diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2021-03-31 19:42:17 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2021-03-31 19:42:17 +0200 |
commit | 3a5463672c297b37c3c9135c8b144c48744c05d0 (patch) | |
tree | f28691df6359757133510ae44399ce71ecbfaa93 | |
parent | 7bca4f58951c1c8cae63c4557102ae77a3aff616 (diff) |
Bug fix in plot.mkinfit
In residual plots, use xlab and xlim if appropriate
128 files changed, 327 insertions, 248 deletions
@@ -1,9 +1,9 @@ # mkin 1.0.4 (Unreleased) -- 'plot.mixed.mmkin': Reset graphical parameters on exit - - All plotting functions setting graphical parameters: Use on.exit() for resetting graphical parameters +- 'plot.mkinfit': Use xlab and xlim for the residual plot if show_residuals is TRUE + # mkin 1.0.3 (2021-02-15) - Review and update README, the 'Introduction to mkin' vignette and some of the help pages diff --git a/R/plot.mkinfit.R b/R/plot.mkinfit.R index 2e319aae..1d4ea543 100644 --- a/R/plot.mkinfit.R +++ b/R/plot.mkinfit.R @@ -278,7 +278,7 @@ plot.mkinfit <- function(x, fit = x, if (show_residuals) { mkinresplot(fit, obs_vars = row_obs_vars, standardized = standardized, pch_obs = pch_obs[row_obs_vars], col_obs = col_obs[row_obs_vars], - legend = FALSE, frame = frame, xlab = xlab) + legend = FALSE, frame = frame, xlab = xlab, xlim = xlim) } # Show error model plot if requested @@ -6,5 +6,5 @@ * creating vignettes ... OK * checking for LF line-endings in source and make files and shell scripts * checking for empty or unneeded directories -* building ‘mkin_1.0.3.tar.gz’ +* building ‘mkin_1.0.4.tar.gz’ @@ -1,14 +1,16 @@ * using log directory ‘/home/jranke/git/mkin/mkin.Rcheck’ -* using R version 4.0.3 (2020-10-10) +* using R version 4.0.4 (2021-02-15) * using platform: x86_64-pc-linux-gnu (64-bit) * using session charset: UTF-8 * using options ‘--no-tests --as-cran’ * checking for file ‘mkin/DESCRIPTION’ ... OK * checking extension type ... Package -* this is package ‘mkin’ version ‘1.0.3’ +* this is package ‘mkin’ version ‘1.0.4’ * package encoding: UTF-8 -* checking CRAN incoming feasibility ... Note_to_CRAN_maintainers +* checking CRAN incoming feasibility ... NOTE Maintainer: ‘Johannes Ranke <jranke@uni-bremen.de>’ + +The Date field is over a month old. * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK @@ -67,5 +69,9 @@ Maintainer: ‘Johannes Ranke <jranke@uni-bremen.de>’ * checking for detritus in the temp directory ... OK * DONE -Status: OK +Status: 1 NOTE +See + ‘/home/jranke/git/mkin/mkin.Rcheck/00check.log’ +for details. + diff --git a/docs/articles/FOCUS_D.html b/docs/articles/FOCUS_D.html index 08acf58b..1bfba6e5 100644 --- a/docs/articles/FOCUS_D.html +++ b/docs/articles/FOCUS_D.html @@ -31,7 +31,7 @@ </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -94,13 +94,13 @@ - </header><script src="FOCUS_D_files/header-attrs-2.6/header-attrs.js"></script><script src="FOCUS_D_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> + </header><script src="FOCUS_D_files/header-attrs-2.7/header-attrs.js"></script><script src="FOCUS_D_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> <div class="col-md-9 contents"> <div class="page-header toc-ignore"> <h1 data-toc-skip>Example evaluation of FOCUS Example Dataset D</h1> <h4 class="author">Johannes Ranke</h4> - <h4 class="date">Last change 31 January 2019 (rebuilt 2021-02-15)</h4> + <h4 class="date">Last change 31 January 2019 (rebuilt 2021-03-31)</h4> <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/FOCUS_D.rmd"><code>vignettes/FOCUS_D.rmd</code></a></small> <div class="hidden name"><code>FOCUS_D.rmd</code></div> @@ -185,10 +185,10 @@ <p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p> <div class="sourceCode" id="cb11"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">fit</span><span class="op">)</span></code></pre></div> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 17:50:27 2021 -## Date of summary: Mon Feb 15 17:50:28 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:18:28 2021 +## Date of summary: Wed Mar 31 19:18:29 2021 ## ## Equations: ## d_parent/dt = - k_parent * parent @@ -196,7 +196,7 @@ ## ## Model predictions using solution type analytical ## -## Fitted using 401 model solutions performed in 0.161 s +## Fitted using 401 model solutions performed in 0.159 s ## ## Error model: Constant variance ## diff --git a/docs/articles/FOCUS_D_files/figure-html/plot-1.png b/docs/articles/FOCUS_D_files/figure-html/plot-1.png Binary files differindex abf26715..c3a5d56e 100644 --- a/docs/articles/FOCUS_D_files/figure-html/plot-1.png +++ b/docs/articles/FOCUS_D_files/figure-html/plot-1.png diff --git a/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png b/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png Binary files differindex f4937894..42e48dee 100644 --- a/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png +++ b/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png diff --git a/docs/articles/FOCUS_D_files/header-attrs-2.7/header-attrs.js b/docs/articles/FOCUS_D_files/header-attrs-2.7/header-attrs.js new file mode 100644 index 00000000..dd57d92e --- /dev/null +++ b/docs/articles/FOCUS_D_files/header-attrs-2.7/header-attrs.js @@ -0,0 +1,12 @@ +// Pandoc 2.9 adds attributes on both header and div. We remove the former (to +// be compatible with the behavior of Pandoc < 2.8). +document.addEventListener('DOMContentLoaded', function(e) { + var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); + var i, h, a; + for (i = 0; i < hs.length; i++) { + h = hs[i]; + if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 + a = h.attributes; + while (a.length > 0) h.removeAttribute(a[0].name); + } +}); diff --git a/docs/articles/FOCUS_L.html b/docs/articles/FOCUS_L.html index ab9739bc..7074816c 100644 --- a/docs/articles/FOCUS_L.html +++ b/docs/articles/FOCUS_L.html @@ -31,7 +31,7 @@ </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -94,13 +94,13 @@ - </header><script src="FOCUS_L_files/header-attrs-2.6/header-attrs.js"></script><script src="FOCUS_L_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> + </header><script src="FOCUS_L_files/header-attrs-2.7/header-attrs.js"></script><script src="FOCUS_L_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> <div class="col-md-9 contents"> <div class="page-header toc-ignore"> <h1 data-toc-skip>Example evaluation of FOCUS Laboratory Data L1 to L3</h1> <h4 class="author">Johannes Ranke</h4> - <h4 class="date">Last change 17 November 2016 (rebuilt 2021-02-15)</h4> + <h4 class="date">Last change 17 November 2016 (rebuilt 2021-03-31)</h4> <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/FOCUS_L.rmd"><code>vignettes/FOCUS_L.rmd</code></a></small> <div class="hidden name"><code>FOCUS_L.rmd</code></div> @@ -126,10 +126,10 @@ <div class="sourceCode" id="cb2"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="va">m.L1.SFO</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">FOCUS_2006_L1_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span> <span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">m.L1.SFO</span><span class="op">)</span></code></pre></div> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 17:50:30 2021 -## Date of summary: Mon Feb 15 17:50:30 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:18:31 2021 +## Date of summary: Wed Mar 31 19:18:31 2021 ## ## Equations: ## d_parent/dt = - k_parent * parent @@ -232,10 +232,10 @@ <pre><code>## Warning in sqrt(1/diag(V)): NaNs produced</code></pre> <pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is ## doubtful</code></pre> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 17:50:31 2021 -## Date of summary: Mon Feb 15 17:50:31 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:18:32 2021 +## Date of summary: Wed Mar 31 19:18:32 2021 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent @@ -344,10 +344,10 @@ <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-9-1.png" width="672"></p> <div class="sourceCode" id="cb17"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">m.L2.FOMC</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 17:50:31 2021 -## Date of summary: Mon Feb 15 17:50:31 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:18:32 2021 +## Date of summary: Wed Mar 31 19:18:32 2021 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent @@ -425,10 +425,10 @@ <p><img src="FOCUS_L_files/figure-html/unnamed-chunk-10-1.png" width="672"></p> <div class="sourceCode" id="cb20"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">m.L2.DFOP</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 17:50:32 2021 -## Date of summary: Mon Feb 15 17:50:32 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:18:33 2021 +## Date of summary: Wed Mar 31 19:18:33 2021 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -531,10 +531,10 @@ <p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p> <div class="sourceCode" id="cb24"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></code></pre></div> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 17:50:32 2021 -## Date of summary: Mon Feb 15 17:50:32 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:18:33 2021 +## Date of summary: Wed Mar 31 19:18:33 2021 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -644,10 +644,10 @@ <p>The <span class="math inline">\(\chi^2\)</span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline">\(\chi^2\)</span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p> <div class="sourceCode" id="cb29"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">[[</span><span class="st">"SFO"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 17:50:33 2021 -## Date of summary: Mon Feb 15 17:50:33 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:18:34 2021 +## Date of summary: Wed Mar 31 19:18:34 2021 ## ## Equations: ## d_parent/dt = - k_parent * parent @@ -709,10 +709,10 @@ ## parent 106 352</code></pre> <div class="sourceCode" id="cb31"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">[[</span><span class="st">"FOMC"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 17:50:33 2021 -## Date of summary: Mon Feb 15 17:50:33 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:18:34 2021 +## Date of summary: Wed Mar 31 19:18:34 2021 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png Binary files differindex e9c0b0a0..5f95a506 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png Binary files differindex 3e03954d..82dc16c4 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png Binary files differindex 8c9e8fd4..06082027 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png Binary files differindex b3aa8334..75522f2f 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png Binary files differindex 477829a5..145053fd 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png Binary files differindex e8f21107..8fbe2159 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png Binary files differindex c0e08884..b1840a39 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png Binary files differindex 310b4f3b..f85a349f 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png Binary files differindex 570f0026..a29ce1ff 100644 --- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png +++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png diff --git a/docs/articles/FOCUS_L_files/header-attrs-2.7/header-attrs.js b/docs/articles/FOCUS_L_files/header-attrs-2.7/header-attrs.js new file mode 100644 index 00000000..dd57d92e --- /dev/null +++ b/docs/articles/FOCUS_L_files/header-attrs-2.7/header-attrs.js @@ -0,0 +1,12 @@ +// Pandoc 2.9 adds attributes on both header and div. We remove the former (to +// be compatible with the behavior of Pandoc < 2.8). +document.addEventListener('DOMContentLoaded', function(e) { + var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); + var i, h, a; + for (i = 0; i < hs.length; i++) { + h = hs[i]; + if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 + a = h.attributes; + while (a.length > 0) h.removeAttribute(a[0].name); + } +}); diff --git a/docs/articles/mkin.html b/docs/articles/mkin.html index 6dbb093d..a0fccc16 100644 --- a/docs/articles/mkin.html +++ b/docs/articles/mkin.html @@ -31,7 +31,7 @@ </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -94,13 +94,13 @@ - </header><script src="mkin_files/header-attrs-2.6/header-attrs.js"></script><script src="mkin_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> + </header><script src="mkin_files/header-attrs-2.7/header-attrs.js"></script><script src="mkin_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> <div class="col-md-9 contents"> <div class="page-header toc-ignore"> <h1 data-toc-skip>Introduction to mkin</h1> <h4 class="author">Johannes Ranke</h4> - <h4 class="date">Last change 15 February 2021 (rebuilt 2021-02-15)</h4> + <h4 class="date">Last change 15 February 2021 (rebuilt 2021-03-31)</h4> <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/mkin.rmd"><code>vignettes/mkin.rmd</code></a></small> <div class="hidden name"><code>mkin.rmd</code></div> diff --git a/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png b/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png Binary files differindex bf38fdd7..8a182047 100644 --- a/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png +++ b/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png diff --git a/docs/articles/mkin_files/header-attrs-2.7/header-attrs.js b/docs/articles/mkin_files/header-attrs-2.7/header-attrs.js new file mode 100644 index 00000000..dd57d92e --- /dev/null +++ b/docs/articles/mkin_files/header-attrs-2.7/header-attrs.js @@ -0,0 +1,12 @@ +// Pandoc 2.9 adds attributes on both header and div. We remove the former (to +// be compatible with the behavior of Pandoc < 2.8). +document.addEventListener('DOMContentLoaded', function(e) { + var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); + var i, h, a; + for (i = 0; i < hs.length; i++) { + h = hs[i]; + if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 + a = h.attributes; + while (a.length > 0) h.removeAttribute(a[0].name); + } +}); diff --git a/docs/articles/twa.html b/docs/articles/twa.html index 2e3d2f96..167f60d3 100644 --- a/docs/articles/twa.html +++ b/docs/articles/twa.html @@ -31,7 +31,7 @@ </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -94,13 +94,13 @@ - </header><script src="twa_files/header-attrs-2.6/header-attrs.js"></script><script src="twa_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> + </header><script src="twa_files/header-attrs-2.7/header-attrs.js"></script><script src="twa_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> <div class="col-md-9 contents"> <div class="page-header toc-ignore"> <h1 data-toc-skip>Calculation of time weighted average concentrations with mkin</h1> <h4 class="author">Johannes Ranke</h4> - <h4 class="date">Last change 18 September 2019 (rebuilt 2021-02-15)</h4> + <h4 class="date">Last change 18 September 2019 (rebuilt 2021-03-31)</h4> <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/twa.rmd"><code>vignettes/twa.rmd</code></a></small> <div class="hidden name"><code>twa.rmd</code></div> diff --git a/docs/articles/twa_files/header-attrs-2.7/header-attrs.js b/docs/articles/twa_files/header-attrs-2.7/header-attrs.js new file mode 100644 index 00000000..dd57d92e --- /dev/null +++ b/docs/articles/twa_files/header-attrs-2.7/header-attrs.js @@ -0,0 +1,12 @@ +// Pandoc 2.9 adds attributes on both header and div. We remove the former (to +// be compatible with the behavior of Pandoc < 2.8). +document.addEventListener('DOMContentLoaded', function(e) { + var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); + var i, h, a; + for (i = 0; i < hs.length; i++) { + h = hs[i]; + if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 + a = h.attributes; + while (a.length > 0) h.removeAttribute(a[0].name); + } +}); diff --git a/docs/articles/web_only/FOCUS_Z.html b/docs/articles/web_only/FOCUS_Z.html index 57fc3545..e4a6cb52 100644 --- a/docs/articles/web_only/FOCUS_Z.html +++ b/docs/articles/web_only/FOCUS_Z.html @@ -31,7 +31,7 @@ </button> <span class="navbar-brand"> <a class="navbar-link" href="../../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -94,13 +94,13 @@ - </header><script src="FOCUS_Z_files/header-attrs-2.6/header-attrs.js"></script><script src="FOCUS_Z_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> + </header><script src="FOCUS_Z_files/header-attrs-2.7/header-attrs.js"></script><script src="FOCUS_Z_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> <div class="col-md-9 contents"> <div class="page-header toc-ignore"> <h1 data-toc-skip>Example evaluation of FOCUS dataset Z</h1> <h4 class="author">Johannes Ranke</h4> - <h4 class="date">Last change 16 January 2018 (rebuilt 2021-02-15)</h4> + <h4 class="date">Last change 16 January 2018 (rebuilt 2021-03-31)</h4> <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/web_only/FOCUS_Z.rmd"><code>vignettes/web_only/FOCUS_Z.rmd</code></a></small> <div class="hidden name"><code>FOCUS_Z.rmd</code></div> diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png Binary files differindex 2213c446..2e70b207 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png Binary files differindex 61b04d3a..4a205020 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png Binary files differindex 409f1203..8b07d497 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png Binary files differindex 4d6820cd..4765c9fe 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png Binary files differindex 2e504961..e005446b 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png Binary files differindex 2213c446..2e70b207 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png Binary files differindex 7ab743af..f06ee667 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png Binary files differindex 2e0dce77..b8e0e900 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png Binary files differindex 458299c1..14dd7805 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png Binary files differindex eb833066..414bc941 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png Binary files differindex e7501cbb..0a83f8ea 100644 --- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png +++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png diff --git a/docs/articles/web_only/FOCUS_Z_files/header-attrs-2.7/header-attrs.js b/docs/articles/web_only/FOCUS_Z_files/header-attrs-2.7/header-attrs.js new file mode 100644 index 00000000..dd57d92e --- /dev/null +++ b/docs/articles/web_only/FOCUS_Z_files/header-attrs-2.7/header-attrs.js @@ -0,0 +1,12 @@ +// Pandoc 2.9 adds attributes on both header and div. We remove the former (to +// be compatible with the behavior of Pandoc < 2.8). +document.addEventListener('DOMContentLoaded', function(e) { + var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); + var i, h, a; + for (i = 0; i < hs.length; i++) { + h = hs[i]; + if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 + a = h.attributes; + while (a.length > 0) h.removeAttribute(a[0].name); + } +}); diff --git a/docs/articles/web_only/NAFTA_examples.html b/docs/articles/web_only/NAFTA_examples.html index e79375b3..65a71b56 100644 --- a/docs/articles/web_only/NAFTA_examples.html +++ b/docs/articles/web_only/NAFTA_examples.html @@ -31,7 +31,7 @@ </button> <span class="navbar-brand"> <a class="navbar-link" href="../../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -94,13 +94,13 @@ - </header><script src="NAFTA_examples_files/header-attrs-2.6/header-attrs.js"></script><script src="NAFTA_examples_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> + </header><script src="NAFTA_examples_files/header-attrs-2.7/header-attrs.js"></script><script src="NAFTA_examples_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> <div class="col-md-9 contents"> <div class="page-header toc-ignore"> <h1 data-toc-skip>Evaluation of example datasets from Attachment 1 to the US EPA SOP for the NAFTA guidance</h1> <h4 class="author">Johannes Ranke</h4> - <h4 class="date">26 February 2019 (rebuilt 2021-02-15)</h4> + <h4 class="date">26 February 2019 (rebuilt 2021-03-31)</h4> <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/web_only/NAFTA_examples.rmd"><code>vignettes/web_only/NAFTA_examples.rmd</code></a></small> <div class="hidden name"><code>NAFTA_examples.rmd</code></div> diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png Binary files differindex f5420ce8..b1c874cc 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png Binary files differindex 0ae4bd9f..9dfa26fb 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png Binary files differindex 57a48119..cdae6520 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png Binary files differindex c42d45f0..57672896 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png Binary files differindex 52dea51e..1e4995a8 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png Binary files differindex ca1f29be..93bb7173 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png Binary files differindex f69e6d3b..a2ee7966 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png Binary files differindex 71fcd257..a40bd581 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png Binary files differindex 820501a3..690c91ef 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png Binary files differindex e264d2ea..c1284b83 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png Binary files differindex e5b656a4..d40ad7e7 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png Binary files differindex c9664c77..8c2ae01b 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png Binary files differindex a81f814c..fbf566f7 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png Binary files differindex 75d72e7c..1e137ddf 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png Binary files differindex 3ce13a97..efc16dda 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png Binary files differindex e2cf2f83..53addbd2 100644 --- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png +++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png diff --git a/docs/articles/web_only/NAFTA_examples_files/header-attrs-2.7/header-attrs.js b/docs/articles/web_only/NAFTA_examples_files/header-attrs-2.7/header-attrs.js new file mode 100644 index 00000000..dd57d92e --- /dev/null +++ b/docs/articles/web_only/NAFTA_examples_files/header-attrs-2.7/header-attrs.js @@ -0,0 +1,12 @@ +// Pandoc 2.9 adds attributes on both header and div. We remove the former (to +// be compatible with the behavior of Pandoc < 2.8). +document.addEventListener('DOMContentLoaded', function(e) { + var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); + var i, h, a; + for (i = 0; i < hs.length; i++) { + h = hs[i]; + if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 + a = h.attributes; + while (a.length > 0) h.removeAttribute(a[0].name); + } +}); diff --git a/docs/articles/web_only/benchmarks.html b/docs/articles/web_only/benchmarks.html index 9908c224..290906c1 100644 --- a/docs/articles/web_only/benchmarks.html +++ b/docs/articles/web_only/benchmarks.html @@ -31,7 +31,7 @@ </button> <span class="navbar-brand"> <a class="navbar-link" href="../../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -94,13 +94,13 @@ - </header><script src="benchmarks_files/header-attrs-2.6/header-attrs.js"></script><script src="benchmarks_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> + </header><script src="benchmarks_files/header-attrs-2.7/header-attrs.js"></script><script src="benchmarks_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> <div class="col-md-9 contents"> <div class="page-header toc-ignore"> <h1 data-toc-skip>Benchmark timings for mkin</h1> <h4 class="author">Johannes Ranke</h4> - <h4 class="date">Last change 13 May 2020 (rebuilt 2021-02-15)</h4> + <h4 class="date">Last change 13 May 2020 (rebuilt 2021-03-31)</h4> <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/web_only/benchmarks.rmd"><code>vignettes/web_only/benchmarks.rmd</code></a></small> <div class="hidden name"><code>benchmarks.rmd</code></div> @@ -232,6 +232,11 @@ <td align="right">1.881</td> <td align="right">3.504</td> </tr> +<tr class="even"> +<td align="left">1.0.4</td> +<td align="right">1.867</td> +<td align="right">3.450</td> +</tr> </tbody> </table> </div> @@ -301,6 +306,12 @@ <td align="right">6.344</td> <td align="right">2.798</td> </tr> +<tr class="even"> +<td align="left">1.0.4</td> +<td align="right">1.415</td> +<td align="right">6.364</td> +<td align="right">2.820</td> +</tr> </tbody> </table> </div> @@ -400,6 +411,15 @@ <td align="right">1.923</td> <td align="right">2.839</td> </tr> +<tr class="even"> +<td align="left">1.0.4</td> +<td align="right">0.785</td> +<td align="right">1.252</td> +<td align="right">1.466</td> +<td align="right">3.091</td> +<td align="right">1.936</td> +<td align="right">2.826</td> +</tr> </tbody> </table> </div> diff --git a/docs/articles/web_only/benchmarks_files/header-attrs-2.7/header-attrs.js b/docs/articles/web_only/benchmarks_files/header-attrs-2.7/header-attrs.js new file mode 100644 index 00000000..dd57d92e --- /dev/null +++ b/docs/articles/web_only/benchmarks_files/header-attrs-2.7/header-attrs.js @@ -0,0 +1,12 @@ +// Pandoc 2.9 adds attributes on both header and div. We remove the former (to +// be compatible with the behavior of Pandoc < 2.8). +document.addEventListener('DOMContentLoaded', function(e) { + var hs = document.querySelectorAll("div.section[class*='level'] > :first-child"); + var i, h, a; + for (i = 0; i < hs.length; i++) { + h = hs[i]; + if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6 + a = h.attributes; + while (a.length > 0) h.removeAttribute(a[0].name); + } +}); diff --git a/docs/news/index.html b/docs/news/index.html index 3a52a093..fae6503a 100644 --- a/docs/news/index.html +++ b/docs/news/index.html @@ -145,8 +145,8 @@ <h1 class="page-header" data-toc-text="1.0.4"> <a href="#mkin-104-unreleased" class="anchor"></a>mkin 1.0.4 (Unreleased)</h1> <ul> -<li><p>‘plot.mixed.mmkin’: Reset graphical parameters on exit</p></li> <li><p>All plotting functions setting graphical parameters: Use on.exit() for resetting graphical parameters</p></li> +<li><p>‘plot.mkinfit’: Use xlab and xlim for the residual plot if show_residuals is TRUE</p></li> </ul> </div> <div id="mkin-103-2021-02-15" class="section level1"> diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 49dceae1..df454e62 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -10,7 +10,7 @@ articles: web_only/NAFTA_examples: NAFTA_examples.html web_only/benchmarks: benchmarks.html web_only/compiled_models: compiled_models.html -last_built: 2021-02-24T14:04Z +last_built: 2021-03-31T17:15Z urls: reference: https://pkgdown.jrwb.de/mkin/reference article: https://pkgdown.jrwb.de/mkin/articles diff --git a/docs/reference/D24_2014.html b/docs/reference/D24_2014.html index e2d47f1b..c59bfad6 100644 --- a/docs/reference/D24_2014.html +++ b/docs/reference/D24_2014.html @@ -77,7 +77,7 @@ constrained by data protection regulations." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/Extract.mmkin.html b/docs/reference/Extract.mmkin.html index 5a99cf1b..b1c73ba5 100644 --- a/docs/reference/Extract.mmkin.html +++ b/docs/reference/Extract.mmkin.html @@ -72,7 +72,7 @@ </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/Rplot001.png b/docs/reference/Rplot001.png Binary files differindex 1cbcb153..17a35806 100644 --- a/docs/reference/Rplot001.png +++ b/docs/reference/Rplot001.png diff --git a/docs/reference/Rplot002.png b/docs/reference/Rplot002.png Binary files differindex 745d583d..808f1968 100644 --- a/docs/reference/Rplot002.png +++ b/docs/reference/Rplot002.png diff --git a/docs/reference/Rplot003.png b/docs/reference/Rplot003.png Binary files differindex 19198739..97f650e2 100644 --- a/docs/reference/Rplot003.png +++ b/docs/reference/Rplot003.png diff --git a/docs/reference/Rplot004.png b/docs/reference/Rplot004.png Binary files differindex 1028a9c4..21ad6783 100644 --- a/docs/reference/Rplot004.png +++ b/docs/reference/Rplot004.png diff --git a/docs/reference/Rplot005.png b/docs/reference/Rplot005.png Binary files differindex aa844051..4828f5b2 100644 --- a/docs/reference/Rplot005.png +++ b/docs/reference/Rplot005.png diff --git a/docs/reference/Rplot006.png b/docs/reference/Rplot006.png Binary files differindex 81525882..4aed2c87 100644 --- a/docs/reference/Rplot006.png +++ b/docs/reference/Rplot006.png diff --git a/docs/reference/Rplot007.png b/docs/reference/Rplot007.png Binary files differindex 10b7455a..3405a171 100644 --- a/docs/reference/Rplot007.png +++ b/docs/reference/Rplot007.png diff --git a/docs/reference/add_err-1.png b/docs/reference/add_err-1.png Binary files differindex 9ba106db..70118923 100644 --- a/docs/reference/add_err-1.png +++ b/docs/reference/add_err-1.png diff --git a/docs/reference/add_err-2.png b/docs/reference/add_err-2.png Binary files differindex 3088c40e..69b820c2 100644 --- a/docs/reference/add_err-2.png +++ b/docs/reference/add_err-2.png diff --git a/docs/reference/add_err-3.png b/docs/reference/add_err-3.png Binary files differindex 493a761a..1de78fa7 100644 --- a/docs/reference/add_err-3.png +++ b/docs/reference/add_err-3.png diff --git a/docs/reference/add_err.html b/docs/reference/add_err.html index 6fbecd14..18ca517e 100644 --- a/docs/reference/add_err.html +++ b/docs/reference/add_err.html @@ -74,7 +74,7 @@ may depend on the predicted value and is specified as a standard deviation." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/confint.mkinfit.html b/docs/reference/confint.mkinfit.html index 06e78459..e81e0c7b 100644 --- a/docs/reference/confint.mkinfit.html +++ b/docs/reference/confint.mkinfit.html @@ -79,7 +79,7 @@ method of Venzon and Moolgavkar (1988)." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -285,13 +285,13 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37, <span class='va'>f_d_1</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>FOCUS_2006_D</span>, <span class='va'>value</span> <span class='op'>!=</span> <span class='fl'>0</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span><span class='va'>ci_profile</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"profile"</span>, cores <span class='op'>=</span> <span class='fl'>1</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span><span class='op'>)</span> </div><div class='output co'>#> user system elapsed -#> 4.255 1.029 3.937 </div><div class='input'><span class='co'># Using more cores does not save much time here, as parent_0 takes up most of the time</span> +#> 3.871 0.000 3.871 </div><div class='input'><span class='co'># Using more cores does not save much time here, as parent_0 takes up most of the time</span> <span class='co'># If we additionally exclude parent_0 (the confidence of which is often of</span> <span class='co'># minor interest), we get a nice performance improvement if we use at least 4 cores</span> <span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span><span class='va'>ci_profile_no_parent_0</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"profile"</span>, <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"k_parent_sink"</span>, <span class='st'>"k_parent_m1"</span>, <span class='st'>"k_m1_sink"</span>, <span class='st'>"sigma"</span><span class='op'>)</span>, cores <span class='op'>=</span> <span class='va'>n_cores</span><span class='op'>)</span><span class='op'>)</span> </div><div class='output co'>#> <span class='message'>Profiling the likelihood</span></div><div class='output co'>#> user system elapsed -#> 1.469 0.092 0.911 </div><div class='input'><span class='va'>ci_profile</span> +#> 1.484 0.116 0.923 </div><div class='input'><span class='va'>ci_profile</span> </div><div class='output co'>#> 2.5% 97.5% #> parent_0 96.456003640 1.027703e+02 #> k_parent_sink 0.040762501 5.549764e-02 diff --git a/docs/reference/dimethenamid_2018.html b/docs/reference/dimethenamid_2018.html index 6845f74f..3b6ae721 100644 --- a/docs/reference/dimethenamid_2018.html +++ b/docs/reference/dimethenamid_2018.html @@ -77,7 +77,7 @@ constrained by data protection regulations." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/experimental_data_for_UBA-1.png b/docs/reference/experimental_data_for_UBA-1.png Binary files differindex 33946ded..5527c07f 100644 --- a/docs/reference/experimental_data_for_UBA-1.png +++ b/docs/reference/experimental_data_for_UBA-1.png diff --git a/docs/reference/experimental_data_for_UBA.html b/docs/reference/experimental_data_for_UBA.html index 77f75678..4da8d6c3 100644 --- a/docs/reference/experimental_data_for_UBA.html +++ b/docs/reference/experimental_data_for_UBA.html @@ -100,7 +100,7 @@ Dataset 12 is from the Renewal Assessment Report (RAR) for thifensulfuron-methyl </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/f_time_norm_focus.html b/docs/reference/f_time_norm_focus.html index aa494b27..a0899ac8 100644 --- a/docs/reference/f_time_norm_focus.html +++ b/docs/reference/f_time_norm_focus.html @@ -73,7 +73,7 @@ in Appendix 8 to the FOCUS kinetics guidance (FOCUS 2014, p. 369)." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/focus_soil_moisture.html b/docs/reference/focus_soil_moisture.html index 61f235db..bbacc554 100644 --- a/docs/reference/focus_soil_moisture.html +++ b/docs/reference/focus_soil_moisture.html @@ -73,7 +73,7 @@ corresponds to pF2, MWHC to pF 1 and 1/3 bar to pF 2.5." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/logLik.mkinfit.html b/docs/reference/logLik.mkinfit.html index 9e5b4069..83fb4e48 100644 --- a/docs/reference/logLik.mkinfit.html +++ b/docs/reference/logLik.mkinfit.html @@ -76,7 +76,7 @@ the error model." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/mccall81_245T-1.png b/docs/reference/mccall81_245T-1.png Binary files differindex 91fe060e..478462ae 100644 --- a/docs/reference/mccall81_245T-1.png +++ b/docs/reference/mccall81_245T-1.png diff --git a/docs/reference/mccall81_245T.html b/docs/reference/mccall81_245T.html index b7dca4a7..4f8d3fa0 100644 --- a/docs/reference/mccall81_245T.html +++ b/docs/reference/mccall81_245T.html @@ -74,7 +74,7 @@ </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/mixed-1.png b/docs/reference/mixed-1.png Binary files differindex 28a376f4..b9454c86 100644 --- a/docs/reference/mixed-1.png +++ b/docs/reference/mixed-1.png diff --git a/docs/reference/mixed.html b/docs/reference/mixed.html index 23d955e3..b4f8db16 100644 --- a/docs/reference/mixed.html +++ b/docs/reference/mixed.html @@ -72,7 +72,7 @@ </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/mkinds.html b/docs/reference/mkinds.html index 5111a9e0..fe89012c 100644 --- a/docs/reference/mkinds.html +++ b/docs/reference/mkinds.html @@ -75,7 +75,7 @@ provided by this package come as mkinds objects nevertheless." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/mkindsg.html b/docs/reference/mkindsg.html index 003e5e8f..a9686e4c 100644 --- a/docs/reference/mkindsg.html +++ b/docs/reference/mkindsg.html @@ -75,7 +75,7 @@ dataset if no data are supplied." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/mkinfit-1.png b/docs/reference/mkinfit-1.png Binary files differindex de2a90a9..e1d0f2f4 100644 --- a/docs/reference/mkinfit-1.png +++ b/docs/reference/mkinfit-1.png diff --git a/docs/reference/mkinfit.html b/docs/reference/mkinfit.html index 180f2ee7..2c162e49 100644 --- a/docs/reference/mkinfit.html +++ b/docs/reference/mkinfit.html @@ -80,7 +80,7 @@ likelihood function." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -431,10 +431,10 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6 <span class='co'># Use shorthand notation for parent only degradation</span> <span class='va'>fit</span> <span class='op'><-</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='st'>"FOMC"</span>, <span class='va'>FOCUS_2006_C</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span> -</div><div class='output co'>#> mkin version used for fitting: 1.0.3 -#> R version used for fitting: 4.0.3 -#> Date of fit: Mon Feb 15 13:43:26 2021 -#> Date of summary: Mon Feb 15 13:43:26 2021 +</div><div class='output co'>#> mkin version used for fitting: 1.0.4 +#> R version used for fitting: 4.0.4 +#> Date of fit: Wed Mar 31 19:15:41 2021 +#> Date of summary: Wed Mar 31 19:15:41 2021 #> #> Equations: #> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent @@ -574,10 +574,10 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6 analytical <span class='op'>=</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>, solution_type <span class='op'>=</span> <span class='st'>"analytical"</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>}</span> -</div><div class='output co'>#> test relative elapsed -#> 3 analytical 1.000 0.550 -#> 1 deSolve_compiled 1.731 0.952 -#> 2 eigen 2.662 1.464</div><div class='input'><span class='co'># }</span> +</div><div class='output co'>#> <span class='message'>Loading required package: rbenchmark</span></div><div class='output co'>#> test relative elapsed +#> 3 analytical 1.000 0.547 +#> 1 deSolve_compiled 1.717 0.939 +#> 2 eigen 2.644 1.446</div><div class='input'><span class='co'># }</span> <span class='co'># Use stepwise fitting, using optimised parameters from parent only fit, FOMC-SFO</span> <span class='co'># \dontrun{</span> @@ -598,10 +598,10 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6 #> 2 6 -64.983 -1 0.3075 0.5792</div><div class='input'><span class='co'># Also, the missing standard error for log_beta and the t-tests for alpha</span> <span class='co'># and beta indicate overparameterisation</span> <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.FOMC_SFO.tc</span>, data <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#> <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#> <span class='warning'>Warning: diag(.) had 0 or NA entries; non-finite result is doubtful</span></div><div class='output co'>#> mkin version used for fitting: 1.0.3 -#> R version used for fitting: 4.0.3 -#> Date of fit: Mon Feb 15 13:43:38 2021 -#> Date of summary: Mon Feb 15 13:43:38 2021 +</div><div class='output co'>#> <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#> <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#> <span class='warning'>Warning: diag(.) had 0 or NA entries; non-finite result is doubtful</span></div><div class='output co'>#> mkin version used for fitting: 1.0.4 +#> R version used for fitting: 4.0.4 +#> Date of fit: Wed Mar 31 19:15:53 2021 +#> Date of summary: Wed Mar 31 19:15:53 2021 #> #> Equations: #> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent @@ -610,7 +610,7 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6 #> #> Model predictions using solution type deSolve #> -#> Fitted using 3729 model solutions performed in 2.802 s +#> Fitted using 3729 model solutions performed in 2.798 s #> #> Error model: Two-component variance function #> diff --git a/docs/reference/mkinmod.html b/docs/reference/mkinmod.html index 4ce9468a..1e8ad60d 100644 --- a/docs/reference/mkinmod.html +++ b/docs/reference/mkinmod.html @@ -78,7 +78,7 @@ mkinmod." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -348,7 +348,7 @@ Evaluating and Calculating Degradation Kinetics in Environmental Media</p> parent <span class='op'>=</span> <span class='fu'>mkinsub</span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"m1"</span>, full_name <span class='op'>=</span> <span class='st'>"Test compound"</span><span class='op'>)</span>, m1 <span class='op'>=</span> <span class='fu'>mkinsub</span><span class='op'>(</span><span class='st'>"SFO"</span>, full_name <span class='op'>=</span> <span class='st'>"Metabolite M1"</span><span class='op'>)</span>, name <span class='op'>=</span> <span class='st'>"SFO_SFO"</span>, dll_dir <span class='op'>=</span> <span class='va'>DLL_dir</span>, unload <span class='op'>=</span> <span class='cn'>TRUE</span>, overwrite <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -</div><div class='output co'>#> <span class='message'>Copied DLL from /tmp/RtmpiJ2M4Z/filee097a4a94a921.so to /home/jranke/.local/share/mkin/SFO_SFO.so</span></div><div class='input'><span class='co'># Now we can save the model and restore it in a new session</span> +</div><div class='output co'>#> <span class='message'>Copied DLL from /tmp/Rtmp17EVw2/file269cfd5cc541a9.so to /home/jranke/.local/share/mkin/SFO_SFO.so</span></div><div class='input'><span class='co'># Now we can save the model and restore it in a new session</span> <span class='fu'><a href='https://rdrr.io/r/base/readRDS.html'>saveRDS</a></span><span class='op'>(</span><span class='va'>SFO_SFO.2</span>, file <span class='op'>=</span> <span class='st'>"~/SFO_SFO.rds"</span><span class='op'>)</span> <span class='co'># Terminate the R session here if you would like to check, and then do</span> <span class='kw'><a href='https://rdrr.io/r/base/library.html'>library</a></span><span class='op'>(</span><span class='va'><a href='https://pkgdown.jrwb.de/mkin/'>mkin</a></span><span class='op'>)</span> @@ -397,7 +397,7 @@ Evaluating and Calculating Degradation Kinetics in Environmental Media</p> #> }) #> return(predicted) #> } -#> <environment: 0x55555b0c2760></div><div class='input'> +#> <environment: 0x55555c17ae90></div><div class='input'> <span class='co'># If we have several parallel metabolites</span> <span class='co'># (compare tests/testthat/test_synthetic_data_for_UBA_2014.R)</span> <span class='va'>m_synth_DFOP_par</span> <span class='op'><-</span> <span class='fu'>mkinmod</span><span class='op'>(</span> diff --git a/docs/reference/mkinpredict.html b/docs/reference/mkinpredict.html index 25e26419..5775ba62 100644 --- a/docs/reference/mkinpredict.html +++ b/docs/reference/mkinpredict.html @@ -74,7 +74,7 @@ kinetic parameters and initial values for the state variables." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -410,8 +410,8 @@ as these always return mapped output.</p></td> </div><div class='output co'>#> test relative elapsed #> 2 deSolve_compiled 1.0 0.005 #> 4 analytical 1.0 0.005 -#> 1 eigen 4.4 0.022 -#> 3 deSolve 47.0 0.235</div><div class='input'> +#> 1 eigen 4.0 0.020 +#> 3 deSolve 46.2 0.231</div><div class='input'> <span class='co'># \dontrun{</span> <span class='co'># Predict from a fitted model</span> <span class='va'>f</span> <span class='op'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_2006_C</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> diff --git a/docs/reference/mkinresplot-1.png b/docs/reference/mkinresplot-1.png Binary files differindex ffd34f6f..963aa5b7 100644 --- a/docs/reference/mkinresplot-1.png +++ b/docs/reference/mkinresplot-1.png diff --git a/docs/reference/mkinresplot.html b/docs/reference/mkinresplot.html index 04ff15b8..fe3150e7 100644 --- a/docs/reference/mkinresplot.html +++ b/docs/reference/mkinresplot.html @@ -75,7 +75,7 @@ argument show_residuals = TRUE." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/mmkin-1.png b/docs/reference/mmkin-1.png Binary files differindex 0db3379f..26586ab9 100644 --- a/docs/reference/mmkin-1.png +++ b/docs/reference/mmkin-1.png diff --git a/docs/reference/mmkin-2.png b/docs/reference/mmkin-2.png Binary files differindex 024a9892..dbcdd8ee 100644 --- a/docs/reference/mmkin-2.png +++ b/docs/reference/mmkin-2.png diff --git a/docs/reference/mmkin-3.png b/docs/reference/mmkin-3.png Binary files differindex a23d7cb9..80245fc6 100644 --- a/docs/reference/mmkin-3.png +++ b/docs/reference/mmkin-3.png diff --git a/docs/reference/mmkin-4.png b/docs/reference/mmkin-4.png Binary files differindex 89975db5..328aa564 100644 --- a/docs/reference/mmkin-4.png +++ b/docs/reference/mmkin-4.png diff --git a/docs/reference/mmkin-5.png b/docs/reference/mmkin-5.png Binary files differindex a2f34983..9ce5e919 100644 --- a/docs/reference/mmkin-5.png +++ b/docs/reference/mmkin-5.png diff --git a/docs/reference/mmkin.html b/docs/reference/mmkin.html index c9800fe7..c73d14bf 100644 --- a/docs/reference/mmkin.html +++ b/docs/reference/mmkin.html @@ -75,7 +75,7 @@ datasets specified in its first two arguments." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -234,9 +234,9 @@ plotting.</p></div> <span class='va'>time_default</span> </div><div class='output co'>#> user system elapsed -#> 4.630 0.415 1.717 </div><div class='input'><span class='va'>time_1</span> +#> 5.387 0.413 1.864 </div><div class='input'><span class='va'>time_1</span> </div><div class='output co'>#> user system elapsed -#> 5.694 0.000 5.694 </div><div class='input'> +#> 5.786 0.008 5.794 </div><div class='input'> <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>fits.0</span><span class='op'>[[</span><span class='st'>"SFO_lin"</span>, <span class='fl'>2</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span> </div><div class='output co'>#> $ff #> parent_M1 parent_sink M1_M2 M1_sink diff --git a/docs/reference/nlme-1.png b/docs/reference/nlme-1.png Binary files differindex 728cc557..cca4ce0a 100644 --- a/docs/reference/nlme-1.png +++ b/docs/reference/nlme-1.png diff --git a/docs/reference/nlme-2.png b/docs/reference/nlme-2.png Binary files differindex e8167455..c0d8e857 100644 --- a/docs/reference/nlme-2.png +++ b/docs/reference/nlme-2.png diff --git a/docs/reference/nlme.html b/docs/reference/nlme.html index 7b0c6a97..c6b43aab 100644 --- a/docs/reference/nlme.html +++ b/docs/reference/nlme.html @@ -75,7 +75,7 @@ datasets. They are used internally by the nlme.mmkin() method." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/nlme.mmkin-1.png b/docs/reference/nlme.mmkin-1.png Binary files differindex 9186c135..90ede880 100644 --- a/docs/reference/nlme.mmkin-1.png +++ b/docs/reference/nlme.mmkin-1.png diff --git a/docs/reference/nlme.mmkin-2.png b/docs/reference/nlme.mmkin-2.png Binary files differindex d395fe02..0d140fd1 100644 --- a/docs/reference/nlme.mmkin-2.png +++ b/docs/reference/nlme.mmkin-2.png diff --git a/docs/reference/nlme.mmkin-3.png b/docs/reference/nlme.mmkin-3.png Binary files differindex 40518a59..8a60b52b 100644 --- a/docs/reference/nlme.mmkin-3.png +++ b/docs/reference/nlme.mmkin-3.png diff --git a/docs/reference/nlme.mmkin.html b/docs/reference/nlme.mmkin.html index 189e34ef..03448606 100644 --- a/docs/reference/nlme.mmkin.html +++ b/docs/reference/nlme.mmkin.html @@ -74,7 +74,7 @@ have been obtained by fitting the same model to a list of datasets." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/parms.html b/docs/reference/parms.html index e45d6a5c..b4346b13 100644 --- a/docs/reference/parms.html +++ b/docs/reference/parms.html @@ -74,7 +74,7 @@ considering the error structure that was assumed for the fit." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/plot.mkinfit-1.png b/docs/reference/plot.mkinfit-1.png Binary files differindex e5da9f1c..54e5c46f 100644 --- a/docs/reference/plot.mkinfit-1.png +++ b/docs/reference/plot.mkinfit-1.png diff --git a/docs/reference/plot.mkinfit-2.png b/docs/reference/plot.mkinfit-2.png Binary files differindex a11d1680..ff8418a3 100644 --- a/docs/reference/plot.mkinfit-2.png +++ b/docs/reference/plot.mkinfit-2.png diff --git a/docs/reference/plot.mkinfit-3.png b/docs/reference/plot.mkinfit-3.png Binary files differindex c976d4b1..54f2b981 100644 --- a/docs/reference/plot.mkinfit-3.png +++ b/docs/reference/plot.mkinfit-3.png diff --git a/docs/reference/plot.mkinfit-4.png b/docs/reference/plot.mkinfit-4.png Binary files differindex c8bc00fe..7a7bfc6c 100644 --- a/docs/reference/plot.mkinfit-4.png +++ b/docs/reference/plot.mkinfit-4.png diff --git a/docs/reference/plot.mkinfit-5.png b/docs/reference/plot.mkinfit-5.png Binary files differindex 6631aa68..6a6741e7 100644 --- a/docs/reference/plot.mkinfit-5.png +++ b/docs/reference/plot.mkinfit-5.png diff --git a/docs/reference/plot.mkinfit-6.png b/docs/reference/plot.mkinfit-6.png Binary files differindex 946b20c5..c4d0b9c7 100644 --- a/docs/reference/plot.mkinfit-6.png +++ b/docs/reference/plot.mkinfit-6.png diff --git a/docs/reference/plot.mkinfit-7.png b/docs/reference/plot.mkinfit-7.png Binary files differindex 10807ea8..802b00ef 100644 --- a/docs/reference/plot.mkinfit-7.png +++ b/docs/reference/plot.mkinfit-7.png diff --git a/docs/reference/plot.mkinfit.html b/docs/reference/plot.mkinfit.html index b80c672d..ff6da93e 100644 --- a/docs/reference/plot.mkinfit.html +++ b/docs/reference/plot.mkinfit.html @@ -74,7 +74,7 @@ observed data together with the solution of the fitted model." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/plot.mmkin-1.png b/docs/reference/plot.mmkin-1.png Binary files differindex 647dfb8a..d06d683c 100644 --- a/docs/reference/plot.mmkin-1.png +++ b/docs/reference/plot.mmkin-1.png diff --git a/docs/reference/plot.mmkin-2.png b/docs/reference/plot.mmkin-2.png Binary files differindex 1bc1c9db..d3678aca 100644 --- a/docs/reference/plot.mmkin-2.png +++ b/docs/reference/plot.mmkin-2.png diff --git a/docs/reference/plot.mmkin-3.png b/docs/reference/plot.mmkin-3.png Binary files differindex 50d6ffac..f84d5782 100644 --- a/docs/reference/plot.mmkin-3.png +++ b/docs/reference/plot.mmkin-3.png diff --git a/docs/reference/plot.mmkin-4.png b/docs/reference/plot.mmkin-4.png Binary files differindex e049fa16..9919dacb 100644 --- a/docs/reference/plot.mmkin-4.png +++ b/docs/reference/plot.mmkin-4.png diff --git a/docs/reference/plot.mmkin-5.png b/docs/reference/plot.mmkin-5.png Binary files differindex 2421995b..945b863f 100644 --- a/docs/reference/plot.mmkin-5.png +++ b/docs/reference/plot.mmkin-5.png diff --git a/docs/reference/plot.mmkin.html b/docs/reference/plot.mmkin.html index 20f9033d..3348e050 100644 --- a/docs/reference/plot.mmkin.html +++ b/docs/reference/plot.mmkin.html @@ -76,7 +76,7 @@ the fit of at least one model to the same dataset is shown." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/reexports.html b/docs/reference/reexports.html index 864c4ff9..c6d716a1 100644 --- a/docs/reference/reexports.html +++ b/docs/reference/reexports.html @@ -79,7 +79,7 @@ below to see their documentation. </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/sigma_twocomp-1.png b/docs/reference/sigma_twocomp-1.png Binary files differindex 6e61684e..fddb86a7 100644 --- a/docs/reference/sigma_twocomp-1.png +++ b/docs/reference/sigma_twocomp-1.png diff --git a/docs/reference/sigma_twocomp.html b/docs/reference/sigma_twocomp.html index 397582f0..1b4e45e4 100644 --- a/docs/reference/sigma_twocomp.html +++ b/docs/reference/sigma_twocomp.html @@ -73,7 +73,7 @@ dependence of the measured value \(y\):" /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> diff --git a/docs/reference/summary.nlme.mmkin.html b/docs/reference/summary.nlme.mmkin.html index d6840425..8df9011d 100644 --- a/docs/reference/summary.nlme.mmkin.html +++ b/docs/reference/summary.nlme.mmkin.html @@ -76,7 +76,7 @@ endpoints such as formation fractions and DT50 values. Optionally </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -265,10 +265,10 @@ José Pinheiro and Douglas Bates for the components inherited from nlme</p> #> <span class='warning'>iteration limit reached without convergence (10)</span></div><div class='input'><span class='va'>f_nlme</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_mmkin</span><span class='op'>)</span> </div><div class='output co'>#> <span class='warning'>Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlme</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> </div><div class='output co'>#> nlme version used for fitting: 3.1.152 -#> mkin version used for pre-fitting: 1.0.3 -#> R version used for fitting: 4.0.3 -#> Date of fit: Mon Feb 15 13:46:13 2021 -#> Date of summary: Mon Feb 15 13:46:13 2021 +#> mkin version used for pre-fitting: 1.0.4 +#> R version used for fitting: 4.0.4 +#> Date of fit: Wed Mar 31 19:18:24 2021 +#> Date of summary: Wed Mar 31 19:18:24 2021 #> #> Equations: #> d_parent/dt = - k_parent * parent @@ -278,7 +278,7 @@ José Pinheiro and Douglas Bates for the components inherited from nlme</p> #> #> Model predictions using solution type analytical #> -#> Fitted in 0.553 s using 4 iterations +#> Fitted in 0.537 s using 4 iterations #> #> Variance model: Two-component variance function #> diff --git a/docs/reference/transform_odeparms.html b/docs/reference/transform_odeparms.html index c3c756f6..bbaad91e 100644 --- a/docs/reference/transform_odeparms.html +++ b/docs/reference/transform_odeparms.html @@ -77,7 +77,7 @@ the ilr transformation is used." /> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span> + <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span> </span> </div> @@ -3,14 +3,14 @@ Loading required package: parallel Testing mkin ✔ | OK F W S | Context ✔ | 5 | AIC calculation -✔ | 2 | Export dataset for reading into CAKE [0.2 s] +✔ | 2 | Export dataset for reading into CAKE ✔ | 14 | Results for FOCUS D established in expertise for UBA (Ranke 2014) [1.0 s] ✔ | 4 | Calculation of FOCUS chi2 error levels [0.5 s] -✔ | 7 | Fitting the SFORB model [3.4 s] +✔ | 7 | Fitting the SFORB model [3.5 s] ✔ | 5 | Analytical solutions for coupled models [3.1 s] ✔ | 5 | Calculation of Akaike weights -✔ | 12 | Confidence intervals and p-values [1.1 s] -✔ | 14 | Error model fitting [4.1 s] +✔ | 12 | Confidence intervals and p-values [1.0 s] +✔ | 14 | Error model fitting [4.2 s] ✔ | 5 | Time step normalisation ✔ | 4 | Test fitting the decline of metabolites from their maximum [0.3 s] ✔ | 1 | Fitting the logistic model [0.2 s] @@ -19,10 +19,27 @@ Testing mkin ✔ | 1 | mkinfit features [0.3 s] ✔ | 10 | Special cases of mkinfit calls [0.3 s] ✔ | 8 | mkinmod model generation and printing [0.2 s] -✔ | 3 | Model predictions with mkinpredict [0.3 s] +✔ | 3 | Model predictions with mkinpredict [0.4 s] ✔ | 16 | Evaluations according to 2015 NAFTA guidance [1.6 s] ✔ | 9 | Nonlinear mixed-effects models [7.9 s] -✔ | 14 | Plotting [1.7 s] +✖ | 10 4 | Plotting [1.7 s] +──────────────────────────────────────────────────────────────────────────────── +Failure (test_plot.R:20:3): Plotting mkinfit, mmkin and mixed model objects is reproducible +Figures don't match: mkinfit-plot-for-focus-c-with-residuals-like-in-gmkin.svg + + +Failure (test_plot.R:21:3): Plotting mkinfit, mmkin and mixed model objects is reproducible +Figures don't match: plot-res-for-focus-c.svg + + +Failure (test_plot.R:22:3): Plotting mkinfit, mmkin and mixed model objects is reproducible +Figures don't match: mkinfit-plot-for-focus-c-with-sep-true.svg + + +Failure (test_plot.R:30:3): Plotting mkinfit, mmkin and mixed model objects is reproducible +Figures don't match: plot-res-for-focus-d.svg + +──────────────────────────────────────────────────────────────────────────────── ✔ | 4 | Residuals extracted from mkinfit models ✔ | 2 | Complex test case from Schaefer et al. (2007) Piacenza paper [1.5 s] ✔ | 4 | Summary [0.1 s] @@ -32,6 +49,6 @@ Testing mkin ✔ | 4 | Calculation of maximum time weighted average concentrations (TWAs) [2.5 s] ══ Results ═════════════════════════════════════════════════════════════════════ -Duration: 40.9 s +Duration: 41.0 s -[ FAIL 0 | WARN 0 | SKIP 0 | PASS 174 ] +[ FAIL 4 | WARN 0 | SKIP 0 | PASS 170 ] diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html index f1f078db..f740cfc0 100644 --- a/vignettes/FOCUS_D.html +++ b/vignettes/FOCUS_D.html @@ -60,6 +60,15 @@ if (!!window.navigator.userAgent.match("MSIE 8")) { !function(a){"use strict";a.matchMedia=a.matchMedia||function(a){var b,c=a.documentElement,d=c.firstElementChild||c.firstChild,e=a.createElement("body"),f=a.createElement("div");return f.id="mq-test-1",f.style.cssText="position:absolute;top:-100em",e.style.background="none",e.appendChild(f),function(a){return f.innerHTML='­<style media="'+a+'"> #mq-test-1 { width: 42px; }</style>',c.insertBefore(e,d),b=42===f.offsetWidth,c.removeChild(e),{matches:b,media:a}}}(a.document)}(this),function(a){"use strict";function b(){u(!0)}var c={};a.respond=c,c.update=function(){};var d=[],e=function(){var b=!1;try{b=new a.XMLHttpRequest}catch(c){b=new a.ActiveXObject("Microsoft.XMLHTTP")}return function(){return b}}(),f=function(a,b){var c=e();c&&(c.open("GET",a,!0),c.onreadystatechange=function(){4!==c.readyState||200!==c.status&&304!==c.status||b(c.responseText)},4!==c.readyState&&c.send(null))};if(c.ajax=f,c.queue=d,c.regex={media:/@media[^\{]+\{([^\{\}]*\{[^\}\{]*\})+/gi,keyframes:/@(?:\-(?:o|moz|webkit)\-)?keyframes[^\{]+\{(?:[^\{\}]*\{[^\}\{]*\})+[^\}]*\}/gi,urls:/(url\()['"]?([^\/\)'"][^:\)'"]+)['"]?(\))/g,findStyles:/@media *([^\{]+)\{([\S\s]+?)$/,only:/(only\s+)?([a-zA-Z]+)\s?/,minw:/\([\s]*min\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/,maxw:/\([\s]*max\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/},c.mediaQueriesSupported=a.matchMedia&&null!==a.matchMedia("only all")&&a.matchMedia("only all").matches,!c.mediaQueriesSupported){var g,h,i,j=a.document,k=j.documentElement,l=[],m=[],n=[],o={},p=30,q=j.getElementsByTagName("head")[0]||k,r=j.getElementsByTagName("base")[0],s=q.getElementsByTagName("link"),t=function(){var a,b=j.createElement("div"),c=j.body,d=k.style.fontSize,e=c&&c.style.fontSize,f=!1;return b.style.cssText="position:absolute;font-size:1em;width:1em",c||(c=f=j.createElement("body"),c.style.background="none"),k.style.fontSize="100%",c.style.fontSize="100%",c.appendChild(b),f&&k.insertBefore(c,k.firstChild),a=b.offsetWidth,f?k.removeChild(c):c.removeChild(b),k.style.fontSize=d,e&&(c.style.fontSize=e),a=i=parseFloat(a)},u=function(b){var c="clientWidth",d=k[c],e="CSS1Compat"===j.compatMode&&d||j.body[c]||d,f={},o=s[s.length-1],r=(new Date).getTime();if(b&&g&&p>r-g)return a.clearTimeout(h),h=a.setTimeout(u,p),void 0;g=r;for(var v in l)if(l.hasOwnProperty(v)){var w=l[v],x=w.minw,y=w.maxw,z=null===x,A=null===y,B="em";x&&(x=parseFloat(x)*(x.indexOf(B)>-1?i||t():1)),y&&(y=parseFloat(y)*(y.indexOf(B)>-1?i||t():1)),w.hasquery&&(z&&A||!(z||e>=x)||!(A||y>=e))||(f[w.media]||(f[w.media]=[]),f[w.media].push(m[w.rules]))}for(var C in n)n.hasOwnProperty(C)&&n[C]&&n[C].parentNode===q&&q.removeChild(n[C]);n.length=0;for(var D in f)if(f.hasOwnProperty(D)){var E=j.createElement("style"),F=f[D].join("\n");E.type="text/css",E.media=D,q.insertBefore(E,o.nextSibling),E.styleSheet?E.styleSheet.cssText=F:E.appendChild(j.createTextNode(F)),n.push(E)}},v=function(a,b,d){var e=a.replace(c.regex.keyframes,"").match(c.regex.media),f=e&&e.length||0;b=b.substring(0,b.lastIndexOf("/"));var g=function(a){return a.replace(c.regex.urls,"$1"+b+"$2$3")},h=!f&&d;b.length&&(b+="/"),h&&(f=1);for(var i=0;f>i;i++){var j,k,n,o;h?(j=d,m.push(g(a))):(j=e[i].match(c.regex.findStyles)&&RegExp.$1,m.push(RegExp.$2&&g(RegExp.$2))),n=j.split(","),o=n.length;for(var p=0;o>p;p++)k=n[p],l.push({media:k.split("(")[0].match(c.regex.only)&&RegExp.$2||"all",rules:m.length-1,hasquery:k.indexOf("(")>-1,minw:k.match(c.regex.minw)&&parseFloat(RegExp.$1)+(RegExp.$2||""),maxw:k.match(c.regex.maxw)&&parseFloat(RegExp.$1)+(RegExp.$2||"")})}u()},w=function(){if(d.length){var b=d.shift();f(b.href,function(c){v(c,b.href,b.media),o[b.href]=!0,a.setTimeout(function(){w()},0)})}},x=function(){for(var b=0;b<s.length;b++){var c=s[b],e=c.href,f=c.media,g=c.rel&&"stylesheet"===c.rel.toLowerCase();e&&g&&!o[e]&&(c.styleSheet&&c.styleSheet.rawCssText?(v(c.styleSheet.rawCssText,e,f),o[e]=!0):(!/^([a-zA-Z:]*\/\/)/.test(e)&&!r||e.replace(RegExp.$1,"").split("/")[0]===a.location.host)&&("//"===e.substring(0,2)&&(e=a.location.protocol+e),d.push({href:e,media:f})))}w()};x(),c.update=x,c.getEmValue=t,a.addEventListener?a.addEventListener("resize",b,!1):a.attachEvent&&a.attachEvent("onresize",b)}}(this); }; </script> +<style>h1 {font-size: 34px;} + h1.title {font-size: 38px;} + h2 {font-size: 30px;} + h3 {font-size: 24px;} + h4 {font-size: 18px;} + h5 {font-size: 16px;} + h6 {font-size: 12px;} + code {color: inherit; background-color: rgba(0, 0, 0, 0.04);} + pre:not([class]) { background-color: white }</style> <script> /** @@ -232,11 +241,6 @@ color: #d14; </style> <style type="text/css">code{white-space: pre;}</style> -<style type="text/css"> - pre:not([class]) { - background-color: white; - } -</style> <script type="text/javascript"> if (window.hljs) { hljs.configure({languages: []}); @@ -249,32 +253,6 @@ if (window.hljs) { -<style type="text/css"> -h1 { - font-size: 34px; -} -h1.title { - font-size: 38px; -} -h2 { - font-size: 30px; -} -h3 { - font-size: 24px; -} -h4 { - font-size: 18px; -} -h5 { - font-size: 16px; -} -h6 { - font-size: 12px; -} -.table th:not([align]) { - text-align: left; -} -</style> @@ -286,10 +264,6 @@ h6 { margin-left: auto; margin-right: auto; } -code { - color: inherit; - background-color: rgba(0, 0, 0, 0.04); -} img { max-width:100%; } @@ -305,6 +279,9 @@ button.code-folding-btn:focus { summary { display: list-item; } +pre code { + padding: 0; +} </style> @@ -317,7 +294,6 @@ summary { max-height: 500px; min-height: 44px; overflow-y: auto; - background: white; border: 1px solid #ddd; border-radius: 4px; } @@ -381,13 +357,13 @@ summary { -<div class="fluid-row" id="header"> +<div id="header"> <h1 class="title toc-ignore">Example evaluation of FOCUS Example Dataset D</h1> <h4 class="author">Johannes Ranke</h4> -<h4 class="date">Last change 31 January 2019 (rebuilt 2021-02-15)</h4> +<h4 class="date">Last change 31 January 2019 (rebuilt 2021-03-31)</h4> </div> @@ -455,16 +431,16 @@ print(FOCUS_2006_D)</code></pre> ## of zero were removed from the data</code></pre> <p>A plot of the fit including a residual plot for both observed variables is obtained using the <code>plot_sep</code> method for <code>mkinfit</code> objects, which shows separate graphs for all compounds and their residuals.</p> <pre class="r"><code>plot_sep(fit, lpos = c("topright", "bottomright"))</code></pre> -<p><img src="" width="768" /></p> +<p><img src="" width="768" /></p> <p>Confidence intervals for the parameter estimates are obtained using the <code>mkinparplot</code> function.</p> <pre class="r"><code>mkinparplot(fit)</code></pre> <p><img src="" width="768" /></p> <p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p> <pre class="r"><code>summary(fit)</code></pre> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 14:11:17 2021 -## Date of summary: Mon Feb 15 14:11:17 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:01:35 2021 +## Date of summary: Wed Mar 31 19:01:35 2021 ## ## Equations: ## d_parent/dt = - k_parent * parent @@ -472,7 +448,7 @@ print(FOCUS_2006_D)</code></pre> ## ## Model predictions using solution type analytical ## -## Fitted using 401 model solutions performed in 0.143 s +## Fitted using 401 model solutions performed in 0.146 s ## ## Error model: Constant variance ## @@ -616,7 +592,7 @@ $(document).ready(function () { $(document).ready(function () { $('.tabset-dropdown > .nav-tabs > li').click(function () { - $(this).parent().toggleClass('nav-tabs-open') + $(this).parent().toggleClass('nav-tabs-open'); }); }); </script> diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html index 0ed46483..77b64659 100644 --- a/vignettes/FOCUS_L.html +++ b/vignettes/FOCUS_L.html @@ -60,6 +60,15 @@ if (!!window.navigator.userAgent.match("MSIE 8")) { !function(a){"use strict";a.matchMedia=a.matchMedia||function(a){var b,c=a.documentElement,d=c.firstElementChild||c.firstChild,e=a.createElement("body"),f=a.createElement("div");return f.id="mq-test-1",f.style.cssText="position:absolute;top:-100em",e.style.background="none",e.appendChild(f),function(a){return f.innerHTML='­<style media="'+a+'"> #mq-test-1 { width: 42px; }</style>',c.insertBefore(e,d),b=42===f.offsetWidth,c.removeChild(e),{matches:b,media:a}}}(a.document)}(this),function(a){"use strict";function b(){u(!0)}var c={};a.respond=c,c.update=function(){};var d=[],e=function(){var b=!1;try{b=new a.XMLHttpRequest}catch(c){b=new a.ActiveXObject("Microsoft.XMLHTTP")}return function(){return b}}(),f=function(a,b){var c=e();c&&(c.open("GET",a,!0),c.onreadystatechange=function(){4!==c.readyState||200!==c.status&&304!==c.status||b(c.responseText)},4!==c.readyState&&c.send(null))};if(c.ajax=f,c.queue=d,c.regex={media:/@media[^\{]+\{([^\{\}]*\{[^\}\{]*\})+/gi,keyframes:/@(?:\-(?:o|moz|webkit)\-)?keyframes[^\{]+\{(?:[^\{\}]*\{[^\}\{]*\})+[^\}]*\}/gi,urls:/(url\()['"]?([^\/\)'"][^:\)'"]+)['"]?(\))/g,findStyles:/@media *([^\{]+)\{([\S\s]+?)$/,only:/(only\s+)?([a-zA-Z]+)\s?/,minw:/\([\s]*min\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/,maxw:/\([\s]*max\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/},c.mediaQueriesSupported=a.matchMedia&&null!==a.matchMedia("only all")&&a.matchMedia("only all").matches,!c.mediaQueriesSupported){var g,h,i,j=a.document,k=j.documentElement,l=[],m=[],n=[],o={},p=30,q=j.getElementsByTagName("head")[0]||k,r=j.getElementsByTagName("base")[0],s=q.getElementsByTagName("link"),t=function(){var a,b=j.createElement("div"),c=j.body,d=k.style.fontSize,e=c&&c.style.fontSize,f=!1;return b.style.cssText="position:absolute;font-size:1em;width:1em",c||(c=f=j.createElement("body"),c.style.background="none"),k.style.fontSize="100%",c.style.fontSize="100%",c.appendChild(b),f&&k.insertBefore(c,k.firstChild),a=b.offsetWidth,f?k.removeChild(c):c.removeChild(b),k.style.fontSize=d,e&&(c.style.fontSize=e),a=i=parseFloat(a)},u=function(b){var c="clientWidth",d=k[c],e="CSS1Compat"===j.compatMode&&d||j.body[c]||d,f={},o=s[s.length-1],r=(new Date).getTime();if(b&&g&&p>r-g)return a.clearTimeout(h),h=a.setTimeout(u,p),void 0;g=r;for(var v in l)if(l.hasOwnProperty(v)){var w=l[v],x=w.minw,y=w.maxw,z=null===x,A=null===y,B="em";x&&(x=parseFloat(x)*(x.indexOf(B)>-1?i||t():1)),y&&(y=parseFloat(y)*(y.indexOf(B)>-1?i||t():1)),w.hasquery&&(z&&A||!(z||e>=x)||!(A||y>=e))||(f[w.media]||(f[w.media]=[]),f[w.media].push(m[w.rules]))}for(var C in n)n.hasOwnProperty(C)&&n[C]&&n[C].parentNode===q&&q.removeChild(n[C]);n.length=0;for(var D in f)if(f.hasOwnProperty(D)){var E=j.createElement("style"),F=f[D].join("\n");E.type="text/css",E.media=D,q.insertBefore(E,o.nextSibling),E.styleSheet?E.styleSheet.cssText=F:E.appendChild(j.createTextNode(F)),n.push(E)}},v=function(a,b,d){var e=a.replace(c.regex.keyframes,"").match(c.regex.media),f=e&&e.length||0;b=b.substring(0,b.lastIndexOf("/"));var g=function(a){return a.replace(c.regex.urls,"$1"+b+"$2$3")},h=!f&&d;b.length&&(b+="/"),h&&(f=1);for(var i=0;f>i;i++){var j,k,n,o;h?(j=d,m.push(g(a))):(j=e[i].match(c.regex.findStyles)&&RegExp.$1,m.push(RegExp.$2&&g(RegExp.$2))),n=j.split(","),o=n.length;for(var p=0;o>p;p++)k=n[p],l.push({media:k.split("(")[0].match(c.regex.only)&&RegExp.$2||"all",rules:m.length-1,hasquery:k.indexOf("(")>-1,minw:k.match(c.regex.minw)&&parseFloat(RegExp.$1)+(RegExp.$2||""),maxw:k.match(c.regex.maxw)&&parseFloat(RegExp.$1)+(RegExp.$2||"")})}u()},w=function(){if(d.length){var b=d.shift();f(b.href,function(c){v(c,b.href,b.media),o[b.href]=!0,a.setTimeout(function(){w()},0)})}},x=function(){for(var b=0;b<s.length;b++){var c=s[b],e=c.href,f=c.media,g=c.rel&&"stylesheet"===c.rel.toLowerCase();e&&g&&!o[e]&&(c.styleSheet&&c.styleSheet.rawCssText?(v(c.styleSheet.rawCssText,e,f),o[e]=!0):(!/^([a-zA-Z:]*\/\/)/.test(e)&&!r||e.replace(RegExp.$1,"").split("/")[0]===a.location.host)&&("//"===e.substring(0,2)&&(e=a.location.protocol+e),d.push({href:e,media:f})))}w()};x(),c.update=x,c.getEmValue=t,a.addEventListener?a.addEventListener("resize",b,!1):a.attachEvent&&a.attachEvent("onresize",b)}}(this); }; </script> +<style>h1 {font-size: 34px;} + h1.title {font-size: 38px;} + h2 {font-size: 30px;} + h3 {font-size: 24px;} + h4 {font-size: 18px;} + h5 {font-size: 16px;} + h6 {font-size: 12px;} + code {color: inherit; background-color: rgba(0, 0, 0, 0.04);} + pre:not([class]) { background-color: white }</style> <script>/*! jQuery UI - v1.11.4 - 2016-01-05 * http://jqueryui.com * Includes: core.js, widget.js, mouse.js, position.js, draggable.js, droppable.js, resizable.js, selectable.js, sortable.js, accordion.js, autocomplete.js, button.js, dialog.js, menu.js, progressbar.js, selectmenu.js, slider.js, spinner.js, tabs.js, tooltip.js, effect.js, effect-blind.js, effect-bounce.js, effect-clip.js, effect-drop.js, effect-explode.js, effect-fade.js, effect-fold.js, effect-highlight.js, effect-puff.js, effect-pulsate.js, effect-scale.js, effect-shake.js, effect-size.js, effect-slide.js, effect-transfer.js @@ -309,7 +318,7 @@ float: none; self._setEventHandlers(); // Binding to the Window load event to make sure the correct scrollTop is calculated - $(window).load(function() { + $(window).on("load", function() { // Sets the active TOC item self._setActiveElement(true); @@ -1306,11 +1315,6 @@ color: #d14; </style> <style type="text/css">code{white-space: pre;}</style> -<style type="text/css"> - pre:not([class]) { - background-color: white; - } -</style> <script type="text/javascript"> if (window.hljs) { hljs.configure({languages: []}); @@ -1323,32 +1327,6 @@ if (window.hljs) { -<style type="text/css"> -h1 { - font-size: 34px; -} -h1.title { - font-size: 38px; -} -h2 { - font-size: 30px; -} -h3 { - font-size: 24px; -} -h4 { - font-size: 18px; -} -h5 { - font-size: 16px; -} -h6 { - font-size: 12px; -} -.table th:not([align]) { - text-align: left; -} -</style> @@ -1360,10 +1338,6 @@ h6 { margin-left: auto; margin-right: auto; } -code { - color: inherit; - background-color: rgba(0, 0, 0, 0.04); -} img { max-width:100%; } @@ -1379,6 +1353,9 @@ button.code-folding-btn:focus { summary { display: list-item; } +pre code { + padding: 0; +} </style> @@ -1391,7 +1368,6 @@ summary { max-height: 500px; min-height: 44px; overflow-y: auto; - background: white; border: 1px solid #ddd; border-radius: 4px; } @@ -1523,24 +1499,24 @@ div.tocify { <!-- setup 3col/9col grid for toc_float and main content --> -<div class="row-fluid"> -<div class="col-xs-12 col-sm-4 col-md-3"> +<div class="row"> +<div class="col-sm-12 col-md-4 col-lg-3"> <div id="TOC" class="tocify"> </div> </div> -<div class="toc-content col-xs-12 col-sm-8 col-md-9"> +<div class="toc-content col-sm-12 col-md-8 col-lg-9"> -<div class="fluid-row" id="header"> +<div id="header"> <h1 class="title toc-ignore">Example evaluation of FOCUS Laboratory Data L1 to L3</h1> <h4 class="author">Johannes Ranke</h4> -<h4 class="date">Last change 17 November 2016 (rebuilt 2021-02-15)</h4> +<h4 class="date">Last change 17 November 2016 (rebuilt 2021-03-31)</h4> </div> @@ -1559,10 +1535,10 @@ FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)</code></pre> <p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>"SFO"</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p> <pre class="r"><code>m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet = TRUE) summary(m.L1.SFO)</code></pre> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 14:11:19 2021 -## Date of summary: Mon Feb 15 14:11:19 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:01:37 2021 +## Date of summary: Wed Mar 31 19:01:37 2021 ## ## Equations: ## d_parent/dt = - k_parent * parent @@ -1660,17 +1636,17 @@ summary(m.L1.SFO)</code></pre> <pre><code>## Warning in sqrt(1/diag(V)): NaNs produced</code></pre> <pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is ## doubtful</code></pre> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 14:11:19 2021 -## Date of summary: Mon Feb 15 14:11:19 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:01:37 2021 +## Date of summary: Wed Mar 31 19:01:37 2021 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted using 369 model solutions performed in 0.082 s +## Fitted using 369 model solutions performed in 0.083 s ## ## Error model: Constant variance ## @@ -1752,7 +1728,7 @@ FOCUS_2006_L2_mkin <- mkin_wide_to_long(FOCUS_2006_L2)</code></pre> <pre class="r"><code>m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE) plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE, main = "FOCUS L2 - SFO")</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 14% suggests that the model does not fit very well. This is also obvious from the plots of the fit, in which we have included the residual plot.</p> <p>In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at day 5), and there is an underestimation beyond that point.</p> <p>We may add that it is difficult to judge the random nature of the residuals just from the three samplings at days 0, 1 and 3. Also, it is not clear <em>a priori</em> why a consistent underestimation after the approximate DT90 should be irrelevant. However, this can be rationalised by the fact that the FOCUS fate models generally only implement SFO kinetics.</p> @@ -1763,19 +1739,19 @@ plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE, <pre class="r"><code>m.L2.FOMC <- mkinfit("FOMC", FOCUS_2006_L2_mkin, quiet = TRUE) plot(m.L2.FOMC, show_residuals = TRUE, main = "FOCUS L2 - FOMC")</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 14:11:19 2021 -## Date of summary: Mon Feb 15 14:11:19 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:01:37 2021 +## Date of summary: Wed Mar 31 19:01:37 2021 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted using 239 model solutions performed in 0.05 s +## Fitted using 239 model solutions performed in 0.049 s ## ## Error model: Constant variance ## @@ -1841,12 +1817,12 @@ plot(m.L2.FOMC, show_residuals = TRUE, <pre class="r"><code>m.L2.DFOP <- mkinfit("DFOP", FOCUS_2006_L2_mkin, quiet = TRUE) plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, main = "FOCUS L2 - DFOP")</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 14:11:20 2021 -## Date of summary: Mon Feb 15 14:11:20 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:01:38 2021 +## Date of summary: Wed Mar 31 19:01:38 2021 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -1943,10 +1919,10 @@ plot(mm.L3)</code></pre> <p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p> <p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p> <pre class="r"><code>summary(mm.L3[["DFOP", 1]])</code></pre> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 14:11:20 2021 -## Date of summary: Mon Feb 15 14:11:20 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:01:38 2021 +## Date of summary: Wed Mar 31 19:01:38 2021 ## ## Equations: ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -2051,17 +2027,17 @@ plot(mm.L4)</code></pre> <p><img src="" /><!-- --></p> <p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p> <pre class="r"><code>summary(mm.L4[["SFO", 1]], data = FALSE)</code></pre> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 14:11:20 2021 -## Date of summary: Mon Feb 15 14:11:20 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:01:38 2021 +## Date of summary: Wed Mar 31 19:01:38 2021 ## ## Equations: ## d_parent/dt = - k_parent * parent ## ## Model predictions using solution type analytical ## -## Fitted using 142 model solutions performed in 0.03 s +## Fitted using 142 model solutions performed in 0.031 s ## ## Error model: Constant variance ## @@ -2115,17 +2091,17 @@ plot(mm.L4)</code></pre> ## DT50 DT90 ## parent 106 352</code></pre> <pre class="r"><code>summary(mm.L4[["FOMC", 1]], data = FALSE)</code></pre> -<pre><code>## mkin version used for fitting: 1.0.3 -## R version used for fitting: 4.0.3 -## Date of fit: Mon Feb 15 14:11:20 2021 -## Date of summary: Mon Feb 15 14:11:20 2021 +<pre><code>## mkin version used for fitting: 1.0.4 +## R version used for fitting: 4.0.4 +## Date of fit: Wed Mar 31 19:01:38 2021 +## Date of summary: Wed Mar 31 19:01:38 2021 ## ## Equations: ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted using 224 model solutions performed in 0.046 s +## Fitted using 224 model solutions performed in 0.045 s ## ## Error model: Constant variance ## @@ -2222,7 +2198,7 @@ $(document).ready(function () { $(document).ready(function () { $('.tabset-dropdown > .nav-tabs > li').click(function () { - $(this).parent().toggleClass('nav-tabs-open') + $(this).parent().toggleClass('nav-tabs-open'); }); }); </script> diff --git a/vignettes/web_only/mkin_benchmarks.rda b/vignettes/web_only/mkin_benchmarks.rda Binary files differindex 4421cf5b..fe4ab843 100644 --- a/vignettes/web_only/mkin_benchmarks.rda +++ b/vignettes/web_only/mkin_benchmarks.rda |