aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2014-10-11 11:18:01 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2014-10-11 11:18:01 +0200
commit587bdfc102dbaa2c882fb0c008d28a3aea1d74d8 (patch)
tree63dd3dcf583fbe94662e013cdd5f1519330f9921
parent8ec5b635e104b94a1a5bb1614e97fdc2ce6e6f7b (diff)
Updated vignettes by building static documentation
-rw-r--r--vignettes/FOCUS_L.html208
-rw-r--r--vignettes/FOCUS_Z.pdfbin220177 -> 213325 bytes
-rw-r--r--vignettes/mkin.pdfbin160326 -> 160333 bytes
3 files changed, 111 insertions, 97 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 2dd186de..c0430358 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -5,6 +5,18 @@
<title>Example evaluation of FOCUS Laboratory Data L1 to L3</title>
+<script type="text/javascript">
+window.onload = function() {
+ var imgs = document.getElementsByTagName('img'), i, img;
+ for (i = 0; i < imgs.length; i++) {
+ img = imgs[i];
+ // center an image if it is the only element of its parent
+ if (img.parentElement.childElementCount === 1)
+ img.parentElement.style.textAlign = 'center';
+ }
+};
+</script>
+
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
@@ -13,19 +25,21 @@
}
pre .literal {
- color: rgb(88, 72, 246)
+ color: #990073
}
pre .number {
- color: rgb(0, 0, 205);
+ color: #099;
}
pre .comment {
- color: rgb(76, 136, 107);
+ color: #998;
+ font-style: italic
}
pre .keyword {
- color: rgb(0, 0, 255);
+ color: #900;
+ font-weight: bold
}
pre .identifier {
@@ -33,7 +47,7 @@
}
pre .string {
- color: rgb(3, 106, 7);
+ color: #d14;
}
</style>
@@ -43,64 +57,71 @@ var hljs=new function(){function m(p){return p.replace(/&/gm,"&amp;").replace(/<
hljs.initHighlightingOnLoad();
</script>
-<!-- MathJax scripts -->
-<script type="text/javascript" src="https://c328740.ssl.cf1.rackcdn.com/mathjax/2.0-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
-</script>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
- font-size: 12px;
- margin: 8px;
+ font-size: 13px;
+}
+
+body {
+ max-width: 800px;
+ margin: auto;
+ padding: 1em;
+ line-height: 20px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
-h1 {
- font-size:2.2em;
+h1 {
+ font-size:2.2em;
}
-h2 {
- font-size:1.8em;
+h2 {
+ font-size:1.8em;
}
-h3 {
- font-size:1.4em;
+h3 {
+ font-size:1.4em;
}
-h4 {
- font-size:1.0em;
+h4 {
+ font-size:1.0em;
}
-h5 {
- font-size:0.9em;
+h5 {
+ font-size:0.9em;
}
-h6 {
- font-size:0.8em;
+h6 {
+ font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
-pre {
- margin-top: 0;
- max-width: 95%;
- border: 1px solid #ccc;
- white-space: pre-wrap;
+pre, img {
+ max-width: 100%;
+}
+pre {
+ overflow-x: auto;
}
-
pre code {
display: block; padding: 0.5em;
}
-code.r, code.cpp {
- background-color: #F8F8F8;
+code {
+ font-size: 92%;
+ border: 1px solid #ccc;
+}
+
+code[class] {
+ background-color: #F8F8F8;
}
table, td, th {
@@ -123,54 +144,54 @@ hr {
}
@media print {
- * {
- background: transparent !important;
- color: black !important;
- filter:none !important;
- -ms-filter: none !important;
+ * {
+ background: transparent !important;
+ color: black !important;
+ filter:none !important;
+ -ms-filter: none !important;
}
- body {
- font-size:12pt;
- max-width:100%;
+ body {
+ font-size:12pt;
+ max-width:100%;
}
-
- a, a:visited {
- text-decoration: underline;
+
+ a, a:visited {
+ text-decoration: underline;
}
- hr {
+ hr {
visibility: hidden;
page-break-before: always;
}
- pre, blockquote {
- padding-right: 1em;
- page-break-inside: avoid;
+ pre, blockquote {
+ padding-right: 1em;
+ page-break-inside: avoid;
}
- tr, img {
- page-break-inside: avoid;
+ tr, img {
+ page-break-inside: avoid;
}
- img {
- max-width: 100% !important;
+ img {
+ max-width: 100% !important;
}
- @page :left {
- margin: 15mm 20mm 15mm 10mm;
+ @page :left {
+ margin: 15mm 20mm 15mm 10mm;
}
-
- @page :right {
- margin: 15mm 10mm 15mm 20mm;
+
+ @page :right {
+ margin: 15mm 10mm 15mm 20mm;
}
- p, h2, h3 {
- orphans: 3; widows: 3;
+ p, h2, h3 {
+ orphans: 3; widows: 3;
}
- h2, h3 {
- page-break-after: avoid;
+ h2, h3 {
+ page-break-after: avoid;
}
}
</style>
@@ -193,13 +214,7 @@ hr {
report, p. 284:</p>
<pre><code class="r">library(&quot;mkin&quot;)
-</code></pre>
-
-<pre><code>## Loading required package: minpack.lm
-## Loading required package: rootSolve
-</code></pre>
-
-<pre><code class="r">FOCUS_2006_L1 = data.frame(
+FOCUS_2006_L1 = data.frame(
t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2),
parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6,
72.0, 71.9, 50.3, 59.4, 47.0, 45.1,
@@ -223,8 +238,8 @@ summary(m.L1.SFO)
<pre><code>## mkin version: 0.9.33
## R version: 3.1.1
-## Date of fit: Mon Aug 25 10:34:14 2014
-## Date of summary: Mon Aug 25 10:34:14 2014
+## Date of fit: Sat Oct 11 11:06:43 2014
+## Date of summary: Sat Oct 11 11:06:43 2014
##
## Equations:
## d_parent = - k_parent_sink * parent
@@ -308,9 +323,8 @@ summary(m.L1.SFO)
<pre><code class="r">plot(m.L1.SFO)
</code></pre>
-<p><img src="" alt="plot of chunk unnamed-chunk-4"/> </p>
-
-<p>The residual plot can be easily obtained by</p>
+<p><img src="" alt="plot of chunk unnamed-chunk-4"/>
+The residual plot can be easily obtained by</p>
<pre><code class="r">mkinresplot(m.L1.SFO, ylab = &quot;Observed&quot;, xlab = &quot;Time&quot;)
</code></pre>
@@ -326,15 +340,15 @@ summary(m.L1.FOMC, data = FALSE)
<pre><code>## mkin version: 0.9.33
## R version: 3.1.1
-## Date of fit: Mon Aug 25 10:34:17 2014
-## Date of summary: Mon Aug 25 10:34:17 2014
+## Date of fit: Sat Oct 11 11:06:44 2014
+## Date of summary: Sat Oct 11 11:06:44 2014
##
## Equations:
## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 53 model solutions performed in 0.3 s
+## Fitted with method Marq using 53 model solutions performed in 0.314 s
##
## Weighting: none
##
@@ -420,15 +434,15 @@ summary(m.L2.SFO)
<pre><code>## mkin version: 0.9.33
## R version: 3.1.1
-## Date of fit: Mon Aug 25 10:34:17 2014
-## Date of summary: Mon Aug 25 10:34:17 2014
+## Date of fit: Sat Oct 11 11:06:44 2014
+## Date of summary: Sat Oct 11 11:06:44 2014
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 29 model solutions performed in 0.184 s
+## Fitted with method Marq using 29 model solutions performed in 0.173 s
##
## Weighting: none
##
@@ -530,15 +544,15 @@ mkinresplot(m.L2.FOMC)
<pre><code>## mkin version: 0.9.33
## R version: 3.1.1
-## Date of fit: Mon Aug 25 10:34:17 2014
-## Date of summary: Mon Aug 25 10:34:17 2014
+## Date of fit: Sat Oct 11 11:06:46 2014
+## Date of summary: Sat Oct 11 11:06:47 2014
##
## Equations:
## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 35 model solutions performed in 0.2 s
+## Fitted with method Marq using 35 model solutions performed in 0.206 s
##
## Weighting: none
##
@@ -616,8 +630,8 @@ plot(m.L2.DFOP)
<pre><code>## mkin version: 0.9.33
## R version: 3.1.1
-## Date of fit: Mon Aug 25 10:34:18 2014
-## Date of summary: Mon Aug 25 10:34:18 2014
+## Date of fit: Sat Oct 11 11:06:47 2014
+## Date of summary: Sat Oct 11 11:06:47 2014
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -626,7 +640,7 @@ plot(m.L2.DFOP)
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 43 model solutions performed in 0.26 s
+## Fitted with method Marq using 43 model solutions performed in 0.265 s
##
## Weighting: none
##
@@ -705,15 +719,15 @@ plot(m.L3.SFO)
<pre><code>## mkin version: 0.9.33
## R version: 3.1.1
-## Date of fit: Mon Aug 25 10:34:18 2014
-## Date of summary: Mon Aug 25 10:34:18 2014
+## Date of fit: Sat Oct 11 11:06:48 2014
+## Date of summary: Sat Oct 11 11:06:48 2014
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 44 model solutions performed in 0.252 s
+## Fitted with method Marq using 44 model solutions performed in 0.261 s
##
## Weighting: none
##
@@ -791,15 +805,15 @@ plot(m.L3.FOMC)
<pre><code>## mkin version: 0.9.33
## R version: 3.1.1
-## Date of fit: Mon Aug 25 10:34:19 2014
-## Date of summary: Mon Aug 25 10:34:19 2014
+## Date of fit: Sat Oct 11 11:06:48 2014
+## Date of summary: Sat Oct 11 11:06:48 2014
##
## Equations:
## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 26 model solutions performed in 0.148 s
+## Fitted with method Marq using 26 model solutions performed in 0.159 s
##
## Weighting: none
##
@@ -864,8 +878,8 @@ plot(m.L3.DFOP)
<pre><code>## mkin version: 0.9.33
## R version: 3.1.1
-## Date of fit: Mon Aug 25 10:34:19 2014
-## Date of summary: Mon Aug 25 10:34:19 2014
+## Date of fit: Sat Oct 11 11:06:50 2014
+## Date of summary: Sat Oct 11 11:06:50 2014
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -874,7 +888,7 @@ plot(m.L3.DFOP)
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 37 model solutions performed in 0.236 s
+## Fitted with method Marq using 37 model solutions performed in 0.225 s
##
## Weighting: none
##
@@ -962,15 +976,15 @@ plot(m.L4.SFO)
<pre><code>## mkin version: 0.9.33
## R version: 3.1.1
-## Date of fit: Mon Aug 25 10:34:19 2014
-## Date of summary: Mon Aug 25 10:34:19 2014
+## Date of fit: Sat Oct 11 11:06:51 2014
+## Date of summary: Sat Oct 11 11:06:51 2014
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 20 model solutions performed in 0.123 s
+## Fitted with method Marq using 20 model solutions performed in 0.119 s
##
## Weighting: none
##
@@ -1037,15 +1051,15 @@ plot(m.L4.FOMC)
<pre><code>## mkin version: 0.9.33
## R version: 3.1.1
-## Date of fit: Mon Aug 25 10:34:20 2014
-## Date of summary: Mon Aug 25 10:34:20 2014
+## Date of fit: Sat Oct 11 11:06:51 2014
+## Date of summary: Sat Oct 11 11:06:51 2014
##
## Equations:
## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Marq using 48 model solutions performed in 0.281 s
+## Fitted with method Marq using 48 model solutions performed in 0.283 s
##
## Weighting: none
##
diff --git a/vignettes/FOCUS_Z.pdf b/vignettes/FOCUS_Z.pdf
index ca6d2506..426aa0df 100644
--- a/vignettes/FOCUS_Z.pdf
+++ b/vignettes/FOCUS_Z.pdf
Binary files differ
diff --git a/vignettes/mkin.pdf b/vignettes/mkin.pdf
index 0cc413a1..83182e65 100644
--- a/vignettes/mkin.pdf
+++ b/vignettes/mkin.pdf
Binary files differ

Contact - Imprint