diff options
| author | Johannes Ranke <jranke@uni-bremen.de> | 2019-09-19 12:43:04 +0200 | 
|---|---|---|
| committer | Johannes Ranke <jranke@uni-bremen.de> | 2019-09-19 12:43:04 +0200 | 
| commit | a7beb73cdfeed34525266d76f424375e1d069a48 (patch) | |
| tree | 05539773752db6ee94ccc28dc3521c3916312e41 | |
| parent | 90ff0d8e5932799b1c704555663a65944b7c4091 (diff) | |
Static documentation rebuilt by pkgdown
Use lazy = TRUE in the pd target for generating pkgdown documentation
| -rw-r--r-- | GNUmakefile | 2 | ||||
| -rw-r--r-- | docs/articles/FOCUS_D.html | 8 | ||||
| -rw-r--r-- | docs/articles/FOCUS_L.html | 42 | ||||
| -rw-r--r-- | docs/articles/mkin.html | 2 | ||||
| -rw-r--r-- | docs/articles/twa.html | 2 | ||||
| -rw-r--r-- | docs/articles/web_only/FOCUS_Z.html | 2 | ||||
| -rw-r--r-- | docs/articles/web_only/NAFTA_examples.html | 2 | ||||
| -rw-r--r-- | docs/articles/web_only/benchmarks.html | 24 | ||||
| -rw-r--r-- | docs/articles/web_only/compiled_models.html | 12 | ||||
| -rw-r--r-- | docs/reference/index.html | 2 | ||||
| -rw-r--r-- | docs/reference/mkinfit.html | 28 | ||||
| -rw-r--r-- | docs/reference/mkinmod.html | 2 | ||||
| -rw-r--r-- | docs/reference/mkinpredict.html | 6 | ||||
| -rw-r--r-- | docs/reference/mmkin.html | 4 | ||||
| -rw-r--r-- | docs/reference/summary.mkinfit.html | 6 | ||||
| -rw-r--r-- | docs/reference/synthetic_data_for_UBA_2014-1.png | bin | 0 -> 62975 bytes | |||
| -rw-r--r-- | docs/reference/synthetic_data_for_UBA_2014.html | 462 | ||||
| -rw-r--r-- | docs/sitemap.xml | 2 | ||||
| -rw-r--r-- | man/synthetic_data_for_UBA_2014.Rd | 292 | ||||
| -rw-r--r-- | vignettes/mkin_benchmarks.rda | bin | 880 -> 875 bytes | 
20 files changed, 681 insertions, 219 deletions
| diff --git a/GNUmakefile b/GNUmakefile index 816cf1fb..0084267a 100644 --- a/GNUmakefile +++ b/GNUmakefile @@ -87,7 +87,7 @@ vignettes/web_only/%.html: vignettes/references.bib vignettes/web_only/%.Rmd  articles: vignettes/web_only/FOCUS_Z.html vignettes/web_only/compiled_models.html  pd: -	"$(RBIN)/Rscript" -e "pkgdown::build_site(run_dont_run = TRUE)" +	"$(RBIN)/Rscript" -e "pkgdown::build_site(run_dont_run = TRUE, lazy = TRUE)"  	git add -A  	git commit -m 'Static documentation rebuilt by pkgdown' -e diff --git a/docs/articles/FOCUS_D.html b/docs/articles/FOCUS_D.html index 53164ffd..f8c51e2d 100644 --- a/docs/articles/FOCUS_D.html +++ b/docs/articles/FOCUS_D.html @@ -90,7 +90,7 @@        <h1>Example evaluation of FOCUS Example Dataset D</h1>                          <h4 class="author">Johannes Ranke</h4> -            <h4 class="date">2019-09-18</h4> +            <h4 class="date">2019-09-19</h4>        <div class="hidden name"><code>FOCUS_D.Rmd</code></div> @@ -170,8 +170,8 @@  <div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb11-1" title="1"><span class="kw"><a href="https://rdrr.io/r/base/summary.html">summary</a></span>(fit)</a></code></pre></div>  <pre><code>## mkin version used for fitting:    0.9.49.6   ## R version used for fitting:       3.6.1  -## Date of fit:     Wed Sep 18 18:24:07 2019  -## Date of summary: Wed Sep 18 18:24:08 2019  +## Date of fit:     Thu Sep 19 09:52:55 2019  +## Date of summary: Thu Sep 19 09:52:56 2019   ##   ## Equations:  ## d_parent/dt = - k_parent_sink * parent - k_parent_m1 * parent @@ -179,7 +179,7 @@  ##   ## Model predictions using solution type deSolve   ##  -## Fitted using 389 model solutions performed in 1.014 s +## Fitted using 389 model solutions performed in 1.001 s  ##   ## Error model: Constant variance   ##  diff --git a/docs/articles/FOCUS_L.html b/docs/articles/FOCUS_L.html index 50c83db6..7b35beeb 100644 --- a/docs/articles/FOCUS_L.html +++ b/docs/articles/FOCUS_L.html @@ -90,7 +90,7 @@        <h1>Example evaluation of FOCUS Laboratory Data L1 to L3</h1>                          <h4 class="author">Johannes Ranke</h4> -            <h4 class="date">2019-09-18</h4> +            <h4 class="date">2019-09-19</h4>        <div class="hidden name"><code>FOCUS_L.Rmd</code></div> @@ -116,8 +116,8 @@  <a class="sourceLine" id="cb2-2" title="2"><span class="kw"><a href="https://rdrr.io/r/base/summary.html">summary</a></span>(m.L1.SFO)</a></code></pre></div>  <pre><code>## mkin version used for fitting:    0.9.49.6   ## R version used for fitting:       3.6.1  -## Date of fit:     Wed Sep 18 18:24:09 2019  -## Date of summary: Wed Sep 18 18:24:09 2019  +## Date of fit:     Thu Sep 19 09:52:57 2019  +## Date of summary: Thu Sep 19 09:52:57 2019   ##   ## Equations:  ## d_parent/dt = - k_parent_sink * parent @@ -218,8 +218,8 @@  ## finite result is doubtful</code></pre>  <pre><code>## mkin version used for fitting:    0.9.49.6   ## R version used for fitting:       3.6.1  -## Date of fit:     Wed Sep 18 18:24:12 2019  -## Date of summary: Wed Sep 18 18:24:12 2019  +## Date of fit:     Thu Sep 19 09:52:59 2019  +## Date of summary: Thu Sep 19 09:52:59 2019   ##   ##   ## Warning: Optimisation did not converge: @@ -231,7 +231,7 @@  ##   ## Model predictions using solution type analytical   ##  -## Fitted using 899 model solutions performed in 1.954 s +## Fitted using 899 model solutions performed in 1.908 s  ##   ## Error model: Constant variance   ##  @@ -323,15 +323,15 @@  <div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb17-1" title="1"><span class="kw"><a href="https://rdrr.io/r/base/summary.html">summary</a></span>(m.L2.FOMC, <span class="dt">data =</span> <span class="ot">FALSE</span>)</a></code></pre></div>  <pre><code>## mkin version used for fitting:    0.9.49.6   ## R version used for fitting:       3.6.1  -## Date of fit:     Wed Sep 18 18:24:13 2019  -## Date of summary: Wed Sep 18 18:24:13 2019  +## Date of fit:     Thu Sep 19 09:53:00 2019  +## Date of summary: Thu Sep 19 09:53:00 2019   ##   ## Equations:  ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent  ##   ## Model predictions using solution type analytical   ##  -## Fitted using 239 model solutions performed in 0.497 s +## Fitted using 239 model solutions performed in 0.49 s  ##   ## Error model: Constant variance   ##  @@ -399,8 +399,8 @@  <div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb20-1" title="1"><span class="kw"><a href="https://rdrr.io/r/base/summary.html">summary</a></span>(m.L2.DFOP, <span class="dt">data =</span> <span class="ot">FALSE</span>)</a></code></pre></div>  <pre><code>## mkin version used for fitting:    0.9.49.6   ## R version used for fitting:       3.6.1  -## Date of fit:     Wed Sep 18 18:24:14 2019  -## Date of summary: Wed Sep 18 18:24:14 2019  +## Date of fit:     Thu Sep 19 09:53:02 2019  +## Date of summary: Thu Sep 19 09:53:02 2019   ##   ## Equations:  ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * @@ -409,7 +409,7 @@  ##   ## Model predictions using solution type analytical   ##  -## Fitted using 572 model solutions performed in 1.215 s +## Fitted using 572 model solutions performed in 1.204 s  ##   ## Error model: Constant variance   ##  @@ -499,8 +499,8 @@  <div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb24-1" title="1"><span class="kw"><a href="https://rdrr.io/r/base/summary.html">summary</a></span>(mm.L3[[<span class="st">"DFOP"</span>, <span class="dv">1</span>]])</a></code></pre></div>  <pre><code>## mkin version used for fitting:    0.9.49.6   ## R version used for fitting:       3.6.1  -## Date of fit:     Wed Sep 18 18:24:16 2019  -## Date of summary: Wed Sep 18 18:24:16 2019  +## Date of fit:     Thu Sep 19 09:53:04 2019  +## Date of summary: Thu Sep 19 09:53:04 2019   ##   ## Equations:  ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * @@ -509,7 +509,7 @@  ##   ## Model predictions using solution type analytical   ##  -## Fitted using 373 model solutions performed in 0.778 s +## Fitted using 373 model solutions performed in 0.799 s  ##   ## Error model: Constant variance   ##  @@ -605,15 +605,15 @@  <div class="sourceCode" id="cb29"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb29-1" title="1"><span class="kw"><a href="https://rdrr.io/r/base/summary.html">summary</a></span>(mm.L4[[<span class="st">"SFO"</span>, <span class="dv">1</span>]], <span class="dt">data =</span> <span class="ot">FALSE</span>)</a></code></pre></div>  <pre><code>## mkin version used for fitting:    0.9.49.6   ## R version used for fitting:       3.6.1  -## Date of fit:     Wed Sep 18 18:24:17 2019  -## Date of summary: Wed Sep 18 18:24:17 2019  +## Date of fit:     Thu Sep 19 09:53:04 2019  +## Date of summary: Thu Sep 19 09:53:05 2019   ##   ## Equations:  ## d_parent/dt = - k_parent_sink * parent  ##   ## Model predictions using solution type analytical   ##  -## Fitted using 142 model solutions performed in 0.293 s +## Fitted using 142 model solutions performed in 0.287 s  ##   ## Error model: Constant variance   ##  @@ -670,15 +670,15 @@  <div class="sourceCode" id="cb31"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb31-1" title="1"><span class="kw"><a href="https://rdrr.io/r/base/summary.html">summary</a></span>(mm.L4[[<span class="st">"FOMC"</span>, <span class="dv">1</span>]], <span class="dt">data =</span> <span class="ot">FALSE</span>)</a></code></pre></div>  <pre><code>## mkin version used for fitting:    0.9.49.6   ## R version used for fitting:       3.6.1  -## Date of fit:     Wed Sep 18 18:24:17 2019  -## Date of summary: Wed Sep 18 18:24:17 2019  +## Date of fit:     Thu Sep 19 09:53:05 2019  +## Date of summary: Thu Sep 19 09:53:05 2019   ##   ## Equations:  ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent  ##   ## Model predictions using solution type analytical   ##  -## Fitted using 224 model solutions performed in 0.46 s +## Fitted using 224 model solutions performed in 0.48 s  ##   ## Error model: Constant variance   ##  diff --git a/docs/articles/mkin.html b/docs/articles/mkin.html index 90549b0f..ec138595 100644 --- a/docs/articles/mkin.html +++ b/docs/articles/mkin.html @@ -90,7 +90,7 @@        <h1>Introduction to mkin</h1>                          <h4 class="author">Johannes Ranke</h4> -            <h4 class="date">2019-09-18</h4> +            <h4 class="date">2019-09-19</h4>        <div class="hidden name"><code>mkin.Rmd</code></div> diff --git a/docs/articles/twa.html b/docs/articles/twa.html index 2d44a89d..9cb5873a 100644 --- a/docs/articles/twa.html +++ b/docs/articles/twa.html @@ -90,7 +90,7 @@        <h1>Calculation of time weighted average concentrations with mkin</h1>                          <h4 class="author">Johannes Ranke</h4> -            <h4 class="date">2019-09-18</h4> +            <h4 class="date">2019-09-19</h4>        <div class="hidden name"><code>twa.Rmd</code></div> diff --git a/docs/articles/web_only/FOCUS_Z.html b/docs/articles/web_only/FOCUS_Z.html index aed1debc..5ea0b256 100644 --- a/docs/articles/web_only/FOCUS_Z.html +++ b/docs/articles/web_only/FOCUS_Z.html @@ -90,7 +90,7 @@        <h1>Example evaluation of FOCUS dataset Z</h1>                          <h4 class="author">Johannes Ranke</h4> -            <h4 class="date">2019-09-18</h4> +            <h4 class="date">2019-09-19</h4>        <div class="hidden name"><code>FOCUS_Z.Rmd</code></div> diff --git a/docs/articles/web_only/NAFTA_examples.html b/docs/articles/web_only/NAFTA_examples.html index 3ca93667..0476acf8 100644 --- a/docs/articles/web_only/NAFTA_examples.html +++ b/docs/articles/web_only/NAFTA_examples.html @@ -90,7 +90,7 @@        <h1>Evaluation of example datasets from Attachment 1 to the US EPA SOP for the NAFTA guidance</h1>                          <h4 class="author">Johannes Ranke</h4> -            <h4 class="date">2019-09-18</h4> +            <h4 class="date">2019-09-19</h4>        <div class="hidden name"><code>NAFTA_examples.Rmd</code></div> diff --git a/docs/articles/web_only/benchmarks.html b/docs/articles/web_only/benchmarks.html index d46e738a..c0682cb0 100644 --- a/docs/articles/web_only/benchmarks.html +++ b/docs/articles/web_only/benchmarks.html @@ -90,7 +90,7 @@        <h1>Benchmark timings for mkin on various systems</h1>                          <h4 class="author">Johannes Ranke</h4> -            <h4 class="date">2019-09-18</h4> +            <h4 class="date">2019-09-19</h4>        <div class="hidden name"><code>benchmarks.Rmd</code></div> @@ -204,77 +204,77 @@  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 7.064  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 7.296  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 5.936 -## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 5.970 +## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 6.005  ##                                                                         t2  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 11.019  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 22.889  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 12.558  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 21.239  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 20.545 -## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 36.524 +## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 37.266  ##                                                                        t3  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 3.764  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 4.649  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 4.786  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 4.510  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 4.446 -## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 4.607 +## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 4.559  ##                                                                         t4  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 14.347  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 13.789  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2  8.461  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 13.805  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 15.335 -## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 31.617 +## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 31.574  ##                                                                         t5  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1  9.495  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1  6.395  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2  5.675  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3  7.386  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4  6.002 -## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 10.543 +## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 10.659  ##                                                                        t6  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 2.623  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 2.542  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 2.723  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 2.643  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 2.635 -## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 2.579 +## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 2.634  ##                                                                        t7  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 4.587  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 4.128  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 4.478  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 4.374  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 4.259 -## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 4.341 +## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 4.324  ##                                                                        t8  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 7.525  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 4.632  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 4.862  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3  7.02  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 4.737 -## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 8.101 +## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 8.233  ##                                                                         t9  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 16.621  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1  8.171  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2  7.618  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 11.124  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4  7.763 -## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 16.211 +## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 16.376  ##                                                                       t10  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 8.576  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 3.676  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 3.579  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 5.388  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 3.427 -## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 8.041 +## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 8.058  ##                                                                        t11  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 31.267  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1  5.636  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2  5.574  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3  7.365  ## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4  5.626 -## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 10.804</code></pre> +## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.6 11.133</code></pre>  <div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb17-1" title="1"><span class="kw"><a href="https://rdrr.io/r/base/save.html">save</a></span>(mkin_benchmarks, <span class="dt">file =</span> <span class="st">"~/git/mkin/vignettes/mkin_benchmarks.rda"</span>)</a></code></pre></div>  </div>    </div> diff --git a/docs/articles/web_only/compiled_models.html b/docs/articles/web_only/compiled_models.html index 1876e2b3..6df504ed 100644 --- a/docs/articles/web_only/compiled_models.html +++ b/docs/articles/web_only/compiled_models.html @@ -90,7 +90,7 @@        <h1>Performance benefit by using compiled model definitions in mkin</h1>                          <h4 class="author">Johannes Ranke</h4> -            <h4 class="date">2019-09-18</h4> +            <h4 class="date">2019-09-19</h4>        <div class="hidden name"><code>compiled_models.Rmd</code></div> @@ -165,9 +165,9 @@  ## Warning in mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "deSolve", quiet  ## = TRUE): Observations with value of zero were removed from the data</code></pre>  <pre><code>##                    test replications elapsed relative user.self sys.self -## 3     deSolve, compiled            3   3.129    1.000     3.127        0 -## 1 deSolve, not compiled            3  28.841    9.217    28.827        0 -## 2      Eigenvalue based            3   4.433    1.417     4.430        0 +## 3     deSolve, compiled            3   3.171    1.000     3.170        0 +## 1 deSolve, not compiled            3  29.012    9.149    28.996        0 +## 2      Eigenvalue based            3   4.473    1.411     4.470        0  ##   user.child sys.child  ## 3          0         0  ## 1          0         0 @@ -216,8 +216,8 @@  ## Warning in mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE): Observations with  ## value of zero were removed from the data</code></pre>  <pre><code>##                    test replications elapsed relative user.self sys.self -## 2     deSolve, compiled            3   4.860    1.000     4.857        0 -## 1 deSolve, not compiled            3  53.877   11.086    53.850        0 +## 2     deSolve, compiled            3   4.913    1.000     4.909        0 +## 1 deSolve, not compiled            3  53.418   10.873    53.393        0  ##   user.child sys.child  ## 2          0         0  ## 1          0         0</code></pre> diff --git a/docs/reference/index.html b/docs/reference/index.html index b86df636..a8b326d7 100644 --- a/docs/reference/index.html +++ b/docs/reference/index.html @@ -311,7 +311,7 @@        </tr><tr>          <td> -          <p><code><a href="synthetic_data_for_UBA.html">synthetic_data_for_UBA_2014</a></code> </p> +          <p><code><a href="synthetic_data_for_UBA_2014.html">synthetic_data_for_UBA_2014</a></code> </p>          </td>          <td><p>Synthetic datasets for one parent compound with two metabolites</p></td>        </tr><tr> diff --git a/docs/reference/mkinfit.html b/docs/reference/mkinfit.html index dc052f2a..0767d2f8 100644 --- a/docs/reference/mkinfit.html +++ b/docs/reference/mkinfit.html @@ -408,15 +408,15 @@ Per default, parameters in the kinetic models are internally transformed in  <span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_C</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)  <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.49.6   #> R version used for fitting:       3.6.1  -#> Date of fit:     Wed Sep 18 18:22:06 2019  -#> Date of summary: Wed Sep 18 18:22:06 2019  +#> Date of fit:     Thu Sep 19 09:50:54 2019  +#> Date of summary: Thu Sep 19 09:50:54 2019   #>   #> Equations:  #> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent  #>   #> Model predictions using solution type analytical   #>  -#> Fitted using 222 model solutions performed in 0.459 s +#> Fitted using 222 model solutions performed in 0.458 s  #>   #> Error model: Constant variance   #>  @@ -490,7 +490,7 @@ Per default, parameters in the kinetic models are internally transformed in    <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span>  <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span>(<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>(<span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>,                             <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"eigen"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)))</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='output co'>#>        User      System verstrichen  -#>       1.494       0.000       1.496 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/coef.html'>coef</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> NULL</div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> $ff +#>       1.479       0.002       1.482 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/coef.html'>coef</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> NULL</div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> $ff  #> parent_sink   parent_m1     m1_sink   #>    0.485524    0.514476    1.000000   #>  @@ -563,7 +563,7 @@ Per default, parameters in the kinetic models are internally transformed in  #> Sum of squared residuals at call 126: 371.2134  #> Sum of squared residuals at call 135: 371.2134  #> Negative log-likelihood at call 145: 97.22429</div><div class='output co'>#> <span class='message'>Optimisation successfully terminated.</span></div><div class='output co'>#>        User      System verstrichen  -#>       1.056       0.000       1.057 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/coef.html'>coef</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#> NULL</div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#> $ff +#>       1.053       0.000       1.054 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/coef.html'>coef</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#> NULL</div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#> $ff  #> parent_sink   parent_m1     m1_sink   #>    0.485524    0.514476    1.000000   #>  @@ -599,8 +599,8 @@ Per default, parameters in the kinetic models are internally transformed in  <span class='no'>SFO_SFO.ff</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>),                        <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='no'>f.noweight</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.noweight</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.49.6   #> R version used for fitting:       3.6.1  -#> Date of fit:     Wed Sep 18 18:22:22 2019  -#> Date of summary: Wed Sep 18 18:22:22 2019  +#> Date of fit:     Thu Sep 19 09:51:10 2019  +#> Date of summary: Thu Sep 19 09:51:10 2019   #>   #> Equations:  #> d_parent/dt = - k_parent * parent @@ -608,7 +608,7 @@ Per default, parameters in the kinetic models are internally transformed in  #>   #> Model predictions using solution type deSolve   #>  -#> Fitted using 421 model solutions performed in 1.15 s +#> Fitted using 421 model solutions performed in 1.138 s  #>   #> Error model: Constant variance   #>  @@ -718,8 +718,8 @@ Per default, parameters in the kinetic models are internally transformed in  #>   120       m1    25.15  28.78984 -3.640e+00  #>   120       m1    33.31  28.78984  4.520e+00</div><div class='input'><span class='no'>f.obs</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='st'>"obs"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.obs</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.49.6   #> R version used for fitting:       3.6.1  -#> Date of fit:     Wed Sep 18 18:22:24 2019  -#> Date of summary: Wed Sep 18 18:22:24 2019  +#> Date of fit:     Thu Sep 19 09:51:12 2019  +#> Date of summary: Thu Sep 19 09:51:12 2019   #>   #> Equations:  #> d_parent/dt = - k_parent * parent @@ -727,7 +727,7 @@ Per default, parameters in the kinetic models are internally transformed in  #>   #> Model predictions using solution type deSolve   #>  -#> Fitted using 979 model solutions performed in 2.553 s +#> Fitted using 979 model solutions performed in 2.565 s  #>   #> Error model: Variance unique to each observed variable   #>  @@ -850,8 +850,8 @@ Per default, parameters in the kinetic models are internally transformed in  #>   120       m1    25.15  28.80429 -3.654e+00  #>   120       m1    33.31  28.80429  4.506e+00</div><div class='input'><span class='no'>f.tc</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='st'>"tc"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>f.tc</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.49.6   #> R version used for fitting:       3.6.1  -#> Date of fit:     Wed Sep 18 18:22:34 2019  -#> Date of summary: Wed Sep 18 18:22:34 2019  +#> Date of fit:     Thu Sep 19 09:51:22 2019  +#> Date of summary: Thu Sep 19 09:51:22 2019   #>   #> Equations:  #> d_parent/dt = - k_parent * parent @@ -859,7 +859,7 @@ Per default, parameters in the kinetic models are internally transformed in  #>   #> Model predictions using solution type deSolve   #>  -#> Fitted using 2289 model solutions performed in 9.369 s +#> Fitted using 2289 model solutions performed in 9.24 s  #>   #> Error model: Two-component variance function   #>  diff --git a/docs/reference/mkinmod.html b/docs/reference/mkinmod.html index a5cdd04d..f592af1c 100644 --- a/docs/reference/mkinmod.html +++ b/docs/reference/mkinmod.html @@ -239,7 +239,7 @@ For the definition of model types and their parameters, the equations given  <span class='no'>SFO_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinmod</span>(    <span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>),    <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>verbose</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#> Compilation argument: -#>  /usr/lib/R/bin/R CMD SHLIB file310b6c1fede0.c 2> file310b6c1fede0.c.err.txt  +#>  /usr/lib/R/bin/R CMD SHLIB file663b71dc323f.c 2> file663b71dc323f.c.err.txt   #> Program source:  #>   1: #include <R.h>  #>   2:  diff --git a/docs/reference/mkinpredict.html b/docs/reference/mkinpredict.html index 97d3ca3a..5faff3c7 100644 --- a/docs/reference/mkinpredict.html +++ b/docs/reference/mkinpredict.html @@ -332,17 +332,17 @@                  <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fl'>100</span>, <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fl'>0</span>), <span class='fu'><a href='https://rdrr.io/r/base/seq.html'>seq</a></span>(<span class='fl'>0</span>, <span class='fl'>20</span>, <span class='kw'>by</span> <span class='kw'>=</span> <span class='fl'>0.1</span>),                  <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"eigen"</span>)[<span class='fl'>201</span>,]))</div><div class='output co'>#>     time   parent       m1  #> 201   20 4.978707 27.46227</div><div class='output co'>#>        User      System verstrichen  -#>       0.003       0.000       0.004 </div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>( +#>       0.004       0.000       0.004 </div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>(      <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span>(<span class='fu'>mkinpredict</span>(<span class='no'>SFO_SFO</span>, <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='kw'>k_parent_m1</span> <span class='kw'>=</span> <span class='fl'>0.05</span>, <span class='kw'>k_parent_sink</span> <span class='kw'>=</span> <span class='fl'>0.1</span>, <span class='kw'>k_m1_sink</span> <span class='kw'>=</span> <span class='fl'>0.01</span>),                  <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fl'>100</span>, <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fl'>0</span>), <span class='fu'><a href='https://rdrr.io/r/base/seq.html'>seq</a></span>(<span class='fl'>0</span>, <span class='fl'>20</span>, <span class='kw'>by</span> <span class='kw'>=</span> <span class='fl'>0.1</span>),                  <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"deSolve"</span>)[<span class='fl'>201</span>,]))</div><div class='output co'>#>     time   parent       m1  #> 201   20 4.978707 27.46227</div><div class='output co'>#>        User      System verstrichen  -#>       0.001       0.000       0.002 </div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>( +#>       0.002       0.000       0.002 </div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>(      <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span>(<span class='fu'>mkinpredict</span>(<span class='no'>SFO_SFO</span>, <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='kw'>k_parent_m1</span> <span class='kw'>=</span> <span class='fl'>0.05</span>, <span class='kw'>k_parent_sink</span> <span class='kw'>=</span> <span class='fl'>0.1</span>, <span class='kw'>k_m1_sink</span> <span class='kw'>=</span> <span class='fl'>0.01</span>),                  <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fl'>100</span>, <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fl'>0</span>), <span class='fu'><a href='https://rdrr.io/r/base/seq.html'>seq</a></span>(<span class='fl'>0</span>, <span class='fl'>20</span>, <span class='kw'>by</span> <span class='kw'>=</span> <span class='fl'>0.1</span>),                  <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"deSolve"</span>, <span class='kw'>use_compiled</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>)[<span class='fl'>201</span>,]))</div><div class='output co'>#>     time   parent       m1  #> 201   20 4.978707 27.46227</div><div class='output co'>#>        User      System verstrichen  -#>       0.021       0.000       0.022 </div><div class='input'> +#>       0.022       0.000       0.021 </div><div class='input'>    <span class='co'># \dontrun{</span>      <span class='co'># Predict from a fitted model</span>      <span class='no'>f</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_C</span>)</div><div class='output co'>#> <span class='message'>Ordinary least squares optimisation</span></div><div class='output co'>#> Sum of squared residuals at call 1: 552.5739 diff --git a/docs/reference/mmkin.html b/docs/reference/mmkin.html index 81ebde7c..0f384062 100644 --- a/docs/reference/mmkin.html +++ b/docs/reference/mmkin.html @@ -199,8 +199,8 @@  <span class='no'>time_1</span> <span class='kw'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span>(<span class='no'>fits.4</span> <span class='kw'><-</span> <span class='fu'>mmkin</span>(<span class='no'>models</span>, <span class='no'>datasets</span>, <span class='kw'>cores</span> <span class='kw'>=</span> <span class='fl'>1</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>))  <span class='no'>time_default</span></div><div class='output co'>#>        User      System verstrichen  -#>       0.013       0.039       5.128 </div><div class='input'><span class='no'>time_1</span></div><div class='output co'>#>        User      System verstrichen  -#>      18.942       0.000      18.951 </div><div class='input'> +#>       0.016       0.029       4.960 </div><div class='input'><span class='no'>time_1</span></div><div class='output co'>#>        User      System verstrichen  +#>      19.084       0.004      19.099 </div><div class='input'>  <span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fits.0</span><span class='kw'>[[</span><span class='st'>"SFO_lin"</span>, <span class='fl'>2</span>]])</div><div class='output co'>#> $ff  #>   parent_M1 parent_sink       M1_M2     M1_sink   #>   0.7340481   0.2659519   0.7505684   0.2494316  diff --git a/docs/reference/summary.mkinfit.html b/docs/reference/summary.mkinfit.html index c5d58911..73410181 100644 --- a/docs/reference/summary.mkinfit.html +++ b/docs/reference/summary.mkinfit.html @@ -215,15 +215,15 @@      <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>      <pre class="examples"><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>)), <span class='no'>FOCUS_2006_A</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>))</div><div class='output co'>#> mkin version used for fitting:    0.9.49.6   #> R version used for fitting:       3.6.1  -#> Date of fit:     Wed Sep 18 18:23:52 2019  -#> Date of summary: Wed Sep 18 18:23:52 2019  +#> Date of fit:     Thu Sep 19 09:52:40 2019  +#> Date of summary: Thu Sep 19 09:52:40 2019   #>   #> Equations:  #> d_parent/dt = - k_parent_sink * parent  #>   #> Model predictions using solution type analytical   #>  -#> Fitted using 131 model solutions performed in 0.268 s +#> Fitted using 131 model solutions performed in 0.27 s  #>   #> Error model: Constant variance   #>  diff --git a/docs/reference/synthetic_data_for_UBA_2014-1.png b/docs/reference/synthetic_data_for_UBA_2014-1.pngBinary files differ new file mode 100644 index 00000000..9d8c0931 --- /dev/null +++ b/docs/reference/synthetic_data_for_UBA_2014-1.png diff --git a/docs/reference/synthetic_data_for_UBA_2014.html b/docs/reference/synthetic_data_for_UBA_2014.html new file mode 100644 index 00000000..2c4480d9 --- /dev/null +++ b/docs/reference/synthetic_data_for_UBA_2014.html @@ -0,0 +1,462 @@ +<!-- Generated by pkgdown: do not edit by hand --> +<!DOCTYPE html> +<html lang="en"> +  <head> +  <meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> + +<title>Synthetic datasets for one parent compound with two metabolites — synthetic_data_for_UBA_2014 • mkin</title> + +<!-- jquery --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js" integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8=" crossorigin="anonymous"></script> +<!-- Bootstrap --> + +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.3.7/css/bootstrap.min.css" integrity="sha256-916EbMg70RQy9LHiGkXzG8hSg9EdNy97GazNG/aiY1w=" crossorigin="anonymous" /> +<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha256-U5ZEeKfGNOja007MMD3YBI0A3OSZOQbeG6z2f2Y0hu8=" crossorigin="anonymous"></script> + +<!-- Font Awesome icons --> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.7.1/css/all.min.css" integrity="sha256-nAmazAk6vS34Xqo0BSrTb+abbtFlgsFK7NKSi6o7Y78=" crossorigin="anonymous" /> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.7.1/css/v4-shims.min.css" integrity="sha256-6qHlizsOWFskGlwVOKuns+D1nB6ssZrHQrNj1wGplHc=" crossorigin="anonymous" /> + +<!-- clipboard.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.4/clipboard.min.js" integrity="sha256-FiZwavyI2V6+EXO1U+xzLG3IKldpiTFf3153ea9zikQ=" crossorigin="anonymous"></script> + +<!-- headroom.js --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.9.4/headroom.min.js" integrity="sha256-DJFC1kqIhelURkuza0AvYal5RxMtpzLjFhsnVIeuk+U=" crossorigin="anonymous"></script> +<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.9.4/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script> + +<!-- pkgdown --> +<link href="../pkgdown.css" rel="stylesheet"> +<script src="../pkgdown.js"></script> + + + +<meta property="og:title" content="Synthetic datasets for one parent compound with two metabolites — synthetic_data_for_UBA_2014" /> + +<meta property="og:description" content="The 12 datasets were generated using four different models and three different + variance components. The four models are either the SFO or the DFOP model with either + two sequential or two parallel metabolites. +Variance component 'a' is based on a normal distribution with standard deviation of 3, + Variance component 'b' is also based on a normal distribution, but with a standard deviation of 7. + Variance component 'c' is based on the error model from Rocke and Lorenzato (1995), with the + minimum standard deviation (for small y values) of 0.5, and a proportionality constant of 0.07 + for the increase of the standard deviation with y. Note that this is a simplified version + of the error model proposed by Rocke and Lorenzato (1995), as in their model the error of the + measured values approximates lognormal distribution for high values, whereas we are using + normally distributed error components all along. +Initial concentrations for metabolites and all values where adding the variance component resulted + in a value below the assumed limit of detection of 0.1 were set to NA. +As an example, the first dataset has the title SFO_lin_a and is based on the SFO model + with two sequential metabolites (linear pathway), with added variance component 'a'. +Compare also the code in the example section to see the degradation models." /> +<meta name="twitter:card" content="summary" /> + + + +<!-- mathjax --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script> +<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script> + +<!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> + + + +  </head> + +  <body> +    <div class="container template-reference-topic"> +      <header> +      <div class="navbar navbar-default navbar-fixed-top" role="navigation"> +  <div class="container"> +    <div class="navbar-header"> +      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> +        <span class="sr-only">Toggle navigation</span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +        <span class="icon-bar"></span> +      </button> +      <span class="navbar-brand"> +        <a class="navbar-link" href="../index.html">mkin</a> +        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">0.9.49.6</span> +      </span> +    </div> + +    <div id="navbar" class="navbar-collapse collapse"> +      <ul class="nav navbar-nav"> +        <li> +  <a href="../reference/index.html">Functions and data</a> +</li> +<li class="dropdown"> +  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> +    Articles +      +    <span class="caret"></span> +  </a> +  <ul class="dropdown-menu" role="menu"> +    <li> +      <a href="../articles/mkin.html">Introduction to mkin</a> +    </li> +    <li> +      <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> +    </li> +    <li> +      <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> +    </li> +    <li> +      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> +    </li> +    <li> +      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> +    </li> +    <li> +      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> +    </li> +    <li> +      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> +    </li> +  </ul> +</li> +<li> +  <a href="../news/index.html">News</a> +</li> +      </ul> +       +      <ul class="nav navbar-nav navbar-right"> +         +      </ul> +       +    </div><!--/.nav-collapse --> +  </div><!--/.container --> +</div><!--/.navbar --> + +       + +      </header> + +<div class="row"> +  <div class="col-md-9 contents"> +    <div class="page-header"> +    <h1>Synthetic datasets for one parent compound with two metabolites</h1> +     +    <div class="hidden name"><code>synthetic_data_for_UBA_2014.Rd</code></div> +    </div> + +    <div class="ref-description"> +     +    <p>The 12 datasets were generated using four different models and three different + variance components. The four models are either the SFO or the DFOP model with either + two sequential or two parallel metabolites.</p> +<p>Variance component 'a' is based on a normal distribution with standard deviation of 3, + Variance component 'b' is also based on a normal distribution, but with a standard deviation of 7. + Variance component 'c' is based on the error model from Rocke and Lorenzato (1995), with the + minimum standard deviation (for small y values) of 0.5, and a proportionality constant of 0.07 + for the increase of the standard deviation with y. Note that this is a simplified version + of the error model proposed by Rocke and Lorenzato (1995), as in their model the error of the + measured values approximates lognormal distribution for high values, whereas we are using + normally distributed error components all along.</p> +<p>Initial concentrations for metabolites and all values where adding the variance component resulted + in a value below the assumed limit of detection of 0.1 were set to <code>NA</code>.</p> +<p>As an example, the first dataset has the title <code>SFO_lin_a</code> and is based on the SFO model + with two sequential metabolites (linear pathway), with added variance component 'a'.</p> +<p>Compare also the code in the example section to see the degradation models.</p> +     +    </div> + +    <pre class="usage"><span class='no'>synthetic_data_for_UBA_2014</span></pre> +         +    <h2 class="hasAnchor" id="format"><a class="anchor" href="#format"></a>Format</h2> + +    <p>A list containing twelve datasets as an R6 class defined by <code><a href='mkinds.html'>mkinds</a></code>, +  each containing, among others, the following components</p><dl class='dl-horizontal'> +    <dt><code>title</code></dt><dd><p>The name of the dataset, e.g. <code>SFO_lin_a</code></p></dd> +    <dt><code>data</code></dt><dd><p>A data frame with the data in the form expected by <code><a href='mkinfit.html'>mkinfit</a></code></p></dd> +   +</dl> + +     +    <h2 class="hasAnchor" id="source"><a class="anchor" href="#source"></a>Source</h2> + +    <p>Ranke (2014) Prüfung und Validierung von Modellierungssoftware als Alternative +  zu ModelMaker 4.0, Umweltbundesamt Projektnummer 27452</p> +<p>Rocke, David M. und Lorenzato, Stefan (1995) A two-component model for +  measurement error in analytical chemistry. Technometrics 37(2), 176-184.</p> +     + +    <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> +    <pre class="examples"><div class='input'><span class='co'># The data have been generated using the following kinetic models</span> +<span class='no'>m_synth_SFO_lin</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"M1"</span>), +                           <span class='kw'>M1</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"M2"</span>), +                           <span class='kw'>M2</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> + +<span class='no'>m_synth_SFO_par</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"M1"</span>, <span class='st'>"M2"</span>), +                                         <span class='kw'>sink</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>), +                           <span class='kw'>M1</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>), +                           <span class='kw'>M2</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> +<span class='no'>m_synth_DFOP_lin</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"DFOP"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"M1"</span>), +                            <span class='kw'>M1</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"M2"</span>), +                            <span class='kw'>M2</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> +<span class='no'>m_synth_DFOP_par</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"DFOP"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"M1"</span>, <span class='st'>"M2"</span>), +                                          <span class='kw'>sink</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>), +                            <span class='kw'>M1</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>), +                            <span class='kw'>M2</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> +<span class='co'># The model predictions without intentional error were generated as follows</span> +<span class='no'>sampling_times</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='fl'>0</span>, <span class='fl'>1</span>, <span class='fl'>3</span>, <span class='fl'>7</span>, <span class='fl'>14</span>, <span class='fl'>28</span>, <span class='fl'>60</span>, <span class='fl'>90</span>, <span class='fl'>120</span>) + +<span class='no'>d_synth_SFO_lin</span> <span class='kw'><-</span> <span class='fu'><a href='mkinpredict.html'>mkinpredict</a></span>(<span class='no'>m_synth_SFO_lin</span>, +                               <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='kw'>k_parent</span> <span class='kw'>=</span> <span class='fl'>0.7</span>, <span class='kw'>f_parent_to_M1</span> <span class='kw'>=</span> <span class='fl'>0.8</span>, +                                 <span class='kw'>k_M1</span> <span class='kw'>=</span> <span class='fl'>0.3</span>, <span class='kw'>f_M1_to_M2</span> <span class='kw'>=</span> <span class='fl'>0.7</span>, +                                 <span class='kw'>k_M2</span> <span class='kw'>=</span> <span class='fl'>0.02</span>), +                               <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fl'>100</span>, <span class='kw'>M1</span> <span class='kw'>=</span> <span class='fl'>0</span>, <span class='kw'>M2</span> <span class='kw'>=</span> <span class='fl'>0</span>), +                               <span class='no'>sampling_times</span>) + +<span class='no'>d_synth_DFOP_lin</span> <span class='kw'><-</span> <span class='fu'><a href='mkinpredict.html'>mkinpredict</a></span>(<span class='no'>m_synth_DFOP_lin</span>, +                                <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='kw'>k1</span> <span class='kw'>=</span> <span class='fl'>0.2</span>, <span class='kw'>k2</span> <span class='kw'>=</span> <span class='fl'>0.02</span>, <span class='kw'>g</span> <span class='kw'>=</span> <span class='fl'>0.5</span>, +                                  <span class='kw'>f_parent_to_M1</span> <span class='kw'>=</span> <span class='fl'>0.5</span>, <span class='kw'>k_M1</span> <span class='kw'>=</span> <span class='fl'>0.3</span>, +                                  <span class='kw'>f_M1_to_M2</span> <span class='kw'>=</span> <span class='fl'>0.7</span>, <span class='kw'>k_M2</span> <span class='kw'>=</span> <span class='fl'>0.02</span>), +                                 <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fl'>100</span>, <span class='kw'>M1</span> <span class='kw'>=</span> <span class='fl'>0</span>, <span class='kw'>M2</span> <span class='kw'>=</span> <span class='fl'>0</span>), +                                 <span class='no'>sampling_times</span>) + +<span class='no'>d_synth_SFO_par</span> <span class='kw'><-</span> <span class='fu'><a href='mkinpredict.html'>mkinpredict</a></span>(<span class='no'>m_synth_SFO_par</span>, +                               <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='kw'>k_parent</span> <span class='kw'>=</span> <span class='fl'>0.2</span>, +                                 <span class='kw'>f_parent_to_M1</span> <span class='kw'>=</span> <span class='fl'>0.8</span>, <span class='kw'>k_M1</span> <span class='kw'>=</span> <span class='fl'>0.01</span>, +                                 <span class='kw'>f_parent_to_M2</span> <span class='kw'>=</span> <span class='fl'>0.2</span>, <span class='kw'>k_M2</span> <span class='kw'>=</span> <span class='fl'>0.02</span>), +                                 <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fl'>100</span>, <span class='kw'>M1</span> <span class='kw'>=</span> <span class='fl'>0</span>, <span class='kw'>M2</span> <span class='kw'>=</span> <span class='fl'>0</span>), +                                 <span class='no'>sampling_times</span>) + +<span class='no'>d_synth_DFOP_par</span> <span class='kw'><-</span> <span class='fu'><a href='mkinpredict.html'>mkinpredict</a></span>(<span class='no'>m_synth_DFOP_par</span>, +                               <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='kw'>k1</span> <span class='kw'>=</span> <span class='fl'>0.3</span>, <span class='kw'>k2</span> <span class='kw'>=</span> <span class='fl'>0.02</span>, <span class='kw'>g</span> <span class='kw'>=</span> <span class='fl'>0.7</span>, +                                 <span class='kw'>f_parent_to_M1</span> <span class='kw'>=</span> <span class='fl'>0.6</span>, <span class='kw'>k_M1</span> <span class='kw'>=</span> <span class='fl'>0.04</span>, +                                 <span class='kw'>f_parent_to_M2</span> <span class='kw'>=</span> <span class='fl'>0.4</span>, <span class='kw'>k_M2</span> <span class='kw'>=</span> <span class='fl'>0.01</span>), +                                 <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fl'>100</span>, <span class='kw'>M1</span> <span class='kw'>=</span> <span class='fl'>0</span>, <span class='kw'>M2</span> <span class='kw'>=</span> <span class='fl'>0</span>), +                                 <span class='no'>sampling_times</span>) + +<span class='co'># Construct names for datasets with errors</span> +<span class='no'>d_synth_names</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste0</a></span>(<span class='st'>"d_synth_"</span>, <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>(<span class='st'>"SFO_lin"</span>, <span class='st'>"SFO_par"</span>, +                                     <span class='st'>"DFOP_lin"</span>, <span class='st'>"DFOP_par"</span>)) + +<span class='co'># Original function used or adding errors. The add_err function now published</span> +<span class='co'># with this package is a slightly generalised version where the names of</span> +<span class='co'># secondary compartments that should have an initial value of zero (M1 and M2</span> +<span class='co'># in this case) are not hardcoded any more.</span> +<span class='co'># add_err = function(d, sdfunc, LOD = 0.1, reps = 2, seed = 123456789)</span> +<span class='co'># {</span> +<span class='co'>#   set.seed(seed)</span> +<span class='co'>#   d_long = mkin_wide_to_long(d, time = "time")</span> +<span class='co'>#   d_rep = data.frame(lapply(d_long, rep, each = 2))</span> +<span class='co'>#   d_rep$value = rnorm(length(d_rep$value), d_rep$value, sdfunc(d_rep$value))</span> +<span class='co'>#</span> +<span class='co'>#   d_rep[d_rep$time == 0 & match(d_rep$name, c("M1", "M2"), "value"] <- 0</span> +<span class='co'>#   d_NA <- transform(d_rep, value = ifelse(value < LOD, NA, value))</span> +<span class='co'>#   d_NA$value <- round(d_NA$value, 1)</span> +<span class='co'>#   return(d_NA)</span> +<span class='co'># }</span> + +<span class='co'># The following is the simplified version of the two-component model of Rocke</span> +<span class='co'># and Lorenzato (1995)</span> +<span class='no'>sdfunc_twocomp</span> <span class='kw'>=</span> <span class='kw'>function</span>(<span class='no'>value</span>, <span class='no'>sd_low</span>, <span class='no'>rsd_high</span>) { +  <span class='fu'><a href='https://rdrr.io/r/base/MathFun.html'>sqrt</a></span>(<span class='no'>sd_low</span>^<span class='fl'>2</span> + <span class='no'>value</span>^<span class='fl'>2</span> * <span class='no'>rsd_high</span>^<span class='fl'>2</span>) +} + +<span class='co'># Add the errors.</span> +<span class='kw'>for</span> (<span class='no'>d_synth_name</span> <span class='kw'>in</span> <span class='no'>d_synth_names</span>) +{ +  <span class='no'>d_synth</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/get.html'>get</a></span>(<span class='no'>d_synth_name</span>) +  <span class='fu'><a href='https://rdrr.io/r/base/assign.html'>assign</a></span>(<span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste0</a></span>(<span class='no'>d_synth_name</span>, <span class='st'>"_a"</span>), <span class='fu'><a href='add_err.html'>add_err</a></span>(<span class='no'>d_synth</span>, <span class='kw'>function</span>(<span class='no'>value</span>) <span class='fl'>3</span>)) +  <span class='fu'><a href='https://rdrr.io/r/base/assign.html'>assign</a></span>(<span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste0</a></span>(<span class='no'>d_synth_name</span>, <span class='st'>"_b"</span>), <span class='fu'><a href='add_err.html'>add_err</a></span>(<span class='no'>d_synth</span>, <span class='kw'>function</span>(<span class='no'>value</span>) <span class='fl'>7</span>)) +  <span class='fu'><a href='https://rdrr.io/r/base/assign.html'>assign</a></span>(<span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste0</a></span>(<span class='no'>d_synth_name</span>, <span class='st'>"_c"</span>), <span class='fu'><a href='add_err.html'>add_err</a></span>(<span class='no'>d_synth</span>, +                           <span class='kw'>function</span>(<span class='no'>value</span>) <span class='fu'>sdfunc_twocomp</span>(<span class='no'>value</span>, <span class='fl'>0.5</span>, <span class='fl'>0.07</span>))) + +} + +<span class='no'>d_synth_err_names</span> <span class='kw'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span>( +  <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span>(<span class='fu'><a href='https://rdrr.io/r/base/rep.html'>rep</a></span>(<span class='no'>d_synth_names</span>, <span class='kw'>each</span> <span class='kw'>=</span> <span class='fl'>3</span>), <span class='no'>letters</span>[<span class='fl'>1</span>:<span class='fl'>3</span>], <span class='kw'>sep</span> <span class='kw'>=</span> <span class='st'>"_"</span>) +) + +<span class='co'># This is just one example of an evaluation using the kinetic model used for</span> +<span class='co'># the generation of the data</span> +<span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>m_synth_SFO_lin</span>, <span class='no'>synthetic_data_for_UBA_2014</span><span class='kw'>[[</span><span class='fl'>1</span>]]$<span class='no'>data</span>, +               <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) +<span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span>(<span class='no'>fit</span>)</div><div class='img'><img src='synthetic_data_for_UBA_2014-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> mkin version used for fitting:    0.9.49.6  +#> R version used for fitting:       3.6.1  +#> Date of fit:     Thu Sep 19 12:43:02 2019  +#> Date of summary: Thu Sep 19 12:43:02 2019  +#>  +#> Equations: +#> d_parent/dt = - k_parent * parent +#> d_M1/dt = + f_parent_to_M1 * k_parent * parent - k_M1 * M1 +#> d_M2/dt = + f_M1_to_M2 * k_M1 * M1 - k_M2 * M2 +#>  +#> Model predictions using solution type deSolve  +#>  +#> Fitted using 847 model solutions performed in 2.51 s +#>  +#> Error model: Constant variance  +#>  +#> Error model algorithm: OLS  +#>  +#> Starting values for parameters to be optimised: +#>                     value   type +#> parent_0       101.350000  state +#> k_parent         0.100000 deparm +#> k_M1             0.100100 deparm +#> k_M2             0.100200 deparm +#> f_parent_to_M1   0.500000 deparm +#> f_M1_to_M2       0.500000 deparm +#> sigma            2.273126  error +#>  +#> Starting values for the transformed parameters actually optimised: +#>                     value lower upper +#> parent_0       101.350000  -Inf   Inf +#> log_k_parent    -2.302585  -Inf   Inf +#> log_k_M1        -2.301586  -Inf   Inf +#> log_k_M2        -2.300587  -Inf   Inf +#> f_parent_ilr_1   0.000000  -Inf   Inf +#> f_M1_ilr_1       0.000000  -Inf   Inf +#> sigma            2.273126     0   Inf +#>  +#> Fixed parameter values: +#>      value  type +#> M1_0     0 state +#> M2_0     0 state +#>  +#> Optimised, transformed parameters with symmetric confidence intervals: +#>                Estimate Std. Error   Lower    Upper +#> parent_0       102.1000    1.57000 98.8600 105.3000 +#> log_k_parent    -0.3020    0.03885 -0.3812  -0.2229 +#> log_k_M1        -1.2070    0.07123 -1.3520  -1.0620 +#> log_k_M2        -3.9010    0.06571 -4.0350  -3.7670 +#> f_parent_ilr_1   0.8492    0.16640  0.5103   1.1880 +#> f_M1_ilr_1       0.6780    0.17600  0.3196   1.0360 +#> sigma            2.2730    0.25740  1.7490   2.7970 +#>  +#> Parameter correlation: +#>                  parent_0 log_k_parent   log_k_M1   log_k_M2 f_parent_ilr_1 +#> parent_0        1.000e+00    3.933e-01 -1.605e-01  2.819e-02     -4.624e-01 +#> log_k_parent    3.933e-01    1.000e+00 -4.082e-01  7.166e-02     -5.682e-01 +#> log_k_M1       -1.605e-01   -4.082e-01  1.000e+00 -3.929e-01      7.478e-01 +#> log_k_M2        2.819e-02    7.166e-02 -3.929e-01  1.000e+00     -2.658e-01 +#> f_parent_ilr_1 -4.624e-01   -5.682e-01  7.478e-01 -2.658e-01      1.000e+00 +#> f_M1_ilr_1      1.614e-01    4.102e-01 -8.109e-01  5.419e-01     -8.605e-01 +#> sigma          -3.704e-09   -1.104e-08  5.922e-08 -3.673e-08      5.867e-08 +#>                f_M1_ilr_1      sigma +#> parent_0        1.614e-01 -3.704e-09 +#> log_k_parent    4.102e-01 -1.104e-08 +#> log_k_M1       -8.109e-01  5.922e-08 +#> log_k_M2        5.419e-01 -3.673e-08 +#> f_parent_ilr_1 -8.605e-01  5.867e-08 +#> f_M1_ilr_1      1.000e+00 -8.075e-08 +#> sigma          -8.075e-08  1.000e+00 +#>  +#> Backtransformed parameters: +#> Confidence intervals for internally transformed parameters are asymmetric. +#> t-test (unrealistically) based on the assumption of normal distribution +#> for estimators of untransformed parameters. +#>                 Estimate t value    Pr(>t)    Lower     Upper +#> parent_0       102.10000  65.000 7.281e-36 98.86000 105.30000 +#> k_parent         0.73930  25.740 2.948e-23  0.68310   0.80020 +#> k_M1             0.29920  14.040 1.577e-15  0.25880   0.34590 +#> k_M2             0.02023  15.220 1.653e-16  0.01769   0.02312 +#> f_parent_to_M1   0.76870  18.370 7.295e-19  0.67300   0.84290 +#> f_M1_to_M2       0.72290  14.500 6.418e-16  0.61110   0.81240 +#> sigma            2.27300   8.832 2.161e-10  1.74900   2.79700 +#>  +#> FOCUS Chi2 error levels in percent: +#>          err.min n.optim df +#> All data   8.454       6 17 +#> parent     8.660       2  6 +#> M1        10.583       2  5 +#> M2         3.586       2  6 +#>  +#> Resulting formation fractions: +#>                 ff +#> parent_M1   0.7687 +#> parent_sink 0.2313 +#> M1_M2       0.7229 +#> M1_sink     0.2771 +#>  +#> Estimated disappearance times: +#>           DT50    DT90 +#> parent  0.9376   3.114 +#> M1      2.3170   7.697 +#> M2     34.2689 113.839 +#>  +#> Data: +#>  time variable observed  predicted residual +#>     0   parent    101.5  1.021e+02 -0.56248 +#>     0   parent    101.2  1.021e+02 -0.86248 +#>     1   parent     53.9  4.873e+01  5.17118 +#>     1   parent     47.5  4.873e+01 -1.22882 +#>     3   parent     10.4  1.111e+01 -0.70773 +#>     3   parent      7.6  1.111e+01 -3.50773 +#>     7   parent      1.1  5.772e-01  0.52283 +#>     7   parent      0.3  5.772e-01 -0.27717 +#>    14   parent      3.5  3.264e-03  3.49674 +#>    28   parent      3.2  1.045e-07  3.20000 +#>    90   parent      0.6 -1.875e-11  0.60000 +#>   120   parent      3.5 -2.805e-11  3.50000 +#>     1       M1     36.4  3.479e+01  1.61088 +#>     1       M1     37.4  3.479e+01  2.61088 +#>     3       M1     34.3  3.937e+01 -5.07027 +#>     3       M1     39.8  3.937e+01  0.42973 +#>     7       M1     15.1  1.549e+01 -0.38715 +#>     7       M1     17.8  1.549e+01  2.31285 +#>    14       M1      5.8  1.995e+00  3.80469 +#>    14       M1      1.2  1.995e+00 -0.79531 +#>    60       M1      0.5  2.111e-06  0.50000 +#>    90       M1      3.2  2.913e-10  3.20000 +#>   120       M1      1.5  3.625e-11  1.50000 +#>   120       M1      0.6  3.625e-11  0.60000 +#>     1       M2      4.8  4.455e+00  0.34517 +#>     3       M2     20.9  2.153e+01 -0.62527 +#>     3       M2     19.3  2.153e+01 -2.22527 +#>     7       M2     42.0  4.192e+01  0.07941 +#>     7       M2     43.1  4.192e+01  1.17941 +#>    14       M2     49.4  4.557e+01  3.83353 +#>    14       M2     44.3  4.557e+01 -1.26647 +#>    28       M2     34.6  3.547e+01 -0.87275 +#>    28       M2     33.0  3.547e+01 -2.47275 +#>    60       M2     18.8  1.858e+01  0.21837 +#>    60       M2     17.6  1.858e+01 -0.98163 +#>    90       M2     10.6  1.013e+01  0.47130 +#>    90       M2     10.8  1.013e+01  0.67130 +#>   120       M2      9.8  5.521e+00  4.27893 +#>   120       M2      3.3  5.521e+00 -2.22107</div></pre> +  </div> +  <div class="col-md-3 hidden-xs hidden-sm" id="sidebar"> +    <h2>Contents</h2> +    <ul class="nav nav-pills nav-stacked"> +       +      <li><a href="#format">Format</a></li> + +      <li><a href="#source">Source</a></li> +       +      <li><a href="#examples">Examples</a></li> +    </ul> + +  </div> +</div> + + +      <footer> +      <div class="copyright"> +  <p>Developed by Johannes Ranke.</p> +</div> + +<div class="pkgdown"> +  <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.4.1.</p> +</div> + +      </footer> +   </div> + +   + + +  </body> +</html> + + diff --git a/docs/sitemap.xml b/docs/sitemap.xml index e75a0097..00d1a840 100644 --- a/docs/sitemap.xml +++ b/docs/sitemap.xml @@ -148,7 +148,7 @@      <loc>https://pkgdown.jrwb.de/mkin/reference/summary.mkinfit.html</loc>    </url>    <url> -    <loc>https://pkgdown.jrwb.de/mkin/reference/synthetic_data_for_UBA.html</loc> +    <loc>https://pkgdown.jrwb.de/mkin/reference/synthetic_data_for_UBA_2014.html</loc>    </url>    <url>      <loc>https://pkgdown.jrwb.de/mkin/reference/test_data_from_UBA_2014.html</loc> diff --git a/man/synthetic_data_for_UBA_2014.Rd b/man/synthetic_data_for_UBA_2014.Rd index 4e10d209..2d726d5a 100644 --- a/man/synthetic_data_for_UBA_2014.Rd +++ b/man/synthetic_data_for_UBA_2014.Rd @@ -1,146 +1,146 @@ -\name{synthetic_data_for_UBA_2014} -\alias{synthetic_data_for_UBA_2014} -\docType{data} -\title{ -  Synthetic datasets for one parent compound with two metabolites -} -\description{ - The 12 datasets were generated using four different models and three different - variance components. The four models are either the SFO or the DFOP model with either - two sequential or two parallel metabolites. - - Variance component 'a' is based on a normal distribution with standard deviation of 3, - Variance component 'b' is also based on a normal distribution, but with a standard deviation of 7. - Variance component 'c' is based on the error model from Rocke and Lorenzato (1995), with the - minimum standard deviation (for small y values) of 0.5, and a proportionality constant of 0.07 - for the increase of the standard deviation with y. Note that this is a simplified version - of the error model proposed by Rocke and Lorenzato (1995), as in their model the error of the - measured values approximates lognormal distribution for high values, whereas we are using - normally distributed error components all along. - - Initial concentrations for metabolites and all values where adding the variance component resulted - in a value below the assumed limit of detection of 0.1 were set to \code{NA}. - - As an example, the first dataset has the title \code{SFO_lin_a} and is based on the SFO model - with two sequential metabolites (linear pathway), with added variance component 'a'. - - Compare also the code in the example section to see the degradation models. -} -\usage{synthetic_data_for_UBA_2014} -\format{ -  A list containing twelve datasets as an R6 class defined by \code{\link{mkinds}}, -  each containing, among others, the following components -  \describe{ -    \item{\code{title}}{The name of the dataset, e.g. \code{SFO_lin_a}} -    \item{\code{data}}{A data frame with the data in the form expected by \code{\link{mkinfit}}} -  } -} -\source{ -  Ranke (2014) Prüfung und Validierung von Modellierungssoftware als Alternative -  zu ModelMaker 4.0, Umweltbundesamt Projektnummer 27452 - -  Rocke, David M. und Lorenzato, Stefan (1995) A two-component model for -  measurement error in analytical chemistry. Technometrics 37(2), 176-184. -} -\examples{ -# The data have been generated using the following kinetic models -m_synth_SFO_lin <- mkinmod(parent = list(type = "SFO", to = "M1"), -                           M1 = list(type = "SFO", to = "M2"), -                           M2 = list(type = "SFO"), use_of_ff = "max") - - -m_synth_SFO_par <- mkinmod(parent = list(type = "SFO", to = c("M1", "M2"), -                                         sink = FALSE), -                           M1 = list(type = "SFO"), -                           M2 = list(type = "SFO"), use_of_ff = "max") - -m_synth_DFOP_lin <- mkinmod(parent = list(type = "DFOP", to = "M1"), -                            M1 = list(type = "SFO", to = "M2"), -                            M2 = list(type = "SFO"), use_of_ff = "max") - -m_synth_DFOP_par <- mkinmod(parent = list(type = "DFOP", to = c("M1", "M2"), -                                          sink = FALSE), -                            M1 = list(type = "SFO"), -                            M2 = list(type = "SFO"), use_of_ff = "max") - -# The model predictions without intentional error were generated as follows -sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) - -d_synth_SFO_lin <- mkinpredict(m_synth_SFO_lin, -                               c(k_parent = 0.7, f_parent_to_M1 = 0.8, -                                 k_M1 = 0.3, f_M1_to_M2 = 0.7, -                                 k_M2 = 0.02), -                               c(parent = 100, M1 = 0, M2 = 0), -                               sampling_times) - -d_synth_DFOP_lin <- mkinpredict(m_synth_DFOP_lin, -                                c(k1 = 0.2, k2 = 0.02, g = 0.5, -                                  f_parent_to_M1 = 0.5, k_M1 = 0.3, -                                  f_M1_to_M2 = 0.7, k_M2 = 0.02), -                                 c(parent = 100, M1 = 0, M2 = 0), -                                 sampling_times) - -d_synth_SFO_par <- mkinpredict(m_synth_SFO_par, -                               c(k_parent = 0.2, -                                 f_parent_to_M1 = 0.8, k_M1 = 0.01, -                                 f_parent_to_M2 = 0.2, k_M2 = 0.02), -                                 c(parent = 100, M1 = 0, M2 = 0), -                                 sampling_times) - -d_synth_DFOP_par <- mkinpredict(m_synth_DFOP_par, -                               c(k1 = 0.3, k2 = 0.02, g = 0.7, -                                 f_parent_to_M1 = 0.6, k_M1 = 0.04, -                                 f_parent_to_M2 = 0.4, k_M2 = 0.01), -                                 c(parent = 100, M1 = 0, M2 = 0), -                                 sampling_times) - -# Construct names for datasets with errors -d_synth_names = paste0("d_synth_", c("SFO_lin", "SFO_par", -                                     "DFOP_lin", "DFOP_par")) - -# Original function used or adding errors. The add_err function now published -# with this package is a slightly generalised version where the names of -# secondary compartments that should have an initial value of zero (M1 and M2 -# in this case) are not hardcoded any more. -# add_err = function(d, sdfunc, LOD = 0.1, reps = 2, seed = 123456789) -# { -#   set.seed(seed) -#   d_long = mkin_wide_to_long(d, time = "time") -#   d_rep = data.frame(lapply(d_long, rep, each = 2)) -#   d_rep$value = rnorm(length(d_rep$value), d_rep$value, sdfunc(d_rep$value)) -# -#   d_rep[d_rep$time == 0 & match(d_rep$name, c("M1", "M2"), "value"] <- 0 -#   d_NA <- transform(d_rep, value = ifelse(value < LOD, NA, value)) -#   d_NA$value <- round(d_NA$value, 1) -#   return(d_NA) -# } - -# The following is the simplified version of the two-component model of Rocke -# and Lorenzato (1995) -sdfunc_twocomp = function(value, sd_low, rsd_high) { -  sqrt(sd_low^2 + value^2 * rsd_high^2) -} - -# Add the errors. -for (d_synth_name in d_synth_names) -{ -  d_synth = get(d_synth_name) -  assign(paste0(d_synth_name, "_a"), add_err(d_synth, function(value) 3)) -  assign(paste0(d_synth_name, "_b"), add_err(d_synth, function(value) 7)) -  assign(paste0(d_synth_name, "_c"), add_err(d_synth, -                           function(value) sdfunc_twocomp(value, 0.5, 0.07))) - -} - -d_synth_err_names = c( -  paste(rep(d_synth_names, each = 3), letters[1:3], sep = "_") -) - -# This is just one example of an evaluation using the kinetic model used for -# the generation of the data -fit <- mkinfit(m_synth_SFO_lin, synthetic_data_for_UBA_2014[[1]]$data, -               quiet = TRUE) -plot_sep(fit) -summary(fit) -} -\keyword{datasets} +\name{synthetic_data_for_UBA_2014}
 +\alias{synthetic_data_for_UBA_2014}
 +\docType{data}
 +\title{
 +  Synthetic datasets for one parent compound with two metabolites
 +}
 +\description{
 + The 12 datasets were generated using four different models and three different
 + variance components. The four models are either the SFO or the DFOP model with either
 + two sequential or two parallel metabolites.
 +
 + Variance component 'a' is based on a normal distribution with standard deviation of 3,
 + Variance component 'b' is also based on a normal distribution, but with a standard deviation of 7.
 + Variance component 'c' is based on the error model from Rocke and Lorenzato (1995), with the
 + minimum standard deviation (for small y values) of 0.5, and a proportionality constant of 0.07
 + for the increase of the standard deviation with y. Note that this is a simplified version
 + of the error model proposed by Rocke and Lorenzato (1995), as in their model the error of the
 + measured values approximates lognormal distribution for high values, whereas we are using
 + normally distributed error components all along.
 +
 + Initial concentrations for metabolites and all values where adding the variance component resulted
 + in a value below the assumed limit of detection of 0.1 were set to \code{NA}.
 +
 + As an example, the first dataset has the title \code{SFO_lin_a} and is based on the SFO model
 + with two sequential metabolites (linear pathway), with added variance component 'a'.
 +
 + Compare also the code in the example section to see the degradation models.
 +}
 +\usage{synthetic_data_for_UBA_2014}
 +\format{
 +  A list containing twelve datasets as an R6 class defined by \code{\link{mkinds}},
 +  each containing, among others, the following components
 +  \describe{
 +    \item{\code{title}}{The name of the dataset, e.g. \code{SFO_lin_a}}
 +    \item{\code{data}}{A data frame with the data in the form expected by \code{\link{mkinfit}}}
 +  }
 +}
 +\source{
 +  Ranke (2014) Prüfung und Validierung von Modellierungssoftware als Alternative
 +  zu ModelMaker 4.0, Umweltbundesamt Projektnummer 27452
 +
 +  Rocke, David M. und Lorenzato, Stefan (1995) A two-component model for
 +  measurement error in analytical chemistry. Technometrics 37(2), 176-184.
 +}
 +\examples{
 +# The data have been generated using the following kinetic models
 +m_synth_SFO_lin <- mkinmod(parent = list(type = "SFO", to = "M1"),
 +                           M1 = list(type = "SFO", to = "M2"),
 +                           M2 = list(type = "SFO"), use_of_ff = "max")
 +
 +
 +m_synth_SFO_par <- mkinmod(parent = list(type = "SFO", to = c("M1", "M2"),
 +                                         sink = FALSE),
 +                           M1 = list(type = "SFO"),
 +                           M2 = list(type = "SFO"), use_of_ff = "max")
 +
 +m_synth_DFOP_lin <- mkinmod(parent = list(type = "DFOP", to = "M1"),
 +                            M1 = list(type = "SFO", to = "M2"),
 +                            M2 = list(type = "SFO"), use_of_ff = "max")
 +
 +m_synth_DFOP_par <- mkinmod(parent = list(type = "DFOP", to = c("M1", "M2"),
 +                                          sink = FALSE),
 +                            M1 = list(type = "SFO"),
 +                            M2 = list(type = "SFO"), use_of_ff = "max")
 +
 +# The model predictions without intentional error were generated as follows
 +sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
 +
 +d_synth_SFO_lin <- mkinpredict(m_synth_SFO_lin,
 +                               c(k_parent = 0.7, f_parent_to_M1 = 0.8,
 +                                 k_M1 = 0.3, f_M1_to_M2 = 0.7,
 +                                 k_M2 = 0.02),
 +                               c(parent = 100, M1 = 0, M2 = 0),
 +                               sampling_times)
 +
 +d_synth_DFOP_lin <- mkinpredict(m_synth_DFOP_lin,
 +                                c(k1 = 0.2, k2 = 0.02, g = 0.5,
 +                                  f_parent_to_M1 = 0.5, k_M1 = 0.3,
 +                                  f_M1_to_M2 = 0.7, k_M2 = 0.02),
 +                                 c(parent = 100, M1 = 0, M2 = 0),
 +                                 sampling_times)
 +
 +d_synth_SFO_par <- mkinpredict(m_synth_SFO_par,
 +                               c(k_parent = 0.2,
 +                                 f_parent_to_M1 = 0.8, k_M1 = 0.01,
 +                                 f_parent_to_M2 = 0.2, k_M2 = 0.02),
 +                                 c(parent = 100, M1 = 0, M2 = 0),
 +                                 sampling_times)
 +
 +d_synth_DFOP_par <- mkinpredict(m_synth_DFOP_par,
 +                               c(k1 = 0.3, k2 = 0.02, g = 0.7,
 +                                 f_parent_to_M1 = 0.6, k_M1 = 0.04,
 +                                 f_parent_to_M2 = 0.4, k_M2 = 0.01),
 +                                 c(parent = 100, M1 = 0, M2 = 0),
 +                                 sampling_times)
 +
 +# Construct names for datasets with errors
 +d_synth_names = paste0("d_synth_", c("SFO_lin", "SFO_par",
 +                                     "DFOP_lin", "DFOP_par"))
 +
 +# Original function used or adding errors. The add_err function now published
 +# with this package is a slightly generalised version where the names of
 +# secondary compartments that should have an initial value of zero (M1 and M2
 +# in this case) are not hardcoded any more.
 +# add_err = function(d, sdfunc, LOD = 0.1, reps = 2, seed = 123456789)
 +# {
 +#   set.seed(seed)
 +#   d_long = mkin_wide_to_long(d, time = "time")
 +#   d_rep = data.frame(lapply(d_long, rep, each = 2))
 +#   d_rep$value = rnorm(length(d_rep$value), d_rep$value, sdfunc(d_rep$value))
 +#
 +#   d_rep[d_rep$time == 0 & match(d_rep$name, c("M1", "M2"), "value"] <- 0
 +#   d_NA <- transform(d_rep, value = ifelse(value < LOD, NA, value))
 +#   d_NA$value <- round(d_NA$value, 1)
 +#   return(d_NA)
 +# }
 +
 +# The following is the simplified version of the two-component model of Rocke
 +# and Lorenzato (1995)
 +sdfunc_twocomp = function(value, sd_low, rsd_high) {
 +  sqrt(sd_low^2 + value^2 * rsd_high^2)
 +}
 +
 +# Add the errors.
 +for (d_synth_name in d_synth_names)
 +{
 +  d_synth = get(d_synth_name)
 +  assign(paste0(d_synth_name, "_a"), add_err(d_synth, function(value) 3))
 +  assign(paste0(d_synth_name, "_b"), add_err(d_synth, function(value) 7))
 +  assign(paste0(d_synth_name, "_c"), add_err(d_synth,
 +                           function(value) sdfunc_twocomp(value, 0.5, 0.07)))
 +
 +}
 +
 +d_synth_err_names = c(
 +  paste(rep(d_synth_names, each = 3), letters[1:3], sep = "_")
 +)
 +
 +# This is just one example of an evaluation using the kinetic model used for
 +# the generation of the data
 +fit <- mkinfit(m_synth_SFO_lin, synthetic_data_for_UBA_2014[[1]]$data,
 +               quiet = TRUE)
 +plot_sep(fit)
 +summary(fit)
 +}
 +\keyword{datasets}
 diff --git a/vignettes/mkin_benchmarks.rda b/vignettes/mkin_benchmarks.rdaBinary files differ index aa794a02..bf9aec62 100644 --- a/vignettes/mkin_benchmarks.rda +++ b/vignettes/mkin_benchmarks.rda | 
