aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2020-10-27 15:34:14 +0100
committerJohannes Ranke <jranke@uni-bremen.de>2020-10-27 15:36:46 +0100
commita5874ab7fce4616e80be69366ff0685332f47bf1 (patch)
tree17f36842de8ff457879be152779f8704f06a4787
parentca1b4c8cdb1de72b44df0ee8cebe11e10814efdf (diff)
Add summary method for nlme.mmkin objects
Improve and update docs
-rw-r--r--NAMESPACE3
-rw-r--r--NEWS.md4
-rw-r--r--R/nlme.mmkin.R46
-rw-r--r--R/plot.nlme.mmkin.R6
-rw-r--r--R/sigma_twocomp.R21
-rw-r--r--R/summary.nlme.mmkin.R233
-rw-r--r--_pkgdown.yml1
-rw-r--r--docs/dev/news/index.html3
-rw-r--r--docs/dev/pkgdown.yml2
-rw-r--r--docs/dev/reference/Rplot001.pngbin27839 -> 14324 bytes
-rw-r--r--docs/dev/reference/index.html8
-rw-r--r--docs/dev/reference/nlme.mmkin.html96
-rw-r--r--docs/dev/reference/plot.nlme.mmkin.html14
-rw-r--r--docs/dev/reference/sigma_twocomp.html11
-rw-r--r--docs/dev/reference/summary.nlme.mmkin.html446
-rw-r--r--docs/dev/sitemap.xml3
-rw-r--r--man/nlme.mmkin.Rd5
-rw-r--r--man/plot.nlme.mmkin.Rd8
-rw-r--r--man/sigma_twocomp.Rd11
-rw-r--r--man/summary.nlme.mmkin.Rd99
-rw-r--r--test.log20
-rw-r--r--tests/testthat/FOCUS_2006_D.csf2
22 files changed, 949 insertions, 93 deletions
diff --git a/NAMESPACE b/NAMESPACE
index 645c145e..9554a0d6 100644
--- a/NAMESPACE
+++ b/NAMESPACE
@@ -26,8 +26,10 @@ S3method(print,mmkin)
S3method(print,nafta)
S3method(print,nlme.mmkin)
S3method(print,summary.mkinfit)
+S3method(print,summary.nlme.mmkin)
S3method(residuals,mkinfit)
S3method(summary,mkinfit)
+S3method(summary,nlme.mmkin)
S3method(update,mkinfit)
S3method(update,nlme.mmkin)
export(CAKE_export)
@@ -108,6 +110,7 @@ importFrom(stats,na.fail)
importFrom(stats,nlminb)
importFrom(stats,nobs)
importFrom(stats,optimize)
+importFrom(stats,predict)
importFrom(stats,pt)
importFrom(stats,qchisq)
importFrom(stats,qf)
diff --git a/NEWS.md b/NEWS.md
index ea4b5318..706e0ae8 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -1,8 +1,6 @@
# mkin 0.9.50.4 (unreleased)
-- 'plot' method for 'nlme.mmkin' objects
-
-- 'print' method for 'mmkin' objects
+- 'plot', 'summary' and 'print' methods for 'nlme.mmkin' objects
- 'saemix_model', 'saemix_data': Helper functions to fit nonlinear mixed-effects models for mmkin row objects using the saemix package
diff --git a/R/nlme.mmkin.R b/R/nlme.mmkin.R
index d3369cf5..6d24a044 100644
--- a/R/nlme.mmkin.R
+++ b/R/nlme.mmkin.R
@@ -42,6 +42,9 @@ get_deg_func <- function() {
#' @importFrom stats na.fail as.formula
#' @return Upon success, a fitted nlme.mmkin object, which is an nlme object
#' with additional elements
+#' @note As the object inherits from [nlme::nlme], there is a wealth of
+#' methods that will automatically work on 'nlme.mmkin' objects, such as
+#' [nlme::intervals()], [nlme::anova.lme()] and [nlme::coef.lme()].
#' @export
#' @seealso \code{\link{nlme_function}}
#' @examples
@@ -141,8 +144,8 @@ nlme.mmkin <- function(model, data = sys.frame(sys.parent()),
thisCall[["model"]] <- this_model
- mean_dp <- mean_degparms(model)
- dp_names <- names(mean_dp)
+ mean_dp_start <- mean_degparms(model)
+ dp_names <- names(mean_dp_start)
thisCall[["data"]] <- nlme_data(model)
@@ -175,10 +178,21 @@ nlme.mmkin <- function(model, data = sys.frame(sys.parent()),
thisCall[["control"]] <- control
}
- val <- do.call("nlme.formula", thisCall)
+ fit_time <- system.time(val <- do.call("nlme.formula", thisCall))
+ val$time <- fit_time
+
+ val$mean_dp_start <- mean_dp_start
val$mmkin_orig <- model
val$data <- thisCall[["data"]]
val$mkinmod <- model[[1]]$mkinmod
+ val$err_mode <- error_model
+ val$transform_rates <- model[[1]]$transform_rates
+ val$transform_fractions <- model[[1]]$transform_fractions
+ val$solution_type <- model[[1]]$solution_type
+ val$date.fit <- date()
+ val$nlmeversion <- as.character(utils::packageVersion("nlme"))
+ val$mkinversion <- as.character(utils::packageVersion("mkin"))
+ val$Rversion <- paste(R.version$major, R.version$minor, sep=".")
class(val) <- c("nlme.mmkin", "nlme", "lme")
return(val)
}
@@ -186,10 +200,30 @@ nlme.mmkin <- function(model, data = sys.frame(sys.parent()),
#' @export
#' @rdname nlme.mmkin
#' @param x An nlme.mmkin object to print
-#' @param ... Further arguments as in the generic
print.nlme.mmkin <- function(x, ...) {
- x$call$data <- "Not shown"
- NextMethod("print", x)
+ cat( "Kinetic nonlinear mixed-effects model fit by " )
+ cat( if(x$method == "REML") "REML\n" else "maximum likelihood\n")
+ cat("\nStructural model:\n")
+ diffs <- x$mmkin_orig[[1]]$mkinmod$diffs
+ nice_diffs <- gsub("^(d.*) =", "\\1/dt =", diffs)
+ writeLines(strwrap(nice_diffs, exdent = 11))
+ cat("\nData:\n")
+ cat(nrow(x$data), "observations of",
+ length(unique(x$data$name)), "variable(s) grouped in",
+ length(unique(x$data$ds)), "datasets\n")
+ cat("\nLog-", if(x$method == "REML") "restricted-" else "",
+ "likelihood: ", format(x$logLik), "\n", sep = "")
+ fixF <- x$call$fixed
+ cat("\nFixed effects:\n",
+ deparse(
+ if(inherits(fixF, "formula") || is.call(fixF) || is.name(fixF))
+ x$call$fixed
+ else
+ lapply(fixF, function(el) as.name(deparse(el)))), "\n")
+ print(fixef(x), ...)
+ cat("\n")
+ print(summary(x$modelStruct), sigma = x$sigma, ...)
+ invisible(x)
}
#' @export
diff --git a/R/plot.nlme.mmkin.R b/R/plot.nlme.mmkin.R
index afb682a7..05a17a22 100644
--- a/R/plot.nlme.mmkin.R
+++ b/R/plot.nlme.mmkin.R
@@ -11,6 +11,8 @@ if(getRversion() >= '2.15.1') utils::globalVariables("ds")
#' @param rel.height.legend The relative height of the legend shown on top
#' @param rel.height.bottom The relative height of the bottom plot row
#' @param ymax Vector of maximum y axis values
+#' @param ncol.legend Number of columns to use in the legend
+#' @param nrow.legend Number of rows to use in the legend
#' @param \dots Further arguments passed to \code{\link{plot.mkinfit}} and
#' \code{\link{mkinresplot}}.
#' @param resplot Should the residuals plotted against time or against
@@ -28,7 +30,8 @@ if(getRversion() >= '2.15.1') utils::globalVariables("ds")
#' names(ds) <- paste0("ds ", 6:10)
#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
#' A1 = mkinsub("SFO"), quiet = TRUE)
-#' f <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, cores = 1)
+#' \dontrun{
+#' f <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE)
#' plot(f[, 3:4], standardized = TRUE)
#'
#' library(nlme)
@@ -36,6 +39,7 @@ if(getRversion() >= '2.15.1') utils::globalVariables("ds")
#' # tolerance in order to speed up the fit for this example evaluation
#' f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3))
#' plot(f_nlme)
+#' }
#' @export
plot.nlme.mmkin <- function(x, i = 1:ncol(x$mmkin_orig),
obs_vars = names(x$mkinmod$map),
diff --git a/R/sigma_twocomp.R b/R/sigma_twocomp.R
index e8a92ced..e7f4368b 100644
--- a/R/sigma_twocomp.R
+++ b/R/sigma_twocomp.R
@@ -1,16 +1,16 @@
#' Two-component error model
-#'
+#'
#' Function describing the standard deviation of the measurement error in
#' dependence of the measured value \eqn{y}:
-#'
+#'
#' \deqn{\sigma = \sqrt{ \sigma_{low}^2 + y^2 * {rsd}_{high}^2}} sigma =
#' sqrt(sigma_low^2 + y^2 * rsd_high^2)
-#'
+#'
#' This is the error model used for example by Werner et al. (1978). The model
#' proposed by Rocke and Lorenzato (1995) can be written in this form as well,
#' but assumes approximate lognormal distribution of errors for high values of
#' y.
-#'
+#'
#' @param y The magnitude of the observed value
#' @param sigma_low The asymptotic minimum of the standard deviation for low
#' observed values
@@ -20,7 +20,7 @@
#' @references Werner, Mario, Brooks, Samuel H., and Knott, Lancaster B. (1978)
#' Additive, Multiplicative, and Mixed Analytical Errors. Clinical Chemistry
#' 24(11), 1895-1898.
-#'
+#'
#' Rocke, David M. and Lorenzato, Stefan (1995) A two-component model for
#' measurement error in analytical chemistry. Technometrics 37(2), 176-184.
#' @examples
@@ -36,15 +36,8 @@
#' data = d_syn, na.action = na.omit,
#' start = list(parent_0 = 100, lrc = -3))
#' if (length(findFunction("varConstProp")) > 0) {
-#' f_gnls_tc <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
-#' data = d_syn, na.action = na.omit,
-#' start = list(parent_0 = 100, lrc = -3),
-#' weights = varConstProp())
-#' f_gnls_tc_sf <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
-#' data = d_syn, na.action = na.omit,
-#' start = list(parent_0 = 100, lrc = -3),
-#' control = list(sigma = 1),
-#' weights = varConstProp())
+#' f_gnls_tc <- update(f_gnls, weights = varConstProp())
+#' f_gnls_tc_sf <- update(f_gnls_tc, control = list(sigma = 1))
#' }
#' f_mkin <- mkinfit("SFO", d_syn, error_model = "const", quiet = TRUE)
#' f_mkin_tc <- mkinfit("SFO", d_syn, error_model = "tc", quiet = TRUE)
diff --git a/R/summary.nlme.mmkin.R b/R/summary.nlme.mmkin.R
new file mode 100644
index 00000000..9fdd3f73
--- /dev/null
+++ b/R/summary.nlme.mmkin.R
@@ -0,0 +1,233 @@
+#' Summary method for class "nlme.mmkin"
+#'
+#' Lists model equations, initial parameter values, optimised parameters
+#' for fixed effects (population), random effects (deviations from the
+#' population mean) and residual error model, as well as the resulting
+#' endpoints such as formation fractions and DT50 values. Optionally
+#' (default is FALSE), the data are listed in full.
+#'
+#' @param object an object of class [nlme.mmkin]
+#' @param x an object of class [summary.nlme.mmkin]
+#' @param data logical, indicating whether the full data should be included in
+#' the summary.
+#' @param verbose Should the summary be verbose?
+#' @param distimes logical, indicating whether DT50 and DT90 values should be
+#' included.
+#' @param alpha error level for confidence interval estimation from the t
+#' distribution
+#' @param digits Number of digits to use for printing
+#' @param \dots optional arguments passed to methods like \code{print}.
+#' @return The summary function returns a list based on the [nlme] object
+#' obtained in the fit, with at least the following additional components
+#' \item{nlmeversion, mkinversion, Rversion}{The nlme, mkin and R versions used}
+#' \item{date.fit, date.summary}{The dates where the fit and the summary were
+#' produced}
+#' \item{diffs}{The differential equations used in the degradation model}
+#' \item{use_of_ff}{Was maximum or minimum use made of formation fractions}
+#' \item{data}{The data}
+#' \item{confint_trans}{Transformed parameters as used in the optimisation, with confidence intervals}
+#' \item{confint_back}{Backtransformed parameters, with confidence intervals if available}
+#' \item{ff}{The estimated formation fractions derived from the fitted
+#' model.}
+#' \item{distimes}{The DT50 and DT90 values for each observed variable.}
+#' \item{SFORB}{If applicable, eigenvalues of SFORB components of the model.}
+#' The print method is called for its side effect, i.e. printing the summary.
+#' @importFrom stats predict
+#' @author Johannes Ranke for the mkin specific parts
+#' José Pinheiro and Douglas Bates for the components inherited from nlme
+#' @examples
+#'
+#' # Generate five datasets following SFO kinetics
+#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+#' dt50_sfo_in_pop <- 50
+#' k_in_pop <- log(2) / dt50_sfo_in_pop
+#' set.seed(1234)
+#' k_in <- rlnorm(5, log(k_in_pop), 0.5)
+#' SFO <- mkinmod(parent = mkinsub("SFO"))
+#'
+#' pred_sfo <- function(k) {
+#' mkinpredict(SFO,
+#' c(k_parent = k),
+#' c(parent = 100),
+#' sampling_times)
+#' }
+#'
+#' ds_sfo_mean <- lapply(k_in, pred_sfo)
+#' names(ds_sfo_mean) <- paste("ds", 1:5)
+#'
+#' ds_sfo_syn <- lapply(ds_sfo_mean, function(ds) {
+#' add_err(ds,
+#' sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),
+#' n = 1)[[1]]
+#' })
+#'
+#' # Evaluate using mmkin and nlme
+#' library(nlme)
+#' f_mmkin <- mmkin("SFO", ds_sfo_syn, quiet = TRUE, error_model = "tc", cores = 1)
+#' f_nlme <- nlme(f_mmkin)
+#' summary(f_nlme, data = TRUE)
+#'
+#' @export
+summary.nlme.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes = TRUE, alpha = 0.05, ...) {
+
+ mod_vars <- names(object$mkinmod$diffs)
+
+ confint_trans <- intervals(object, which = "fixed", level = 1 - alpha)$fixed
+ attr(confint_trans, "label") <- NULL
+ pnames <- rownames(confint_trans)
+ confint_trans[, "est."]
+ bp <- backtransform_odeparms(confint_trans[, "est."], object$mkinmod,
+ object$transform_rates, object$transform_fractions)
+ bpnames <- names(bp)
+
+ # variance-covariance estimates for fixed effects (from summary.lme)
+ fixed <- fixef(object)
+ stdFixed <- sqrt(diag(as.matrix(object$varFix)))
+ object$corFixed <- array(
+ t(object$varFix/stdFixed)/stdFixed,
+ dim(object$varFix),
+ list(names(fixed), names(fixed)))
+
+ # Transform boundaries of CI for one parameter at a time,
+ # with the exception of sets of formation fractions (single fractions are OK).
+ f_names_skip <- character(0)
+ for (box in mod_vars) { # Figure out sets of fractions to skip
+ f_names <- grep(paste("^f", box, sep = "_"), pnames, value = TRUE)
+ n_paths <- length(f_names)
+ if (n_paths > 1) f_names_skip <- c(f_names_skip, f_names)
+ }
+
+ confint_back <- matrix(NA, nrow = length(bp), ncol = 3,
+ dimnames = list(bpnames, colnames(confint_trans)))
+ confint_back[, "est."] <- bp
+
+ for (pname in pnames) {
+ if (!pname %in% f_names_skip) {
+ par.lower <- confint_trans[pname, "lower"]
+ par.upper <- confint_trans[pname, "upper"]
+ names(par.lower) <- names(par.upper) <- pname
+ bpl <- backtransform_odeparms(par.lower, object$mkinmod,
+ object$transform_rates,
+ object$transform_fractions)
+ bpu <- backtransform_odeparms(par.upper, object$mkinmod,
+ object$transform_rates,
+ object$transform_fractions)
+ confint_back[names(bpl), "lower"] <- bpl
+ confint_back[names(bpu), "upper"] <- bpu
+ }
+ }
+
+ object$confint_trans <- confint_trans
+ object$confint_back <- confint_back
+
+ object$date.summary = date()
+ object$use_of_ff = object$mkinmod$use_of_ff
+ object$error_model_algorithm = object$mmkin_orig[[1]]$error_model_algorithm
+ err_mod = object$mmkin_orig[[1]]$err_mod
+
+ object$diffs <- object$mkinmod$diffs
+ object$print_data <- data
+ if (data) {
+ object$data[["observed"]] <- object$data[["value"]]
+ object$data[["value"]] <- NULL
+ object$data[["predicted"]] <- predict(object)
+ object$data[["residual"]] <- residuals(object, type = "response")
+ object$data[["std"]] <- object$sigma <- 1/attr(object$modelStruct$varStruct, "weights")
+ object$data[["standardized"]] <- residuals(object, type = "pearson")
+ }
+ object$verbose <- verbose
+
+ object$fixed <- object$mmkin_orig[[1]]$fixed
+ object$AIC = AIC(object)
+ object$BIC = BIC(object)
+ object$logLik = logLik(object)
+
+ ep <- endpoints(object)
+ if (length(ep$ff) != 0)
+ object$ff <- ep$ff
+ if (distimes) object$distimes <- ep$distimes
+ if (length(ep$SFORB) != 0) object$SFORB <- ep$SFORB
+ class(object) <- c("summary.nlme.mmkin", "nlme.mmkin", "nlme", "lme")
+ return(object)
+}
+
+#' @rdname summary.nlme.mmkin
+#' @export
+print.summary.nlme.mmkin <- function(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...) {
+ cat("nlme version used for fitting: ", x$nlmeversion, "\n")
+ cat("mkin version used for pre-fitting: ", x$mkinversion, "\n")
+ cat("R version used for fitting: ", x$Rversion, "\n")
+
+ cat("Date of fit: ", x$date.fit, "\n")
+ cat("Date of summary:", x$date.summary, "\n")
+
+ cat("\nEquations:\n")
+ nice_diffs <- gsub("^(d.*) =", "\\1/dt =", x[["diffs"]])
+ writeLines(strwrap(nice_diffs, exdent = 11))
+
+ cat("\nData:\n")
+ cat(nrow(x$data), "observations of",
+ length(unique(x$data$name)), "variable(s) grouped in",
+ length(unique(x$data$ds)), "datasets\n")
+
+ cat("\nModel predictions using solution type", x$solution_type, "\n")
+
+ cat("\nFitted in", x$time[["elapsed"]], "s using", x$numIter, "iterations\n")
+
+ cat("\nVariance model: ")
+ cat(switch(x$err_mod,
+ const = "Constant variance",
+ obs = "Variance unique to each observed variable",
+ tc = "Two-component variance function"), "\n")
+
+ cat("\nMean of starting values for individual parameters:\n")
+ print(x$mean_dp_start)
+
+ cat("\nFixed degradation parameter values:\n")
+ if(length(x$fixed$value) == 0) cat("None\n")
+ else print(x$fixed)
+
+ cat("\nResults:\n\n")
+ print(data.frame(AIC = x$AIC, BIC = x$BIC, logLik = x$logLik,
+ row.names = " "))
+
+ cat("\nOptimised, transformed parameters with symmetric confidence intervals:\n")
+ print(x$confint_trans)
+
+ if (nrow(x$confint_trans) > 1) {
+ corr <- x$corFixed
+ class(corr) <- "correlation"
+ print(corr, title = "\nCorrelation:", ...)
+ }
+
+ cat("\nBacktransformed parameters with asymmetric confidence intervals:\n")
+ print(x$confint_back)
+
+ print(summary(x$modelStruct), sigma = x$sigma,
+ reEstimates = x$coef$random, verbose = verbose, ...)
+
+ printSFORB <- !is.null(x$SFORB)
+ if(printSFORB){
+ cat("\nEstimated Eigenvalues of SFORB model(s):\n")
+ print(x$SFORB, digits=digits,...)
+ }
+
+ printff <- !is.null(x$ff)
+ if(printff){
+ cat("\nResulting formation fractions:\n")
+ print(data.frame(ff = x$ff), digits=digits,...)
+ }
+
+ printdistimes <- !is.null(x$distimes)
+ if(printdistimes){
+ cat("\nEstimated disappearance times:\n")
+ print(x$distimes, digits=digits,...)
+ }
+
+ if (x$print_data){
+ cat("\nData:\n")
+ print(format(x$data, digits = digits, ...), row.names = FALSE)
+ }
+
+ invisible(x)
+}
diff --git a/_pkgdown.yml b/_pkgdown.yml
index 4631dc97..ac100ac1 100644
--- a/_pkgdown.yml
+++ b/_pkgdown.yml
@@ -43,6 +43,7 @@ reference:
contents:
- nlme.mmkin
- plot.nlme.mmkin
+ - summary.nlme.mmkin
- nlme_function
- get_deg_func
- saemix_model
diff --git a/docs/dev/news/index.html b/docs/dev/news/index.html
index c29e413d..4e31f4b7 100644
--- a/docs/dev/news/index.html
+++ b/docs/dev/news/index.html
@@ -146,8 +146,7 @@
<a href="#mkin-0-9-50-4-unreleased" class="anchor"></a>mkin 0.9.50.4 (unreleased)<small> Unreleased </small>
</h1>
<ul>
-<li><p>‘plot’ method for ‘nlme.mmkin’ objects</p></li>
-<li><p>‘print’ method for ‘mmkin’ objects</p></li>
+<li><p>‘plot’, ‘summary’ and ‘print’ methods for ‘nlme.mmkin’ objects</p></li>
<li><p>‘saemix_model’, ‘saemix_data’: Helper functions to fit nonlinear mixed-effects models for mmkin row objects using the saemix package</p></li>
</ul>
</div>
diff --git a/docs/dev/pkgdown.yml b/docs/dev/pkgdown.yml
index 8f493a24..657aa128 100644
--- a/docs/dev/pkgdown.yml
+++ b/docs/dev/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
web_only/NAFTA_examples: NAFTA_examples.html
web_only/benchmarks: benchmarks.html
web_only/compiled_models: compiled_models.html
-last_built: 2020-10-26T13:18Z
+last_built: 2020-10-27T14:34Z
urls:
reference: https://pkgdown.jrwb.de/mkin/reference
article: https://pkgdown.jrwb.de/mkin/articles
diff --git a/docs/dev/reference/Rplot001.png b/docs/dev/reference/Rplot001.png
index cfc5bc2b..f001da49 100644
--- a/docs/dev/reference/Rplot001.png
+++ b/docs/dev/reference/Rplot001.png
Binary files differ
diff --git a/docs/dev/reference/index.html b/docs/dev/reference/index.html
index 24056025..fa3ec868 100644
--- a/docs/dev/reference/index.html
+++ b/docs/dev/reference/index.html
@@ -308,7 +308,7 @@ of an mmkin object</p></td>
<tr>
<th colspan="2">
<h2 id="section-mixed-models" class="hasAnchor"><a href="#section-mixed-models" class="anchor"></a>Mixed models</h2>
- <p class="section-desc"><p>Create and work with nonlinear mixed models</p></p>
+ <p class="section-desc"><p>Create and work with nonlinear mixed effects models</p></p>
</th>
</tr>
@@ -331,6 +331,12 @@ of an mmkin object</p></td>
</tr><tr>
<td>
+ <p><code><a href="summary.nlme.mmkin.html">summary(<i>&lt;nlme.mmkin&gt;</i>)</a></code> <code><a href="summary.nlme.mmkin.html">print(<i>&lt;summary.nlme.mmkin&gt;</i>)</a></code> </p>
+ </td>
+ <td><p>Summary method for class "nlme.mmkin"</p></td>
+ </tr><tr>
+
+ <td>
<p><code><a href="nlme.html">nlme_function()</a></code> <code><a href="nlme.html">mean_degparms()</a></code> <code><a href="nlme.html">nlme_data()</a></code> </p>
</td>
<td><p>Helper functions to create nlme models from mmkin row objects</p></td>
diff --git a/docs/dev/reference/nlme.mmkin.html b/docs/dev/reference/nlme.mmkin.html
index 90aec9be..3fa4d97b 100644
--- a/docs/dev/reference/nlme.mmkin.html
+++ b/docs/dev/reference/nlme.mmkin.html
@@ -152,7 +152,7 @@ have been obtained by fitting the same model to a list of datasets.</p>
</div>
<pre class="usage"><span class='co'># S3 method for mmkin</span>
-<span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span>
+<span class='fu'>nlme</span><span class='op'>(</span>
<span class='va'>model</span>,
data <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/sys.parent.html'>sys.frame</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/sys.parent.html'>sys.parent</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>)</span>,
<span class='va'>fixed</span>,
@@ -255,6 +255,11 @@ parameters taken from the mmkin object are used</p></td>
<p>Upon success, a fitted nlme.mmkin object, which is an nlme object
with additional elements</p>
+ <h2 class="hasAnchor" id="note"><a class="anchor" href="#note"></a>Note</h2>
+
+ <p>As the object inherits from <a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme::nlme</a>, there is a wealth of
+methods that will automatically work on 'nlme.mmkin' objects, such as
+<code><a href='https://rdrr.io/pkg/nlme/man/intervals.html'>nlme::intervals()</a></code>, <code><a href='https://rdrr.io/pkg/nlme/man/anova.lme.html'>nlme::anova.lme()</a></code> and <code><a href='https://rdrr.io/pkg/nlme/man/coef.lme.html'>nlme::coef.lme()</a></code>.</p>
<h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2>
<div class='dont-index'><p><code><a href='nlme_function.html'>nlme_function</a></code></p></div>
@@ -270,11 +275,20 @@ with additional elements</p>
</div><div class='output co'>#&gt; df AIC
#&gt; f_nlme_sfo 5 625.0539
#&gt; f_nlme_dfop 9 495.1270</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Nonlinear mixed-effects model fit by maximum likelihood
-#&gt; Model: value ~ (mkin::get_deg_func())(name, time, parent_0, log_k1, log_k2, g_ilr)
-#&gt; Data: "Not shown"
-#&gt; Log-likelihood: -238.5635
-#&gt; Fixed: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_ilr ~ 1)
+</div><div class='output co'>#&gt; Kinetic nonlinear mixed-effects model fit by maximum likelihood
+#&gt;
+#&gt; Structural model:
+#&gt; d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+#&gt; time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+#&gt; * parent
+#&gt;
+#&gt; Data:
+#&gt; 90 observations of 1 variable(s) grouped in 5 datasets
+#&gt;
+#&gt; Log-likelihood: -238.5635
+#&gt;
+#&gt; Fixed effects:
+#&gt; list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_ilr ~ 1)
#&gt; parent_0 log_k1 log_k2 g_ilr
#&gt; 94.17015133 -1.80015306 -4.14738870 0.02290935
#&gt;
@@ -284,9 +298,7 @@ with additional elements</p>
#&gt; Structure: Diagonal
#&gt; parent_0 log_k1 log_k2 g_ilr Residual
#&gt; StdDev: 2.488249 0.8447273 1.32965 0.3289311 2.321364
-#&gt;
-#&gt; Number of Observations: 90
-#&gt; Number of Groups: 5 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span>
+#&gt; </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span>
</div><div class='img'><img src='nlme.mmkin-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span>
</div><div class='output co'>#&gt; $distimes
#&gt; DT50 DT90 DT50back DT50_k1 DT50_k2
@@ -295,11 +307,18 @@ with additional elements</p>
<span class='co'># \dontrun{</span>
<span class='va'>f_nlme_2</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='op'>]</span>, start <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>parent_0 <span class='op'>=</span> <span class='fl'>100</span>, log_k_parent <span class='op'>=</span> <span class='fl'>0.1</span><span class='op'>)</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_nlme_2</span>, random <span class='op'>=</span> <span class='va'>parent_0</span> <span class='op'>~</span> <span class='fl'>1</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Nonlinear mixed-effects model fit by maximum likelihood
-#&gt; Model: value ~ (mkin::get_deg_func())(name, time, parent_0, log_k_parent)
-#&gt; Data: "Not shown"
-#&gt; Log-likelihood: -404.3729
-#&gt; Fixed: list(parent_0 ~ 1, log_k_parent ~ 1)
+</div><div class='output co'>#&gt; Kinetic nonlinear mixed-effects model fit by maximum likelihood
+#&gt;
+#&gt; Structural model:
+#&gt; d_parent/dt = - k_parent * parent
+#&gt;
+#&gt; Data:
+#&gt; observations of 0 variable(s) grouped in 0 datasets
+#&gt;
+#&gt; Log-likelihood: -404.3729
+#&gt;
+#&gt; Fixed effects:
+#&gt; list(parent_0 ~ 1, log_k_parent ~ 1)
#&gt; parent_0 log_k_parent
#&gt; 75.933480 -3.555983
#&gt;
@@ -307,9 +326,7 @@ with additional elements</p>
#&gt; Formula: parent_0 ~ 1 | ds
#&gt; parent_0 Residual
#&gt; StdDev: 0.002416792 21.63027
-#&gt;
-#&gt; Number of Observations: 90
-#&gt; Number of Groups: 5 </div><div class='input'> <span class='va'>ds_2</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>experimental_data_for_UBA_2019</span><span class='op'>[</span><span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>]</span>,
+#&gt; </div><div class='input'> <span class='va'>ds_2</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>experimental_data_for_UBA_2019</span><span class='op'>[</span><span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>]</span>,
<span class='kw'>function</span><span class='op'>(</span><span class='va'>x</span><span class='op'>)</span> <span class='va'>x</span><span class='op'>$</span><span class='va'>data</span><span class='op'>[</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"name"</span>, <span class='st'>"time"</span>, <span class='st'>"value"</span><span class='op'>)</span><span class='op'>]</span><span class='op'>)</span>
<span class='va'>m_sfo_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,
A1 <span class='op'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, use_of_ff <span class='op'>=</span> <span class='st'>"min"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
@@ -395,11 +412,20 @@ with additional elements</p>
<span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo</span>, <span class='va'>f_nlme_sfo_tc</span>, <span class='va'>f_nlme_dfop</span>, <span class='va'>f_nlme_dfop_tc</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_tc</span><span class='op'>)</span>
<span class='op'>}</span>
-</div><div class='output co'>#&gt; Nonlinear mixed-effects model fit by maximum likelihood
-#&gt; Model: value ~ (mkin::get_deg_func())(name, time, parent_0, log_k1, log_k2, g_ilr)
-#&gt; Data: "Not shown"
-#&gt; Log-likelihood: -238.4298
-#&gt; Fixed: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_ilr ~ 1)
+</div><div class='output co'>#&gt; Kinetic nonlinear mixed-effects model fit by maximum likelihood
+#&gt;
+#&gt; Structural model:
+#&gt; d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+#&gt; time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+#&gt; * parent
+#&gt;
+#&gt; Data:
+#&gt; 90 observations of 1 variable(s) grouped in 5 datasets
+#&gt;
+#&gt; Log-likelihood: -238.4298
+#&gt;
+#&gt; Fixed effects:
+#&gt; list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_ilr ~ 1)
#&gt; parent_0 log_k1 log_k2 g_ilr
#&gt; 94.04774463 -1.82339924 -4.16715509 0.04020161
#&gt;
@@ -415,19 +441,25 @@ with additional elements</p>
#&gt; Formula: ~fitted(.)
#&gt; Parameter estimates:
#&gt; const prop
-#&gt; 2.23222625 0.01262414
-#&gt; Number of Observations: 90
-#&gt; Number of Groups: 5 </div><div class='input'>
+#&gt; 2.23222625 0.01262414 </div><div class='input'>
<span class='va'>f_2_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>m_sfo_sfo</span>,
<span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>m_dfop_sfo</span><span class='op'>)</span>,
<span class='va'>ds_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span><span class='op'>)</span>
<span class='va'>f_nlme_sfo_sfo_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_obs</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo_obs</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Nonlinear mixed-effects model fit by maximum likelihood
-#&gt; Model: value ~ (mkin::get_deg_func())(name, time, parent_0, log_k_parent_sink, log_k_parent_A1, log_k_A1_sink)
-#&gt; Data: "Not shown"
-#&gt; Log-likelihood: -472.976
-#&gt; Fixed: list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1, log_k_A1_sink ~ 1)
+</div><div class='output co'>#&gt; Kinetic nonlinear mixed-effects model fit by maximum likelihood
+#&gt;
+#&gt; Structural model:
+#&gt; d_parent/dt = - k_parent_sink * parent - k_parent_A1 * parent
+#&gt; d_A1/dt = + k_parent_A1 * parent - k_A1_sink * A1
+#&gt;
+#&gt; Data:
+#&gt; 170 observations of 2 variable(s) grouped in 5 datasets
+#&gt;
+#&gt; Log-likelihood: -472.976
+#&gt;
+#&gt; Fixed effects:
+#&gt; list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1, log_k_A1_sink ~ 1)
#&gt; parent_0 log_k_parent_sink log_k_parent_A1 log_k_A1_sink
#&gt; 87.975536 -3.669816 -4.164127 -4.645073
#&gt;
@@ -443,9 +475,7 @@ with additional elements</p>
#&gt; Formula: ~1 | name
#&gt; Parameter estimates:
#&gt; parent A1
-#&gt; 1.0000000 0.2050003
-#&gt; Number of Observations: 170
-#&gt; Number of Groups: 5 </div><div class='input'> <span class='co'># The same with DFOP-SFO does not converge, apparently the variances of</span>
+#&gt; 1.0000000 0.2050003 </div><div class='input'> <span class='co'># The same with DFOP-SFO does not converge, apparently the variances of</span>
<span class='co'># parent and A1 are too similar in this case, so that the model is</span>
<span class='co'># overparameterised</span>
<span class='co'>#f_nlme_dfop_sfo_obs &lt;- nlme(f_2_obs["DFOP-SFO", ], control = list(maxIter = 100))</span>
diff --git a/docs/dev/reference/plot.nlme.mmkin.html b/docs/dev/reference/plot.nlme.mmkin.html
index afd9d8d0..267bef05 100644
--- a/docs/dev/reference/plot.nlme.mmkin.html
+++ b/docs/dev/reference/plot.nlme.mmkin.html
@@ -215,6 +215,14 @@ predicted values?</p></td>
scaling of the y axis and defaults to "auto".</p></td>
</tr>
<tr>
+ <th>ncol.legend</th>
+ <td><p>Number of columns to use in the legend</p></td>
+ </tr>
+ <tr>
+ <th>nrow.legend</th>
+ <td><p>Number of rows to use in the legend</p></td>
+ </tr>
+ <tr>
<th>rel.height.legend</th>
<td><p>The relative height of the legend shown on top</p></td>
</tr>
@@ -259,7 +267,8 @@ corresponding model prediction lines for the different datasets.</p></td>
<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste0</a></span><span class='op'>(</span><span class='st'>"ds "</span>, <span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>)</span>
<span class='va'>dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,
A1 <span class='op'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-<span class='va'>f</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>dfop_sfo</span><span class='op'>)</span>, <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, cores <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span>
+<span class='co'># \dontrun{</span>
+<span class='va'>f</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>dfop_sfo</span><span class='op'>)</span>, <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span>, <span class='fl'>3</span><span class='op'>:</span><span class='fl'>4</span><span class='op'>]</span>, standardized <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
</div><div class='img'><img src='plot.nlme.mmkin-1.png' alt='' width='700' height='433' /></div><div class='input'>
<span class='kw'><a href='https://rdrr.io/r/base/library.html'>library</a></span><span class='op'>(</span><span class='va'><a href='https://svn.r-project.org/R-packages/trunk/nlme/'>nlme</a></span><span class='op'>)</span>
@@ -267,7 +276,8 @@ corresponding model prediction lines for the different datasets.</p></td>
<span class='co'># tolerance in order to speed up the fit for this example evaluation</span>
<span class='va'>f_nlme</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f</span>, control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>pnlsMaxIter <span class='op'>=</span> <span class='fl'>120</span>, tolerance <span class='op'>=</span> <span class='fl'>1e-3</span><span class='op'>)</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme</span><span class='op'>)</span>
-</div><div class='img'><img src='plot.nlme.mmkin-2.png' alt='' width='700' height='433' /></div></pre>
+</div><div class='img'><img src='plot.nlme.mmkin-2.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># }</span>
+</div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top">
diff --git a/docs/dev/reference/sigma_twocomp.html b/docs/dev/reference/sigma_twocomp.html
index ecea8499..8212e480 100644
--- a/docs/dev/reference/sigma_twocomp.html
+++ b/docs/dev/reference/sigma_twocomp.html
@@ -202,15 +202,8 @@ measurement error in analytical chemistry. Technometrics 37(2), 176-184.</p>
data <span class='op'>=</span> <span class='va'>d_syn</span>, na.action <span class='op'>=</span> <span class='va'>na.omit</span>,
start <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>parent_0 <span class='op'>=</span> <span class='fl'>100</span>, lrc <span class='op'>=</span> <span class='op'>-</span><span class='fl'>3</span><span class='op'>)</span><span class='op'>)</span>
<span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='fu'>findFunction</span><span class='op'>(</span><span class='st'>"varConstProp"</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>&gt;</span> <span class='fl'>0</span><span class='op'>)</span> <span class='op'>{</span>
- <span class='va'>f_gnls_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/gnls.html'>gnls</a></span><span class='op'>(</span><span class='va'>value</span> <span class='op'>~</span> <span class='fu'><a href='https://rdrr.io/r/stats/SSasymp.html'>SSasymp</a></span><span class='op'>(</span><span class='va'>time</span>, <span class='fl'>0</span>, <span class='va'>parent_0</span>, <span class='va'>lrc</span><span class='op'>)</span>,
- data <span class='op'>=</span> <span class='va'>d_syn</span>, na.action <span class='op'>=</span> <span class='va'>na.omit</span>,
- start <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>parent_0 <span class='op'>=</span> <span class='fl'>100</span>, lrc <span class='op'>=</span> <span class='op'>-</span><span class='fl'>3</span><span class='op'>)</span>,
- weights <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/varConstProp.html'>varConstProp</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>)</span>
- <span class='va'>f_gnls_tc_sf</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/gnls.html'>gnls</a></span><span class='op'>(</span><span class='va'>value</span> <span class='op'>~</span> <span class='fu'><a href='https://rdrr.io/r/stats/SSasymp.html'>SSasymp</a></span><span class='op'>(</span><span class='va'>time</span>, <span class='fl'>0</span>, <span class='va'>parent_0</span>, <span class='va'>lrc</span><span class='op'>)</span>,
- data <span class='op'>=</span> <span class='va'>d_syn</span>, na.action <span class='op'>=</span> <span class='va'>na.omit</span>,
- start <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>parent_0 <span class='op'>=</span> <span class='fl'>100</span>, lrc <span class='op'>=</span> <span class='op'>-</span><span class='fl'>3</span><span class='op'>)</span>,
- control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>sigma <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span>,
- weights <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/varConstProp.html'>varConstProp</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>)</span>
+ <span class='va'>f_gnls_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_gnls</span>, weights <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/varConstProp.html'>varConstProp</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>)</span>
+ <span class='va'>f_gnls_tc_sf</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_gnls_tc</span>, control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>sigma <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span><span class='op'>)</span>
<span class='op'>}</span>
<span class='va'>f_mkin</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='va'>d_syn</span>, error_model <span class='op'>=</span> <span class='st'>"const"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='va'>f_mkin_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='va'>d_syn</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
diff --git a/docs/dev/reference/summary.nlme.mmkin.html b/docs/dev/reference/summary.nlme.mmkin.html
new file mode 100644
index 00000000..38f53122
--- /dev/null
+++ b/docs/dev/reference/summary.nlme.mmkin.html
@@ -0,0 +1,446 @@
+<!-- Generated by pkgdown: do not edit by hand -->
+<!DOCTYPE html>
+<html lang="en">
+ <head>
+ <meta charset="utf-8">
+<meta http-equiv="X-UA-Compatible" content="IE=edge">
+<meta name="viewport" content="width=device-width, initial-scale=1.0">
+
+<title>Summary method for class "nlme.mmkin" — summary.nlme.mmkin • mkin</title>
+
+
+<!-- jquery -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
+<!-- Bootstrap -->
+
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" />
+
+<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
+
+<!-- bootstrap-toc -->
+<link rel="stylesheet" href="../bootstrap-toc.css">
+<script src="../bootstrap-toc.js"></script>
+
+<!-- Font Awesome icons -->
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" />
+
+<!-- clipboard.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script>
+
+<!-- headroom.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script>
+
+<!-- pkgdown -->
+<link href="../pkgdown.css" rel="stylesheet">
+<script src="../pkgdown.js"></script>
+
+
+
+
+<meta property="og:title" content="Summary method for class "nlme.mmkin" — summary.nlme.mmkin" />
+<meta property="og:description" content="Lists model equations, initial parameter values, optimised parameters
+for fixed effects (population), random effects (deviations from the
+population mean) and residual error model, as well as the resulting
+endpoints such as formation fractions and DT50 values. Optionally
+(default is FALSE), the data are listed in full." />
+
+
+<meta name="robots" content="noindex">
+
+<!-- mathjax -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
+
+<!--[if lt IE 9]>
+<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
+<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
+<![endif]-->
+
+
+
+ </head>
+
+ <body data-spy="scroll" data-target="#toc">
+ <div class="container template-reference-topic">
+ <header>
+ <div class="navbar navbar-default navbar-fixed-top" role="navigation">
+ <div class="container">
+ <div class="navbar-header">
+ <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
+ <span class="sr-only">Toggle navigation</span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ </button>
+ <span class="navbar-brand">
+ <a class="navbar-link" href="../index.html">mkin</a>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ </span>
+ </div>
+
+ <div id="navbar" class="navbar-collapse collapse">
+ <ul class="nav navbar-nav">
+ <li>
+ <a href="../reference/index.html">Functions and data</a>
+</li>
+<li class="dropdown">
+ <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
+ Articles
+
+ <span class="caret"></span>
+ </a>
+ <ul class="dropdown-menu" role="menu">
+ <li>
+ <a href="../articles/mkin.html">Introduction to mkin</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
+ </li>
+ <li>
+ <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
+ </li>
+ </ul>
+</li>
+<li>
+ <a href="../news/index.html">News</a>
+</li>
+ </ul>
+ <ul class="nav navbar-nav navbar-right">
+ <li>
+ <a href="https://github.com/jranke/mkin/">
+ <span class="fab fa fab fa-github fa-lg"></span>
+
+ </a>
+</li>
+ </ul>
+
+ </div><!--/.nav-collapse -->
+ </div><!--/.container -->
+</div><!--/.navbar -->
+
+
+
+ </header>
+
+<div class="row">
+ <div class="col-md-9 contents">
+ <div class="page-header">
+ <h1>Summary method for class "nlme.mmkin"</h1>
+ <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/summary.nlme.mmkin.R'><code>R/summary.nlme.mmkin.R</code></a></small>
+ <div class="hidden name"><code>summary.nlme.mmkin.Rd</code></div>
+ </div>
+
+ <div class="ref-description">
+ <p>Lists model equations, initial parameter values, optimised parameters
+for fixed effects (population), random effects (deviations from the
+population mean) and residual error model, as well as the resulting
+endpoints such as formation fractions and DT50 values. Optionally
+(default is FALSE), the data are listed in full.</p>
+ </div>
+
+ <pre class="usage"><span class='co'># S3 method for nlme.mmkin</span>
+<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span>
+ <span class='va'>object</span>,
+ data <span class='op'>=</span> <span class='cn'>FALSE</span>,
+ verbose <span class='op'>=</span> <span class='cn'>FALSE</span>,
+ distimes <span class='op'>=</span> <span class='cn'>TRUE</span>,
+ alpha <span class='op'>=</span> <span class='fl'>0.05</span>,
+ <span class='va'>...</span>
+<span class='op'>)</span>
+
+<span class='co'># S3 method for summary.nlme.mmkin</span>
+<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>x</span>, digits <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/Extremes.html'>max</a></span><span class='op'>(</span><span class='fl'>3</span>, <span class='fu'><a href='https://rdrr.io/r/base/options.html'>getOption</a></span><span class='op'>(</span><span class='st'>"digits"</span><span class='op'>)</span> <span class='op'>-</span> <span class='fl'>3</span><span class='op'>)</span>, verbose <span class='op'>=</span> <span class='va'>x</span><span class='op'>$</span><span class='va'>verbose</span>, <span class='va'>...</span><span class='op'>)</span></pre>
+
+ <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
+ <table class="ref-arguments">
+ <colgroup><col class="name" /><col class="desc" /></colgroup>
+ <tr>
+ <th>object</th>
+ <td><p>an object of class <a href='nlme.mmkin.html'>nlme.mmkin</a></p></td>
+ </tr>
+ <tr>
+ <th>data</th>
+ <td><p>logical, indicating whether the full data should be included in
+the summary.</p></td>
+ </tr>
+ <tr>
+ <th>verbose</th>
+ <td><p>Should the summary be verbose?</p></td>
+ </tr>
+ <tr>
+ <th>distimes</th>
+ <td><p>logical, indicating whether DT50 and DT90 values should be
+included.</p></td>
+ </tr>
+ <tr>
+ <th>alpha</th>
+ <td><p>error level for confidence interval estimation from the t
+distribution</p></td>
+ </tr>
+ <tr>
+ <th>...</th>
+ <td><p>optional arguments passed to methods like <code>print</code>.</p></td>
+ </tr>
+ <tr>
+ <th>x</th>
+ <td><p>an object of class summary.nlme.mmkin</p></td>
+ </tr>
+ <tr>
+ <th>digits</th>
+ <td><p>Number of digits to use for printing</p></td>
+ </tr>
+ </table>
+
+ <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
+
+ <p>The summary function returns a list based on the <a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a> object
+obtained in the fit, with at least the following additional components</p>
+<dt>nlmeversion, mkinversion, Rversion</dt><dd><p>The nlme, mkin and R versions used</p></dd>
+<dt>date.fit, date.summary</dt><dd><p>The dates where the fit and the summary were
+produced</p></dd>
+<dt>diffs</dt><dd><p>The differential equations used in the degradation model</p></dd>
+<dt>use_of_ff</dt><dd><p>Was maximum or minimum use made of formation fractions</p></dd>
+<dt>data</dt><dd><p>The data</p></dd>
+<dt>confint_trans</dt><dd><p>Transformed parameters as used in the optimisation, with confidence intervals</p></dd>
+<dt>confint_back</dt><dd><p>Backtransformed parameters, with confidence intervals if available</p></dd>
+<dt>ff</dt><dd><p>The estimated formation fractions derived from the fitted
+model.</p></dd>
+<dt>distimes</dt><dd><p>The DT50 and DT90 values for each observed variable.</p></dd>
+<dt>SFORB</dt><dd><p>If applicable, eigenvalues of SFORB components of the model.</p></dd>
+The print method is called for its side effect, i.e. printing the summary.
+
+ <h2 class="hasAnchor" id="author"><a class="anchor" href="#author"></a>Author</h2>
+
+ <p>Johannes Ranke for the mkin specific parts
+José Pinheiro and Douglas Bates for the components inherited from nlme</p>
+
+ <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
+ <pre class="examples"><div class='input'>
+<span class='co'># Generate five datasets following SFO kinetics</span>
+<span class='va'>sampling_times</span> <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>0</span>, <span class='fl'>1</span>, <span class='fl'>3</span>, <span class='fl'>7</span>, <span class='fl'>14</span>, <span class='fl'>28</span>, <span class='fl'>60</span>, <span class='fl'>90</span>, <span class='fl'>120</span><span class='op'>)</span>
+<span class='va'>dt50_sfo_in_pop</span> <span class='op'>&lt;-</span> <span class='fl'>50</span>
+<span class='va'>k_in_pop</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/Log.html'>log</a></span><span class='op'>(</span><span class='fl'>2</span><span class='op'>)</span> <span class='op'>/</span> <span class='va'>dt50_sfo_in_pop</span>
+<span class='fu'><a href='https://rdrr.io/r/base/Random.html'>set.seed</a></span><span class='op'>(</span><span class='fl'>1234</span><span class='op'>)</span>
+<span class='va'>k_in</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/Lognormal.html'>rlnorm</a></span><span class='op'>(</span><span class='fl'>5</span>, <span class='fu'><a href='https://rdrr.io/r/base/Log.html'>log</a></span><span class='op'>(</span><span class='va'>k_in_pop</span><span class='op'>)</span>, <span class='fl'>0.5</span><span class='op'>)</span>
+<span class='va'>SFO</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span>
+
+<span class='va'>pred_sfo</span> <span class='op'>&lt;-</span> <span class='kw'>function</span><span class='op'>(</span><span class='va'>k</span><span class='op'>)</span> <span class='op'>{</span>
+ <span class='fu'><a href='mkinpredict.html'>mkinpredict</a></span><span class='op'>(</span><span class='va'>SFO</span>,
+ <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>k_parent <span class='op'>=</span> <span class='va'>k</span><span class='op'>)</span>,
+ <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fl'>100</span><span class='op'>)</span>,
+ <span class='va'>sampling_times</span><span class='op'>)</span>
+<span class='op'>}</span>
+
+<span class='va'>ds_sfo_mean</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>k_in</span>, <span class='va'>pred_sfo</span><span class='op'>)</span>
+<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>ds_sfo_mean</span><span class='op'>)</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span><span class='op'>(</span><span class='st'>"ds"</span>, <span class='fl'>1</span><span class='op'>:</span><span class='fl'>5</span><span class='op'>)</span>
+
+<span class='va'>ds_sfo_syn</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>ds_sfo_mean</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='op'>{</span>
+ <span class='fu'><a href='add_err.html'>add_err</a></span><span class='op'>(</span><span class='va'>ds</span>,
+ sdfunc <span class='op'>=</span> <span class='kw'>function</span><span class='op'>(</span><span class='va'>value</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/MathFun.html'>sqrt</a></span><span class='op'>(</span><span class='fl'>1</span><span class='op'>^</span><span class='fl'>2</span> <span class='op'>+</span> <span class='va'>value</span><span class='op'>^</span><span class='fl'>2</span> <span class='op'>*</span> <span class='fl'>0.07</span><span class='op'>^</span><span class='fl'>2</span><span class='op'>)</span>,
+ n <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span><span class='op'>[[</span><span class='fl'>1</span><span class='op'>]</span><span class='op'>]</span>
+<span class='op'>}</span><span class='op'>)</span>
+
+<span class='co'># Evaluate using mmkin and nlme</span>
+<span class='kw'><a href='https://rdrr.io/r/base/library.html'>library</a></span><span class='op'>(</span><span class='va'><a href='https://svn.r-project.org/R-packages/trunk/nlme/'>nlme</a></span><span class='op'>)</span>
+<span class='va'>f_mmkin</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='va'>ds_sfo_syn</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>, cores <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='warning'>Warning: Shapiro-Wilk test for standardized residuals: p = 0.00371</span></div><div class='input'><span class='va'>f_nlme</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_mmkin</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='warning'>Warning: Iteration 3, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlme</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; nlme version used for fitting: 3.1.150.1
+#&gt; mkin version used for pre-fitting: 0.9.50.4
+#&gt; R version used for fitting: 4.0.3
+#&gt; Date of fit: Tue Oct 27 15:25:23 2020
+#&gt; Date of summary: Tue Oct 27 15:25:23 2020
+#&gt;
+#&gt; Equations:
+#&gt; d_parent/dt = - k_parent * parent
+#&gt;
+#&gt; Data:
+#&gt; 90 observations of 1 variable(s) grouped in 5 datasets
+#&gt;
+#&gt; Model predictions using solution type analytical
+#&gt;
+#&gt; Fitted in 0.581 s using 5 iterations
+#&gt;
+#&gt; Variance model: Two-component variance function
+#&gt;
+#&gt; Mean of starting values for individual parameters:
+#&gt; parent_0 log_k_parent
+#&gt; 97.849556 -4.455036
+#&gt;
+#&gt; Fixed degradation parameter values:
+#&gt; None
+#&gt;
+#&gt; Results:
+#&gt;
+#&gt; AIC BIC logLik
+#&gt; 555.792 570.7908 -271.896
+#&gt;
+#&gt; Optimised, transformed parameters with symmetric confidence intervals:
+#&gt; lower est. upper
+#&gt; parent_0 94.701336 97.763446 100.82556
+#&gt; log_k_parent -5.007574 -4.461767 -3.91596
+#&gt;
+#&gt; Correlation:
+#&gt; prnt_0
+#&gt; log_k_parent 0.024
+#&gt;
+#&gt; Backtransformed parameters with asymmetric confidence intervals:
+#&gt; lower est. upper
+#&gt; parent_0 94.701335804 97.76344625 100.82555670
+#&gt; k_parent 0.006687109 0.01154195 0.01992142
+#&gt; Random effects:
+#&gt; Formula: list(parent_0 ~ 1, log_k_parent ~ 1)
+#&gt; Level: ds
+#&gt; Structure: Diagonal
+#&gt; parent_0 log_k_parent Residual
+#&gt; StdDev: 16.65969 3.516961 5.709013
+#&gt;
+#&gt; Variance function:
+#&gt; Structure: Constant plus proportion of variance covariate
+#&gt; Formula: ~fitted(.)
+#&gt; Parameter estimates:
+#&gt; const prop
+#&gt; 1.55075176 0.05680853
+#&gt;
+#&gt; Estimated disappearance times:
+#&gt; DT50 DT90
+#&gt; parent 60.05 199.5
+#&gt;
+#&gt; Data:
+#&gt; ds name time observed predicted residual std standardized
+#&gt; ds 1 parent 0 103.6 97.42 6.17540 5.748 1.074413
+#&gt; ds 1 parent 0 95.9 97.42 -1.52460 5.748 -0.265253
+#&gt; ds 1 parent 1 95.4 96.72 -1.31719 5.709 -0.230721
+#&gt; ds 1 parent 1 95.3 96.72 -1.41719 5.709 -0.248237
+#&gt; ds 1 parent 3 91.6 95.32 -3.71774 5.633 -0.660046
+#&gt; ds 1 parent 3 94.5 95.32 -0.81774 5.633 -0.145181
+#&gt; ds 1 parent 7 88.1 92.58 -4.47930 5.483 -0.816920
+#&gt; ds 1 parent 7 89.6 92.58 -2.97930 5.483 -0.543355
+#&gt; ds 1 parent 14 90.3 87.97 2.32502 5.233 0.444318
+#&gt; ds 1 parent 14 96.0 87.97 8.02502 5.233 1.533602
+#&gt; ds 1 parent 28 80.2 79.44 0.75809 4.772 0.158862
+#&gt; ds 1 parent 28 77.9 79.44 -1.54191 4.772 -0.323118
+#&gt; ds 1 parent 60 59.3 62.92 -3.61742 3.896 -0.928458
+#&gt; ds 1 parent 60 59.6 62.92 -3.31742 3.896 -0.851459
+#&gt; ds 1 parent 90 59.4 50.56 8.83825 3.264 2.707613
+#&gt; ds 1 parent 90 51.0 50.56 0.43825 3.264 0.134260
+#&gt; ds 1 parent 120 38.8 40.63 -1.83247 2.781 -0.658968
+#&gt; ds 1 parent 120 38.9 40.63 -1.73247 2.781 -0.623007
+#&gt; ds 2 parent 0 103.2 97.17 6.02995 5.734 1.051655
+#&gt; ds 2 parent 0 95.1 97.17 -2.07005 5.734 -0.361027
+#&gt; ds 2 parent 1 88.3 95.59 -7.28901 5.647 -1.290694
+#&gt; ds 2 parent 1 102.4 95.59 6.81099 5.647 1.206048
+#&gt; ds 2 parent 3 88.4 92.50 -4.10371 5.479 -0.748984
+#&gt; ds 2 parent 3 95.2 92.50 2.69629 5.479 0.492110
+#&gt; ds 2 parent 7 83.5 86.63 -3.12863 5.160 -0.606349
+#&gt; ds 2 parent 7 96.4 86.63 9.77137 5.160 1.893751
+#&gt; ds 2 parent 14 77.3 77.23 0.06920 4.653 0.014871
+#&gt; ds 2 parent 14 76.0 77.23 -1.23080 4.653 -0.264497
+#&gt; ds 2 parent 28 61.7 61.38 0.31692 3.816 0.083043
+#&gt; ds 2 parent 28 56.5 61.38 -4.88308 3.816 -1.279513
+#&gt; ds 2 parent 60 35.1 36.31 -1.21343 2.581 -0.470178
+#&gt; ds 2 parent 60 32.2 36.31 -4.11343 2.581 -1.593868
+#&gt; ds 2 parent 90 21.2 22.20 -0.99906 1.999 -0.499832
+#&gt; ds 2 parent 90 23.3 22.20 1.10094 1.999 0.550800
+#&gt; ds 2 parent 120 14.1 13.57 0.52931 1.732 0.305638
+#&gt; ds 2 parent 120 16.9 13.57 3.32931 1.732 1.922443
+#&gt; ds 3 parent 0 92.4 94.12 -1.71979 5.567 -0.308917
+#&gt; ds 3 parent 0 94.0 94.12 -0.11979 5.567 -0.021517
+#&gt; ds 3 parent 1 95.7 91.97 3.72634 5.450 0.683712
+#&gt; ds 3 parent 1 90.8 91.97 -1.17366 5.450 -0.215343
+#&gt; ds 3 parent 3 86.7 87.83 -1.12709 5.225 -0.215720
+#&gt; ds 3 parent 3 85.8 87.83 -2.02709 5.225 -0.387976
+#&gt; ds 3 parent 7 77.1 80.09 -2.98635 4.807 -0.621300
+#&gt; ds 3 parent 7 81.5 80.09 1.41365 4.807 0.294104
+#&gt; ds 3 parent 14 69.1 68.15 0.95467 4.170 0.228922
+#&gt; ds 3 parent 14 62.4 68.15 -5.74533 4.170 -1.377682
+#&gt; ds 3 parent 28 49.1 49.34 -0.23911 3.203 -0.074644
+#&gt; ds 3 parent 28 47.2 49.34 -2.13911 3.203 -0.667787
+#&gt; ds 3 parent 60 21.9 23.58 -1.68477 2.049 -0.822090
+#&gt; ds 3 parent 60 23.6 23.58 0.01523 2.049 0.007431
+#&gt; ds 3 parent 90 12.4 11.81 0.59388 1.690 0.351500
+#&gt; ds 3 parent 90 13.8 11.81 1.99388 1.690 1.180112
+#&gt; ds 3 parent 120 4.9 5.91 -1.00993 1.587 -0.636506
+#&gt; ds 3 parent 120 7.5 5.91 1.59007 1.587 1.002137
+#&gt; ds 4 parent 0 91.8 101.72 -9.92097 5.983 -1.658171
+#&gt; ds 4 parent 0 104.6 101.72 2.87903 5.983 0.481194
+#&gt; ds 4 parent 1 117.5 101.27 16.23017 5.958 2.723944
+#&gt; ds 4 parent 1 99.3 101.27 -1.96983 5.958 -0.330602
+#&gt; ds 4 parent 3 94.0 100.37 -6.37355 5.909 -1.078583
+#&gt; ds 4 parent 3 98.7 100.37 -1.67355 5.909 -0.283212
+#&gt; ds 4 parent 7 109.2 98.60 10.59529 5.812 1.822915
+#&gt; ds 4 parent 7 89.2 98.60 -9.40471 5.812 -1.618075
+#&gt; ds 4 parent 14 103.3 95.58 7.71609 5.647 1.366386
+#&gt; ds 4 parent 14 103.0 95.58 7.41609 5.647 1.313261
+#&gt; ds 4 parent 28 90.8 89.82 0.98290 5.333 0.184310
+#&gt; ds 4 parent 28 88.7 89.82 -1.11710 5.333 -0.209477
+#&gt; ds 4 parent 60 74.8 77.91 -3.10870 4.690 -0.662879
+#&gt; ds 4 parent 60 75.3 77.91 -2.60870 4.690 -0.556262
+#&gt; ds 4 parent 90 71.1 68.18 2.91738 4.172 0.699234
+#&gt; ds 4 parent 90 78.0 68.18 9.81738 4.172 2.353017
+#&gt; ds 4 parent 120 59.1 59.67 -0.57073 3.728 -0.153107
+#&gt; ds 4 parent 120 53.8 59.67 -5.87073 3.728 -1.574902
+#&gt; ds 5 parent 0 94.9 98.38 -3.48183 5.800 -0.600307
+#&gt; ds 5 parent 0 101.8 98.38 3.41817 5.800 0.589332
+#&gt; ds 5 parent 1 96.1 96.75 -0.65141 5.711 -0.114065
+#&gt; ds 5 parent 1 97.1 96.75 0.34859 5.711 0.061040
+#&gt; ds 5 parent 3 93.8 93.57 0.22881 5.537 0.041323
+#&gt; ds 5 parent 3 85.8 93.57 -7.77119 5.537 -1.403444
+#&gt; ds 5 parent 7 87.6 87.52 0.07909 5.208 0.015186
+#&gt; ds 5 parent 7 94.0 87.52 6.47909 5.208 1.244026
+#&gt; ds 5 parent 14 82.5 77.86 4.64101 4.687 0.990182
+#&gt; ds 5 parent 14 81.7 77.86 3.84101 4.687 0.819498
+#&gt; ds 5 parent 28 60.0 61.62 -1.61729 3.829 -0.422433
+#&gt; ds 5 parent 28 61.0 61.62 -0.61729 3.829 -0.161236
+#&gt; ds 5 parent 60 32.5 36.10 -3.59608 2.571 -1.398750
+#&gt; ds 5 parent 60 35.5 36.10 -0.59608 2.571 -0.231854
+#&gt; ds 5 parent 90 21.8 21.86 -0.06415 1.987 -0.032287
+#&gt; ds 5 parent 90 24.4 21.86 2.53585 1.987 1.276317
+#&gt; ds 5 parent 120 14.1 13.24 0.85643 1.724 0.496877
+#&gt; ds 5 parent 120 12.1 13.24 -1.14357 1.724 -0.663473</div><div class='input'>
+</div></pre>
+ </div>
+ <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
+ <nav id="toc" data-toggle="toc" class="sticky-top">
+ <h2 data-toc-skip>Contents</h2>
+ </nav>
+ </div>
+</div>
+
+
+ <footer>
+ <div class="copyright">
+ <p>Developed by Johannes Ranke.</p>
+</div>
+
+<div class="pkgdown">
+ <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
+</div>
+
+ </footer>
+ </div>
+
+
+
+
+ </body>
+</html>
+
+
diff --git a/docs/dev/sitemap.xml b/docs/dev/sitemap.xml
index 8c4d8cbe..67e100de 100644
--- a/docs/dev/sitemap.xml
+++ b/docs/dev/sitemap.xml
@@ -187,6 +187,9 @@
<loc>https://pkgdown.jrwb.de/mkin/reference/summary.mkinfit.html</loc>
</url>
<url>
+ <loc>https://pkgdown.jrwb.de/mkin/reference/summary.nlme.mmkin.html</loc>
+ </url>
+ <url>
<loc>https://pkgdown.jrwb.de/mkin/reference/synthetic_data_for_UBA_2014.html</loc>
</url>
<url>
diff --git a/man/nlme.mmkin.Rd b/man/nlme.mmkin.Rd
index 041b939a..bf45c6e5 100644
--- a/man/nlme.mmkin.Rd
+++ b/man/nlme.mmkin.Rd
@@ -74,6 +74,11 @@ This functions sets up a nonlinear mixed effects model for an mmkin row
object. An mmkin row object is essentially a list of mkinfit objects that
have been obtained by fitting the same model to a list of datasets.
}
+\note{
+As the object inherits from \link[nlme:nlme]{nlme::nlme}, there is a wealth of
+methods that will automatically work on 'nlme.mmkin' objects, such as
+\code{\link[nlme:intervals]{nlme::intervals()}}, \code{\link[nlme:anova.lme]{nlme::anova.lme()}} and \code{\link[nlme:coef.lme]{nlme::coef.lme()}}.
+}
\examples{
ds <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) subset(x$data[c("name", "time", "value")], name == "parent"))
diff --git a/man/plot.nlme.mmkin.Rd b/man/plot.nlme.mmkin.Rd
index 6944d4b1..5f0f0ef1 100644
--- a/man/plot.nlme.mmkin.Rd
+++ b/man/plot.nlme.mmkin.Rd
@@ -50,6 +50,10 @@ predicted values?}
\item{maxabs}{Maximum absolute value of the residuals. This is used for the
scaling of the y axis and defaults to "auto".}
+\item{ncol.legend}{Number of columns to use in the legend}
+
+\item{nrow.legend}{Number of rows to use in the legend}
+
\item{rel.height.legend}{The relative height of the legend shown on top}
\item{rel.height.bottom}{The relative height of the bottom plot row}
@@ -78,7 +82,8 @@ ds <- lapply(experimental_data_for_UBA_2019[6:10],
names(ds) <- paste0("ds ", 6:10)
dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
A1 = mkinsub("SFO"), quiet = TRUE)
-f <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, cores = 1)
+\dontrun{
+f <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE)
plot(f[, 3:4], standardized = TRUE)
library(nlme)
@@ -87,6 +92,7 @@ library(nlme)
f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3))
plot(f_nlme)
}
+}
\author{
Johannes Ranke
}
diff --git a/man/sigma_twocomp.Rd b/man/sigma_twocomp.Rd
index ed79d493..d205a2f7 100644
--- a/man/sigma_twocomp.Rd
+++ b/man/sigma_twocomp.Rd
@@ -44,15 +44,8 @@ f_gnls <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
data = d_syn, na.action = na.omit,
start = list(parent_0 = 100, lrc = -3))
if (length(findFunction("varConstProp")) > 0) {
- f_gnls_tc <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
- data = d_syn, na.action = na.omit,
- start = list(parent_0 = 100, lrc = -3),
- weights = varConstProp())
- f_gnls_tc_sf <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),
- data = d_syn, na.action = na.omit,
- start = list(parent_0 = 100, lrc = -3),
- control = list(sigma = 1),
- weights = varConstProp())
+ f_gnls_tc <- update(f_gnls, weights = varConstProp())
+ f_gnls_tc_sf <- update(f_gnls_tc, control = list(sigma = 1))
}
f_mkin <- mkinfit("SFO", d_syn, error_model = "const", quiet = TRUE)
f_mkin_tc <- mkinfit("SFO", d_syn, error_model = "tc", quiet = TRUE)
diff --git a/man/summary.nlme.mmkin.Rd b/man/summary.nlme.mmkin.Rd
new file mode 100644
index 00000000..ea625dd7
--- /dev/null
+++ b/man/summary.nlme.mmkin.Rd
@@ -0,0 +1,99 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/summary.nlme.mmkin.R
+\name{summary.nlme.mmkin}
+\alias{summary.nlme.mmkin}
+\alias{print.summary.nlme.mmkin}
+\title{Summary method for class "nlme.mmkin"}
+\usage{
+\method{summary}{nlme.mmkin}(
+ object,
+ data = FALSE,
+ verbose = FALSE,
+ distimes = TRUE,
+ alpha = 0.05,
+ ...
+)
+
+\method{print}{summary.nlme.mmkin}(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
+}
+\arguments{
+\item{object}{an object of class \link{nlme.mmkin}}
+
+\item{data}{logical, indicating whether the full data should be included in
+the summary.}
+
+\item{verbose}{Should the summary be verbose?}
+
+\item{distimes}{logical, indicating whether DT50 and DT90 values should be
+included.}
+
+\item{alpha}{error level for confidence interval estimation from the t
+distribution}
+
+\item{\dots}{optional arguments passed to methods like \code{print}.}
+
+\item{x}{an object of class \link{summary.nlme.mmkin}}
+
+\item{digits}{Number of digits to use for printing}
+}
+\value{
+The summary function returns a list based on the \link{nlme} object
+obtained in the fit, with at least the following additional components
+\item{nlmeversion, mkinversion, Rversion}{The nlme, mkin and R versions used}
+\item{date.fit, date.summary}{The dates where the fit and the summary were
+produced}
+\item{diffs}{The differential equations used in the degradation model}
+\item{use_of_ff}{Was maximum or minimum use made of formation fractions}
+\item{data}{The data}
+\item{confint_trans}{Transformed parameters as used in the optimisation, with confidence intervals}
+\item{confint_back}{Backtransformed parameters, with confidence intervals if available}
+\item{ff}{The estimated formation fractions derived from the fitted
+model.}
+\item{distimes}{The DT50 and DT90 values for each observed variable.}
+\item{SFORB}{If applicable, eigenvalues of SFORB components of the model.}
+The print method is called for its side effect, i.e. printing the summary.
+}
+\description{
+Lists model equations, initial parameter values, optimised parameters
+for fixed effects (population), random effects (deviations from the
+population mean) and residual error model, as well as the resulting
+endpoints such as formation fractions and DT50 values. Optionally
+(default is FALSE), the data are listed in full.
+}
+\examples{
+
+# Generate five datasets following SFO kinetics
+sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+dt50_sfo_in_pop <- 50
+k_in_pop <- log(2) / dt50_sfo_in_pop
+set.seed(1234)
+k_in <- rlnorm(5, log(k_in_pop), 0.5)
+SFO <- mkinmod(parent = mkinsub("SFO"))
+
+pred_sfo <- function(k) {
+ mkinpredict(SFO,
+ c(k_parent = k),
+ c(parent = 100),
+ sampling_times)
+}
+
+ds_sfo_mean <- lapply(k_in, pred_sfo)
+names(ds_sfo_mean) <- paste("ds", 1:5)
+
+ds_sfo_syn <- lapply(ds_sfo_mean, function(ds) {
+ add_err(ds,
+ sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),
+ n = 1)[[1]]
+})
+
+# Evaluate using mmkin and nlme
+library(nlme)
+f_mmkin <- mmkin("SFO", ds_sfo_syn, quiet = TRUE, error_model = "tc", cores = 1)
+f_nlme <- nlme(f_mmkin)
+summary(f_nlme, data = TRUE)
+
+}
+\author{
+Johannes Ranke for the mkin specific parts
+José Pinheiro and Douglas Bates for the components inherited from nlme
+}
diff --git a/test.log b/test.log
index 6bc6f08d..10c5645e 100644
--- a/test.log
+++ b/test.log
@@ -5,19 +5,19 @@ Testing mkin
✔ | 2 | Export dataset for reading into CAKE
✔ | 14 | Results for FOCUS D established in expertise for UBA (Ranke 2014) [0.9 s]
✔ | 4 | Calculation of FOCUS chi2 error levels [0.4 s]
-✔ | 7 | Fitting the SFORB model [3.3 s]
-✔ | 5 | Analytical solutions for coupled models [3.1 s]
+✔ | 7 | Fitting the SFORB model [3.4 s]
+✔ | 5 | Analytical solutions for coupled models [3.2 s]
✔ | 5 | Calculation of Akaike weights
✔ | 10 | Confidence intervals and p-values [1.0 s]
-✔ | 14 | Error model fitting [3.6 s]
-✔ | 4 | Test fitting the decline of metabolites from their maximum [0.2 s]
+✔ | 14 | Error model fitting [4.2 s]
+✔ | 4 | Test fitting the decline of metabolites from their maximum [0.3 s]
✔ | 1 | Fitting the logistic model [0.2 s]
✔ | 1 | Test dataset class mkinds used in gmkin
✔ | 1 | mkinfit features [0.2 s]
✔ | 12 | Special cases of mkinfit calls [0.6 s]
✔ | 8 | mkinmod model generation and printing [0.2 s]
✔ | 3 | Model predictions with mkinpredict [0.4 s]
-✔ | 14 2 | Evaluations according to 2015 NAFTA guidance [1.0 s]
+✔ | 14 2 | Evaluations according to 2015 NAFTA guidance [1.2 s]
────────────────────────────────────────────────────────────────────────────────
test_nafta.R:25: skip: Test data from Appendix B are correctly evaluated
Reason: getRversion() < "4.1.0" is TRUE
@@ -25,8 +25,8 @@ Reason: getRversion() < "4.1.0" is TRUE
test_nafta.R:53: skip: Test data from Appendix D are correctly evaluated
Reason: getRversion() < "4.1.0" is TRUE
────────────────────────────────────────────────────────────────────────────────
-✔ | 9 | Nonlinear mixed-effects models [7.7 s]
-✔ | 0 1 | Plotting [0.6 s]
+✔ | 9 | Nonlinear mixed-effects models [7.8 s]
+✔ | 0 1 | Plotting [0.7 s]
────────────────────────────────────────────────────────────────────────────────
test_plot.R:24: skip: Plotting mkinfit and mmkin objects is reproducible
Reason: getRversion() < "4.1.0" is TRUE
@@ -35,12 +35,12 @@ Reason: getRversion() < "4.1.0" is TRUE
✔ | 2 | Complex test case from Schaefer et al. (2007) Piacenza paper [1.5 s]
✔ | 4 | Summary [0.1 s]
✔ | 1 | Summaries of old mkinfit objects
-✔ | 4 | Results for synthetic data established in expertise for UBA (Ranke 2014) [2.1 s]
-✔ | 9 | Hypothesis tests [6.6 s]
+✔ | 4 | Results for synthetic data established in expertise for UBA (Ranke 2014) [2.2 s]
+✔ | 9 | Hypothesis tests [6.7 s]
✔ | 4 | Calculation of maximum time weighted average concentrations (TWAs) [2.5 s]
══ Results ═════════════════════════════════════════════════════════════════════
-Duration: 36.5 s
+Duration: 37.8 s
OK: 146
Failed: 0
diff --git a/tests/testthat/FOCUS_2006_D.csf b/tests/testthat/FOCUS_2006_D.csf
index 115d28f4..b8828b57 100644
--- a/tests/testthat/FOCUS_2006_D.csf
+++ b/tests/testthat/FOCUS_2006_D.csf
@@ -5,7 +5,7 @@ Description:
MeasurementUnits: % AR
TimeUnits: days
Comments: Created using mkin::CAKE_export
-Date: 2020-10-08
+Date: 2020-10-27
Optimiser: IRLS
[Data]

Contact - Imprint