aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2020-05-26 18:38:51 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2020-05-26 18:52:01 +0200
commit675a733fa2acc08daabb9b8b571c7d658f281f73 (patch)
treeef29cec38aa6d446f7956c0e423cca6bed2e21c0
parent5e85d8856e7c9db3c52bb6ac5a0a81e2f0c6181c (diff)
Use all cores per default, confint tolerance
Also, use more intelligent starting values for the variance of the random effects for saemix. While this does not appear to speed up the convergence, it shows where this variance is greatly reduced by using mixed-effects models as opposed to the separate independent fits.
-rw-r--r--NAMESPACE1
-rw-r--r--NEWS.md4
-rw-r--r--R/confint.mkinfit.R86
-rw-r--r--R/mmkin.R5
-rw-r--r--R/nlme.R2
-rw-r--r--R/parms.mkinfit.R4
-rw-r--r--R/saemix.R31
-rw-r--r--build.log2
-rw-r--r--check.log2
-rw-r--r--docs/news/index.html2
-rw-r--r--docs/pkgdown.yml2
-rw-r--r--docs/reference/confint.mkinfit.html20
-rw-r--r--docs/reference/mmkin.html16
-rw-r--r--docs/reference/nlme.html4
-rw-r--r--docs/reference/parms.html6
-rw-r--r--docs/reference/saemix-1.pngbin37443 -> 31551 bytes
-rw-r--r--docs/reference/saemix-2.pngbin38557 -> 58815 bytes
-rw-r--r--docs/reference/saemix.html135
-rw-r--r--man/confint.mkinfit.Rd7
-rw-r--r--man/mmkin.Rd5
-rw-r--r--man/nlme.Rd2
-rw-r--r--man/parms.Rd4
-rw-r--r--man/saemix.Rd23
-rw-r--r--test.log20
-rw-r--r--tests/testthat/FOCUS_2006_D.csf2
-rw-r--r--vignettes/FOCUS_D.html10
-rw-r--r--vignettes/FOCUS_L.html453
-rw-r--r--vignettes/mkin.html4
-rw-r--r--vignettes/twa.html19
29 files changed, 466 insertions, 405 deletions
diff --git a/NAMESPACE b/NAMESPACE
index d2298dec..f8be4fae 100644
--- a/NAMESPACE
+++ b/NAMESPACE
@@ -116,5 +116,6 @@ importFrom(stats,qt)
importFrom(stats,residuals)
importFrom(stats,rnorm)
importFrom(stats,update)
+importFrom(stats,var)
importFrom(utils,getFromNamespace)
importFrom(utils,write.table)
diff --git a/NEWS.md b/NEWS.md
index a3bd2bc2..8f88b64d 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -4,6 +4,10 @@
- 'saemix_model', 'saemix_data': Helper functions to fit nonlinear mixed-effects models for mmkin row objects using the saemix package
+- 'mmkin' and 'confint(method = 'profile'): Use all cores detected by parallel::detectCores() per default
+
+- 'confint(method = 'profile'): Choose accuracy based on 'rel_tol' argument, relative to the bounds obtained by the quadratic approximation
+
# mkin 0.9.50.2 (2020-05-12)
- Increase tolerance for a platform specific test results on the Solaris test machine on CRAN
diff --git a/R/confint.mkinfit.R b/R/confint.mkinfit.R
index 78dda95d..53eb45ee 100644
--- a/R/confint.mkinfit.R
+++ b/R/confint.mkinfit.R
@@ -27,7 +27,10 @@
#' @param backtransform If we approximate the likelihood in terms of the
#' transformed parameters, should we backtransform the parameters with
#' their confidence intervals?
-#' @param cores The number of cores to be used for multicore processing.
+#' @param rel_tol If the method is 'profile', what should be the accuracy
+#' of the lower and upper bounds, relative to the estimate obtained from
+#' the quadratic method?
+#' @param cores The number of cores to be used for multicore processing.
#' On Windows machines, cores > 1 is currently not supported.
#' @param quiet Should we suppress the message "Profiling the likelihood"
#' @return A matrix with columns giving lower and upper confidence limits for
@@ -121,7 +124,7 @@ confint.mkinfit <- function(object, parm,
level = 0.95, alpha = 1 - level, cutoff,
method = c("quadratic", "profile"),
transformed = TRUE, backtransform = TRUE,
- cores = round(detectCores()/2), quiet = FALSE, ...)
+ cores = parallel::detectCores(), rel_tol = 0.01, quiet = FALSE, ...)
{
tparms <- parms(object, transformed = TRUE)
bparms <- parms(object, transformed = FALSE)
@@ -140,50 +143,50 @@ confint.mkinfit <- function(object, parm,
a <- c(alpha / 2, 1 - (alpha / 2))
- if (method == "quadratic") {
+ quantiles <- qt(a, object$df.residual)
- quantiles <- qt(a, object$df.residual)
-
- covar_pnames <- if (missing(parm)) {
- if (transformed) tpnames else bpnames
- } else {
- parm
- }
+ covar_pnames <- if (missing(parm)) {
+ if (transformed) tpnames else bpnames
+ } else {
+ parm
+ }
- return_parms <- if (backtransform) bparms[return_pnames]
- else tparms[return_pnames]
+ return_parms <- if (backtransform) bparms[return_pnames]
+ else tparms[return_pnames]
- covar_parms <- if (transformed) tparms[covar_pnames]
- else bparms[covar_pnames]
+ covar_parms <- if (transformed) tparms[covar_pnames]
+ else bparms[covar_pnames]
- if (transformed) {
- covar <- try(solve(object$hessian), silent = TRUE)
- } else {
- covar <- try(solve(object$hessian_notrans), silent = TRUE)
- }
+ if (transformed) {
+ covar <- try(solve(object$hessian), silent = TRUE)
+ } else {
+ covar <- try(solve(object$hessian_notrans), silent = TRUE)
+ }
- # If inverting the covariance matrix failed or produced NA values
- if (!is.numeric(covar) | is.na(covar[1])) {
- ses <- lci <- uci <- rep(NA, p)
- } else {
- ses <- sqrt(diag(covar))[covar_pnames]
- lci <- covar_parms + quantiles[1] * ses
- uci <- covar_parms + quantiles[2] * ses
- if (transformed & backtransform) {
- lci_back <- backtransform_odeparms(lci,
- object$mkinmod, object$transform_rates, object$transform_fractions)
- uci_back <- backtransform_odeparms(uci,
- object$mkinmod, object$transform_rates, object$transform_fractions)
-
- return_errparm_names <- intersect(names(object$errparms), return_pnames)
- lci <- c(lci_back, lci[return_errparm_names])
- uci <- c(uci_back, uci[return_errparm_names])
- }
+ # If inverting the covariance matrix failed or produced NA values
+ if (!is.numeric(covar) | is.na(covar[1])) {
+ ses <- lci <- uci <- rep(NA, p)
+ } else {
+ ses <- sqrt(diag(covar))[covar_pnames]
+ lci <- covar_parms + quantiles[1] * ses
+ uci <- covar_parms + quantiles[2] * ses
+ if (transformed & backtransform) {
+ lci_back <- backtransform_odeparms(lci,
+ object$mkinmod, object$transform_rates, object$transform_fractions)
+ uci_back <- backtransform_odeparms(uci,
+ object$mkinmod, object$transform_rates, object$transform_fractions)
+
+ return_errparm_names <- intersect(names(object$errparms), return_pnames)
+ lci <- c(lci_back, lci[return_errparm_names])
+ uci <- c(uci_back, uci[return_errparm_names])
}
- ci <- cbind(lower = lci, upper = uci)
}
+ ci <- cbind(lower = lci, upper = uci)
if (method == "profile") {
+
+ ci_quadratic <- ci
+
if (!quiet) message("Profiling the likelihood")
lci <- uci <- rep(NA, p)
@@ -215,9 +218,14 @@ confint.mkinfit <- function(object, parm,
(cutoff - (object$logLik - profile_ll(x)))^2
}
- lci_pname <- optimize(cost, lower = 0, upper = all_parms[pname])$minimum
+ lower_quadratic <- ci_quadratic["lower"][pname]
+ upper_quadratic <- ci_quadratic["upper"][pname]
+ ltol <- if (!is.na(lower_quadratic)) rel_tol * lower_quadratic else .Machine$double.eps^0.25
+ utol <- if (!is.na(upper_quadratic)) rel_tol * upper_quadratic else .Machine$double.eps^0.25
+ lci_pname <- optimize(cost, lower = 0, upper = all_parms[pname], tol = ltol)$minimum
uci_pname <- optimize(cost, lower = all_parms[pname],
- upper = ifelse(grepl("^f_|^g$", pname), 1, 15 * all_parms[pname]))$minimum
+ upper = ifelse(grepl("^f_|^g$", pname), 1, 15 * all_parms[pname]),
+ tol = utol)$minimum
return(c(lci_pname, uci_pname))
}
ci <- t(parallel::mcmapply(get_ci, profile_pnames, mc.cores = cores))
diff --git a/R/mmkin.R b/R/mmkin.R
index dbb61b78..37c4e87d 100644
--- a/R/mmkin.R
+++ b/R/mmkin.R
@@ -12,7 +12,8 @@
#' @param cores The number of cores to be used for multicore processing. This
#' is only used when the \code{cluster} argument is \code{NULL}. On Windows
#' machines, cores > 1 is not supported, you need to use the \code{cluster}
-#' argument to use multiple logical processors.
+#' argument to use multiple logical processors. Per default, all cores
+#' detected by [parallel::detectCores()] are used.
#' @param cluster A cluster as returned by \code{\link{makeCluster}} to be used
#' for parallel execution.
#' @param \dots Further arguments that will be passed to \code{\link{mkinfit}}.
@@ -62,7 +63,7 @@
#'
#' @export mmkin
mmkin <- function(models = c("SFO", "FOMC", "DFOP"), datasets,
- cores = round(detectCores()/2), cluster = NULL, ...)
+ cores = detectCores(), cluster = NULL, ...)
{
parent_models_available = c("SFO", "FOMC", "DFOP", "HS", "SFORB", "IORE", "logistic")
n.m <- length(models)
diff --git a/R/nlme.R b/R/nlme.R
index 3ee7b9fd..20987064 100644
--- a/R/nlme.R
+++ b/R/nlme.R
@@ -125,7 +125,7 @@ nlme_function <- function(object) {
#' @return If random is FALSE (default), a named vector containing mean values
#' of the fitted degradation model parameters. If random is TRUE, a list with
#' fixed and random effects, in the format required by the start argument of
-#' nlme for the case of a single grouping variable ds?
+#' nlme for the case of a single grouping variable ds.
#' @param random Should a list with fixed and random effects be returned?
#' @export
mean_degparms <- function(object, random = FALSE) {
diff --git a/R/parms.mkinfit.R b/R/parms.mkinfit.R
index aae6fa52..a1f2d209 100644
--- a/R/parms.mkinfit.R
+++ b/R/parms.mkinfit.R
@@ -21,11 +21,13 @@
#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) subset(x$data[c("name", "time", "value")]))
#' names(ds) <- paste("Dataset", 6:10)
-#' fits <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
+#' \dontrun{
+#' fits <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE, cores = 1)
#' parms(fits["SFO", ])
#' parms(fits[, 2])
#' parms(fits)
#' parms(fits, transformed = TRUE)
+#' }
#' @export
parms <- function(object, ...)
{
diff --git a/R/saemix.R b/R/saemix.R
index 69e5fc50..24c0f0d0 100644
--- a/R/saemix.R
+++ b/R/saemix.R
@@ -5,25 +5,37 @@
#' list of mkinfit objects that have been obtained by fitting the same model to
#' a list of datasets.
#'
+#' Starting values for the fixed effects (population mean parameters, argument psi0 of
+#' [saemix::saemixModel()] are the mean values of the parameters found using
+#' mmkin. Starting variances of the random effects (argument omega.init) are the
+#' variances of the deviations of the parameters from these mean values.
+#'
#' @param object An mmkin row object containing several fits of the same model to different datasets
+#' @param cores The number of cores to be used for multicore processing.
+#' On Windows machines, cores > 1 is currently not supported.
#' @rdname saemix
#' @importFrom saemix saemixData saemixModel
+#' @importFrom stats var
#' @examples
#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) subset(x$data[c("name", "time", "value")]))
#' names(ds) <- paste("Dataset", 6:10)
#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"))
-#' f_mmkin <- mmkin(list("SFO-SFO" = sfo_sfo), ds, quiet = TRUE, cores = 5)
+#' \dontrun{
+#' f_mmkin <- mmkin(list("SFO-SFO" = sfo_sfo), ds, quiet = TRUE)
+#' library(saemix)
#' m_saemix <- saemix_model(f_mmkin)
#' d_saemix <- saemix_data(f_mmkin)
-#' saemix_options <- list(seed = 123456, save = FALSE, save.graphs = FALSE)
-#' \dontrun{
-#' saemix(m_saemix, d_saemix, saemix_options)
+#' saemix_options <- list(seed = 123456,
+#' save = FALSE, save.graphs = FALSE, displayProgress = FALSE,
+#' nbiter.saemix = c(200, 80))
+#' f_saemix <- saemix(m_saemix, d_saemix, saemix_options)
+#' plot(f_saemix, plot.type = "convergence")
#' }
#' @return An [saemix::SaemixModel] object.
#' @export
-saemix_model <- function(object) {
+saemix_model <- function(object, cores = parallel::detectCores()) {
if (nrow(object) > 1) stop("Only row objects allowed")
mkin_model <- object[[1]]$mkinmod
@@ -81,14 +93,19 @@ saemix_model <- function(object) {
out_values <- out_wide[out_index]
}
return(out_values)
- }, mc.cores = 15)
+ }, mc.cores = cores)
res <- unlist(res_list)
return(res)
}
+ raneff_0 <- mean_degparms(object, random = TRUE)$random$ds
+ var_raneff_0 <- apply(raneff_0, 2, var)
+
res <- saemixModel(model_function, psi0,
"Mixed model generated from mmkin object",
- transform.par = rep(0, length(degparms_optim)))
+ transform.par = rep(0, length(degparms_optim)),
+ omega.init = diag(var_raneff_0)
+ )
return(res)
}
diff --git a/build.log b/build.log
index bd53dcee..b94e6450 100644
--- a/build.log
+++ b/build.log
@@ -5,5 +5,5 @@
* creating vignettes ... OK
* checking for LF line-endings in source and make files and shell scripts
* checking for empty or unneeded directories
-* building ‘mkin_0.9.50.2.tar.gz’
+* building ‘mkin_0.9.50.3.tar.gz’
diff --git a/check.log b/check.log
index 17413d04..cae31a24 100644
--- a/check.log
+++ b/check.log
@@ -5,7 +5,7 @@
* using options ‘--no-tests --as-cran’
* checking for file ‘mkin/DESCRIPTION’ ... OK
* checking extension type ... Package
-* this is package ‘mkin’ version ‘0.9.50.2’
+* this is package ‘mkin’ version ‘0.9.50.3’
* package encoding: UTF-8
* checking CRAN incoming feasibility ... Note_to_CRAN_maintainers
Maintainer: ‘Johannes Ranke <jranke@uni-bremen.de>’
diff --git a/docs/news/index.html b/docs/news/index.html
index 149fc98e..c26652e9 100644
--- a/docs/news/index.html
+++ b/docs/news/index.html
@@ -148,6 +148,8 @@
<ul>
<li><p>‘parms’: Add a method for mmkin objects</p></li>
<li><p>‘saemix_model’, ‘saemix_data’: Helper functions to fit nonlinear mixed-effects models for mmkin row objects using the saemix package</p></li>
+<li><p>‘mmkin’ and ‘confint(method = ’profile’): Use all cores detected by parallel::detectCores() per default</p></li>
+<li><p>‘confint(method = ’profile’): Choose accuracy based on ‘rel_tol’ argument, relative to the bounds obtained by the quadratic approximation</p></li>
</ul>
</div>
<div id="mkin-0-9-50-2-2020-05-12" class="section level1">
diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml
index 0bb01ef4..a8b168ce 100644
--- a/docs/pkgdown.yml
+++ b/docs/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
NAFTA_examples: web_only/NAFTA_examples.html
benchmarks: web_only/benchmarks.html
compiled_models: web_only/compiled_models.html
-last_built: 2020-05-25T10:48Z
+last_built: 2020-05-26T16:38Z
urls:
reference: https://pkgdown.jrwb.de/mkin/reference
article: https://pkgdown.jrwb.de/mkin/articles
diff --git a/docs/reference/confint.mkinfit.html b/docs/reference/confint.mkinfit.html
index 190494bc..0686c7bb 100644
--- a/docs/reference/confint.mkinfit.html
+++ b/docs/reference/confint.mkinfit.html
@@ -79,7 +79,7 @@ method of Venzon and Moolgavkar (1988)." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">0.9.50.2</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">0.9.50.3</span>
</span>
</div>
@@ -116,6 +116,9 @@ method of Venzon and Moolgavkar (1988)." />
<li>
<a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
</li>
+ <li>
+ <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
+ </li>
</ul>
</li>
<li>
@@ -168,7 +171,8 @@ method of Venzon and Moolgavkar (1988).</p>
<span class='kw'>method</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"quadratic"</span>, <span class='st'>"profile"</span>),
<span class='kw'>transformed</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>,
<span class='kw'>backtransform</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>,
- <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/Round.html'>round</a></span>(<span class='fu'>detectCores</span>()/<span class='fl'>2</span>),
+ <span class='kw'>cores</span> <span class='kw'>=</span> <span class='kw pkg'>parallel</span><span class='kw ns'>::</span><span class='fu'><a href='https://rdrr.io/r/parallel/detectCores.html'>detectCores</a></span>(),
+ <span class='kw'>rel_tol</span> <span class='kw'>=</span> <span class='fl'>0.01</span>,
<span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>,
<span class='no'>...</span>
)</pre>
@@ -224,6 +228,12 @@ their confidence intervals?</p></td>
On Windows machines, cores &gt; 1 is currently not supported.</p></td>
</tr>
<tr>
+ <th>rel_tol</th>
+ <td><p>If the method is 'profile', what should be the accuracy
+of the lower and upper bounds, relative to the estimate obtained from
+the quadratic method?</p></td>
+ </tr>
+ <tr>
<th>quiet</th>
<td><p>Should we suppress the message "Profiling the likelihood"</p></td>
</tr>
@@ -270,13 +280,13 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37,
<span class='no'>SFO_SFO.ff</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>), <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>),
<span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
<span class='no'>f_d_1</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>SFO_SFO</span>, <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span>(<span class='no'>FOCUS_2006_D</span>, <span class='no'>value</span> <span class='kw'>!=</span> <span class='fl'>0</span>), <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
-<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>(<span class='no'>ci_profile</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span>(<span class='no'>f_d_1</span>, <span class='kw'>method</span> <span class='kw'>=</span> <span class='st'>"profile"</span>, <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fl'>1</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>))</div><div class='output co'>#&gt; User System verstrichen
-#&gt; 3.410 0.000 3.412 </div><div class='input'><span class='co'># Using more cores does not save much time here, as parent_0 takes up most of the time</span>
+<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>(<span class='no'>ci_profile</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span>(<span class='no'>f_d_1</span>, <span class='kw'>method</span> <span class='kw'>=</span> <span class='st'>"profile"</span>, <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fl'>1</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>))</div><div class='output co'>#&gt; user system elapsed
+#&gt; 3.689 0.991 3.361 </div><div class='input'><span class='co'># Using more cores does not save much time here, as parent_0 takes up most of the time</span>
<span class='co'># If we additionally exclude parent_0 (the confidence of which is often of</span>
<span class='co'># minor interest), we get a nice performance improvement from about 50</span>
<span class='co'># seconds to about 12 seconds if we use at least four cores</span>
<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>(<span class='no'>ci_profile_no_parent_0</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span>(<span class='no'>f_d_1</span>, <span class='kw'>method</span> <span class='kw'>=</span> <span class='st'>"profile"</span>,
- <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"k_parent_sink"</span>, <span class='st'>"k_parent_m1"</span>, <span class='st'>"k_m1_sink"</span>, <span class='st'>"sigma"</span>), <span class='kw'>cores</span> <span class='kw'>=</span> <span class='no'>n_cores</span>))</div><div class='output co'>#&gt; <span class='message'>Profiling the likelihood</span></div><div class='output co'>#&gt; <span class='warning'>Warning: scheduled cores 1, 2, 3 encountered errors in user code, all values of the jobs will be affected</span></div><div class='output co'>#&gt; <span class='error'>Error in dimnames(x) &lt;- dn: Länge von 'dimnames' [2] ungleich der Arrayausdehnung</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 0.008 0.044 0.201</span></div><div class='input'><span class='no'>ci_profile</span></div><div class='output co'>#&gt; 2.5% 97.5%
+ <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"k_parent_sink"</span>, <span class='st'>"k_parent_m1"</span>, <span class='st'>"k_m1_sink"</span>, <span class='st'>"sigma"</span>), <span class='kw'>cores</span> <span class='kw'>=</span> <span class='no'>n_cores</span>))</div><div class='output co'>#&gt; <span class='message'>Profiling the likelihood</span></div><div class='output co'>#&gt; <span class='warning'>Warning: scheduled cores 2, 1, 3 encountered errors in user code, all values of the jobs will be affected</span></div><div class='output co'>#&gt; <span class='error'>Error in dimnames(x) &lt;- dn: length of 'dimnames' [2] not equal to array extent</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 0.007 0.042 0.193</span></div><div class='input'><span class='no'>ci_profile</span></div><div class='output co'>#&gt; 2.5% 97.5%
#&gt; parent_0 96.456003640 1.027703e+02
#&gt; k_parent 0.090911032 1.071578e-01
#&gt; k_m1 0.003892605 6.702778e-03
diff --git a/docs/reference/mmkin.html b/docs/reference/mmkin.html
index 3be3b4b9..9628c017 100644
--- a/docs/reference/mmkin.html
+++ b/docs/reference/mmkin.html
@@ -75,7 +75,7 @@ datasets specified in its first two arguments." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">0.9.50.2</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">0.9.50.3</span>
</span>
</div>
@@ -112,6 +112,9 @@ datasets specified in its first two arguments." />
<li>
<a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
</li>
+ <li>
+ <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
+ </li>
</ul>
</li>
<li>
@@ -152,7 +155,7 @@ datasets specified in its first two arguments.</p>
<pre class="usage"><span class='fu'>mmkin</span>(
<span class='kw'>models</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span>),
<span class='no'>datasets</span>,
- <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/Round.html'>round</a></span>(<span class='fu'>detectCores</span>()/<span class='fl'>2</span>),
+ <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fu'>detectCores</span>(),
<span class='kw'>cluster</span> <span class='kw'>=</span> <span class='kw'>NULL</span>,
<span class='no'>...</span>
)</pre>
@@ -176,7 +179,8 @@ data for <code><a href='mkinfit.html'>mkinfit</a></code>.</p></td>
<td><p>The number of cores to be used for multicore processing. This
is only used when the <code>cluster</code> argument is <code>NULL</code>. On Windows
machines, cores &gt; 1 is not supported, you need to use the <code>cluster</code>
-argument to use multiple logical processors.</p></td>
+argument to use multiple logical processors. Per default, all cores
+detected by <code><a href='https://rdrr.io/r/parallel/detectCores.html'>parallel::detectCores()</a></code> are used.</p></td>
</tr>
<tr>
<th>cluster</th>
@@ -215,9 +219,9 @@ plotting.</p></div>
<span class='no'>time_default</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>(<span class='no'>fits.0</span> <span class='kw'>&lt;-</span> <span class='fu'>mmkin</span>(<span class='no'>models</span>, <span class='no'>datasets</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>))
<span class='no'>time_1</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>(<span class='no'>fits.4</span> <span class='kw'>&lt;-</span> <span class='fu'>mmkin</span>(<span class='no'>models</span>, <span class='no'>datasets</span>, <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fl'>1</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>))</div><div class='output co'>#&gt; <span class='warning'>Warning: Optimisation did not converge:</span>
#&gt; <span class='warning'>false convergence (8)</span></div><div class='input'>
-<span class='no'>time_default</span></div><div class='output co'>#&gt; User System verstrichen
-#&gt; 4.520 0.374 1.284 </div><div class='input'><span class='no'>time_1</span></div><div class='output co'>#&gt; User System verstrichen
-#&gt; 5.076 0.004 5.083 </div><div class='input'>
+<span class='no'>time_default</span></div><div class='output co'>#&gt; user system elapsed
+#&gt; 4.457 0.561 1.328 </div><div class='input'><span class='no'>time_1</span></div><div class='output co'>#&gt; user system elapsed
+#&gt; 5.031 0.004 5.038 </div><div class='input'>
<span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fits.0</span><span class='kw'>[[</span><span class='st'>"SFO_lin"</span>, <span class='fl'>2</span>]])</div><div class='output co'>#&gt; $ff
#&gt; parent_M1 parent_sink M1_M2 M1_sink
#&gt; 0.7340478 0.2659522 0.7505691 0.2494309
diff --git a/docs/reference/nlme.html b/docs/reference/nlme.html
index b2d415dc..3462e52e 100644
--- a/docs/reference/nlme.html
+++ b/docs/reference/nlme.html
@@ -75,7 +75,7 @@ datasets. They are used internally by the nlme.mmkin() method." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">0.9.50.2</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">0.9.50.3</span>
</span>
</div>
@@ -178,7 +178,7 @@ datasets. They are used internally by the <code><a href='nlme.mmkin.html'>nlme.m
<p>If random is FALSE (default), a named vector containing mean values
of the fitted degradation model parameters. If random is TRUE, a list with
fixed and random effects, in the format required by the start argument of
-nlme for the case of a single grouping variable ds?</p>
+nlme for the case of a single grouping variable ds.</p>
<p>A <code><a href='https://rdrr.io/pkg/nlme/man/groupedData.html'>groupedData</a></code> object</p>
<h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2>
diff --git a/docs/reference/parms.html b/docs/reference/parms.html
index 432bbc88..2fe91c26 100644
--- a/docs/reference/parms.html
+++ b/docs/reference/parms.html
@@ -195,7 +195,8 @@ such matrices is returned.</p>
<span class='no'>ds</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span>(<span class='no'>experimental_data_for_UBA_2019</span>[<span class='fl'>6</span>:<span class='fl'>10</span>],
<span class='kw'>function</span>(<span class='no'>x</span>) <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span>(<span class='no'>x</span>$<span class='no'>data</span>[<span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"name"</span>, <span class='st'>"time"</span>, <span class='st'>"value"</span>)]))
<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span>(<span class='no'>ds</span>) <span class='kw'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span>(<span class='st'>"Dataset"</span>, <span class='fl'>6</span>:<span class='fl'>10</span>)
-<span class='no'>fits</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span>(<span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span>), <span class='no'>ds</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
+<span class='co'># \dontrun{</span>
+<span class='no'>fits</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span>(<span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span>), <span class='no'>ds</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fl'>1</span>)
<span class='fu'>parms</span>(<span class='no'>fits</span>[<span class='st'>"SFO"</span>, ])</div><div class='output co'>#&gt; Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10
#&gt; parent_0 88.52275400 82.666781678 86.8547308 91.7779306 82.14809450
#&gt; k_parent_sink 0.05794659 0.009647805 0.2102974 0.1232258 0.00720421
@@ -259,7 +260,8 @@ such matrices is returned.</p>
#&gt; log_k2 -3.5206791 -5.85402317 -2.5794240 -3.4233253 -5.676532
#&gt; g_ilr -0.1463234 0.07627854 0.4719196 0.4477805 -0.460676
#&gt; sigma 1.3569047 2.22130220 1.3416908 2.8715985 1.942068
-#&gt; </div></pre>
+#&gt; </div><div class='input'># }
+</div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top">
diff --git a/docs/reference/saemix-1.png b/docs/reference/saemix-1.png
index 529588ce..0d79300d 100644
--- a/docs/reference/saemix-1.png
+++ b/docs/reference/saemix-1.png
Binary files differ
diff --git a/docs/reference/saemix-2.png b/docs/reference/saemix-2.png
index b85f878f..04de70b5 100644
--- a/docs/reference/saemix-2.png
+++ b/docs/reference/saemix-2.png
Binary files differ
diff --git a/docs/reference/saemix.html b/docs/reference/saemix.html
index 1737a21c..d3eb216c 100644
--- a/docs/reference/saemix.html
+++ b/docs/reference/saemix.html
@@ -153,7 +153,7 @@ list of mkinfit objects that have been obtained by fitting the same model to
a list of datasets.</p>
</div>
- <pre class="usage"><span class='fu'>saemix_model</span>(<span class='no'>object</span>)
+ <pre class="usage"><span class='fu'>saemix_model</span>(<span class='no'>object</span>, <span class='kw'>cores</span> <span class='kw'>=</span> <span class='kw pkg'>parallel</span><span class='kw ns'>::</span><span class='fu'><a href='https://rdrr.io/r/parallel/detectCores.html'>detectCores</a></span>())
<span class='fu'>saemix_data</span>(<span class='no'>object</span>, <span class='no'>...</span>)</pre>
@@ -165,6 +165,11 @@ a list of datasets.</p>
<td><p>An mmkin row object containing several fits of the same model to different datasets</p></td>
</tr>
<tr>
+ <th>cores</th>
+ <td><p>The number of cores to be used for multicore processing.
+On Windows machines, cores &gt; 1 is currently not supported.</p></td>
+ </tr>
+ <tr>
<th>...</th>
<td><p>Further parameters passed to <a href='https://rdrr.io/pkg/saemix/man/saemixData.html'>saemix::saemixData</a></p></td>
</tr>
@@ -174,21 +179,22 @@ a list of datasets.</p>
<p>An <a href='https://rdrr.io/pkg/saemix/man/SaemixModel-class.html'>saemix::SaemixModel</a> object.</p>
<p>An <a href='https://rdrr.io/pkg/saemix/man/SaemixData-class.html'>saemix::SaemixData</a> object.</p>
+ <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
+
+ <p>Starting values for the fixed effects (population mean parameters, argument psi0 of
+<code><a href='https://rdrr.io/pkg/saemix/man/saemixModel.html'>saemix::saemixModel()</a></code> are the mean values of the parameters found using
+mmkin. Starting variances of the random effects (argument omega.init) are the
+variances of the deviations of the parameters from these mean values.</p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><div class='input'><span class='no'>ds</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span>(<span class='no'>experimental_data_for_UBA_2019</span>[<span class='fl'>6</span>:<span class='fl'>10</span>],
<span class='kw'>function</span>(<span class='no'>x</span>) <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span>(<span class='no'>x</span>$<span class='no'>data</span>[<span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"name"</span>, <span class='st'>"time"</span>, <span class='st'>"value"</span>)]))
<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span>(<span class='no'>ds</span>) <span class='kw'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span>(<span class='st'>"Dataset"</span>, <span class='fl'>6</span>:<span class='fl'>10</span>)
<span class='no'>sfo_sfo</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"A1"</span>),
- <span class='kw'>A1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#&gt; <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='no'>f_mmkin</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span>(<span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='st'>"SFO-SFO"</span> <span class='kw'>=</span> <span class='no'>sfo_sfo</span>), <span class='no'>ds</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fl'>5</span>)
-<span class='co'># \dontrun{</span>
-<span class='kw'>if</span> (<span class='fu'><a href='https://rdrr.io/r/base/library.html'>require</a></span>(<span class='no'>saemix</span>)) {
- <span class='no'>m_saemix</span> <span class='kw'>&lt;-</span> <span class='fu'>saemix_model</span>(<span class='no'>f_mmkin</span>)
- <span class='no'>d_saemix</span> <span class='kw'>&lt;-</span> <span class='fu'>saemix_data</span>(<span class='no'>f_mmkin</span>)
- <span class='no'>saemix_options</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>seed</span> <span class='kw'>=</span> <span class='fl'>123456</span>, <span class='kw'>save</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, <span class='kw'>save.graphs</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>)
- <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/saemix.html'>saemix</a></span>(<span class='no'>m_saemix</span>, <span class='no'>d_saemix</span>, <span class='no'>saemix_options</span>)
-}</div><div class='output co'>#&gt; <span class='message'>Loading required package: saemix</span></div><div class='output co'>#&gt; <span class='message'>Package saemix, version 3.1.9000</span>
-#&gt; <span class='message'> please direct bugs, questions and feedback to emmanuelle.comets@inserm.fr</span></div><div class='output co'>#&gt;
+ <span class='kw'>A1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#&gt; <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># \dontrun{</span>
+<span class='no'>f_mmkin</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span>(<span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='st'>"SFO-SFO"</span> <span class='kw'>=</span> <span class='no'>sfo_sfo</span>), <span class='no'>ds</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
+<span class='fu'><a href='https://rdrr.io/r/base/library.html'>library</a></span>(<span class='no'>saemix</span>)</div><div class='output co'>#&gt; <span class='message'>Package saemix, version 3.1.9000</span>
+#&gt; <span class='message'> please direct bugs, questions and feedback to emmanuelle.comets@inserm.fr</span></div><div class='input'><span class='no'>m_saemix</span> <span class='kw'>&lt;-</span> <span class='fu'>saemix_model</span>(<span class='no'>f_mmkin</span>)</div><div class='output co'>#&gt;
#&gt;
#&gt; The following SaemixModel object was successfully created:
#&gt;
@@ -224,12 +230,12 @@ a list of datasets.</p>
#&gt; out_values &lt;- out_wide[out_index]
#&gt; }
#&gt; return(out_values)
-#&gt; }, mc.cores = 15)
+#&gt; }, mc.cores = cores)
#&gt; res &lt;- unlist(res_list)
#&gt; return(res)
#&gt; }
-#&gt; &lt;bytecode: 0x555559875398&gt;
-#&gt; &lt;environment: 0x55555973a248&gt;
+#&gt; &lt;bytecode: 0x555559668108&gt;
+#&gt; &lt;environment: 0x555559677c08&gt;
#&gt; Nb of parameters: 4
#&gt; parameter names: parent_0 log_k_parent log_k_A1 f_parent_ilr_1
#&gt; distribution:
@@ -248,8 +254,7 @@ a list of datasets.</p>
#&gt; No covariate in the model.
#&gt; Initial values
#&gt; parent_0 log_k_parent log_k_A1 f_parent_ilr_1
-#&gt; Pop.CondInit 86.53449 -3.207005 -3.060308 -1.920449
-#&gt;
+#&gt; Pop.CondInit 86.53449 -3.207005 -3.060308 -1.920449</div><div class='input'><span class='no'>d_saemix</span> <span class='kw'>&lt;-</span> <span class='fu'>saemix_data</span>(<span class='no'>f_mmkin</span>)</div><div class='output co'>#&gt;
#&gt;
#&gt; The following SaemixData object was successfully created:
#&gt;
@@ -257,12 +262,14 @@ a list of datasets.</p>
#&gt; longitudinal data for use with the SAEM algorithm
#&gt; Dataset ds_saemix
#&gt; Structured data: value ~ time + name | ds
-#&gt; X variable for graphs: time ()
-#&gt; Running main SAEM algorithm
-#&gt; [1] "Mon May 25 12:48:51 2020"
-#&gt; .</div><div class='img'><img src='saemix-1.png' alt='' width='700' height='433' /></div><div class='output co'>#&gt; .</div><div class='img'><img src='saemix-2.png' alt='' width='700' height='433' /></div><div class='output co'>#&gt; .</div><div class='img'><img src='saemix-3.png' alt='' width='700' height='433' /></div><div class='output co'>#&gt; .</div><div class='img'><img src='saemix-4.png' alt='' width='700' height='433' /></div><div class='output co'>#&gt;
+#&gt; X variable for graphs: time () </div><div class='input'><span class='no'>saemix_options</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>seed</span> <span class='kw'>=</span> <span class='fl'>123456</span>,
+ <span class='kw'>save</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, <span class='kw'>save.graphs</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, <span class='kw'>displayProgress</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>,
+ <span class='kw'>nbiter.saemix</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='fl'>200</span>, <span class='fl'>80</span>))
+<span class='no'>f_saemix</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/saemix.html'>saemix</a></span>(<span class='no'>m_saemix</span>, <span class='no'>d_saemix</span>, <span class='no'>saemix_options</span>)</div><div class='output co'>#&gt; Running main SAEM algorithm
+#&gt; [1] "Tue May 26 18:25:16 2020"
+#&gt; ..
#&gt; Minimisation finished
-#&gt; [1] "Mon May 25 12:56:39 2020"</div><div class='output co'>#&gt; Nonlinear mixed-effects model fit by the SAEM algorithm
+#&gt; [1] "Tue May 26 18:31:09 2020"</div><div class='img'><img src='saemix-1.png' alt='' width='700' height='433' /></div><div class='output co'>#&gt; Nonlinear mixed-effects model fit by the SAEM algorithm
#&gt; -----------------------------------
#&gt; ---- Data ----
#&gt; -----------------------------------
@@ -322,12 +329,12 @@ a list of datasets.</p>
#&gt; out_values &lt;- out_wide[out_index]
#&gt; }
#&gt; return(out_values)
-#&gt; }, mc.cores = 15)
+#&gt; }, mc.cores = cores)
#&gt; res &lt;- unlist(res_list)
#&gt; return(res)
#&gt; }
-#&gt; &lt;bytecode: 0x555559875398&gt;
-#&gt; &lt;environment: 0x55555973a248&gt;
+#&gt; &lt;bytecode: 0x555559668108&gt;
+#&gt; &lt;environment: 0x555559677c08&gt;
#&gt; Nb of parameters: 4
#&gt; parameter names: parent_0 log_k_parent log_k_A1 f_parent_ilr_1
#&gt; distribution:
@@ -353,7 +360,7 @@ a list of datasets.</p>
#&gt; Estimation of individual parameters (MAP)
#&gt; Estimation of standard errors and linearised log-likelihood
#&gt; Estimation of log-likelihood by importance sampling
-#&gt; Number of iterations: K1=300, K2=100
+#&gt; Number of iterations: K1=200, K2=80
#&gt; Number of chains: 10
#&gt; Seed: 123456
#&gt; Number of MCMC iterations for IS: 5000
@@ -369,19 +376,19 @@ a list of datasets.</p>
#&gt; ----------------- Fixed effects ------------------
#&gt; ----------------------------------------------------
#&gt; Parameter Estimate SE CV(%)
-#&gt; [1,] parent_0 86.21 1.51 1.7
+#&gt; [1,] parent_0 86.14 1.61 1.9
#&gt; [2,] log_k_parent -3.21 0.59 18.5
-#&gt; [3,] log_k_A1 -4.64 0.29 6.3
-#&gt; [4,] f_parent_ilr_1 -0.32 0.30 93.2
-#&gt; [5,] a.1 4.69 0.27 5.8
+#&gt; [3,] log_k_A1 -4.66 0.30 6.4
+#&gt; [4,] f_parent_ilr_1 -0.33 0.30 91.7
+#&gt; [5,] a.1 4.68 0.27 5.8
#&gt; ----------------------------------------------------
#&gt; ----------- Variance of random effects -----------
#&gt; ----------------------------------------------------
#&gt; Parameter Estimate SE CV(%)
-#&gt; parent_0 omega2.parent_0 6.07 7.08 117
-#&gt; log_k_parent omega2.log_k_parent 1.75 1.11 63
+#&gt; parent_0 omega2.parent_0 7.71 8.14 106
+#&gt; log_k_parent omega2.log_k_parent 1.76 1.12 63
#&gt; log_k_A1 omega2.log_k_A1 0.26 0.26 101
-#&gt; f_parent_ilr_1 omega2.f_parent_ilr_1 0.38 0.27 71
+#&gt; f_parent_ilr_1 omega2.f_parent_ilr_1 0.39 0.28 71
#&gt; ----------------------------------------------------
#&gt; ------ Correlation matrix of random effects ------
#&gt; ----------------------------------------------------
@@ -399,66 +406,16 @@ a list of datasets.</p>
#&gt; --------------- Statistical criteria -------------
#&gt; ----------------------------------------------------
#&gt; Likelihood computed by linearisation
-#&gt; -2LL= 1064.397
-#&gt; AIC = 1082.397
-#&gt; BIC = 1078.882
+#&gt; -2LL= 1064.364
+#&gt; AIC = 1082.364
+#&gt; BIC = 1078.848
#&gt;
#&gt; Likelihood computed by importance sampling
-#&gt; -2LL= 1063.161
-#&gt; AIC = 1081.161
-#&gt; BIC = 1077.646
-#&gt; ----------------------------------------------------</div><div class='output co'>#&gt; Nonlinear mixed-effects model fit by the SAEM algorithm
-#&gt; -----------------------------------------
-#&gt; ---- Data and Model ----
-#&gt; -----------------------------------------
-#&gt; Data
-#&gt; Dataset ds_saemix
-#&gt; Longitudinal data: value ~ time + name | ds
-#&gt;
-#&gt; Model:
-#&gt; Mixed model generated from mmkin object
-#&gt; 4 parameters: parent_0 log_k_parent log_k_A1 f_parent_ilr_1
-#&gt; error model: constant
-#&gt; No covariate
-#&gt;
-#&gt; Key options
-#&gt; Estimation of individual parameters (MAP)
-#&gt; Estimation of standard errors and linearised log-likelihood
-#&gt; Estimation of log-likelihood by importance sampling
-#&gt; Number of iterations: K1=300, K2=100
-#&gt; Number of chains: 10
-#&gt; Seed: 123456
-#&gt; Number of MCMC iterations for IS: 5000
-#&gt; Input/output
-#&gt; results not saved
-#&gt; no graphs
-#&gt; ----------------------------------------------------
-#&gt; ---- Results ----
-#&gt; Fixed effects
-#&gt; Parameter Estimate SE CV(%)
-#&gt; parent_0 86.214 1.506 1.75
-#&gt; log_k_parent -3.210 0.593 18.47
-#&gt; log_k_A1 -4.643 0.294 6.34
-#&gt; f_parent_ilr_1 -0.322 0.300 93.24
-#&gt; a.1 4.689 0.270 5.76
-#&gt;
-#&gt; Variance of random effects
-#&gt; Parameter Estimate SE CV(%)
-#&gt; omega2.parent_0 6.068 7.078 116.7
-#&gt; omega2.log_k_parent 1.752 1.111 63.4
-#&gt; omega2.log_k_A1 0.256 0.257 100.5
-#&gt; omega2.f_parent_ilr_1 0.385 0.273 70.8
-#&gt;
-#&gt; Statistical criteria
-#&gt; Likelihood computed by linearisation
-#&gt; -2LL= 1064.397
-#&gt; AIC= 1082.397
-#&gt; BIC= 1078.882
-#&gt; Likelihood computed by importance sampling
-#&gt; -2LL= 1063.161
-#&gt; AIC= 1081.161
-#&gt; BIC= 1077.646 </div><div class='input'># }
-</div><div class='img'><img src='saemix-5.png' alt='' width='700' height='433' /></div></pre>
+#&gt; -2LL= 1063.462
+#&gt; AIC = 1081.462
+#&gt; BIC = 1077.947
+#&gt; ----------------------------------------------------</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span>(<span class='no'>f_saemix</span>, <span class='kw'>plot.type</span> <span class='kw'>=</span> <span class='st'>"convergence"</span>)</div><div class='output co'>#&gt; Plotting convergence plots</div><div class='img'><img src='saemix-2.png' alt='' width='700' height='433' /></div><div class='input'># }
+</div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top">
diff --git a/man/confint.mkinfit.Rd b/man/confint.mkinfit.Rd
index f295afc4..fd2890ff 100644
--- a/man/confint.mkinfit.Rd
+++ b/man/confint.mkinfit.Rd
@@ -13,7 +13,8 @@
method = c("quadratic", "profile"),
transformed = TRUE,
backtransform = TRUE,
- cores = round(detectCores()/2),
+ cores = parallel::detectCores(),
+ rel_tol = 0.01,
quiet = FALSE,
...
)
@@ -48,6 +49,10 @@ their confidence intervals?}
\item{cores}{The number of cores to be used for multicore processing.
On Windows machines, cores > 1 is currently not supported.}
+\item{rel_tol}{If the method is 'profile', what should be the accuracy
+of the lower and upper bounds, relative to the estimate obtained from
+the quadratic method?}
+
\item{quiet}{Should we suppress the message "Profiling the likelihood"}
\item{\dots}{Not used}
diff --git a/man/mmkin.Rd b/man/mmkin.Rd
index eda0d837..9a74a9cd 100644
--- a/man/mmkin.Rd
+++ b/man/mmkin.Rd
@@ -8,7 +8,7 @@ more datasets}
mmkin(
models = c("SFO", "FOMC", "DFOP"),
datasets,
- cores = round(detectCores()/2),
+ cores = detectCores(),
cluster = NULL,
...
)
@@ -24,7 +24,8 @@ data for \code{\link{mkinfit}}.}
\item{cores}{The number of cores to be used for multicore processing. This
is only used when the \code{cluster} argument is \code{NULL}. On Windows
machines, cores > 1 is not supported, you need to use the \code{cluster}
-argument to use multiple logical processors.}
+argument to use multiple logical processors. Per default, all cores
+detected by \code{\link[parallel:detectCores]{parallel::detectCores()}} are used.}
\item{cluster}{A cluster as returned by \code{\link{makeCluster}} to be used
for parallel execution.}
diff --git a/man/nlme.Rd b/man/nlme.Rd
index 5e981a14..2ee2a20c 100644
--- a/man/nlme.Rd
+++ b/man/nlme.Rd
@@ -23,7 +23,7 @@ A function that can be used with nlme
If random is FALSE (default), a named vector containing mean values
of the fitted degradation model parameters. If random is TRUE, a list with
fixed and random effects, in the format required by the start argument of
-nlme for the case of a single grouping variable ds?
+nlme for the case of a single grouping variable ds.
A \code{\link{groupedData}} object
}
diff --git a/man/parms.Rd b/man/parms.Rd
index d3917639..af92bd2a 100644
--- a/man/parms.Rd
+++ b/man/parms.Rd
@@ -42,9 +42,11 @@ parms(fit, transformed = TRUE)
ds <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) subset(x$data[c("name", "time", "value")]))
names(ds) <- paste("Dataset", 6:10)
-fits <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
+\dontrun{
+fits <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE, cores = 1)
parms(fits["SFO", ])
parms(fits[, 2])
parms(fits)
parms(fits, transformed = TRUE)
}
+}
diff --git a/man/saemix.Rd b/man/saemix.Rd
index 23b0a4ad..b41796ca 100644
--- a/man/saemix.Rd
+++ b/man/saemix.Rd
@@ -5,13 +5,16 @@
\alias{saemix_data}
\title{Create saemix models from mmkin row objects}
\usage{
-saemix_model(object)
+saemix_model(object, cores = parallel::detectCores())
saemix_data(object, ...)
}
\arguments{
\item{object}{An mmkin row object containing several fits of the same model to different datasets}
+\item{cores}{The number of cores to be used for multicore processing.
+On Windows machines, cores > 1 is currently not supported.}
+
\item{\dots}{Further parameters passed to \link[saemix:saemixData]{saemix::saemixData}}
}
\value{
@@ -25,17 +28,27 @@ object for use with the saemix package. An mmkin row object is essentially a
list of mkinfit objects that have been obtained by fitting the same model to
a list of datasets.
}
+\details{
+Starting values for the fixed effects (population mean parameters, argument psi0 of
+\code{\link[saemix:saemixModel]{saemix::saemixModel()}} are the mean values of the parameters found using
+mmkin. Starting variances of the random effects (argument omega.init) are the
+variances of the deviations of the parameters from these mean values.
+}
\examples{
ds <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) subset(x$data[c("name", "time", "value")]))
names(ds) <- paste("Dataset", 6:10)
sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
A1 = mkinsub("SFO"))
-f_mmkin <- mmkin(list("SFO-SFO" = sfo_sfo), ds, quiet = TRUE, cores = 5)
+\dontrun{
+f_mmkin <- mmkin(list("SFO-SFO" = sfo_sfo), ds, quiet = TRUE)
+library(saemix)
m_saemix <- saemix_model(f_mmkin)
d_saemix <- saemix_data(f_mmkin)
-saemix_options <- list(seed = 123456, save = FALSE, save.graphs = FALSE)
-\dontrun{
- saemix(m_saemix, d_saemix, saemix_options)
+saemix_options <- list(seed = 123456,
+ save = FALSE, save.graphs = FALSE, displayProgress = FALSE,
+ nbiter.saemix = c(200, 80))
+f_saemix <- saemix(m_saemix, d_saemix, saemix_options)
+plot(f_saemix, plot.type = "convergence")
}
}
diff --git a/test.log b/test.log
index ffd374e4..3dcf271d 100644
--- a/test.log
+++ b/test.log
@@ -4,31 +4,31 @@ Testing mkin
✔ | 2 | Export dataset for reading into CAKE
✔ | 13 | Results for FOCUS D established in expertise for UBA (Ranke 2014) [1.1 s]
✔ | 4 | Calculation of FOCUS chi2 error levels [0.4 s]
-✔ | 7 | Fitting the SFORB model [3.2 s]
-✔ | 5 | Analytical solutions for coupled models [3.0 s]
+✔ | 7 | Fitting the SFORB model [3.3 s]
+✔ | 5 | Analytical solutions for coupled models [3.1 s]
✔ | 5 | Calculation of Akaike weights
✔ | 10 | Confidence intervals and p-values [1.0 s]
-✔ | 14 | Error model fitting [3.7 s]
-✔ | 4 | Test fitting the decline of metabolites from their maximum [0.2 s]
+✔ | 14 | Error model fitting [3.9 s]
+✔ | 4 | Test fitting the decline of metabolites from their maximum [0.3 s]
✔ | 1 | Fitting the logistic model [0.2 s]
✔ | 1 | Test dataset class mkinds used in gmkin
✔ | 12 | Special cases of mkinfit calls [0.6 s]
✔ | 8 | mkinmod model generation and printing [0.2 s]
-✔ | 3 | Model predictions with mkinpredict [0.3 s]
-✔ | 16 | Evaluations according to 2015 NAFTA guidance [1.3 s]
-✔ | 9 | Nonlinear mixed-effects models [7.5 s]
+✔ | 3 | Model predictions with mkinpredict [0.4 s]
+✔ | 16 | Evaluations according to 2015 NAFTA guidance [1.5 s]
+✔ | 9 | Nonlinear mixed-effects models [7.7 s]
✔ | 4 | Calculation of maximum time weighted average concentrations (TWAs) [2.4 s]
-✔ | 3 | Summary
+✔ | 3 | Summary [0.1 s]
✔ | 14 | Plotting [1.4 s]
✔ | 4 | AIC calculation
✔ | 4 | Residuals extracted from mkinfit models
✔ | 2 | Complex test case from Schaefer et al. (2007) Piacenza paper [1.4 s]
✔ | 1 | Summaries of old mkinfit objects
✔ | 4 | Results for synthetic data established in expertise for UBA (Ranke 2014) [2.3 s]
-✔ | 9 | Hypothesis tests [6.6 s]
+✔ | 9 | Hypothesis tests [6.5 s]
══ Results ═════════════════════════════════════════════════════════════════════
-Duration: 37.2 s
+Duration: 38.2 s
OK: 159
Failed: 0
diff --git a/tests/testthat/FOCUS_2006_D.csf b/tests/testthat/FOCUS_2006_D.csf
index 6b23d445..5d946ecd 100644
--- a/tests/testthat/FOCUS_2006_D.csf
+++ b/tests/testthat/FOCUS_2006_D.csf
@@ -5,7 +5,7 @@ Description:
MeasurementUnits: % AR
TimeUnits: days
Comments: Created using mkin::CAKE_export
-Date: 2020-05-12
+Date: 2020-05-26
Optimiser: IRLS
[Data]
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html
index 38c597b0..16bc2084 100644
--- a/vignettes/FOCUS_D.html
+++ b/vignettes/FOCUS_D.html
@@ -11,7 +11,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2020-05-11" />
+<meta name="date" content="2020-05-26" />
<title>Example evaluation of FOCUS Example Dataset D</title>
@@ -365,7 +365,7 @@ summary {
<h1 class="title toc-ignore">Example evaluation of FOCUS Example Dataset D</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">2020-05-11</h4>
+<h4 class="date">2020-05-26</h4>
</div>
@@ -439,10 +439,10 @@ print(FOCUS_2006_D)</code></pre>
<p><img src="" width="768" /></p>
<p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p>
<pre class="r"><code>summary(fit)</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.50
+<pre><code>## mkin version used for fitting: 0.9.50.3
## R version used for fitting: 4.0.0
-## Date of fit: Mon May 11 04:41:12 2020
-## Date of summary: Mon May 11 04:41:12 2020
+## Date of fit: Tue May 26 17:01:07 2020
+## Date of summary: Tue May 26 17:01:07 2020
##
## Equations:
## d_parent/dt = - k_parent * parent
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 968ebf0c..7573ef58 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -1,17 +1,17 @@
<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml">
+<html>
<head>
<meta charset="utf-8" />
-<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
+<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2019-05-02" />
+<meta name="date" content="2020-05-26" />
<title>Example evaluation of FOCUS Laboratory Data L1 to L3</title>
@@ -69,8 +69,6 @@ overflow: auto;
margin-left: 2%;
position: fixed;
border: 1px solid #ccc;
-webkit-border-radius: 6px;
-moz-border-radius: 6px;
border-radius: 6px;
}
@@ -98,10 +96,15 @@ font-size: 12px;
.tocify-subheader .tocify-subheader {
text-indent: 30px;
}
-
.tocify-subheader .tocify-subheader .tocify-subheader {
text-indent: 40px;
}
+.tocify-subheader .tocify-subheader .tocify-subheader .tocify-subheader {
+text-indent: 50px;
+}
+.tocify-subheader .tocify-subheader .tocify-subheader .tocify-subheader .tocify-subheader {
+text-indent: 60px;
+}
.tocify .tocify-item > a, .tocify .nav-list .nav-header {
margin: 0px;
@@ -504,13 +507,13 @@ float: none;
item.append($("<a/>", {
- "text": self.text()
+ "html": self.html()
}));
} else {
- item.text(self.text());
+ item.html(self.html());
}
@@ -1341,7 +1344,6 @@ code {
}
img {
max-width:100%;
- height: auto;
}
.tabbed-pane {
padding-top: 12px;
@@ -1403,6 +1405,7 @@ summary {
border: none;
display: inline-block;
border-radius: 4px;
+ background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
@@ -1415,49 +1418,10 @@ summary {
}
</style>
-<script>
-$(document).ready(function () {
- window.buildTabsets("TOC");
-});
-
-$(document).ready(function () {
- $('.tabset-dropdown > .nav-tabs > li').click(function () {
- $(this).parent().toggleClass('nav-tabs-open')
- });
-});
-</script>
-
<!-- code folding -->
-<script>
-$(document).ready(function () {
-
- // move toc-ignore selectors from section div to header
- $('div.section.toc-ignore')
- .removeClass('toc-ignore')
- .children('h1,h2,h3,h4,h5').addClass('toc-ignore');
-
- // establish options
- var options = {
- selectors: "h1,h2,h3",
- theme: "bootstrap3",
- context: '.toc-content',
- hashGenerator: function (text) {
- return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
- },
- ignoreSelector: ".toc-ignore",
- scrollTo: 0
- };
- options.showAndHide = false;
- options.smoothScroll = true;
-
- // tocify
- var toc = $("#TOC").tocify(options).data("toc-tocify");
-});
-</script>
-
<style type="text/css">
#TOC {
@@ -1470,6 +1434,12 @@ $(document).ready(function () {
}
}
+@media print {
+.toc-content {
+ /* see https://github.com/w3c/csswg-drafts/issues/4434 */
+ float: right;
+}
+}
.toc-content {
padding-left: 30px;
@@ -1505,8 +1475,6 @@ div.tocify {
.tocify-subheader .tocify-item {
font-size: 0.90em;
- padding-left: 25px;
- text-indent: 0;
}
.tocify .list-group-item {
@@ -1550,7 +1518,7 @@ div.tocify {
<h1 class="title toc-ignore">Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">2019-05-02</h4>
+<h4 class="date">2020-05-26</h4>
</div>
@@ -1569,36 +1537,40 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>&quot;SFO&quot;</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.4
-## R version used for fitting: 3.6.0
-## Date of fit: Thu May 2 18:43:50 2019
-## Date of summary: Thu May 2 18:43:50 2019
+<pre><code>## mkin version used for fitting: 0.9.50.3
+## R version used for fitting: 4.0.0
+## Date of fit: Tue May 26 17:01:08 2020
+## Date of summary: Tue May 26 17:01:08 2020
##
## Equations:
## d_parent/dt = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 133 model solutions performed in 0.283 s
+## Fitted using 133 model solutions performed in 0.031 s
+##
+## Error model: Constant variance
##
-## Error model:
-## Constant variance
+## Error model algorithm: OLS
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 89.850000 state
-## k_parent_sink 0.100000 deparm
-## sigma 2.779827 error
+## value type
+## parent_0 89.85 state
+## k_parent_sink 0.10 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 89.850000 -Inf Inf
## log_k_parent_sink -2.302585 -Inf Inf
-## sigma 2.779827 0 Inf
##
## Fixed parameter values:
## None
##
+## Results:
+##
+## AIC BIC logLik
+## 93.88778 96.5589 -43.94389
+##
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
## parent_0 92.470 1.28200 89.740 95.200
@@ -1607,9 +1579,9 @@ summary(m.L1.SFO)</code></pre>
##
## Parameter correlation:
## parent_0 log_k_parent_sink sigma
-## parent_0 1.000e+00 6.186e-01 -1.712e-09
-## log_k_parent_sink 6.186e-01 1.000e+00 -3.237e-09
-## sigma -1.712e-09 -3.237e-09 1.000e+00
+## parent_0 1.000e+00 6.186e-01 -1.516e-09
+## log_k_parent_sink 6.186e-01 1.000e+00 -3.124e-09
+## sigma -1.516e-09 -3.124e-09 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -1625,10 +1597,6 @@ summary(m.L1.SFO)</code></pre>
## All data 3.424 2 7
## parent 3.424 2 7
##
-## Resulting formation fractions:
-## ff
-## parent_sink 1
-##
## Estimated disappearance times:
## DT50 DT90
## parent 7.249 24.08
@@ -1655,25 +1623,25 @@ summary(m.L1.SFO)</code></pre>
## 30 parent 4.0 5.251 -1.2513</code></pre>
<p>A plot of the fit is obtained with the plot function for mkinfit objects.</p>
<pre class="r"><code>plot(m.L1.SFO, show_errmin = TRUE, main = &quot;FOCUS L1 - SFO&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<p>The residual plot can be easily obtained by</p>
<pre class="r"><code>mkinresplot(m.L1.SFO, ylab = &quot;Observed&quot;, xlab = &quot;Time&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<p>For comparison, the FOMC model is fitted as well, and the <span class="math inline"><em>χ</em><sup>2</sup></span> error level is checked.</p>
<pre class="r"><code>m.L1.FOMC &lt;- mkinfit(&quot;FOMC&quot;, FOCUS_2006_L1_mkin, quiet=TRUE)</code></pre>
<pre><code>## Warning in mkinfit(&quot;FOMC&quot;, FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation did not converge:
## false convergence (8)</code></pre>
<pre class="r"><code>plot(m.L1.FOMC, show_errmin = TRUE, main = &quot;FOCUS L1 - FOMC&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre>
-<pre><code>## Warning in sqrt(diag(covar)): NaNs wurden erzeugt</code></pre>
-<pre><code>## Warning in sqrt(1/diag(V)): NaNs wurden erzeugt</code></pre>
-<pre><code>## Warning in cov2cor(ans$cov.unscaled): diag(.) had 0 or NA entries; non-
-## finite result is doubtful</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.4
-## R version used for fitting: 3.6.0
-## Date of fit: Thu May 2 18:43:51 2019
-## Date of summary: Thu May 2 18:43:51 2019
+<pre><code>## Warning in sqrt(diag(covar)): NaNs produced</code></pre>
+<pre><code>## Warning in sqrt(1/diag(V)): NaNs produced</code></pre>
+<pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
+## doubtful</code></pre>
+<pre><code>## mkin version used for fitting: 0.9.50.3
+## R version used for fitting: 4.0.0
+## Date of fit: Tue May 26 17:01:09 2020
+## Date of summary: Tue May 26 17:01:09 2020
##
##
## Warning: Optimisation did not converge:
@@ -1685,51 +1653,55 @@ summary(m.L1.SFO)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted using 599 model solutions performed in 1.239 s
+## Fitted using 380 model solutions performed in 0.08 s
##
-## Error model:
-## Constant variance
+## Error model: Constant variance
+##
+## Error model algorithm: OLS
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 89.850000 state
-## alpha 1.000000 deparm
-## beta 10.000000 deparm
-## sigma 2.779868 error
+## value type
+## parent_0 89.85 state
+## alpha 1.00 deparm
+## beta 10.00 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 89.850000 -Inf Inf
## log_alpha 0.000000 -Inf Inf
## log_beta 2.302585 -Inf Inf
-## sigma 2.779868 0 Inf
##
## Fixed parameter values:
## None
##
+## Results:
+##
+## AIC BIC logLik
+## 95.88778 99.44927 -43.94389
+##
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
-## parent_0 92.47 1.2810 89.720 95.220
-## log_alpha 10.66 NaN NaN NaN
-## log_beta 13.01 NaN NaN NaN
-## sigma 2.78 0.4599 1.794 3.766
+## parent_0 92.47 1.2820 89.720 95.220
+## log_alpha 16.92 NaN NaN NaN
+## log_beta 19.26 NaN NaN NaN
+## sigma 2.78 0.4501 1.814 3.745
##
## Parameter correlation:
## parent_0 log_alpha log_beta sigma
-## parent_0 1.000000 NaN NaN 0.003475
+## parent_0 1.000000 NaN NaN 0.002218
## log_alpha NaN 1 NaN NaN
## log_beta NaN NaN 1 NaN
-## sigma 0.003475 NaN NaN 1.000000
+## sigma 0.002218 NaN NaN 1.000000
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
## t-test (unrealistically) based on the assumption of normal distribution
## for estimators of untransformed parameters.
-## Estimate t value Pr(&gt;t) Lower Upper
-## parent_0 92.47 72.13000 1.052e-19 89.720 95.220
-## alpha 42700.00 0.02298 4.910e-01 NA NA
-## beta 446600.00 0.02298 4.910e-01 NA NA
-## sigma 2.78 6.00000 1.628e-05 1.794 3.766
+## Estimate t value Pr(&gt;t) Lower Upper
+## parent_0 9.247e+01 NA NA 89.720 95.220
+## alpha 2.223e+07 NA NA NA NA
+## beta 2.325e+08 NA NA NA NA
+## sigma 2.780e+00 NA NA 1.814 3.745
##
## FOCUS Chi2 error levels in percent:
## err.min n.optim df
@@ -1737,8 +1709,8 @@ summary(m.L1.SFO)</code></pre>
## parent 3.619 3 6
##
## Estimated disappearance times:
-## DT50 DT90 DT50back
-## parent 7.249 24.08 7.25</code></pre>
+## DT50 DT90 DT50back
+## parent 7.25 24.08 7.25</code></pre>
<p>We get a warning that the default optimisation algorithm <code>Port</code> did not converge, which is an indication that the model is overparameterised, <em>i.e.</em> contains too many parameters that are ill-defined as a consequence.</p>
<p>And in fact, due to the higher number of parameters, and the lower number of degrees of freedom of the fit, the <span class="math inline"><em>χ</em><sup>2</sup></span> error level is actually higher for the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the parameters <code>log_alpha</code> and <code>log_beta</code> internally fitted in the model have excessive confidence intervals, that span more than 25 orders of magnitude (!) when backtransformed to the scale of <code>alpha</code> and <code>beta</code>. Also, the t-test for significant difference from zero does not indicate such a significant difference, with p-values greater than 0.1, and finally, the parameter correlation of <code>log_alpha</code> and <code>log_beta</code> is 1.000, clearly indicating that the model is overparameterised.</p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error levels reported in Appendix 3 and Appendix 7 to the FOCUS kinetics report are rounded to integer percentages and partly deviate by one percentage point from the results calculated by mkin. The reason for this is not known. However, mkin gives the same <span class="math inline"><em>χ</em><sup>2</sup></span> error levels as the kinfit package and the calculation routines of the kinfit package have been extensively compared to the results obtained by the KinGUI software, as documented in the kinfit package vignette. KinGUI was the first widely used standard package in this field. Also, the calculation of <span class="math inline"><em>χ</em><sup>2</sup></span> error levels was compared with KinGUII, CAKE and DegKin manager in a project sponsored by the German Umweltbundesamt <span class="citation">(Ranke 2014)</span>.</p>
@@ -1758,7 +1730,7 @@ FOCUS_2006_L2_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L2)</code></pre>
<pre class="r"><code>m.L2.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L2_mkin, quiet=TRUE)
plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - SFO&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 14% suggests that the model does not fit very well. This is also obvious from the plots of the fit, in which we have included the residual plot.</p>
<p>In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at day 5), and there is an underestimation beyond that point.</p>
<p>We may add that it is difficult to judge the random nature of the residuals just from the three samplings at days 0, 1 and 3. Also, it is not clear <em>a priori</em> why a consistent underestimation after the approximate DT90 should be irrelevant. However, this can be rationalised by the fact that the FOCUS fate models generally only implement SFO kinetics.</p>
@@ -1769,40 +1741,44 @@ plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
<pre class="r"><code>m.L2.FOMC &lt;- mkinfit(&quot;FOMC&quot;, FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.FOMC, show_residuals = TRUE,
main = &quot;FOCUS L2 - FOMC&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.4
-## R version used for fitting: 3.6.0
-## Date of fit: Thu May 2 18:43:52 2019
-## Date of summary: Thu May 2 18:43:52 2019
+<pre><code>## mkin version used for fitting: 0.9.50.3
+## R version used for fitting: 4.0.0
+## Date of fit: Tue May 26 17:01:09 2020
+## Date of summary: Tue May 26 17:01:09 2020
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 240 model solutions performed in 0.483 s
+## Fitted using 239 model solutions performed in 0.047 s
+##
+## Error model: Constant variance
##
-## Error model:
-## Constant variance
+## Error model algorithm: OLS
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 93.950000 state
-## alpha 1.000000 deparm
-## beta 10.000000 deparm
-## sigma 2.275722 error
+## value type
+## parent_0 93.95 state
+## alpha 1.00 deparm
+## beta 10.00 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 93.950000 -Inf Inf
## log_alpha 0.000000 -Inf Inf
## log_beta 2.302585 -Inf Inf
-## sigma 2.275722 0 Inf
##
## Fixed parameter values:
## None
##
+## Results:
+##
+## AIC BIC logLik
+## 61.78966 63.72928 -26.89483
+##
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
## parent_0 93.7700 1.6130 90.05000 97.4900
@@ -1812,10 +1788,10 @@ plot(m.L2.FOMC, show_residuals = TRUE,
##
## Parameter correlation:
## parent_0 log_alpha log_beta sigma
-## parent_0 1.000e+00 -1.151e-01 -2.085e-01 1.606e-08
-## log_alpha -1.151e-01 1.000e+00 9.741e-01 -1.168e-07
-## log_beta -2.085e-01 9.741e-01 1.000e+00 -1.029e-07
-## sigma 1.606e-08 -1.168e-07 -1.029e-07 1.000e+00
+## parent_0 1.000e+00 -1.151e-01 -2.085e-01 -7.436e-09
+## log_alpha -1.151e-01 1.000e+00 9.741e-01 -1.617e-07
+## log_beta -2.085e-01 9.741e-01 1.000e+00 -1.386e-07
+## sigma -7.436e-09 -1.617e-07 -1.386e-07 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -1843,32 +1819,32 @@ plot(m.L2.FOMC, show_residuals = TRUE,
<pre class="r"><code>m.L2.DFOP &lt;- mkinfit(&quot;DFOP&quot;, FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - DFOP&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.4
-## R version used for fitting: 3.6.0
-## Date of fit: Thu May 2 18:43:54 2019
-## Date of summary: Thu May 2 18:43:54 2019
+<pre><code>## mkin version used for fitting: 0.9.50.3
+## R version used for fitting: 4.0.0
+## Date of fit: Tue May 26 17:01:09 2020
+## Date of summary: Tue May 26 17:01:09 2020
##
## Equations:
-## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
-## exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
-## exp(-k2 * time))) * parent
+## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+## * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 587 model solutions performed in 1.211 s
+## Fitted using 572 model solutions performed in 0.13 s
+##
+## Error model: Constant variance
##
-## Error model:
-## Constant variance
+## Error model algorithm: OLS
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 93.950000 state
-## k1 0.100000 deparm
-## k2 0.010000 deparm
-## g 0.500000 deparm
-## sigma 1.413899 error
+## value type
+## parent_0 93.95 state
+## k1 0.10 deparm
+## k2 0.01 deparm
+## g 0.50 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
@@ -1876,26 +1852,30 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
## log_k1 -2.302585 -Inf Inf
## log_k2 -4.605170 -Inf Inf
## g_ilr 0.000000 -Inf Inf
-## sigma 1.413899 0 Inf
##
## Fixed parameter values:
## None
##
+## Results:
+##
+## AIC BIC logLik
+## 52.36695 54.79148 -21.18347
+##
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
## parent_0 93.9500 9.998e-01 91.5900 96.3100
-## log_k1 3.1330 2.265e+03 -5354.0000 5360.0000
+## log_k1 3.1370 2.376e+03 -5615.0000 5622.0000
## log_k2 -1.0880 6.285e-02 -1.2370 -0.9394
## g_ilr -0.2821 7.033e-02 -0.4484 -0.1158
## sigma 1.4140 2.886e-01 0.7314 2.0960
##
## Parameter correlation:
## parent_0 log_k1 log_k2 g_ilr sigma
-## parent_0 1.000e+00 5.434e-07 -9.989e-11 2.665e-01 -3.978e-10
-## log_k1 5.434e-07 1.000e+00 8.888e-05 -1.748e-04 -8.207e-06
-## log_k2 -9.989e-11 8.888e-05 1.000e+00 -7.903e-01 5.751e-10
-## g_ilr 2.665e-01 -1.748e-04 -7.903e-01 1.000e+00 -7.109e-10
-## sigma -3.978e-10 -8.207e-06 5.751e-10 -7.109e-10 1.000e+00
+## parent_0 1.000e+00 5.157e-07 2.376e-09 2.665e-01 -6.837e-09
+## log_k1 5.157e-07 1.000e+00 8.434e-05 -1.659e-04 -7.786e-06
+## log_k2 2.376e-09 8.434e-05 1.000e+00 -7.903e-01 -1.263e-08
+## g_ilr 2.665e-01 -1.659e-04 -7.903e-01 1.000e+00 3.248e-08
+## sigma -6.837e-09 -7.786e-06 -1.263e-08 3.248e-08 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -1903,7 +1883,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
## for estimators of untransformed parameters.
## Estimate t value Pr(&gt;t) Lower Upper
## parent_0 93.9500 9.397e+01 2.036e-12 91.5900 96.3100
-## k1 22.9300 4.514e-04 4.998e-01 0.0000 Inf
+## k1 23.0400 4.303e-04 4.998e-01 0.0000 Inf
## k2 0.3369 1.591e+01 4.697e-07 0.2904 0.3909
## g 0.4016 1.680e+01 3.238e-07 0.3466 0.4591
## sigma 1.4140 4.899e+00 8.776e-04 0.7314 2.0960
@@ -1915,7 +1895,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Estimated disappearance times:
## DT50 DT90 DT50_k1 DT50_k2
-## parent 0.5335 5.311 0.03023 2.058</code></pre>
+## parent 0.5335 5.311 0.03009 2.058</code></pre>
<p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the chi^2 error level criterion. However, the failure to calculate the covariance matrix indicates that the parameter estimates correlate excessively. Therefore, the FOMC model may be preferred for this dataset.</p>
</div>
</div>
@@ -1933,7 +1913,7 @@ FOCUS_2006_L3_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L3)</code></pre>
mm.L3 &lt;- mmkin(c(&quot;SFO&quot;, &quot;FOMC&quot;, &quot;DFOP&quot;), cores = 1,
list(&quot;FOCUS L3&quot; = FOCUS_2006_L3_mkin), quiet = TRUE)
plot(mm.L3)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 21% as well as the plot suggest that the SFO model does not fit very well. The FOMC model performs better, with an error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes of 7%. Fitting the four parameter DFOP model further reduces the <span class="math inline"><em>χ</em><sup>2</sup></span> error level considerably.</p>
</div>
<div id="accessing-mmkin-objects" class="section level2">
@@ -1941,30 +1921,30 @@ plot(mm.L3)</code></pre>
<p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.4
-## R version used for fitting: 3.6.0
-## Date of fit: Thu May 2 18:43:55 2019
-## Date of summary: Thu May 2 18:43:56 2019
+<pre><code>## mkin version used for fitting: 0.9.50.3
+## R version used for fitting: 4.0.0
+## Date of fit: Tue May 26 17:01:10 2020
+## Date of summary: Tue May 26 17:01:10 2020
##
## Equations:
-## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
-## exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
-## exp(-k2 * time))) * parent
+## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+## * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 372 model solutions performed in 0.761 s
+## Fitted using 373 model solutions performed in 0.083 s
##
-## Error model:
-## Constant variance
+## Error model: Constant variance
+##
+## Error model algorithm: OLS
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 97.800000 state
-## k1 0.100000 deparm
-## k2 0.010000 deparm
-## g 0.500000 deparm
-## sigma 1.017292 error
+## value type
+## parent_0 97.80 state
+## k1 0.10 deparm
+## k2 0.01 deparm
+## g 0.50 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
@@ -1972,11 +1952,15 @@ plot(mm.L3)</code></pre>
## log_k1 -2.302585 -Inf Inf
## log_k2 -4.605170 -Inf Inf
## g_ilr 0.000000 -Inf Inf
-## sigma 1.017292 0 Inf
##
## Fixed parameter values:
## None
##
+## Results:
+##
+## AIC BIC logLik
+## 32.97732 33.37453 -11.48866
+##
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
## parent_0 97.7500 1.01900 94.5000 101.000000
@@ -1986,12 +1970,12 @@ plot(mm.L3)</code></pre>
## sigma 1.0170 0.25430 0.2079 1.827000
##
## Parameter correlation:
-## parent_0 log_k1 log_k2 g_ilr sigma
-## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 1.660e-07
-## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 6.635e-08
-## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 3.880e-07
-## g_ilr 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -3.822e-07
-## sigma 1.660e-07 6.635e-08 3.880e-07 -3.822e-07 1.000e+00
+## parent_0 log_k1 log_k2 g_ilr sigma
+## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 -6.868e-07
+## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 3.175e-07
+## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 7.631e-07
+## g_ilr 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -8.694e-07
+## sigma -6.868e-07 3.175e-07 7.631e-07 -8.694e-07 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -2024,7 +2008,7 @@ plot(mm.L3)</code></pre>
## 91 parent 15.0 15.18 -0.18181
## 120 parent 12.0 10.19 1.81395</code></pre>
<pre class="r"><code>plot(mm.L3[[&quot;DFOP&quot;, 1]], show_errmin = TRUE)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<p>Here, a look to the model plot, the confidence intervals of the parameters and the correlation matrix suggest that the parameter estimates are reliable, and the DFOP model can be used as the best-fit model based on the <span class="math inline"><em>χ</em><sup>2</sup></span> error level criterion for laboratory data L3.</p>
<p>This is also an example where the standard t-test for the parameter <code>g_ilr</code> is misleading, as it tests for a significant difference from zero. In this case, zero appears to be the correct value for this parameter, and the confidence interval for the backtransformed parameter <code>g</code> is quite narrow.</p>
</div>
@@ -2042,39 +2026,43 @@ mm.L4 &lt;- mmkin(c(&quot;SFO&quot;, &quot;FOMC&quot;), cores = 1,
list(&quot;FOCUS L4&quot; = FOCUS_2006_L4_mkin),
quiet = TRUE)
plot(mm.L4)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.4
-## R version used for fitting: 3.6.0
-## Date of fit: Thu May 2 18:43:56 2019
-## Date of summary: Thu May 2 18:43:57 2019
+<pre><code>## mkin version used for fitting: 0.9.50.3
+## R version used for fitting: 4.0.0
+## Date of fit: Tue May 26 17:01:10 2020
+## Date of summary: Tue May 26 17:01:10 2020
##
## Equations:
## d_parent/dt = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 146 model solutions performed in 0.291 s
+## Fitted using 142 model solutions performed in 0.029 s
+##
+## Error model: Constant variance
##
-## Error model:
-## Constant variance
+## Error model algorithm: OLS
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 96.60000 state
-## k_parent_sink 0.10000 deparm
-## sigma 3.16181 error
+## value type
+## parent_0 96.6 state
+## k_parent_sink 0.1 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 96.600000 -Inf Inf
## log_k_parent_sink -2.302585 -Inf Inf
-## sigma 3.161810 0 Inf
##
## Fixed parameter values:
## None
##
+## Results:
+##
+## AIC BIC logLik
+## 47.12133 47.35966 -20.56067
+##
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
## parent_0 96.440 1.69900 92.070 100.800
@@ -2082,10 +2070,10 @@ plot(mm.L4)</code></pre>
## sigma 3.162 0.79050 1.130 5.194
##
## Parameter correlation:
-## parent_0 log_k_parent_sink sigma
-## parent_0 1.000e+00 5.938e-01 4.256e-10
-## log_k_parent_sink 5.938e-01 1.000e+00 -7.280e-10
-## sigma 4.256e-10 -7.280e-10 1.000e+00
+## parent_0 log_k_parent_sink sigma
+## parent_0 1.000e+00 5.938e-01 3.387e-07
+## log_k_parent_sink 5.938e-01 1.000e+00 5.830e-07
+## sigma 3.387e-07 5.830e-07 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -2101,46 +2089,46 @@ plot(mm.L4)</code></pre>
## All data 3.287 2 6
## parent 3.287 2 6
##
-## Resulting formation fractions:
-## ff
-## parent_sink 1
-##
## Estimated disappearance times:
## DT50 DT90
## parent 106 352</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 0.9.49.4
-## R version used for fitting: 3.6.0
-## Date of fit: Thu May 2 18:43:56 2019
-## Date of summary: Thu May 2 18:43:57 2019
+<pre><code>## mkin version used for fitting: 0.9.50.3
+## R version used for fitting: 4.0.0
+## Date of fit: Tue May 26 17:01:10 2020
+## Date of summary: Tue May 26 17:01:10 2020
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 224 model solutions performed in 0.451 s
+## Fitted using 224 model solutions performed in 0.044 s
+##
+## Error model: Constant variance
##
-## Error model:
-## Constant variance
+## Error model algorithm: OLS
##
## Starting values for parameters to be optimised:
-## value type
-## parent_0 96.600000 state
-## alpha 1.000000 deparm
-## beta 10.000000 deparm
-## sigma 1.830055 error
+## value type
+## parent_0 96.6 state
+## alpha 1.0 deparm
+## beta 10.0 deparm
##
## Starting values for the transformed parameters actually optimised:
## value lower upper
## parent_0 96.600000 -Inf Inf
## log_alpha 0.000000 -Inf Inf
## log_beta 2.302585 -Inf Inf
-## sigma 1.830055 0 Inf
##
## Fixed parameter values:
## None
##
+## Results:
+##
+## AIC BIC logLik
+## 40.37255 40.69032 -16.18628
+##
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
## parent_0 99.1400 1.2670 95.6300 102.7000
@@ -2150,10 +2138,10 @@ plot(mm.L4)</code></pre>
##
## Parameter correlation:
## parent_0 log_alpha log_beta sigma
-## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.473e-07
-## log_alpha -4.696e-01 1.000e+00 9.889e-01 2.429e-08
-## log_beta -5.543e-01 9.889e-01 1.000e+00 5.183e-08
-## sigma -2.473e-07 2.429e-08 5.183e-08 1.000e+00
+## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.456e-07
+## log_alpha -4.696e-01 1.000e+00 9.889e-01 2.169e-08
+## log_beta -5.543e-01 9.889e-01 1.000e+00 4.910e-08
+## sigma -2.456e-07 2.169e-08 4.910e-08 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -2203,6 +2191,49 @@ $(document).ready(function () {
</script>
+<!-- tabsets -->
+
+<script>
+$(document).ready(function () {
+ window.buildTabsets("TOC");
+});
+
+$(document).ready(function () {
+ $('.tabset-dropdown > .nav-tabs > li').click(function () {
+ $(this).parent().toggleClass('nav-tabs-open')
+ });
+});
+</script>
+
+<!-- code folding -->
+
+<script>
+$(document).ready(function () {
+
+ // move toc-ignore selectors from section div to header
+ $('div.section.toc-ignore')
+ .removeClass('toc-ignore')
+ .children('h1,h2,h3,h4,h5').addClass('toc-ignore');
+
+ // establish options
+ var options = {
+ selectors: "h1,h2,h3",
+ theme: "bootstrap3",
+ context: '.toc-content',
+ hashGenerator: function (text) {
+ return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
+ },
+ ignoreSelector: ".toc-ignore",
+ scrollTo: 0
+ };
+ options.showAndHide = false;
+ options.smoothScroll = true;
+
+ // tocify
+ var toc = $("#TOC").tocify(options).data("toc-tocify");
+});
+</script>
+
</body>
</html>
diff --git a/vignettes/mkin.html b/vignettes/mkin.html
index 28b3fa16..e14cb374 100644
--- a/vignettes/mkin.html
+++ b/vignettes/mkin.html
@@ -11,7 +11,7 @@
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2020-05-12" />
+<meta name="date" content="2020-05-26" />
<title>Introduction to mkin</title>
@@ -1583,7 +1583,7 @@ div.tocify {
<h1 class="title toc-ignore">Introduction to mkin</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">2020-05-12</h4>
+<h4 class="date">2020-05-26</h4>
</div>
diff --git a/vignettes/twa.html b/vignettes/twa.html
index 41989b5d..80272eef 100644
--- a/vignettes/twa.html
+++ b/vignettes/twa.html
@@ -1,18 +1,18 @@
<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml">
+<html>
<head>
<meta charset="utf-8" />
-<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
+<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
-<meta name="viewport" content="width=device-width, initial-scale=1">
+<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="author" content="Johannes Ranke" />
-<meta name="date" content="2019-09-18" />
+<meta name="date" content="2020-05-26" />
<title>Calculation of time weighted average concentrations with mkin</title>
@@ -32,9 +32,6 @@ font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
-#header {
-text-align: center;
-}
#TOC {
clear: both;
margin: 0 0 10px 10px;
@@ -202,7 +199,8 @@ code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
-code > span.fu { color: #900; font-weight: bold; } code > span.er { color: #a61717; background-color: #e3d2d2; }
+code > span.fu { color: #900; font-weight: bold; }
+code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
@@ -217,7 +215,7 @@ code > span.fu { color: #900; font-weight: bold; } code > span.er { color: #a61
<h1 class="title toc-ignore">Calculation of time weighted average concentrations with mkin</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">2019-09-18</h4>
+<h4 class="date">2020-05-26</h4>
@@ -261,6 +259,9 @@ code > span.fu { color: #900; font-weight: bold; } code > span.er { color: #a61
+<!-- code folding -->
+
+
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {

Contact - Imprint