diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2015-11-13 11:01:49 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2015-11-13 11:20:59 +0100 |
commit | 6f596ecec2c54d7d91cf3ca16b8643b64b903e57 (patch) | |
tree | 57425adb3cff023b3996602aa4f0a6110e98aa3c | |
parent | ba07744bf3933402d4ef815cf5c2575253b1fd7e (diff) |
Add plots to compiled_models vignette, rebuild staticdocs
51 files changed, 238 insertions, 207 deletions
diff --git a/DESCRIPTION b/DESCRIPTION index bf32104d..313015b4 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -3,7 +3,7 @@ Type: Package Title: Routines for Fitting Kinetic Models with One or More State Variables to Chemical Degradation Data Version: 0.9.41.9000 -Date: 2015-11-09 +Date: 2015-11-13 Authors@R: c(person("Johannes", "Ranke", role = c("aut", "cre", "cph"), email = "jranke@uni-bremen.de"), person("Katrin", "Lindenberger", role = "ctb"), @@ -19,7 +19,7 @@ Description: Calculation routines based on the FOCUS Kinetics Report (2006). for a particular purpose. Depends: minpack.lm, rootSolve, inline, parallel Imports: stats, graphics, methods, FME, deSolve, R6 -Suggests: knitr, testthat, microbenchmark +Suggests: knitr, testthat, microbenchmark, ggplot2 License: GPL LazyLoad: yes LazyData: yes diff --git a/GNUmakefile b/GNUmakefile index 7dd9b3a1..40be37c9 100644 --- a/GNUmakefile +++ b/GNUmakefile @@ -91,6 +91,8 @@ sd: @echo Now execute @echo "\n staticdocs::build_site()\n" $(RBIN)/R + git add -A + git commit -m 'Static documentation rebuilt by staticdocs::build_site()' -e r-forge: sd rm -rf $(SDDIR)/* @@ -99,8 +101,6 @@ r-forge: sd git archive master > $(HOME)/mkin.tar;\ cd $(RFDIR) && rm -r `ls` && tar -xf $(HOME)/mkin.tar;\ svn add --force .; svn rm --force `svn status | grep "\!" | cut -d " " -f 8`; cd $(RFSVN) && svn commit -m 'sync with git' - git add -A - git commit -m 'Vignettes rebuilt by staticdocs::build_site() for static documentation on r-forge' winbuilder: build date @@ -2,7 +2,9 @@ ## mkin 0.9.41.9000 +### Minor changes +- Add plots to `compiled_models` vignette ## mkin 0.9-41 (2015-11-09) diff --git a/inst/web/DFOP.solution.html b/inst/web/DFOP.solution.html index 87f3ea21..b5bdbc33 100644 --- a/inst/web/DFOP.solution.html +++ b/inst/web/DFOP.solution.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>DFOP.solution. mkin 0.9-41</title> +<title>DFOP.solution. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/Extract.mmkin.html b/inst/web/Extract.mmkin.html index 6a175a02..4effdf0e 100644 --- a/inst/web/Extract.mmkin.html +++ b/inst/web/Extract.mmkin.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>[.mmkin. mkin 0.9-41</title> +<title>[.mmkin. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> @@ -181,7 +181,7 @@ $calls $time user system elapsed - 0.268 0.000 0.269 + 0.260 0.000 0.259 $mkinmod <mkinmod> model generated with @@ -367,7 +367,7 @@ function (P) } return(mC) } -<environment: 0x2d96b00> +<environment: 0x36e8dd8> $cost_notrans function (P) @@ -389,7 +389,7 @@ function (P) scaleVar = scaleVar) return(mC) } -<environment: 0x2d96b00> +<environment: 0x36e8dd8> $hessian_notrans parent_0 alpha beta @@ -455,7 +455,7 @@ $bparms.state 99.66619 $date -[1] "Mon Nov 9 10:11:49 2015" +[1] "Fri Nov 13 11:14:06 2015" attr(,"class") [1] "mkinfit" "modFit" @@ -540,7 +540,7 @@ $calls $time user system elapsed - 0.112 0.000 0.112 + 0.080 0.008 0.087 $mkinmod <mkinmod> model generated with @@ -727,7 +727,7 @@ function (P) } return(mC) } -<environment: 0x2fa3d28> +<environment: 0x33c0330> $cost_notrans function (P) @@ -749,7 +749,7 @@ function (P) scaleVar = scaleVar) return(mC) } -<environment: 0x2fa3d28> +<environment: 0x33c0330> $hessian_notrans parent_0 k_parent_sink @@ -812,7 +812,7 @@ $bparms.state 99.17407 $date -[1] "Mon Nov 9 10:11:48 2015" +[1] "Fri Nov 13 11:14:06 2015" attr(,"class") [1] "mkinfit" "modFit" @@ -890,7 +890,7 @@ $calls $time user system elapsed - 0.112 0.000 0.112 + 0.080 0.008 0.087 $mkinmod <mkinmod> model generated with @@ -1077,7 +1077,7 @@ function (P) } return(mC) } -<environment: 0x2fa3d28> +<environment: 0x33c0330> $cost_notrans function (P) @@ -1099,7 +1099,7 @@ function (P) scaleVar = scaleVar) return(mC) } -<environment: 0x2fa3d28> +<environment: 0x33c0330> $hessian_notrans parent_0 k_parent_sink @@ -1162,7 +1162,7 @@ $bparms.state 99.17407 $date -[1] "Mon Nov 9 10:11:48 2015" +[1] "Fri Nov 13 11:14:06 2015" attr(,"class") [1] "mkinfit" "modFit" diff --git a/inst/web/FOCUS_2006_DFOP_ref_A_to_B.html b/inst/web/FOCUS_2006_DFOP_ref_A_to_B.html index 19ec4c4b..b009f6e6 100644 --- a/inst/web/FOCUS_2006_DFOP_ref_A_to_B.html +++ b/inst/web/FOCUS_2006_DFOP_ref_A_to_B.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>FOCUS_2006_DFOP_ref_A_to_B. mkin 0.9-41</title> +<title>FOCUS_2006_DFOP_ref_A_to_B. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/FOCUS_2006_FOMC_ref_A_to_F.html b/inst/web/FOCUS_2006_FOMC_ref_A_to_F.html index ff7883ec..c28cd888 100644 --- a/inst/web/FOCUS_2006_FOMC_ref_A_to_F.html +++ b/inst/web/FOCUS_2006_FOMC_ref_A_to_F.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>FOCUS_2006_FOMC_ref_A_to_F. mkin 0.9-41</title> +<title>FOCUS_2006_FOMC_ref_A_to_F. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/FOCUS_2006_HS_ref_A_to_F.html b/inst/web/FOCUS_2006_HS_ref_A_to_F.html index 5786889a..ad779e12 100644 --- a/inst/web/FOCUS_2006_HS_ref_A_to_F.html +++ b/inst/web/FOCUS_2006_HS_ref_A_to_F.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>FOCUS_2006_HS_ref_A_to_F. mkin 0.9-41</title> +<title>FOCUS_2006_HS_ref_A_to_F. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/FOCUS_2006_SFO_ref_A_to_F.html b/inst/web/FOCUS_2006_SFO_ref_A_to_F.html index 7663cb53..391aa699 100644 --- a/inst/web/FOCUS_2006_SFO_ref_A_to_F.html +++ b/inst/web/FOCUS_2006_SFO_ref_A_to_F.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>FOCUS_2006_SFO_ref_A_to_F. mkin 0.9-41</title> +<title>FOCUS_2006_SFO_ref_A_to_F. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/FOCUS_2006_datasets.html b/inst/web/FOCUS_2006_datasets.html index 92e069b5..64ae3bd7 100644 --- a/inst/web/FOCUS_2006_datasets.html +++ b/inst/web/FOCUS_2006_datasets.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>FOCUS_2006_datasets. mkin 0.9-41</title> +<title>FOCUS_2006_datasets. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/FOMC.solution.html b/inst/web/FOMC.solution.html index 0f3f265b..06d2d233 100644 --- a/inst/web/FOMC.solution.html +++ b/inst/web/FOMC.solution.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>FOMC.solution. mkin 0.9-41</title> +<title>FOMC.solution. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/HS.solution.html b/inst/web/HS.solution.html index 80cc543b..b7573295 100644 --- a/inst/web/HS.solution.html +++ b/inst/web/HS.solution.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>HS.solution. mkin 0.9-41</title> +<title>HS.solution. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/IORE.solution.html b/inst/web/IORE.solution.html index d90724eb..b2b60111 100644 --- a/inst/web/IORE.solution.html +++ b/inst/web/IORE.solution.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>IORE.solution. mkin 0.9-41</title> +<title>IORE.solution. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/SFO.solution.html b/inst/web/SFO.solution.html index b7d81cb7..a30000d8 100644 --- a/inst/web/SFO.solution.html +++ b/inst/web/SFO.solution.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>SFO.solution. mkin 0.9-41</title> +<title>SFO.solution. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/SFORB.solution.html b/inst/web/SFORB.solution.html index 9388a848..42c6baa9 100644 --- a/inst/web/SFORB.solution.html +++ b/inst/web/SFORB.solution.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>SFORB.solution. mkin 0.9-41</title> +<title>SFORB.solution. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/endpoints.html b/inst/web/endpoints.html index 458d359c..8c9b557f 100644 --- a/inst/web/endpoints.html +++ b/inst/web/endpoints.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>endpoints. mkin 0.9-41</title> +<title>endpoints. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/geometric_mean.html b/inst/web/geometric_mean.html index 93962dca..2323a337 100644 --- a/inst/web/geometric_mean.html +++ b/inst/web/geometric_mean.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>geometric_mean. mkin 0.9-41</title> +<title>geometric_mean. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/ilr.html b/inst/web/ilr.html index 07076e73..b75c111f 100644 --- a/inst/web/ilr.html +++ b/inst/web/ilr.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>ilr. mkin 0.9-41</title> +<title>ilr. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" René Lehmann and Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/index.html b/inst/web/index.html index 71fdee45..bb85e72f 100644 --- a/inst/web/index.html +++ b/inst/web/index.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>Index. mkin 0.9-41</title> +<title>Index. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> @@ -430,7 +430,7 @@ You can also browse the source code at <a href="http://cgit.jrwb.de/mkin">cgit.j <ul> <li><strong>Depends</strong>: minpack.lm, rootSolve, inline, parallel</li> <li><strong>Imports</strong>: stats, graphics, methods, FME, deSolve, R6</li> - <li><strong>Suggests</strong>: knitr, testthat, microbenchmark</li> + <li><strong>Suggests</strong>: knitr, testthat, microbenchmark, ggplot2</li> </ul> <h2>Authors</h2> diff --git a/inst/web/mccall81_245T.html b/inst/web/mccall81_245T.html index cd8d4d73..c959f114 100644 --- a/inst/web/mccall81_245T.html +++ b/inst/web/mccall81_245T.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mccall81_245T. mkin 0.9-41</title> +<title>mccall81_245T. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> @@ -112,10 +112,10 @@ fixed_parms = "k_phenol_sink", quiet = TRUE) summary(fit.2, data = FALSE) </div> -<div class='output'>mkin version: 0.9.41 +<div class='output'>mkin version: 0.9.41.9000 R version: 3.2.2 -Date of fit: Mon Nov 9 10:11:56 2015 -Date of summary: Mon Nov 9 10:11:56 2015 +Date of fit: Fri Nov 13 11:14:13 2015 +Date of summary: Fri Nov 13 11:14:13 2015 Equations: d_T245 = - k_T245_sink * T245 - k_T245_phenol * T245 @@ -124,7 +124,7 @@ d_anisole = + k_phenol_anisole * phenol - k_anisole_sink * anisole Model predictions using solution type deSolve -Fitted with method Port using 246 model solutions performed in 1.39 s +Fitted with method Port using 246 model solutions performed in 1.369 s Weighting: none diff --git a/inst/web/mkin_long_to_wide.html b/inst/web/mkin_long_to_wide.html index 7c459da7..3bb32a4d 100644 --- a/inst/web/mkin_long_to_wide.html +++ b/inst/web/mkin_long_to_wide.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkin_long_to_wide. mkin 0.9-41</title> +<title>mkin_long_to_wide. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkin_wide_to_long.html b/inst/web/mkin_wide_to_long.html index 57e3e8ef..82dba968 100644 --- a/inst/web/mkin_wide_to_long.html +++ b/inst/web/mkin_wide_to_long.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkin_wide_to_long. mkin 0.9-41</title> +<title>mkin_wide_to_long. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinds.html b/inst/web/mkinds.html index 5ff5e40c..d883c8e0 100644 --- a/inst/web/mkinds.html +++ b/inst/web/mkinds.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinds. mkin 0.9-41</title> +<title>mkinds. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinerrmin.html b/inst/web/mkinerrmin.html index d8a90977..0aafc760 100644 --- a/inst/web/mkinerrmin.html +++ b/inst/web/mkinerrmin.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinerrmin. mkin 0.9-41</title> +<title>mkinerrmin. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinfit.html b/inst/web/mkinfit.html index 0550ee65..c2998ae6 100644 --- a/inst/web/mkinfit.html +++ b/inst/web/mkinfit.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinfit. mkin 0.9-41</title> +<title>mkinfit. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> @@ -315,17 +315,17 @@ fit <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE) summary(fit) </div> -<div class='output'>mkin version: 0.9.41 +<div class='output'>mkin version: 0.9.41.9000 R version: 3.2.2 -Date of fit: Mon Nov 9 10:11:58 2015 -Date of summary: Mon Nov 9 10:11:58 2015 +Date of fit: Fri Nov 13 11:14:16 2015 +Date of summary: Fri Nov 13 11:14:16 2015 Equations: d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent Model predictions using solution type analytical -Fitted with method Port using 64 model solutions performed in 0.194 s +Fitted with method Port using 64 model solutions performed in 0.171 s Weighting: none @@ -401,7 +401,7 @@ print(system.time(fit <- mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "eigen", quiet = TRUE))) </div> <div class='output'> user system elapsed - 1.188 1.228 0.910 + 1.200 1.188 0.898 </div> <div class='input'>coef(fit) </div> diff --git a/inst/web/mkinmod.html b/inst/web/mkinmod.html index 7b43beb7..ea549f29 100644 --- a/inst/web/mkinmod.html +++ b/inst/web/mkinmod.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinmod. mkin 0.9-41</title> +<title>mkinmod. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinparplot.html b/inst/web/mkinparplot.html index 396e1428..8027af58 100644 --- a/inst/web/mkinparplot.html +++ b/inst/web/mkinparplot.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinparplot. mkin 0.9-41</title> +<title>mkinparplot. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinplot.html b/inst/web/mkinplot.html index 74c8c29f..c8787242 100644 --- a/inst/web/mkinplot.html +++ b/inst/web/mkinplot.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinplot. mkin 0.9-41</title> +<title>mkinplot. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinpredict.html b/inst/web/mkinpredict.html index 900ee26f..ee452a18 100644 --- a/inst/web/mkinpredict.html +++ b/inst/web/mkinpredict.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinpredict. mkin 0.9-41</title> +<title>mkinpredict. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> @@ -315,7 +315,7 @@ 201 20 4.978707 27.46227 </div> <div class='output'> user system elapsed - 0.020 0.000 0.003 + 0.016 0.004 0.002 </div> <div class='input'> system.time( print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01), @@ -326,7 +326,7 @@ 201 20 4.978707 27.46227 </div> <div class='output'> user system elapsed - 0.092 0.000 0.092 + 0.056 0.000 0.054 </div></pre> </div> <div class="span4"> diff --git a/inst/web/mkinresplot.html b/inst/web/mkinresplot.html index 579c047e..ec82518b 100644 --- a/inst/web/mkinresplot.html +++ b/inst/web/mkinresplot.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinresplot. mkin 0.9-41</title> +<title>mkinresplot. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mkinsub.html b/inst/web/mkinsub.html index 94e650ff..73b19907 100644 --- a/inst/web/mkinsub.html +++ b/inst/web/mkinsub.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mkinsub. mkin 0.9-41</title> +<title>mkinsub. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/mmkin.html b/inst/web/mmkin.html index e09e6859..cec39fc8 100644 --- a/inst/web/mmkin.html +++ b/inst/web/mmkin.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>mmkin. mkin 0.9-41</title> +<title>mmkin. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/plot.mkinfit.html b/inst/web/plot.mkinfit.html index 5308ecec..8acf1e19 100644 --- a/inst/web/plot.mkinfit.html +++ b/inst/web/plot.mkinfit.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>plot.mkinfit. mkin 0.9-41</title> +<title>plot.mkinfit. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/plot.mmkin.html b/inst/web/plot.mmkin.html index 49b5d3af..11a1ba54 100644 --- a/inst/web/plot.mmkin.html +++ b/inst/web/plot.mmkin.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>plot.mmkin. mkin 0.9-41</title> +<title>plot.mmkin. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/print.mkinds.html b/inst/web/print.mkinds.html index d2f5f806..fdaaa64a 100644 --- a/inst/web/print.mkinds.html +++ b/inst/web/print.mkinds.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>print.mkinds. mkin 0.9-41</title> +<title>print.mkinds. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/print.mkinmod.html b/inst/web/print.mkinmod.html index dd94db34..457ac78f 100644 --- a/inst/web/print.mkinmod.html +++ b/inst/web/print.mkinmod.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>print.mkinmod. mkin 0.9-41</title> +<title>print.mkinmod. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/schaefer07_complex_case.html b/inst/web/schaefer07_complex_case.html index 403e7229..e23bc962 100644 --- a/inst/web/schaefer07_complex_case.html +++ b/inst/web/schaefer07_complex_case.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>schaefer07_complex_case. mkin 0.9-41</title> +<title>schaefer07_complex_case. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/summary.mkinfit.html b/inst/web/summary.mkinfit.html index 2958b020..1c63e7b9 100644 --- a/inst/web/summary.mkinfit.html +++ b/inst/web/summary.mkinfit.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>summary.mkinfit. mkin 0.9-41</title> +<title>summary.mkinfit. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> @@ -157,17 +157,17 @@ <h2 id="examples">Examples</h2> <pre class="examples"><div class='input'> summary(mkinfit(mkinmod(parent = list(type = "SFO")), FOCUS_2006_A, quiet = TRUE)) </div> -<div class='output'>mkin version: 0.9.41 +<div class='output'>mkin version: 0.9.41.9000 R version: 3.2.2 -Date of fit: Mon Nov 9 10:12:08 2015 -Date of summary: Mon Nov 9 10:12:08 2015 +Date of fit: Fri Nov 13 11:14:26 2015 +Date of summary: Fri Nov 13 11:14:26 2015 Equations: d_parent = - k_parent_sink * parent Model predictions using solution type analytical -Fitted with method Port using 35 model solutions performed in 0.105 s +Fitted with method Port using 35 model solutions performed in 0.151 s Weighting: none diff --git a/inst/web/synthetic_data_for_UBA.html b/inst/web/synthetic_data_for_UBA.html index 3694bcb9..2ae4c868 100644 --- a/inst/web/synthetic_data_for_UBA.html +++ b/inst/web/synthetic_data_for_UBA.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>synthetic_data_for_UBA_2014. mkin 0.9-41</title> +<title>synthetic_data_for_UBA_2014. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=""> @@ -32,7 +32,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> diff --git a/inst/web/transform_odeparms.html b/inst/web/transform_odeparms.html index 36dfecf8..49639b47 100644 --- a/inst/web/transform_odeparms.html +++ b/inst/web/transform_odeparms.html @@ -2,7 +2,7 @@ <html lang="en"> <head> <meta charset="utf-8"> -<title>transform_odeparms. mkin 0.9-41</title> +<title>transform_odeparms. mkin 0.9.41.9000</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="author" content=" Johannes Ranke @@ -34,7 +34,7 @@ <div class="navbar"> <div class="navbar-inner"> <div class="container"> - <a class="brand" href="#">mkin 0.9-41</a> + <a class="brand" href="#">mkin 0.9.41.9000</a> <div class="nav"> <ul class="nav"> <li><a href="index.html"><i class="icon-home icon-white"></i> Index</a></li> @@ -133,10 +133,10 @@ backtransform_odeparms(transparms, mkinmod, transform_rates = TRUE, t fit <- mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE) summary(fit, data=FALSE) # See transformed and backtransformed parameters </div> -<div class='output'>mkin version: 0.9.41 +<div class='output'>mkin version: 0.9.41.9000 R version: 3.2.2 -Date of fit: Mon Nov 9 10:12:09 2015 -Date of summary: Mon Nov 9 10:12:09 2015 +Date of fit: Fri Nov 13 11:14:27 2015 +Date of summary: Fri Nov 13 11:14:27 2015 Equations: d_parent = - k_parent_sink * parent - k_parent_m1 * parent @@ -144,7 +144,7 @@ d_m1 = + k_parent_m1 * parent - k_m1_sink * m1 Model predictions using solution type deSolve -Fitted with method Port using 153 model solutions performed in 0.632 s +Fitted with method Port using 153 model solutions performed in 0.619 s Weighting: none diff --git a/inst/web/vignettes/FOCUS_D.html b/inst/web/vignettes/FOCUS_D.html index 557ceb03..d9fc6e18 100644 --- a/inst/web/vignettes/FOCUS_D.html +++ b/inst/web/vignettes/FOCUS_D.html @@ -10,7 +10,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2015-11-09" /> +<meta name="date" content="2015-11-13" /> <title>Example evaluation of FOCUS Example Dataset D</title> @@ -64,7 +64,7 @@ img { <div id="header"> <h1 class="title">Example evaluation of FOCUS Example Dataset D</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2015-11-09</em></h4> +<h4 class="date"><em>2015-11-13</em></h4> </div> diff --git a/inst/web/vignettes/FOCUS_L.html b/inst/web/vignettes/FOCUS_L.html index 9bb60153..9584aee5 100644 --- a/inst/web/vignettes/FOCUS_L.html +++ b/inst/web/vignettes/FOCUS_L.html @@ -10,7 +10,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2015-11-09" /> +<meta name="date" content="2015-11-13" /> <title>Example evaluation of FOCUS Laboratory Data L1 to L3</title> @@ -65,7 +65,7 @@ img { <div id="header"> <h1 class="title">Example evaluation of FOCUS Laboratory Data L1 to L3</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2015-11-09</em></h4> +<h4 class="date"><em>2015-11-13</em></h4> </div> <div id="TOC"> diff --git a/inst/web/vignettes/FOCUS_Z.pdf b/inst/web/vignettes/FOCUS_Z.pdf Binary files differindex 31480019..1d08173a 100644 --- a/inst/web/vignettes/FOCUS_Z.pdf +++ b/inst/web/vignettes/FOCUS_Z.pdf diff --git a/inst/web/vignettes/compiled_models.html b/inst/web/vignettes/compiled_models.html index 7722d95a..c7f4fbea 100644 --- a/inst/web/vignettes/compiled_models.html +++ b/inst/web/vignettes/compiled_models.html @@ -10,7 +10,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2015-11-09" /> +<meta name="date" content="2015-11-13" /> <title>Performance benefit by using compiled model definitions in mkin</title> @@ -65,7 +65,7 @@ img { <div id="header"> <h1 class="title">Performance benefit by using compiled model definitions in mkin</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2015-11-09</em></h4> +<h4 class="date"><em>2015-11-13</em></h4> </div> <div id="TOC"> @@ -89,28 +89,36 @@ SFO_SFO <- mkinmod( <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> <p>We can compare the performance of the Eigenvalue based solution against the compiled version and the R implementation of the differential equations using the microbenchmark package.</p> <pre class="r"><code>library("microbenchmark") +library("ggplot2") mb.1 <- microbenchmark( - mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "deSolve", use_compiled = FALSE, - quiet = TRUE), - mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "eigen", quiet = TRUE), - mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "deSolve", quiet = TRUE), + "deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, + solution_type = "deSolve", + use_compiled = FALSE, quiet = TRUE), + "Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D, + solution_type = "eigen", quiet = TRUE), + "deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, + solution_type = "deSolve", quiet = TRUE), times = 3, control = list(warmup = 1)) -smb.1 <- summary(mb.1)[-1] -rownames(smb.1) <- c("deSolve, not compiled", "Eigenvalue based", "deSolve, compiled") -print(smb.1)</code></pre> -<pre><code>## min lq mean median uq -## deSolve, not compiled 9442.5119 9447.2060 9458.3420 9451.9001 9466.2571 -## Eigenvalue based 868.6312 872.4552 895.3422 876.2792 908.6977 -## deSolve, compiled 691.9663 697.5653 701.1004 703.1643 705.6674 -## max neval cld -## deSolve, not compiled 9480.6141 3 c -## Eigenvalue based 941.1163 3 b -## deSolve, compiled 708.1706 3 a</code></pre> -<p>We see that using the compiled model is by a factor of 13.4 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> -<pre class="r"><code>smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre> + +smb.1 <- summary(mb.1) +print(mb.1)</code></pre> +<pre><code>## Unit: milliseconds +## expr min lq mean median uq +## deSolve, not compiled 9538.4007 9570.3211 9605.6503 9602.2416 9639.2752 +## Eigenvalue based 881.9438 885.9337 901.1558 889.9236 910.7618 +## deSolve, compiled 692.0913 695.6109 697.9629 699.1304 700.8987 +## max neval cld +## 9676.3087 3 c +## 931.5999 3 b +## 702.6669 3 a</code></pre> +<pre class="r"><code>autoplot(mb.1)</code></pre> +<p><img src="" title alt width="672" /></p> +<p>We see that using the compiled model is by a factor of 13.7 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> +<pre class="r"><code>rownames(smb.1) <- smb.1$expr +smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre> <pre><code>## median -## deSolve, not compiled 13.441951 -## Eigenvalue based 1.246194 +## deSolve, not compiled 13.734549 +## Eigenvalue based 1.272901 ## deSolve, compiled 1.000000</code></pre> </div> <div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2"> @@ -121,24 +129,27 @@ print(smb.1)</code></pre> m1 = mkinsub( "SFO"))</code></pre> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> <pre class="r"><code>mb.2 <- microbenchmark( - mkinfit(FOMC_SFO, FOCUS_2006_D, use_compiled = FALSE, quiet = TRUE), - mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE), + "deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, + use_compiled = FALSE, quiet = TRUE), + "deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE), times = 3, control = list(warmup = 1)) -smb.2 <- summary(mb.2)[-1] -rownames(smb.2) <- c("deSolve, not compiled", "deSolve, compiled") -print(smb.2)</code></pre> -<pre><code>## min lq mean median uq -## deSolve, not compiled 20.444632 20.48824 20.557595 20.531857 20.614077 -## deSolve, compiled 1.251733 1.25179 1.275227 1.251846 1.286973 -## max neval cld -## deSolve, not compiled 20.6963 3 b -## deSolve, compiled 1.3221 3 a</code></pre> +smb.2 <- summary(mb.2) +print(mb.2)</code></pre> +<pre><code>## Unit: seconds +## expr min lq mean median uq +## deSolve, not compiled 20.475764 20.494740 20.507391 20.513716 20.523205 +## deSolve, compiled 1.244022 1.244327 1.261983 1.244631 1.270963 +## max neval cld +## 20.532695 3 b +## 1.297295 3 a</code></pre> <pre class="r"><code>smb.2["median"]/smb.2["deSolve, compiled", "median"]</code></pre> -<pre><code>## median -## deSolve, not compiled 16.40126 -## deSolve, compiled 1.00000</code></pre> -<p>Here we get a performance benefit of a factor of 16.4 using the version of the differential equation model compiled from C code using the inline package!</p> -<p>This vignette was built with mkin 0.9.41 on</p> +<pre><code>## median +## 1 NA +## 2 NA</code></pre> +<pre class="r"><code>autoplot(mb.2)</code></pre> +<p><img src="" title alt width="672" /></p> +<p>Here we get a performance benefit of a factor of 16.5 using the version of the differential equation model compiled from C code using the inline package!</p> +<p>This vignette was built with mkin 0.9.41.9000 on</p> <pre><code>## R version 3.2.2 (2015-08-14) ## Platform: x86_64-pc-linux-gnu (64-bit) ## Running under: Debian GNU/Linux 8 (jessie)</code></pre> diff --git a/inst/web/vignettes/mkin.pdf b/inst/web/vignettes/mkin.pdf Binary files differindex 9f9f9af0..e9ee9ed1 100644 --- a/inst/web/vignettes/mkin.pdf +++ b/inst/web/vignettes/mkin.pdf diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html index 557ceb03..d9fc6e18 100644 --- a/vignettes/FOCUS_D.html +++ b/vignettes/FOCUS_D.html @@ -10,7 +10,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2015-11-09" /> +<meta name="date" content="2015-11-13" /> <title>Example evaluation of FOCUS Example Dataset D</title> @@ -64,7 +64,7 @@ img { <div id="header"> <h1 class="title">Example evaluation of FOCUS Example Dataset D</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2015-11-09</em></h4> +<h4 class="date"><em>2015-11-13</em></h4> </div> diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html index 9bb60153..9584aee5 100644 --- a/vignettes/FOCUS_L.html +++ b/vignettes/FOCUS_L.html @@ -10,7 +10,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2015-11-09" /> +<meta name="date" content="2015-11-13" /> <title>Example evaluation of FOCUS Laboratory Data L1 to L3</title> @@ -65,7 +65,7 @@ img { <div id="header"> <h1 class="title">Example evaluation of FOCUS Laboratory Data L1 to L3</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2015-11-09</em></h4> +<h4 class="date"><em>2015-11-13</em></h4> </div> <div id="TOC"> diff --git a/vignettes/FOCUS_Z.pdf b/vignettes/FOCUS_Z.pdf Binary files differindex 31480019..1d08173a 100644 --- a/vignettes/FOCUS_Z.pdf +++ b/vignettes/FOCUS_Z.pdf diff --git a/vignettes/compiled_models.Rmd b/vignettes/compiled_models.Rmd index 8dc74692..8f6df55d 100644 --- a/vignettes/compiled_models.Rmd +++ b/vignettes/compiled_models.Rmd @@ -16,7 +16,7 @@ vignette: > ```{r, include = FALSE}
library(knitr)
-opts_chunk$set(tidy = FALSE, cache = TRUE)
+opts_chunk$set(tidy = FALSE, cache = FALSE)
```
## Benchmark for a model that can also be solved with Eigenvalues
@@ -46,24 +46,30 @@ the microbenchmark package. ```{r benchmark_SFO_SFO}
library("microbenchmark")
+library("ggplot2")
mb.1 <- microbenchmark(
- mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "deSolve", use_compiled = FALSE,
- quiet = TRUE),
- mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "eigen", quiet = TRUE),
- mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "deSolve", quiet = TRUE),
+ "deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D,
+ solution_type = "deSolve",
+ use_compiled = FALSE, quiet = TRUE),
+ "Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D,
+ solution_type = "eigen", quiet = TRUE),
+ "deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D,
+ solution_type = "deSolve", quiet = TRUE),
times = 3, control = list(warmup = 1))
-smb.1 <- summary(mb.1)[-1]
-rownames(smb.1) <- c("deSolve, not compiled", "Eigenvalue based", "deSolve, compiled")
-print(smb.1)
+
+smb.1 <- summary(mb.1)
+print(mb.1)
+autoplot(mb.1)
```
We see that using the compiled model is by a factor of
-`r round(smb.1["deSolve, not compiled", "median"]/smb.1["deSolve, compiled", "median"], 1)`
+`r round(smb.1[1, "median"]/smb.1[3, "median"], 1)`
faster than using the R version with the default ode solver, and it is even
faster than the Eigenvalue based solution implemented in R which does not need
iterative solution of the ODEs:
```{r}
+rownames(smb.1) <- smb.1$expr
smb.1["median"]/smb.1["deSolve, compiled", "median"]
```
@@ -77,17 +83,18 @@ FOMC_SFO <- mkinmod( m1 = mkinsub( "SFO"))
mb.2 <- microbenchmark(
- mkinfit(FOMC_SFO, FOCUS_2006_D, use_compiled = FALSE, quiet = TRUE),
- mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE),
+ "deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D,
+ use_compiled = FALSE, quiet = TRUE),
+ "deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE),
times = 3, control = list(warmup = 1))
-smb.2 <- summary(mb.2)[-1]
-rownames(smb.2) <- c("deSolve, not compiled", "deSolve, compiled")
-print(smb.2)
+smb.2 <- summary(mb.2)
+print(mb.2)
smb.2["median"]/smb.2["deSolve, compiled", "median"]
+autoplot(mb.2)
```
Here we get a performance benefit of a factor of
-`r round(smb.2["deSolve, not compiled", "median"]/smb.2["deSolve, compiled", "median"], 1)`
+`r round(smb.2[1, "median"]/smb.2[2, "median"], 1)`
using the version of the differential equation model compiled from C code using
the inline package!
diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html index 7722d95a..c7f4fbea 100644 --- a/vignettes/compiled_models.html +++ b/vignettes/compiled_models.html @@ -10,7 +10,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2015-11-09" /> +<meta name="date" content="2015-11-13" /> <title>Performance benefit by using compiled model definitions in mkin</title> @@ -65,7 +65,7 @@ img { <div id="header"> <h1 class="title">Performance benefit by using compiled model definitions in mkin</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2015-11-09</em></h4> +<h4 class="date"><em>2015-11-13</em></h4> </div> <div id="TOC"> @@ -89,28 +89,36 @@ SFO_SFO <- mkinmod( <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> <p>We can compare the performance of the Eigenvalue based solution against the compiled version and the R implementation of the differential equations using the microbenchmark package.</p> <pre class="r"><code>library("microbenchmark") +library("ggplot2") mb.1 <- microbenchmark( - mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "deSolve", use_compiled = FALSE, - quiet = TRUE), - mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "eigen", quiet = TRUE), - mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "deSolve", quiet = TRUE), + "deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, + solution_type = "deSolve", + use_compiled = FALSE, quiet = TRUE), + "Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D, + solution_type = "eigen", quiet = TRUE), + "deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, + solution_type = "deSolve", quiet = TRUE), times = 3, control = list(warmup = 1)) -smb.1 <- summary(mb.1)[-1] -rownames(smb.1) <- c("deSolve, not compiled", "Eigenvalue based", "deSolve, compiled") -print(smb.1)</code></pre> -<pre><code>## min lq mean median uq -## deSolve, not compiled 9442.5119 9447.2060 9458.3420 9451.9001 9466.2571 -## Eigenvalue based 868.6312 872.4552 895.3422 876.2792 908.6977 -## deSolve, compiled 691.9663 697.5653 701.1004 703.1643 705.6674 -## max neval cld -## deSolve, not compiled 9480.6141 3 c -## Eigenvalue based 941.1163 3 b -## deSolve, compiled 708.1706 3 a</code></pre> -<p>We see that using the compiled model is by a factor of 13.4 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> -<pre class="r"><code>smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre> + +smb.1 <- summary(mb.1) +print(mb.1)</code></pre> +<pre><code>## Unit: milliseconds +## expr min lq mean median uq +## deSolve, not compiled 9538.4007 9570.3211 9605.6503 9602.2416 9639.2752 +## Eigenvalue based 881.9438 885.9337 901.1558 889.9236 910.7618 +## deSolve, compiled 692.0913 695.6109 697.9629 699.1304 700.8987 +## max neval cld +## 9676.3087 3 c +## 931.5999 3 b +## 702.6669 3 a</code></pre> +<pre class="r"><code>autoplot(mb.1)</code></pre> +<p><img src="" title alt width="672" /></p> +<p>We see that using the compiled model is by a factor of 13.7 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> +<pre class="r"><code>rownames(smb.1) <- smb.1$expr +smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre> <pre><code>## median -## deSolve, not compiled 13.441951 -## Eigenvalue based 1.246194 +## deSolve, not compiled 13.734549 +## Eigenvalue based 1.272901 ## deSolve, compiled 1.000000</code></pre> </div> <div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2"> @@ -121,24 +129,27 @@ print(smb.1)</code></pre> m1 = mkinsub( "SFO"))</code></pre> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> <pre class="r"><code>mb.2 <- microbenchmark( - mkinfit(FOMC_SFO, FOCUS_2006_D, use_compiled = FALSE, quiet = TRUE), - mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE), + "deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, + use_compiled = FALSE, quiet = TRUE), + "deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE), times = 3, control = list(warmup = 1)) -smb.2 <- summary(mb.2)[-1] -rownames(smb.2) <- c("deSolve, not compiled", "deSolve, compiled") -print(smb.2)</code></pre> -<pre><code>## min lq mean median uq -## deSolve, not compiled 20.444632 20.48824 20.557595 20.531857 20.614077 -## deSolve, compiled 1.251733 1.25179 1.275227 1.251846 1.286973 -## max neval cld -## deSolve, not compiled 20.6963 3 b -## deSolve, compiled 1.3221 3 a</code></pre> +smb.2 <- summary(mb.2) +print(mb.2)</code></pre> +<pre><code>## Unit: seconds +## expr min lq mean median uq +## deSolve, not compiled 20.475764 20.494740 20.507391 20.513716 20.523205 +## deSolve, compiled 1.244022 1.244327 1.261983 1.244631 1.270963 +## max neval cld +## 20.532695 3 b +## 1.297295 3 a</code></pre> <pre class="r"><code>smb.2["median"]/smb.2["deSolve, compiled", "median"]</code></pre> -<pre><code>## median -## deSolve, not compiled 16.40126 -## deSolve, compiled 1.00000</code></pre> -<p>Here we get a performance benefit of a factor of 16.4 using the version of the differential equation model compiled from C code using the inline package!</p> -<p>This vignette was built with mkin 0.9.41 on</p> +<pre><code>## median +## 1 NA +## 2 NA</code></pre> +<pre class="r"><code>autoplot(mb.2)</code></pre> +<p><img src="" title alt width="672" /></p> +<p>Here we get a performance benefit of a factor of 16.5 using the version of the differential equation model compiled from C code using the inline package!</p> +<p>This vignette was built with mkin 0.9.41.9000 on</p> <pre><code>## R version 3.2.2 (2015-08-14) ## Platform: x86_64-pc-linux-gnu (64-bit) ## Running under: Debian GNU/Linux 8 (jessie)</code></pre> diff --git a/vignettes/mkin.pdf b/vignettes/mkin.pdf Binary files differindex 9f9f9af0..e9ee9ed1 100644 --- a/vignettes/mkin.pdf +++ b/vignettes/mkin.pdf |