diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2014-10-15 01:13:48 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2014-10-15 01:32:43 +0200 |
commit | 65d31e345f9e61e9d05584b24df6a01c6c6ed18d (patch) | |
tree | dd4d973cc4d421957a81ead68397d151749f097c | |
parent | 4510a609159216041f10a33146534f5a8366ac76 (diff) |
Switch to using the Port algorithm per default
-rw-r--r-- | DESCRIPTION | 8 | ||||
-rw-r--r-- | NEWS.md | 4 | ||||
-rw-r--r-- | R/mkinfit.R | 2 | ||||
-rw-r--r-- | README.md | 3 | ||||
-rw-r--r-- | man/mkinfit.Rd | 24 | ||||
-rw-r--r-- | vignettes/FOCUS_L.html | 135 | ||||
-rw-r--r-- | vignettes/FOCUS_Z.pdf | bin | 220198 -> 220189 bytes |
7 files changed, 95 insertions, 81 deletions
diff --git a/DESCRIPTION b/DESCRIPTION index a984391c..d36c35cc 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -3,7 +3,7 @@ Type: Package Title: Routines for Fitting Kinetic Models with One or More State Variables to Chemical Degradation Data Version: 0.9-34 -Date: 2014-10-14 +Date: 2014-10-15 Authors@R: c(person("Johannes", "Ranke", role = c("aut", "cre", "cph"), email = "jranke@uni-bremen.de"), person("Katrin", "Lindenberger", role = "ctb"), @@ -12,9 +12,9 @@ Authors@R: c(person("Johannes", "Ranke", role = c("aut", "cre", "cph"), Description: Calculation routines based on the FOCUS Kinetics Report (2006). Includes a function for conveniently defining differential equation models, model solution based on eigenvalues if possible or using numerical solvers - and a choice of the optimisation methods made available by the FME package - (default is a Levenberg-Marquardt variant). Please note that no warranty is - implied for correctness of results or fitness for a particular purpose. + and a choice of the optimisation methods made available by the FME package. + Please note that no warranty is implied for correctness of results or fitness + for a particular purpose. Depends: minpack.lm, rootSolve Imports: FME, deSolve Suggests: knitr, RUnit @@ -1,5 +1,9 @@ # CHANGES in mkin VERSION 0.9-34 +## NEW FEATURES + +- Switch to using the Port algorithm (using a model/trust region approach) per default. While needing more iterations than the Levenberg-Marquardt algorithm previously used per default, it is less sensitive to starting parameters. + ## MINOR CHANGES - The formatting of differential equations in the summary was further improved diff --git a/R/mkinfit.R b/R/mkinfit.R index a966cea6..6494ea1e 100644 --- a/R/mkinfit.R +++ b/R/mkinfit.R @@ -28,7 +28,7 @@ mkinfit <- function(mkinmod, observed, fixed_initials = names(mkinmod$diffs)[-1],
solution_type = "auto",
method.ode = "lsoda",
- method.modFit = c("Marq", "Port", "SANN", "Nelder-Mead", "BFSG", "CG", "L-BFGS-B"),
+ method.modFit = c("Port", "Marq", "SANN", "Nelder-Mead", "BFSG", "CG", "L-BFGS-B"),
maxit.modFit = "auto",
control.modFit = list(),
transform_rates = TRUE,
@@ -93,8 +93,7 @@ documentation or the package vignettes referenced from the * Model optimisation with [`mkinfit`](http://kinfit.r-forge.r-project.org/mkin_static/mkinfit.html) internally using the `modFit` function from the `FME` package, - which uses the least-squares Levenberg-Marquardt algorithm from - `minpack.lm` per default. + but using the Port routine `nlminb` per default. * By default, kinetic rate constants and kinetic formation fractions are transformed internally using [`transform_odeparms`](http://kinfit.r-forge.r-project.org/mkin_static/transform_odeparms.html) diff --git a/man/mkinfit.Rd b/man/mkinfit.Rd index 21af9a05..c40dff83 100644 --- a/man/mkinfit.Rd +++ b/man/mkinfit.Rd @@ -7,14 +7,10 @@ This function uses the Flexible Modelling Environment package \code{\link{FME}} to create a function calculating the model cost, i.e. the deviation between the kinetic model and the observed data. This model cost is - then minimised using the Levenberg-Marquardt algorithm \code{\link{nls.lm}}, + then minimised using the Port algorithm \code{\link{nlminb}}, using the specified initial or fixed parameters and starting values. Per default, parameters in the kinetic models are internally transformed in order to better satisfy the assumption of a normal distribution of their estimators. - If fitting with transformed fractions leads to a suboptimal fit, doing a - first run without transforming fractions may help. A final - run using the optimised parameters from the previous run as starting values - can then be performed with transformed fractions. In each step of the optimsation, the kinetic model is solved using the function \code{\link{mkinpredict}}. The variance of the residuals for each observed variable can optionally be iteratively reweighted until convergence @@ -27,7 +23,7 @@ mkinfit(mkinmod, observed, fixed_parms = NULL, fixed_initials = names(mkinmod$diffs)[-1], solution_type = "auto", method.ode = "lsoda", - method.modFit = c("Marq", "Port", "SANN", "Nelder-Mead", "BFSG", "CG", "L-BFGS-B"), + method.modFit = c("Port", "Marq", "SANN", "Nelder-Mead", "BFSG", "CG", "L-BFGS-B"), maxit.modFit = "auto", control.modFit = list(), transform_rates = TRUE, @@ -107,13 +103,17 @@ mkinfit(mkinmod, observed, "lsoda" is performant, but sometimes fails to converge. } \item{method.modFit}{ - The optimisation method passed to \code{\link{modFit}}. The default "Marq" - is the Levenberg Marquardt algorithm \code{\link{nls.lm}} from the package - \code{minpack.lm} and usually needs the least number of iterations. + The optimisation method passed to \code{\link{modFit}}. - For more complex problems where local minima occur, the "Port" algorithm is - recommended as it is less prone to get trapped in local minima and depends - less on starting values for parameters. However, it needs more iterations. + In order to optimally deal with problems where local minima occur, the + "Port" algorithm is now used per default as it is less prone to get trapped + in local minima and depends less on starting values for parameters than + the Levenberg Marquardt variant selected by "Marq". However, "Port" needs + more iterations. + + The former default "Marq" is the Levenberg Marquardt algorithm + \code{\link{nls.lm}} from the package \code{minpack.lm} and usually needs + the least number of iterations. The "Pseudo" algorithm is not included because it needs finite parameter bounds which are currently not supported. diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html index 60c5132a..82bbd2c7 100644 --- a/vignettes/FOCUS_L.html +++ b/vignettes/FOCUS_L.html @@ -244,15 +244,15 @@ summary(m.L1.SFO) <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 -## Date of fit: Tue Oct 14 22:03:33 2014 -## Date of summary: Tue Oct 14 22:03:33 2014 +## Date of fit: Wed Oct 15 00:58:15 2014 +## Date of summary: Wed Oct 15 00:58:15 2014 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 14 model solutions performed in 0.081 s +## Fitted with method Port using 37 model solutions performed in 0.203 s ## ## Weighting: none ## @@ -272,7 +272,7 @@ summary(m.L1.SFO) ## Optimised, transformed parameters: ## Estimate Std. Error Lower Upper t value Pr(>|t|) ## parent_0 92.50 1.3700 89.60 95.40 67.6 4.34e-21 -## log_k_parent_sink -2.35 0.0406 -2.43 -2.26 -57.9 5.16e-20 +## log_k_parent_sink -2.35 0.0406 -2.43 -2.26 -57.9 5.15e-20 ## Pr(>t) ## parent_0 2.17e-21 ## log_k_parent_sink 2.58e-20 @@ -341,20 +341,31 @@ The residual plot can be easily obtained by</p> is checked.</p> <pre><code class="r">m.L1.FOMC <- mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet=TRUE) -summary(m.L1.FOMC, data = FALSE) +</code></pre> + +<pre><code>## Warning: Optimisation by method Port did not converge. +## Convergence code is 1 +</code></pre> + +<pre><code class="r">summary(m.L1.FOMC, data = FALSE) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 -## Date of fit: Tue Oct 14 22:03:34 2014 -## Date of summary: Tue Oct 14 22:03:34 2014 +## Date of fit: Wed Oct 15 00:58:16 2014 +## Date of summary: Wed Oct 15 00:58:16 2014 +## +## +## Warning: Optimisation by method Port did not converge. +## Convergence code is 1 +## ## ## Equations: ## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 53 model solutions performed in 0.289 s +## Fitted with method Port using 188 model solutions performed in 1.011 s ## ## Weighting: none ## @@ -375,23 +386,23 @@ summary(m.L1.FOMC, data = FALSE) ## ## Optimised, transformed parameters: ## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t) -## parent_0 92.5 1.45 89.40 95.6 63.60 1.17e-19 5.85e-20 -## log_alpha 14.9 10.60 -7.75 37.5 1.40 1.82e-01 9.08e-02 -## log_beta 17.2 10.60 -5.38 39.8 1.62 1.25e-01 6.26e-02 +## parent_0 92.5 1.42 89.4 95.5 65.00 8.32e-20 4.16e-20 +## log_alpha 15.4 15.10 -16.7 47.6 1.02 3.22e-01 1.61e-01 +## log_beta 17.8 15.10 -14.4 49.9 1.18 2.57e-01 1.28e-01 ## ## Parameter correlation: ## parent_0 log_alpha log_beta -## parent_0 1.000 0.24 0.238 -## log_alpha 0.240 1.00 1.000 -## log_beta 0.238 1.00 1.000 +## parent_0 1.000 0.113 0.111 +## log_alpha 0.113 1.000 1.000 +## log_beta 0.111 1.000 1.000 ## ## Residual standard error: 3.05 on 15 degrees of freedom ## ## Backtransformed parameters: ## Estimate Lower Upper -## parent_0 9.25e+01 8.94e+01 9.56e+01 -## alpha 2.85e+06 4.32e-04 1.88e+16 -## beta 2.98e+07 4.59e-03 1.93e+17 +## parent_0 9.25e+01 8.94e+01 9.55e+01 +## alpha 5.04e+06 5.51e-08 4.62e+20 +## beta 5.28e+07 5.73e-07 4.86e+21 ## ## Chi2 error levels in percent: ## err.min n.optim df @@ -440,15 +451,15 @@ summary(m.L2.SFO) <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 -## Date of fit: Tue Oct 14 22:03:35 2014 -## Date of summary: Tue Oct 14 22:03:35 2014 +## Date of fit: Wed Oct 15 00:58:17 2014 +## Date of summary: Wed Oct 15 00:58:17 2014 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 29 model solutions performed in 0.154 s +## Fitted with method Port using 41 model solutions performed in 0.22 s ## ## Weighting: none ## @@ -500,10 +511,10 @@ summary(m.L2.SFO) ## ## Data: ## time variable observed predicted residual -## 0 parent 96.1 9.15e+01 4.635 -## 0 parent 91.8 9.15e+01 0.335 -## 1 parent 41.4 4.71e+01 -5.740 -## 1 parent 38.7 4.71e+01 -8.440 +## 0 parent 96.1 9.15e+01 4.634 +## 0 parent 91.8 9.15e+01 0.334 +## 1 parent 41.4 4.71e+01 -5.739 +## 1 parent 38.7 4.71e+01 -8.439 ## 3 parent 19.3 1.25e+01 6.779 ## 3 parent 22.3 1.25e+01 9.779 ## 7 parent 4.6 8.83e-01 3.717 @@ -522,7 +533,7 @@ plot(m.L2.SFO) mkinresplot(m.L2.SFO) </code></pre> -<p><img src="" alt="plot of chunk unnamed-chunk-9"/> </p> +<p><img src="" alt="plot of chunk unnamed-chunk-9"/> </p> <p>In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at @@ -543,22 +554,22 @@ plot(m.L2.FOMC) mkinresplot(m.L2.FOMC) </code></pre> -<p><img src="" alt="plot of chunk unnamed-chunk-10"/> </p> +<p><img src="" alt="plot of chunk unnamed-chunk-10"/> </p> <pre><code class="r">summary(m.L2.FOMC, data = FALSE) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 -## Date of fit: Tue Oct 14 22:03:36 2014 -## Date of summary: Tue Oct 14 22:03:36 2014 +## Date of fit: Wed Oct 15 00:58:17 2014 +## Date of summary: Wed Oct 15 00:58:17 2014 ## ## Equations: ## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 35 model solutions performed in 0.192 s +## Fitted with method Port using 81 model solutions performed in 0.438 s ## ## Weighting: none ## @@ -617,7 +628,7 @@ experimental error has to be assumed in order to explain the data.</p> plot(m.L2.DFOP) </code></pre> -<p><img src="" alt="plot of chunk unnamed-chunk-11"/> </p> +<p><img src="" alt="plot of chunk unnamed-chunk-11"/> </p> <p>Here, the default starting parameters for the DFOP model obviously do not lead to a reasonable solution. Therefore the fit is repeated with different starting @@ -629,15 +640,15 @@ parameters.</p> plot(m.L2.DFOP) </code></pre> -<p><img src="" alt="plot of chunk unnamed-chunk-12"/> </p> +<p><img src="" alt="plot of chunk unnamed-chunk-12"/> </p> <pre><code class="r">summary(m.L2.DFOP, data = FALSE) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 -## Date of fit: Tue Oct 14 22:03:36 2014 -## Date of summary: Tue Oct 14 22:03:36 2014 +## Date of fit: Wed Oct 15 00:58:21 2014 +## Date of summary: Wed Oct 15 00:58:21 2014 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -646,7 +657,7 @@ plot(m.L2.DFOP) ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 43 model solutions performed in 0.24 s +## Fitted with method Port using 336 model solutions performed in 1.844 s ## ## Weighting: none ## @@ -669,8 +680,8 @@ plot(m.L2.DFOP) ## ## Optimised, transformed parameters: ## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t) -## parent_0 94.000 NA NA NA NA NA NA -## log_k1 6.160 NA NA NA NA NA NA +## parent_0 93.900 NA NA NA NA NA NA +## log_k1 3.120 NA NA NA NA NA NA ## log_k2 -1.090 NA NA NA NA NA NA ## g_ilr -0.282 NA NA NA NA NA NA ## @@ -681,8 +692,8 @@ plot(m.L2.DFOP) ## ## Backtransformed parameters: ## Estimate Lower Upper -## parent_0 94.000 NA NA -## k1 476.000 NA NA +## parent_0 93.900 NA NA +## k1 22.700 NA NA ## k2 0.337 NA NA ## g 0.402 NA NA ## @@ -693,7 +704,7 @@ plot(m.L2.DFOP) ## ## Estimated disappearance times: ## DT50 DT90 DT50_k1 DT50_k2 -## parent NA NA 0.00146 2.06 +## parent NA NA 0.0306 2.06 </code></pre> <p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the @@ -718,22 +729,22 @@ FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3) plot(m.L3.SFO) </code></pre> -<p><img src="" alt="plot of chunk unnamed-chunk-14"/> </p> +<p><img src="" alt="plot of chunk unnamed-chunk-14"/> </p> <pre><code class="r">summary(m.L3.SFO) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 -## Date of fit: Tue Oct 14 22:03:37 2014 -## Date of summary: Tue Oct 14 22:03:37 2014 +## Date of fit: Wed Oct 15 00:58:22 2014 +## Date of summary: Wed Oct 15 00:58:22 2014 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 44 model solutions performed in 0.237 s +## Fitted with method Port using 43 model solutions performed in 0.232 s ## ## Weighting: none ## @@ -785,14 +796,14 @@ plot(m.L3.SFO) ## ## Data: ## time variable observed predicted residual -## 0 parent 97.8 74.87 22.9274 -## 3 parent 60.0 69.41 -9.4065 +## 0 parent 97.8 74.87 22.9281 +## 3 parent 60.0 69.41 -9.4061 ## 7 parent 51.0 62.73 -11.7340 -## 14 parent 43.0 52.56 -9.5634 -## 30 parent 35.0 35.08 -0.0828 -## 60 parent 22.0 16.44 5.5614 -## 91 parent 15.0 7.51 7.4896 -## 120 parent 12.0 3.61 8.3908 +## 14 parent 43.0 52.56 -9.5638 +## 30 parent 35.0 35.08 -0.0839 +## 60 parent 22.0 16.44 5.5602 +## 91 parent 15.0 7.51 7.4887 +## 120 parent 12.0 3.61 8.3903 </code></pre> <p>The chi<sup>2</sup> error level of 21% as well as the plot suggest that the model @@ -811,15 +822,15 @@ plot(m.L3.FOMC) <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 -## Date of fit: Tue Oct 14 22:03:37 2014 -## Date of summary: Tue Oct 14 22:03:37 2014 +## Date of fit: Wed Oct 15 00:58:22 2014 +## Date of summary: Wed Oct 15 00:58:22 2014 ## ## Equations: ## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 26 model solutions performed in 0.139 s +## Fitted with method Port using 83 model solutions performed in 0.442 s ## ## Weighting: none ## @@ -884,8 +895,8 @@ plot(m.L3.DFOP) <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 -## Date of fit: Tue Oct 14 22:03:37 2014 -## Date of summary: Tue Oct 14 22:03:37 2014 +## Date of fit: Wed Oct 15 00:58:23 2014 +## Date of summary: Wed Oct 15 00:58:23 2014 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -894,7 +905,7 @@ plot(m.L3.DFOP) ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 37 model solutions performed in 0.207 s +## Fitted with method Port using 137 model solutions performed in 0.778 s ## ## Weighting: none ## @@ -982,15 +993,15 @@ plot(m.L4.SFO) <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 -## Date of fit: Tue Oct 14 22:03:38 2014 -## Date of summary: Tue Oct 14 22:03:38 2014 +## Date of fit: Wed Oct 15 00:58:24 2014 +## Date of summary: Wed Oct 15 00:58:24 2014 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 20 model solutions performed in 0.106 s +## Fitted with method Port using 46 model solutions performed in 0.246 s ## ## Weighting: none ## @@ -1057,15 +1068,15 @@ plot(m.L4.FOMC) <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 -## Date of fit: Tue Oct 14 22:03:38 2014 -## Date of summary: Tue Oct 14 22:03:38 2014 +## Date of fit: Wed Oct 15 00:58:24 2014 +## Date of summary: Wed Oct 15 00:58:24 2014 ## ## Equations: ## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Marq using 48 model solutions performed in 0.26 s +## Fitted with method Port using 66 model solutions performed in 0.359 s ## ## Weighting: none ## diff --git a/vignettes/FOCUS_Z.pdf b/vignettes/FOCUS_Z.pdf Binary files differindex b5898b7c..0013cd5e 100644 --- a/vignettes/FOCUS_Z.pdf +++ b/vignettes/FOCUS_Z.pdf |