/css">
+ pre .operator,
+ pre .paren {
+ color: rgb(104, 118, 135)
+ }
+
+ pre .literal {
+ color: rgb(88, 72, 246)
+ }
+
+ pre .number {
+ color: rgb(0, 0, 205);
+ }
+
+ pre .comment {
+ color: rgb(76, 136, 107);
+ }
+
+ pre .keyword {
+ color: rgb(0, 0, 255);
+ }
+
+ pre .identifier {
+ color: rgb(0, 0, 0);
+ }
+
+ pre .string {
+ color: rgb(3, 106, 7);
+ }
+</style>
+
+<!-- R syntax highlighter -->
+<script type="text/javascript">
+var hljs=new function(){function m(p){return p.replace(/&/gm,"&amp;").replace(/</gm,"&lt;")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
+hljs.initHighlightingOnLoad();
+</script>
+
+<!-- MathJax scripts -->
+<script type="text/javascript" src="https://c328740.ssl.cf1.rackcdn.com/mathjax/2.0-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
+</script>
+
+
+<style type="text/css">
+body, td {
+ font-family: sans-serif;
+ background-color: white;
+ font-size: 12px;
+ margin: 8px;
+}
+
+tt, code, pre {
+ font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
+}
+
+h1 {
+ font-size:2.2em;
+}
+
+h2 {
+ font-size:1.8em;
+}
+
+h3 {
+ font-size:1.4em;
+}
+
+h4 {
+ font-size:1.0em;
+}
+
+h5 {
+ font-size:0.9em;
+}
+
+h6 {
+ font-size:0.8em;
+}
+
+a:visited {
+ color: rgb(50%, 0%, 50%);
+}
+
+pre {
+ margin-top: 0;
+ max-width: 95%;
+ border: 1px solid #ccc;
+ white-space: pre-wrap;
+}
+
+pre code {
+ display: block; padding: 0.5em;
+}
+
+code.r, code.cpp {
+ background-color: #F8F8F8;
+}
+
+table, td, th {
+ border: none;
+}
+
+blockquote {
+ color:#666666;
+ margin:0;
+ padding-left: 1em;
+ border-left: 0.5em #EEE solid;
+}
+
+hr {
+ height: 0px;
+ border-bottom: none;
+ border-top-width: thin;
+ border-top-style: dotted;
+ border-top-color: #999999;
+}
+
+@media print {
+ * {
+ background: transparent !important;
+ color: black !important;
+ filter:none !important;
+ -ms-filter: none !important;
+ }
+
+ body {
+ font-size:12pt;
+ max-width:100%;
+ }
+
+ a, a:visited {
+ text-decoration: underline;
+ }
+
+ hr {
+ visibility: hidden;
+ page-break-before: always;
+ }
+
+ pre, blockquote {
+ padding-right: 1em;
+ page-break-inside: avoid;
+ }
+
+ tr, img {
+ page-break-inside: avoid;
+ }
+
+ img {
+ max-width: 100% !important;
+ }
+
+ @page :left {
+ margin: 15mm 20mm 15mm 10mm;
+ }
+
+ @page :right {
+ margin: 15mm 10mm 15mm 20mm;
+ }
+
+ p, h2, h3 {
+ orphans: 3; widows: 3;
+ }
+
+ h2, h3 {
+ page-break-after: avoid;
+ }
+}
+</style>
+
+
+
+</head>
+
+<body>
+<!--
+%\VignetteEngine{knitr::knitr}
+%\VignetteIndexEntry{Example evaluation of FOCUS Laboratory Data L1 to L3}
+-->
+
+<h1>Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
+
+<h2>Laboratory Data L1</h2>
+
+<p>The following code defines example dataset L1 from the FOCUS kinetics
+report, p. 284</p>
+
+<pre><code class="r">library(&quot;mkin&quot;)
+</code></pre>
+
+<pre><code>## Loading required package: minpack.lm
+## Loading required package: rootSolve
+</code></pre>
+
+<pre><code class="r">FOCUS_2006_L1 = data.frame(
+ t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2),
+ parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6,
+ 72.0, 71.9, 50.3, 59.4, 47.0, 45.1,
+ 27.7, 27.3, 10.0, 10.4, 2.9, 4.0))
+FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)
+</code></pre>
+
+<p>The next step is to set up the models used for the kinetic analysis. Note that
+the model definitions contain the names of the observed variables in the data.
+In this case, there is only one variable called <code>parent</code>.</p>
+
+<pre><code class="r">SFO &lt;- mkinmod(parent = list(type = &quot;SFO&quot;))
+FOMC &lt;- mkinmod(parent = list(type = &quot;FOMC&quot;))
+DFOP &lt;- mkinmod(parent = list(type = &quot;DFOP&quot;))
+</code></pre>
+
+<p>The three models cover the first assumption of simple first order (SFO),
+the case of declining rate constant over time (FOMC) and the case of two
+different phases of the kinetics (DFOP). For a more detailed discussion
+of the models, please see the FOCUS kinetics report.</p>
+
+<p>The following two lines fit the model and produce the summary report
+of the model fit. This covers the numerical analysis given in the
+FOCUS report.</p>
+
+<pre><code class="r">m.L1.SFO &lt;- mkinfit(SFO, FOCUS_2006_L1_mkin, quiet=TRUE)
+summary(m.L1.SFO)
+</code></pre>
+
+<pre><code>## mkin version: 0.9.31
+## R version: 3.1.1
+## Date of fit: Mon Jul 14 12:36:12 2014
+## Date of summary: Mon Jul 14 12:36:12 2014
+##
+## Equations:
+## [1] d_parent = - k_parent_sink * parent
+##
+## Method used for solution of differential equation system:
+## analytical
+##
+## Weighting: none
+##
+## Starting values for parameters to be optimised:
+## value type
+## parent_0 100.0 state
+## k_parent_sink 0.1 deparm
+##
+## Starting values for the transformed parameters actually optimised:
+## value lower upper
+## parent_0 100.000 -Inf Inf
+## log_k_parent_sink -2.303 -Inf Inf
+##
+## Fixed parameter values:
+## None
+##
+## Optimised, transformed parameters:
+## Estimate Std. Error Lower Upper t value Pr(&gt;|t|)
+## parent_0 92.50 1.3700 89.60 95.40 67.6 4.34e-21
+## log_k_parent_sink -2.35 0.0406 -2.43 -2.26 -57.9 5.15e-20
+## Pr(&gt;t)
+## parent_0 2.17e-21
+## log_k_parent_sink 2.58e-20
+##
+## Parameter correlation:
+## parent_0 log_k_parent_sink
+## parent_0 1.000 0.625
+## log_k_parent_sink 0.625 1.000
+##
+## Residual standard error: 2.95 on 16 degrees of freedom
+##
+## Backtransformed parameters:
+## Estimate Lower Upper
+## parent_0 92.5000 89.6000 95.400
+## k_parent_sink 0.0956 0.0877 0.104
+##
+## Chi2 error levels in percent:
+## err.min n.optim df
+## All data 3.42 2 7
+## parent 3.42 2 7
+##
+## Resulting formation fractions:
+## ff
+## parent_sink 1
+##
+## Estimated disappearance times:
+## DT50 DT90
+## parent 7.25 24.1
+##
+## Data:
+## time variable observed predicted residual
+## 0 parent 88.3 92.47 -4.171
+## 0 parent 91.4 92.47 -1.071
+## 1 parent 85.6 84.04 1.561
+## 1 parent 84.5 84.04 0.461
+## 2 parent 78.9 76.38 2.524
+## 2 parent 77.6 76.38 1.224
+## 3 parent 72.0 69.41 2.588
+## 3 parent 71.9 69.41 2.488
+## 5 parent 50.3 57.33 -7.030
+## 5 parent 59.4 57.33 2.070
+## 7 parent 47.0 47.35 -0.352
+## 7 parent 45.1 47.35 -2.252
+## 14 parent 27.7 24.25 3.453
+## 14 parent 27.3 24.25 3.053
+## 21 parent 10.0 12.42 -2.416
+## 21 parent 10.4 12.42 -2.016
+## 30 parent 2.9 5.25 -2.351
+## 30 parent 4.0 5.25 -1.251
+</code></pre>
+
+<p>A plot of the fit is obtained with the plot function for mkinfit objects.</p>
+
+<pre><code class="r">plot(m.L1.SFO)
+</code></pre>
+
+<p><img src="" alt="plot of chunk unnamed-chunk-5"/> </p>
+
+<p>The residual plot can be easily obtained by</p>
+
+<pre><code class="r">mkinresplot(m.L1.SFO, ylab = &quot;Observed&quot;, xlab = &quot;Time&quot;)
+</code></pre>
+
+<p><img src="" alt="plot of chunk unnamed-chunk-6"/> </p>
+
+<p>For comparison, the FOMC model is fitted as well, and the chi<sup>2</sup> error level
+is checked.</p>
+
+<pre><code class="r">m.L1.FOMC &lt;- mkinfit(FOMC, FOCUS_2006_L1_mkin, quiet=TRUE)
+summary(m.L1.FOMC, data = FALSE)
+</code></pre>
+
+<pre><code>## mkin version: 0.9.31
+## R version: 3.1.1
+## Date of fit: Mon Jul 14 12:36:12 2014
+## Date of summary: Mon Jul 14 12:36:12 2014
+##
+## Equations:
+## [1] d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
+##
+## Method used for solution of differential equation system:
+## analytical
+##
+## Weighting: none
+##
+## Starting values for parameters to be optimised:
+## value type
+## parent_0 100 state
+## alpha 1 deparm
+## beta 10 deparm
+##
+## Starting values for the transformed parameters actually optimised:
+## value lower upper
+## parent_0 100.000 -Inf Inf
+## log_alpha 0.000 -Inf Inf
+## log_beta 2.303 -Inf Inf
+##
+## Fixed parameter values:
+## None
+##
+## Optimised, transformed parameters:
+## Estimate Std. Error Lower Upper t value Pr(&gt;|t|) Pr(&gt;t)
+## parent_0 92.5 NA NA NA NA NA NA
+## log_alpha 25.6 NA NA NA NA NA NA
+## log_beta 28.0 NA NA NA NA NA NA
+##
+## Parameter correlation:
+## Could not estimate covariance matrix; singular system:
+##
+## Residual standard error: 3.05 on 15 degrees of freedom
+##
+## Backtransformed parameters:
+## Estimate Lower Upper
+## parent_0 9.25e+01 NA NA
+## alpha 1.35e+11 NA NA
+## beta 1.41e+12 NA NA
+##
+## Chi2 error levels in percent:
+## err.min n.optim df
+## All data 3.62 3 6
+## parent 3.62 3 6
+##
+## Estimated disappearance times:
+## DT50 DT90 DT50back
+## parent 7.25 24.1 7.25
+</code></pre>
+
+<p>Due to the higher number of parameters, and the lower number of degrees of
+freedom of the fit, the chi<sup>2</sup> error level is actually higher for the FOMC
+model (3.6%) than for the SFO model (3.4%). Additionally, the covariance
+matrix can not be obtained, indicating overparameterisation of the model.
+As a consequence, no standard errors for transformed parameters nor
+confidence intervals for backtransformed parameters are available.</p>
+
+<p>The chi<sup>2</sup> error levels reported in Appendix 3 and Appendix 7 to the FOCUS
+kinetics report are rounded to integer percentages and partly deviate by one
+percentage point from the results calculated by mkin. The reason for
+this is not known. However, mkin gives the same chi<sup>2</sup> error levels
+as the kinfit package.</p>
+
+<p>Furthermore, the calculation routines of the kinfit package have been extensively
+compared to the results obtained by the KinGUI software, as documented in the
+kinfit package vignette. KinGUI is a widely used standard package in this field.
+Therefore, the reason for the difference was not investigated further.</p>
+
+<h2>Laboratory Data L2</h2>
+
+<p>The following code defines example dataset L2 from the FOCUS kinetics
+report, p. 287</p>
+
+<pre><code class="r">FOCUS_2006_L2 = data.frame(
+ t = rep(c(0, 1, 3, 7, 14, 28), each = 2),
+ parent = c(96.1, 91.8, 41.4, 38.7,
+ 19.3, 22.3, 4.6, 4.6,
+ 2.6, 1.2, 0.3, 0.6))
+FOCUS_2006_L2_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L2)
+</code></pre>
+
+<p>Again, the SFO model is fitted and a summary is obtained.</p>
+
+<pre><code class="r">m.L2.SFO &lt;- mkinfit(SFO, FOCUS_2006_L2_mkin, quiet=TRUE)
+summary(m.L2.SFO)
+</code></pre>
+
+<pre><code>## mkin version: 0.9.31
+## R version: 3.1.1
+## Date of fit: Mon Jul 14 12:36:12 2014
+## Date of summary: Mon Jul 14 12:36:13 2014
+##
+## Equations:
+## [1] d_parent = - k_parent_sink * parent
+##
+## Method used for solution of differential equation system:
+## analytical
+##
+## Weighting: none
+##
+## Starting values for parameters to be optimised:
+## value type
+## parent_0 100.0 state
+## k_parent_sink 0.1 deparm
+##
+## Starting values for the transformed parameters actually optimised:
+## value lower upper
+## parent_0 100.000 -Inf Inf
+## log_k_parent_sink -2.303 -Inf Inf
+##
+## Fixed parameter values:
+## None
+##
+## Optimised, transformed parameters:
+## Estimate Std. Error Lower Upper t value Pr(&gt;|t|)
+## parent_0 91.500 3.810 83.000 99.900 24.00 3.55e-10
+## log_k_parent_sink -0.411 0.107 -0.651 -0.172 -3.83 3.33e-03
+## Pr(&gt;t)
+## parent_0 1.77e-10
+## log_k_parent_sink 1.66e-03
+##
+## Parameter correlation:
+## parent_0 log_k_parent_sink
+## parent_0 1.00 0.43
+## log_k_parent_sink 0.43 1.00
+##
+## Residual standard error: 5.51 on 10 degrees of freedom
+##
+## Backtransformed parameters:
+## Estimate Lower Upper
+## parent_0 91.500 83.000 99.900
+## k_parent_sink 0.663 0.522 0.842
+##
+## Chi2 error levels in percent:
+## err.min n.optim df
+## All data 14.4 2 4
+## parent 14.4 2 4
+##
+## Resulting formation fractions:
+## ff
+## parent_sink 1
+##
+## Estimated disappearance times:
+## DT50 DT90
+## parent 1.05 3.47
+##
+## Data:
+## time variable observed predicted residual
+## 0 parent 96.1 9.15e+01 4.634
+## 0 parent 91.8 9.15e+01 0.334
+## 1 parent 41.4 4.71e+01 -5.740
+## 1 parent 38.7 4.71e+01 -8.440
+## 3 parent 19.3 1.25e+01 6.779
+## 3 parent 22.3 1.25e+01 9.779
+## 7 parent 4.6 8.83e-01 3.717
+## 7 parent 4.6 8.83e-01 3.717
+## 14 parent 2.6 8.53e-03 2.591
+## 14 parent 1.2 8.53e-03 1.191
+## 28 parent 0.3 7.96e-07 0.300
+## 28 parent 0.6 7.96e-07 0.600
+</code></pre>
+
+<p>The chi<sup>2</sup> error level of 14% suggests that the model does not fit very well.
+This is also obvious from the plots of the fit and the residuals.</p>
+
+<pre><code class="r">par(mfrow = c(2, 1))
+plot(m.L2.SFO)
+mkinresplot(m.L2.SFO)
+</code></pre>
+
+<p><img src="" alt="plot of chunk unnamed-chunk-10"/> </p>
+
+<p>In the FOCUS kinetics report, it is stated that there is no apparent systematic
+error observed from the residual plot up to the measured DT90 (approximately at
+day 5), and there is an underestimation beyond that point.</p>
+
+<p>We may add that it is difficult to judge the random nature of the residuals just
+from the three samplings at days 0, 1 and 3. Also, it is not clear <em>a
+priori</em> why a consistent underestimation after the approximate DT90 should be
+irrelevant. However, this can be rationalised by the fact that the FOCUS fate
+models generally only implement SFO kinetics.</p>
+
+<p>For comparison, the FOMC model is fitted as well, and the chi<sup>2</sup> error level
+is checked.</p>
+
+<pre><code class="r">m.L2.FOMC &lt;- mkinfit(FOMC, FOCUS_2006_L2_mkin, quiet = TRUE)
+par(mfrow = c(2, 1))
+plot(m.L2.FOMC)
+mkinresplot(m.L2.FOMC)
+</code></pre>
+
+<p><img src="" alt="plot of chunk unnamed-chunk-11"/> </p>
+
+<pre><code class="r">summary(m.L2.FOMC, data = FALSE)
+</code></pre>
+
+<pre><code>## mkin version: 0.9.31
+## R version: 3.1.1
+## Date of fit: Mon Jul 14 12:36:13 2014
+## Date of summary: Mon Jul 14 12:36:13 2014
+##
+## Equations:
+## [1] d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
+##
+## Method used for solution of differential equation system:
+## analytical
+##
+## Weighting: none
+##
+## Starting values for parameters to be optimised:
+## value type
+## parent_0 100 state
+## alpha 1 deparm
+## beta 10 deparm
+##
+## Starting values for the transformed parameters actually optimised:
+## value lower upper
+## parent_0 100.000 -Inf Inf
+## log_alpha 0.000 -Inf Inf
+## log_beta 2.303 -Inf Inf
+##
+## Fixed parameter values:
+## None
+##
+## Optimised, transformed parameters:
+## Estimate Std. Error Lower Upper t value Pr(&gt;|t|) Pr(&gt;t)
+## parent_0 93.800 1.860 89.600 98.000 50.500 2.35e-12 1.17e-12
+## log_alpha 0.318 0.187 -0.104 0.740 1.700 1.23e-01 6.14e-02
+## log_beta 0.210 0.294 -0.456 0.876 0.714 4.93e-01 2.47e-01
+##
+## Parameter correlation:
+## parent_0 log_alpha log_beta
+## parent_0 1.0000 -0.0955 -0.186
+## log_alpha -0.0955 1.0000 0.976
+## log_beta -0.1863 0.9757 1.000
+##
+## Residual standard error: 2.63 on 9 degrees of freedom
+##
+## Backtransformed parameters:
+## Estimate Lower Upper
+## parent_0 93.80 89.600 98.0
+## alpha 1.37 0.901 2.1
+## beta 1.23 0.634 2.4
+##
+## Chi2 error levels in percent:
+## err.min n.optim df
+## All data 6.2 3 3
+## parent 6.2 3 3
+##
+## Estimated disappearance times:
+## DT50 DT90 DT50back
+## parent 0.809 5.36 1.61
+</code></pre>
+
+<p>The error level at which the chi<sup>2</sup> test passes is much lower in this case.
+Therefore, the FOMC model provides a better description of the data, as less
+experimental error has to be assumed in order to explain the data.</p>
+
+<p>Fitting the four parameter DFOP model further reduces the chi<sup>2</sup> error level. </p>
+
+<pre><code class="r">m.L2.DFOP &lt;- mkinfit(DFOP, FOCUS_2006_L2_mkin, quiet = TRUE)
+plot(m.L2.DFOP)
+</code></pre>
+
+<p><img src="" alt="plot of chunk unnamed-chunk-12"/> </p>
+
+<p>Here, the default starting parameters for the DFOP model obviously do not lead
+to a reasonable solution. Therefore the fit is repeated with different starting
+parameters.</p>
+
+<pre><code class="r">m.L2.DFOP &lt;- mkinfit(DFOP, FOCUS_2006_L2_mkin,
+ parms.ini = c(k1 = 1, k2 = 0.01, g = 0.8),
+ quiet=TRUE)
+plot(m.L2.DFOP)
+</code></pre>
+
+<p><img src="" alt="plot of chunk unnamed-chunk-13"/> </p>
+
+<pre><code class="r">summary(m.L2.DFOP, data = FALSE)
+</code></pre>
+
+<pre><code>## mkin version: 0.9.31
+## R version: 3.1.1
+## Date of fit: Mon Jul 14 12:36:13 2014
+## Date of summary: Mon Jul 14 12:36:13 2014
+##
+## Equations:
+## [1] d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) * parent
+##
+## Method used for solution of differential equation system:
+## analytical
+##
+## Weighting: none
+##
+## Starting values for parameters to be optimised:
+## value type
+## parent_0 1e+02 state
+## k1 1e+00 deparm
+## k2 1e-02 deparm
+## g 8e-01 deparm
+##
+## Starting values for the transformed parameters actually optimised:
+## value lower upper
+## parent_0 100.0000 -Inf Inf
+## log_k1 0.0000 -Inf Inf
+## log_k2 -4.6052 -Inf Inf
+## g_ilr 0.9803 -Inf Inf
+##
+## Fixed parameter values:
+## None
+##
+## Optimised, transformed parameters:
+## Estimate Std. Error Lower Upper t value Pr(&gt;|t|) Pr(&gt;t)
+## parent_0 93.900 NA NA NA NA NA NA
+## log_k1 4.960 NA NA NA NA NA NA
+## log_k2 -1.090 NA NA NA NA NA NA
+## g_ilr -0.282 NA NA NA NA NA NA
+##
+## Parameter correlation:
+## Could not estimate covariance matrix; singular system:
+##
+## Residual standard error: 1.73 on 8 degrees of freedom
+##
+## Backtransformed parameters:
+## Estimate Lower Upper
+## parent_0 93.900 NA NA
+## k1 142.000 NA NA
+## k2 0.337 NA NA
+## g 0.402 NA NA
+##
+## Chi2 error levels in percent:
+## err.min n.optim df
+## All data 2.53 4 2
+## parent 2.53 4 2
+##
+## Estimated disappearance times:
+## DT50 DT90 DT50_k1 DT50_k2
+## parent NA NA 0.00487 2.06
+</code></pre>
+
+<p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the
+chi<sup>2</sup> error level criterion. However, the failure to calculate the covariance
+matrix indicates that the parameter estimates correlate excessively. Therefore,
+the FOMC model may be preferred for this dataset.</p>
+
+<h2>Laboratory Data L3</h2>
+
+<p>The following code defines example dataset L3 from the FOCUS kinetics report,
+p. 290.</p>
+
+<pre><code class="r">FOCUS_2006_L3 = data.frame(
+ t = c(0, 3, 7, 14, 30, 60, 91, 120),
+ parent = c(97.8, 60, 51, 43, 35, 22, 15, 12))
+FOCUS_2006_L3_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L3)
+</code></pre>
+
+<p>SFO model, summary and plot:</p>
+
+<pre><code class="r">m.L3.SFO &lt;- mkinfit(SFO, FOCUS_2006_L3_mkin, quiet = TRUE)
+plot(m.L3.SFO)
+</code></pre>
+
+<p><img src="" alt="plot of chunk unnamed-chunk-15"/> </p>
+
+<pre><code class="r">summary(m.L3.SFO)
+</code></pre>
+
+<pre><code>## mkin version: 0.9.31
+## R version: 3.1.1
+## Date of fit: Mon Jul 14 12:36:14 2014
+## Date of summary: Mon Jul 14 12:36:14 2014
+##
+## Equations:
+## [1] d_parent = - k_parent_sink * parent
+##
+## Method used for solution of differential equation system:
+## analytical
+##
+## Weighting: none
+##
+## Starting values for parameters to be optimised:
+## value type
+## parent_0 100.0 state
+## k_parent_sink 0.1 deparm
+##
+## Starting values for the transformed parameters actually optimised:
+## value lower upper
+## parent_0 100.000 -Inf Inf
+## log_k_parent_sink -2.303 -Inf Inf
+##
+## Fixed parameter values:
+## None
+##
+## Optimised, transformed parameters:
+## Estimate Std. Error Lower Upper t value Pr(&gt;|t|)
+## parent_0 74.90 8.460 54.20 95.60 8.85 0.000116
+## log_k_parent_sink -3.68 0.326 -4.48 -2.88 -11.30 0.000029
+## Pr(&gt;t)
+## parent_0 5.78e-05
+## log_k_parent_sink 1.45e-05
+##
+## Parameter correlation:
+## parent_0 log_k_parent_sink
+## parent_0 1.000 0.548
+## log_k_parent_sink 0.548 1.000
+##
+## Residual standard error: 12.9 on 6 degrees of freedom
+##
+## Backtransformed parameters:
+## Estimate Lower Upper
+## parent_0 74.9000 54.2000 95.6000
+## k_parent_sink 0.0253 0.0114 0.0561
+##
+## Chi2 error levels in percent:
+## err.min n.optim df
+## All data 21.2 2 6
+## parent 21.2 2 6
+##
+## Resulting formation fractions:
+## ff
+## parent_sink 1
+##
+## Estimated disappearance times:
+## DT50 DT90
+## parent 27.4 91.1
+##
+## Data:
+## time variable observed predicted residual
+## 0 parent 97.8 74.87 22.9273
+## 3 parent 60.0 69.41 -9.4065
+## 7 parent 51.0 62.73 -11.7340
+## 14 parent 43.0 52.56 -9.5634
+## 30 parent 35.0 35.08 -0.0828
+## 60 parent 22.0 16.44 5.5614
+## 91 parent 15.0 7.51 7.4896
+## 120 parent 12.0 3.61 8.3908
+</code></pre>
+
+<p>The chi<sup>2</sup> error level of 21% as well as the plot suggest that the model
+does not fit very well. </p>
+
+<p>The FOMC model performs better:</p>
+
+<pre><code class="r">m.L3.FOMC &lt;- mkinfit(FOMC, FOCUS_2006_L3_mkin, quiet = TRUE)
+plot(m.L3.FOMC)
+</code></pre>
+
+<p><img src="" alt="plot of chunk unnamed-chunk-16"/> </p>
+
+<pre><code class="r">summary(m.L3.FOMC, data = FALSE)
+</code></pre>
+
+<pre><code>## mkin version: 0.9.31
+## R version: 3.1.1
+## Date of fit: Mon Jul 14 12:36:14 2014
+## Date of summary: Mon Jul 14 12:36:14 2014
+##
+## Equations:
+## [1] d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
+##
+## Method used for solution of differential equation system:
+## analytical
+##
+## Weighting: none
+##
+## Starting values for parameters to be optimised:
+## value type
+## parent_0 100 state
+## alpha 1 deparm
+## beta 10 deparm
+##
+## Starting values for the transformed parameters actually optimised:
+## value lower upper
+## parent_0 100.000 -Inf Inf
+## log_alpha 0.000 -Inf Inf
+## log_beta 2.303 -Inf Inf
+##
+## Fixed parameter values:
+## None
+##
+## Optimised, transformed parameters:
+## Estimate Std. Error Lower Upper t value Pr(&gt;|t|) Pr(&gt;t)
+## parent_0 97.000 4.550 85.3 109.000 21.30 4.22e-06 2.11e-06
+## log_alpha -0.862 0.170 -1.3 -0.424 -5.06 3.91e-03 1.96e-03
+## log_beta 0.619 0.474 -0.6 1.840 1.31 2.49e-01 1.24e-01
+##
+## Parameter correlation:
+## parent_0 log_alpha log_beta
+## parent_0 1.000 -0.151 -0.427
+## log_alpha -0.151 1.000 0.911
+## log_beta -0.427 0.911 1.000
+##
+## Residual standard error: 4.57 on 5 degrees of freedom
+##
+## Backtransformed parameters:
+## Estimate Lower Upper
+## parent_0 97.000 85.300 109.000
+## alpha 0.422 0.273 0.655
+## beta 1.860 0.549 6.290
+##
+## Chi2 error levels in percent:
+## err.min n.optim df
+## All data 7.32 3 5
+## parent 7.32 3 5
+##
+## Estimated disappearance times:
+## DT50 DT90 DT50back
+## parent 7.73 431 130
+</code></pre>
+
+<p>The error level at which the chi<sup>2</sup> test passes is 7% in this case.</p>
+
+<p>Fitting the four parameter DFOP model further reduces the chi<sup>2</sup> error level
+considerably:</p>
+
+<pre><code class="r">m.L3.DFOP &lt;- mkinfit(DFOP, FOCUS_2006_L3_mkin, quiet = TRUE)
+plot(m.L3.DFOP)
+</code></pre>
+
+<p><img src="" alt="plot of chunk unnamed-chunk-17"/> </p>
+
+<pre><code class="r">summary(m.L3.DFOP, data = FALSE)
+</code></pre>
+
+<pre><code>## mkin version: 0.9.31
+## R version: 3.1.1
+## Date of fit: Mon Jul 14 12:36:14 2014
+## Date of summary: Mon Jul 14 12:36:14 2014
+##
+## Equations:
+## [1] d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) * parent
+##
+## Method used for solution of differential equation system:
+## analytical
+##
+## Weighting: none
+##
+## Starting values for parameters to be optimised:
+## value type
+## parent_0 1e+02 state
+## k1 1e-01 deparm
+## k2 1e-02 deparm
+## g 5e-01 deparm
+##
+## Starting values for the transformed parameters actually optimised:
+## value lower upper
+## parent_0 100.000 -Inf Inf
+## log_k1 -2.303 -Inf Inf
+## log_k2 -4.605 -Inf Inf
+## g_ilr 0.000 -Inf Inf
+##
+## Fixed parameter values:
+## None
+##
+## Optimised, transformed parameters:
+## Estimate Std. Error Lower Upper t value Pr(&gt;|t|) Pr(&gt;t)
+## parent_0 97.700 1.4400 93.800 102.0000 68.00 2.81e-07 1.40e-07
+## log_k1 -0.661 0.1330 -1.030 -0.2910 -4.96 7.72e-03 3.86e-03
+## log_k2 -4.290 0.0590 -4.450 -4.1200 -72.60 2.15e-07 1.08e-07
+## g_ilr -0.123 0.0512 -0.265 0.0193 -2.40 7.43e-02 3.72e-02
+##
+## Parameter correlation:
+## parent_0 log_k1 log_k2 g_ilr
+## parent_0 1.0000 0.164 0.0131 0.425
+## log_k1 0.1640 1.000 0.4648 -0.553
+## log_k2 0.0131 0.465 1.0000 -0.663
+## g_ilr 0.4253 -0.553 -0.6631 1.000
+##
+## Residual standard error: 1.44 on 4 degrees of freedom
+##
+## Backtransformed parameters:
+## Estimate Lower Upper
+## parent_0 97.7000 93.8000 102.0000
+## k1 0.5160 0.3560 0.7480
+## k2 0.0138 0.0117 0.0162
+## g 0.4570 0.4070 0.5070
+##
+## Chi2 error levels in percent:
+## err.min n.optim df
+## All data 2.23 4 4
+## parent 2.23 4 4
+##
+## Estimated disappearance times:
+## DT50 DT90 DT50_k1 DT50_k2
+## parent 7.46 123 1.34 50.4
+</code></pre>
+
+<p>Here, a look to the model plot, the confidence intervals of the parameters
+and the correlation matrix suggest that the parameter estimates are reliable, and
+the DFOP model can be used as the best-fit model based on the chi<sup>2</sup> error
+level criterion for laboratory data L3.</p>
+
+<h2>Laboratory Data L4</h2>
+
+<p>The following code defines example dataset L4 from the FOCUS kinetics
+report, p. 293</p>
+
+<pre><code class="r">FOCUS_2006_L4 = data.frame(
+ t = c(0, 3, 7, 14, 30, 60, 91, 120),
+ parent = c(96.6, 96.3, 94.3, 88.8, 74.9, 59.9, 53.5, 49.0))
+FOCUS_2006_L4_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L4)
+</code></pre>
+
+<p>SFO model, summary and plot:</p>
+
+<pre><code class="r">m.L4.SFO &lt;- mkinfit(SFO, FOCUS_2006_L4_mkin, quiet = TRUE)
+plot(m.L4.SFO)
+</code></pre>
+
+<p><img src="" alt="plot of chunk unnamed-chunk-19"/> </p>
+
+<pre><code class="r">summary(m.L4.SFO, data = FALSE)
+</code></pre>
+
+<pre><code>## mkin version: 0.9.31
+## R version: 3.1.1
+## Date of fit: Mon Jul 14 12:36:15 2014
+## Date of summary: Mon Jul 14 12:36:15 2014
+##
+## Equations:
+## [1] d_parent = - k_parent_sink * parent
+##
+## Method used for solution of differential equation system:
+## analytical
+##
+## Weighting: none
+##
+## Starting values for parameters to be optimised:
+## value type
+## parent_0 100.0 state
+## k_parent_sink 0.1 deparm
+##
+## Starting values for the transformed parameters actually optimised:
+## value lower upper
+## parent_0 100.000 -Inf Inf
+## log_k_parent_sink -2.303 -Inf Inf
+##
+## Fixed parameter values:
+## None
+##
+## Optimised, transformed parameters:
+## Estimate Std. Error Lower Upper t value Pr(&gt;|t|)
+## parent_0 96.40 1.95 91.70 101.00 49.5 4.57e-09
+## log_k_parent_sink -5.03 0.08 -5.23 -4.83 -62.9 1.09e-09
+## Pr(&gt;t)
+## parent_0 2.28e-09
+## log_k_parent_sink 5.44e-10
+##
+## Parameter correlation:
+## parent_0 log_k_parent_sink
+## parent_0 1.000 0.587
+## log_k_parent_sink 0.587 1.000
+##
+## Residual standard error: 3.65 on 6 degrees of freedom
+##
+## Backtransformed parameters:
+## Estimate Lower Upper
+## parent_0 96.40000 91.70000 1.01e+02
+## k_parent_sink 0.00654 0.00538 7.95e-03
+##
+## Chi2 error levels in percent:
+## err.min n.optim df
+## All data 3.29 2 6
+## parent 3.29 2 6
+##
+## Resulting formation fractions:
+## ff
+## parent_sink 1
+##
+## Estimated disappearance times:
+## DT50 DT90
+## parent 106 352
+</code></pre>
+
+<p>The chi<sup>2</sup> error level of 3.3% as well as the plot suggest that the model
+fits very well. </p>
+
+<p>The FOMC model for comparison</p>
+
+<pre><code class="r">m.L4.FOMC &lt;- mkinfit(FOMC, FOCUS_2006_L4_mkin, quiet = TRUE)
+plot(m.L4.FOMC)
+</code></pre>
+
+<p><img src="" alt="plot of chunk unnamed-chunk-20"/> </p>
+
+<pre><code class="r">summary(m.L4.FOMC, data = FALSE)
+</code></pre>
+
+<pre><code>## mkin version: 0.9.31
+## R version: 3.1.1
+## Date of fit: Mon Jul 14 12:36:15 2014
+## Date of summary: Mon Jul 14 12:36:15 2014
+##
+## Equations:
+## [1] d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
+##
+## Method used for solution of differential equation system:
+## analytical
+##
+## Weighting: none
+##
+## Starting values for parameters to be optimised:
+## value type
+## parent_0 100 state
+## alpha 1 deparm
+## beta 10 deparm
+##
+## Starting values for the transformed parameters actually optimised:
+## value lower upper
+## parent_0 100.000 -Inf Inf
+## log_alpha 0.000 -Inf Inf
+## log_beta 2.303 -Inf Inf
+##
+## Fixed parameter values:
+## None
+##
+## Optimised, transformed parameters:
+## Estimate Std. Error Lower Upper t value Pr(&gt;|t|) Pr(&gt;t)
+## parent_0 99.100 1.680 94.80 103.000 59.000 2.64e-08 1.32e-08
+## log_alpha -0.351 0.372 -1.31 0.607 -0.941 3.90e-01 1.95e-01
+## log_beta 4.170 0.564 2.73 5.620 7.410 7.06e-04 3.53e-04
+##
+## Parameter correlation:
+## parent_0 log_alpha log_beta
+## parent_0 1.000 -0.536 -0.608
+## log_alpha -0.536 1.000 0.991
+## log_beta -0.608 0.991 1.000
+##
+## Residual standard error: 2.31 on 5 degrees of freedom
+##
+## Backtransformed parameters:
+## Estimate Lower Upper
+## parent_0 99.100 94.80 103.00
+## alpha 0.704 0.27 1.83
+## beta 65.000 15.30 277.00
+##
+## Chi2 error levels in percent:
+## err.min n.optim df
+## All data 2.03 3 5
+## parent 2.03 3 5
+##
+## Estimated disappearance times:
+## DT50 DT90 DT50back
+## parent 109 1644 495
+</code></pre>
+
+<p>The error level at which the chi<sup>2</sup> test passes is slightly lower for the FOMC
+model. However, the difference appears negligible.</p>
+
+</body>
+
+</html>
diff --git a/vignettes/FOCUS_Z.pdf b/vignettes/FOCUS_Z.pdf
index a002f831..38490f09 100644
--- a/vignettes/FOCUS_Z.pdf
+++ b/vignettes/FOCUS_Z.pdf
Binary files differ
diff --git a/vignettes/mkin.pdf b/vignettes/mkin.pdf
index dca871a9..f41a9d6a 100644
--- a/vignettes/mkin.pdf
+++ b/vignettes/mkin.pdf
Binary files differ

Contact - Imprint