aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2016-06-28 05:32:21 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2016-06-28 05:32:21 +0200
commit1b2bdb8c02b1090f6c20f3ce9f7b461aab26e21c (patch)
tree45d22e5300d1916bb5ef41effe90d4e12cb8e802
parent15aa1a651e2b1ab9d4c7e35b62664fa3d3bae8e8 (diff)
Static documentation rebuilt by staticdocs::build_site()
-rw-r--r--inst/web/Extract.mmkin.html24
-rw-r--r--inst/web/mccall81_245T.html6
-rw-r--r--inst/web/mkinfit.html8
-rw-r--r--inst/web/mkinpredict.html4
-rw-r--r--inst/web/summary.mkinfit.html6
-rw-r--r--inst/web/transform_odeparms.html6
-rw-r--r--inst/web/vignettes/FOCUS_D.html6
-rw-r--r--inst/web/vignettes/FOCUS_L.html40
-rw-r--r--inst/web/vignettes/FOCUS_Z.pdfbin238788 -> 238788 bytes
-rw-r--r--inst/web/vignettes/compiled_models.html32
-rw-r--r--vignettes/FOCUS_D.html6
-rw-r--r--vignettes/FOCUS_L.html40
-rw-r--r--vignettes/FOCUS_Z.pdfbin238788 -> 238788 bytes
-rw-r--r--vignettes/compiled_models.html32
14 files changed, 105 insertions, 105 deletions
diff --git a/inst/web/Extract.mmkin.html b/inst/web/Extract.mmkin.html
index 81a7a663..d165e11a 100644
--- a/inst/web/Extract.mmkin.html
+++ b/inst/web/Extract.mmkin.html
@@ -181,7 +181,7 @@ $calls
$time
user system elapsed
- 0.696 0.000 0.695
+ 0.712 0.000 0.711
$mkinmod
&lt;mkinmod&gt; model generated with
@@ -367,7 +367,7 @@ function (P)
}
return(mC)
}
-&lt;environment: 0x3431d78&gt;
+&lt;environment: 0x498a868&gt;
$cost_notrans
function (P)
@@ -389,7 +389,7 @@ function (P)
scaleVar = scaleVar)
return(mC)
}
-&lt;environment: 0x3431d78&gt;
+&lt;environment: 0x498a868&gt;
$hessian_notrans
parent_0 alpha beta
@@ -455,7 +455,7 @@ $bparms.state
99.66619
$date
-[1] &quot;Tue Jun 28 01:32:02 2016&quot;
+[1] &quot;Tue Jun 28 01:54:25 2016&quot;
attr(,&quot;class&quot;)
[1] &quot;mkinfit&quot; &quot;modFit&quot;
@@ -540,7 +540,7 @@ $calls
$time
user system elapsed
- 0.200 0.000 0.204
+ 0.224 0.000 0.224
$mkinmod
&lt;mkinmod&gt; model generated with
@@ -727,7 +727,7 @@ function (P)
}
return(mC)
}
-&lt;environment: 0x44b33b0&gt;
+&lt;environment: 0x5658dc0&gt;
$cost_notrans
function (P)
@@ -749,7 +749,7 @@ function (P)
scaleVar = scaleVar)
return(mC)
}
-&lt;environment: 0x44b33b0&gt;
+&lt;environment: 0x5658dc0&gt;
$hessian_notrans
parent_0 k_parent_sink
@@ -812,7 +812,7 @@ $bparms.state
99.17407
$date
-[1] &quot;Tue Jun 28 01:32:02 2016&quot;
+[1] &quot;Tue Jun 28 01:54:24 2016&quot;
attr(,&quot;class&quot;)
[1] &quot;mkinfit&quot; &quot;modFit&quot;
@@ -890,7 +890,7 @@ $calls
$time
user system elapsed
- 0.200 0.000 0.204
+ 0.224 0.000 0.224
$mkinmod
&lt;mkinmod&gt; model generated with
@@ -1077,7 +1077,7 @@ function (P)
}
return(mC)
}
-&lt;environment: 0x44b33b0&gt;
+&lt;environment: 0x5658dc0&gt;
$cost_notrans
function (P)
@@ -1099,7 +1099,7 @@ function (P)
scaleVar = scaleVar)
return(mC)
}
-&lt;environment: 0x44b33b0&gt;
+&lt;environment: 0x5658dc0&gt;
$hessian_notrans
parent_0 k_parent_sink
@@ -1162,7 +1162,7 @@ $bparms.state
99.17407
$date
-[1] &quot;Tue Jun 28 01:32:02 2016&quot;
+[1] &quot;Tue Jun 28 01:54:24 2016&quot;
attr(,&quot;class&quot;)
[1] &quot;mkinfit&quot; &quot;modFit&quot;
diff --git a/inst/web/mccall81_245T.html b/inst/web/mccall81_245T.html
index f073876e..20328b34 100644
--- a/inst/web/mccall81_245T.html
+++ b/inst/web/mccall81_245T.html
@@ -114,8 +114,8 @@
</div>
<div class='output'>mkin version: 0.9.43
R version: 3.3.1
-Date of fit: Tue Jun 28 01:32:20 2016
-Date of summary: Tue Jun 28 01:32:20 2016
+Date of fit: Tue Jun 28 01:54:43 2016
+Date of summary: Tue Jun 28 01:54:43 2016
Equations:
d_T245 = - k_T245_sink * T245 - k_T245_phenol * T245
@@ -124,7 +124,7 @@ d_anisole = + k_phenol_anisole * phenol - k_anisole_sink * anisole
Model predictions using solution type deSolve
-Fitted with method Port using 246 model solutions performed in 3.912 s
+Fitted with method Port using 246 model solutions performed in 3.74 s
Weighting: none
diff --git a/inst/web/mkinfit.html b/inst/web/mkinfit.html
index 6ebf995c..9e0162c5 100644
--- a/inst/web/mkinfit.html
+++ b/inst/web/mkinfit.html
@@ -325,15 +325,15 @@ summary(fit)
</div>
<div class='output'>mkin version: 0.9.43
R version: 3.3.1
-Date of fit: Tue Jun 28 01:32:27 2016
-Date of summary: Tue Jun 28 01:32:27 2016
+Date of fit: Tue Jun 28 01:54:49 2016
+Date of summary: Tue Jun 28 01:54:49 2016
Equations:
d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
Model predictions using solution type analytical
-Fitted with method Port using 64 model solutions performed in 0.425 s
+Fitted with method Port using 64 model solutions performed in 0.433 s
Weighting: none
@@ -409,7 +409,7 @@ print(system.time(fit &lt;- mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = &quot;eigen&quot;, quiet = TRUE)))
</div>
<div class='output'> user system elapsed
- 2.880 2.292 2.309
+ 2.788 2.280 2.257
</div>
<div class='input'>coef(fit)
</div>
diff --git a/inst/web/mkinpredict.html b/inst/web/mkinpredict.html
index 06980d3f..be761407 100644
--- a/inst/web/mkinpredict.html
+++ b/inst/web/mkinpredict.html
@@ -304,7 +304,7 @@
201 20 4.978707 27.46227
</div>
<div class='output'> user system elapsed
- 0.020 0.048 0.011
+ 0.028 0.044 0.011
</div>
<div class='input'> system.time(
print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01),
@@ -315,7 +315,7 @@
201 20 4.978707 27.46227
</div>
<div class='output'> user system elapsed
- 0.004 0.000 0.004
+ 0.024 0.000 0.005
</div>
<div class='input'> system.time(
print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01),
diff --git a/inst/web/summary.mkinfit.html b/inst/web/summary.mkinfit.html
index b8a6d507..724e470d 100644
--- a/inst/web/summary.mkinfit.html
+++ b/inst/web/summary.mkinfit.html
@@ -159,15 +159,15 @@
</div>
<div class='output'>mkin version: 0.9.43
R version: 3.3.1
-Date of fit: Tue Jun 28 01:32:47 2016
-Date of summary: Tue Jun 28 01:32:47 2016
+Date of fit: Tue Jun 28 01:55:10 2016
+Date of summary: Tue Jun 28 01:55:10 2016
Equations:
d_parent = - k_parent_sink * parent
Model predictions using solution type analytical
-Fitted with method Port using 35 model solutions performed in 0.242 s
+Fitted with method Port using 35 model solutions performed in 0.244 s
Weighting: none
diff --git a/inst/web/transform_odeparms.html b/inst/web/transform_odeparms.html
index 69e52241..aa7e22f3 100644
--- a/inst/web/transform_odeparms.html
+++ b/inst/web/transform_odeparms.html
@@ -135,8 +135,8 @@ summary(fit, data=FALSE) # See transformed and backtransformed parameters
</div>
<div class='output'>mkin version: 0.9.43
R version: 3.3.1
-Date of fit: Tue Jun 28 01:32:50 2016
-Date of summary: Tue Jun 28 01:32:50 2016
+Date of fit: Tue Jun 28 01:55:12 2016
+Date of summary: Tue Jun 28 01:55:12 2016
Equations:
d_parent = - k_parent_sink * parent - k_parent_m1 * parent
@@ -144,7 +144,7 @@ d_m1 = + k_parent_m1 * parent - k_m1_sink * m1
Model predictions using solution type deSolve
-Fitted with method Port using 153 model solutions performed in 1.694 s
+Fitted with method Port using 153 model solutions performed in 1.624 s
Weighting: none
diff --git a/inst/web/vignettes/FOCUS_D.html b/inst/web/vignettes/FOCUS_D.html
index 7f564ad8..e01c5869 100644
--- a/inst/web/vignettes/FOCUS_D.html
+++ b/inst/web/vignettes/FOCUS_D.html
@@ -192,8 +192,8 @@ print(FOCUS_2006_D)</code></pre>
<pre class="r"><code>summary(fit)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:23 2016
-## Date of summary: Tue Jun 28 01:37:23 2016
+## Date of fit: Tue Jun 28 01:59:43 2016
+## Date of summary: Tue Jun 28 01:59:44 2016
##
## Equations:
## d_parent = - k_parent_sink * parent - k_parent_m1 * parent
@@ -201,7 +201,7 @@ print(FOCUS_2006_D)</code></pre>
##
## Model predictions using solution type deSolve
##
-## Fitted with method Port using 153 model solutions performed in 1.704 s
+## Fitted with method Port using 153 model solutions performed in 1.698 s
##
## Weighting: none
##
diff --git a/inst/web/vignettes/FOCUS_L.html b/inst/web/vignettes/FOCUS_L.html
index 154ac896..828d9def 100644
--- a/inst/web/vignettes/FOCUS_L.html
+++ b/inst/web/vignettes/FOCUS_L.html
@@ -235,15 +235,15 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
summary(m.L1.SFO)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:25 2016
-## Date of summary: Tue Jun 28 01:37:25 2016
+## Date of fit: Tue Jun 28 01:59:45 2016
+## Date of summary: Tue Jun 28 01:59:45 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 37 model solutions performed in 0.244 s
+## Fitted with method Port using 37 model solutions performed in 0.243 s
##
## Weighting: none
##
@@ -328,8 +328,8 @@ summary(m.L1.SFO)</code></pre>
<pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:27 2016
-## Date of summary: Tue Jun 28 01:37:27 2016
+## Date of fit: Tue Jun 28 01:59:47 2016
+## Date of summary: Tue Jun 28 01:59:47 2016
##
##
## Warning: Optimisation by method Port did not converge.
@@ -341,7 +341,7 @@ summary(m.L1.SFO)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 188 model solutions performed in 1.236 s
+## Fitted with method Port using 188 model solutions performed in 1.241 s
##
## Weighting: none
##
@@ -425,8 +425,8 @@ plot(m.L2.FOMC, show_residuals = TRUE,
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:29 2016
-## Date of summary: Tue Jun 28 01:37:29 2016
+## Date of fit: Tue Jun 28 01:59:49 2016
+## Date of summary: Tue Jun 28 01:59:49 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -495,8 +495,8 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:32 2016
-## Date of summary: Tue Jun 28 01:37:32 2016
+## Date of fit: Tue Jun 28 01:59:52 2016
+## Date of summary: Tue Jun 28 01:59:52 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -505,7 +505,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 336 model solutions performed in 2.323 s
+## Fitted with method Port using 336 model solutions performed in 2.286 s
##
## Weighting: none
##
@@ -584,8 +584,8 @@ plot(mm.L3)</code></pre>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:35 2016
-## Date of summary: Tue Jun 28 01:37:35 2016
+## Date of fit: Tue Jun 28 01:59:55 2016
+## Date of summary: Tue Jun 28 01:59:56 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -594,7 +594,7 @@ plot(mm.L3)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 137 model solutions performed in 0.909 s
+## Fitted with method Port using 137 model solutions performed in 0.907 s
##
## Weighting: none
##
@@ -684,15 +684,15 @@ plot(mm.L4)</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:36 2016
-## Date of summary: Tue Jun 28 01:37:37 2016
+## Date of fit: Tue Jun 28 01:59:57 2016
+## Date of summary: Tue Jun 28 01:59:58 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 46 model solutions performed in 0.312 s
+## Fitted with method Port using 46 model solutions performed in 0.306 s
##
## Weighting: none
##
@@ -744,15 +744,15 @@ plot(mm.L4)</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:37 2016
-## Date of summary: Tue Jun 28 01:37:37 2016
+## Date of fit: Tue Jun 28 01:59:57 2016
+## Date of summary: Tue Jun 28 01:59:58 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 66 model solutions performed in 0.417 s
+## Fitted with method Port using 66 model solutions performed in 0.42 s
##
## Weighting: none
##
diff --git a/inst/web/vignettes/FOCUS_Z.pdf b/inst/web/vignettes/FOCUS_Z.pdf
index ac3af921..efda950f 100644
--- a/inst/web/vignettes/FOCUS_Z.pdf
+++ b/inst/web/vignettes/FOCUS_Z.pdf
Binary files differ
diff --git a/inst/web/vignettes/compiled_models.html b/inst/web/vignettes/compiled_models.html
index 9e2dff36..5e426a7f 100644
--- a/inst/web/vignettes/compiled_models.html
+++ b/inst/web/vignettes/compiled_models.html
@@ -250,21 +250,21 @@ mb.1 &lt;- microbenchmark(
print(mb.1)</code></pre>
<pre><code>## Unit: seconds
## expr min lq mean median uq
-## deSolve, not compiled 25.160343 25.384579 25.502052 25.608814 25.672906
-## Eigenvalue based 2.219737 2.234679 2.244043 2.249621 2.256196
-## deSolve, compiled 1.825299 1.843813 1.856078 1.862327 1.871467
+## deSolve, not compiled 25.042204 25.078629 25.467550 25.115054 25.680223
+## Eigenvalue based 2.273059 2.277424 2.285719 2.281790 2.292049
+## deSolve, compiled 1.878785 1.883750 1.891594 1.888716 1.897998
## max neval cld
-## 25.736998 3 b
-## 2.262771 3 a
-## 1.880606 3 a</code></pre>
+## 26.245391 3 b
+## 2.302308 3 a
+## 1.907281 3 a</code></pre>
<pre class="r"><code>autoplot(mb.1)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>We see that using the compiled model is by a factor of 13.8 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
+<p><img src="" title alt width="672" /></p>
+<p>We see that using the compiled model is by a factor of 13.3 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
<pre class="r"><code>rownames(smb.1) &lt;- smb.1$expr
smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
-## deSolve, not compiled 13.750973
-## Eigenvalue based 1.207962
+## deSolve, not compiled 13.297425
+## Eigenvalue based 1.208117
## deSolve, compiled 1.000000</code></pre>
</div>
<div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2">
@@ -285,18 +285,18 @@ smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot
<pre class="r"><code>smb.2 &lt;- summary(mb.2)
print(mb.2)</code></pre>
<pre><code>## Unit: seconds
-## expr min lq mean median uq
-## deSolve, not compiled 54.725198 54.787875 54.893809 54.85055 54.978114
-## deSolve, compiled 3.618315 3.644838 3.670582 3.67136 3.696716
+## expr min lq mean median uq
+## deSolve, not compiled 53.69252 53.938844 54.137601 54.185167 54.360141
+## deSolve, compiled 3.42508 3.526298 3.588392 3.627516 3.670048
## max neval cld
-## 55.105678 3 b
-## 3.722071 3 a</code></pre>
+## 54.535116 3 b
+## 3.712579 3 a</code></pre>
<pre class="r"><code>smb.2[&quot;median&quot;]/smb.2[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
## 1 NA
## 2 NA</code></pre>
<pre class="r"><code>autoplot(mb.2)</code></pre>
-<p><img src="" title alt width="672" /></p>
+<p><img src="" title alt width="672" /></p>
<p>Here we get a performance benefit of a factor of 14.9 using the version of the differential equation model compiled from C code!</p>
<p>This vignette was built with mkin 0.9.43 on</p>
<pre><code>## R version 3.3.1 (2016-06-21)
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html
index 7f564ad8..e01c5869 100644
--- a/vignettes/FOCUS_D.html
+++ b/vignettes/FOCUS_D.html
@@ -192,8 +192,8 @@ print(FOCUS_2006_D)</code></pre>
<pre class="r"><code>summary(fit)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:23 2016
-## Date of summary: Tue Jun 28 01:37:23 2016
+## Date of fit: Tue Jun 28 01:59:43 2016
+## Date of summary: Tue Jun 28 01:59:44 2016
##
## Equations:
## d_parent = - k_parent_sink * parent - k_parent_m1 * parent
@@ -201,7 +201,7 @@ print(FOCUS_2006_D)</code></pre>
##
## Model predictions using solution type deSolve
##
-## Fitted with method Port using 153 model solutions performed in 1.704 s
+## Fitted with method Port using 153 model solutions performed in 1.698 s
##
## Weighting: none
##
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 154ac896..828d9def 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -235,15 +235,15 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
summary(m.L1.SFO)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:25 2016
-## Date of summary: Tue Jun 28 01:37:25 2016
+## Date of fit: Tue Jun 28 01:59:45 2016
+## Date of summary: Tue Jun 28 01:59:45 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 37 model solutions performed in 0.244 s
+## Fitted with method Port using 37 model solutions performed in 0.243 s
##
## Weighting: none
##
@@ -328,8 +328,8 @@ summary(m.L1.SFO)</code></pre>
<pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:27 2016
-## Date of summary: Tue Jun 28 01:37:27 2016
+## Date of fit: Tue Jun 28 01:59:47 2016
+## Date of summary: Tue Jun 28 01:59:47 2016
##
##
## Warning: Optimisation by method Port did not converge.
@@ -341,7 +341,7 @@ summary(m.L1.SFO)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 188 model solutions performed in 1.236 s
+## Fitted with method Port using 188 model solutions performed in 1.241 s
##
## Weighting: none
##
@@ -425,8 +425,8 @@ plot(m.L2.FOMC, show_residuals = TRUE,
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:29 2016
-## Date of summary: Tue Jun 28 01:37:29 2016
+## Date of fit: Tue Jun 28 01:59:49 2016
+## Date of summary: Tue Jun 28 01:59:49 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -495,8 +495,8 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:32 2016
-## Date of summary: Tue Jun 28 01:37:32 2016
+## Date of fit: Tue Jun 28 01:59:52 2016
+## Date of summary: Tue Jun 28 01:59:52 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -505,7 +505,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 336 model solutions performed in 2.323 s
+## Fitted with method Port using 336 model solutions performed in 2.286 s
##
## Weighting: none
##
@@ -584,8 +584,8 @@ plot(mm.L3)</code></pre>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:35 2016
-## Date of summary: Tue Jun 28 01:37:35 2016
+## Date of fit: Tue Jun 28 01:59:55 2016
+## Date of summary: Tue Jun 28 01:59:56 2016
##
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -594,7 +594,7 @@ plot(mm.L3)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 137 model solutions performed in 0.909 s
+## Fitted with method Port using 137 model solutions performed in 0.907 s
##
## Weighting: none
##
@@ -684,15 +684,15 @@ plot(mm.L4)</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:36 2016
-## Date of summary: Tue Jun 28 01:37:37 2016
+## Date of fit: Tue Jun 28 01:59:57 2016
+## Date of summary: Tue Jun 28 01:59:58 2016
##
## Equations:
## d_parent = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 46 model solutions performed in 0.312 s
+## Fitted with method Port using 46 model solutions performed in 0.306 s
##
## Weighting: none
##
@@ -744,15 +744,15 @@ plot(mm.L4)</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
<pre><code>## mkin version: 0.9.43
## R version: 3.3.1
-## Date of fit: Tue Jun 28 01:37:37 2016
-## Date of summary: Tue Jun 28 01:37:37 2016
+## Date of fit: Tue Jun 28 01:59:57 2016
+## Date of summary: Tue Jun 28 01:59:58 2016
##
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 66 model solutions performed in 0.417 s
+## Fitted with method Port using 66 model solutions performed in 0.42 s
##
## Weighting: none
##
diff --git a/vignettes/FOCUS_Z.pdf b/vignettes/FOCUS_Z.pdf
index ac3af921..efda950f 100644
--- a/vignettes/FOCUS_Z.pdf
+++ b/vignettes/FOCUS_Z.pdf
Binary files differ
diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html
index 9e2dff36..5e426a7f 100644
--- a/vignettes/compiled_models.html
+++ b/vignettes/compiled_models.html
@@ -250,21 +250,21 @@ mb.1 &lt;- microbenchmark(
print(mb.1)</code></pre>
<pre><code>## Unit: seconds
## expr min lq mean median uq
-## deSolve, not compiled 25.160343 25.384579 25.502052 25.608814 25.672906
-## Eigenvalue based 2.219737 2.234679 2.244043 2.249621 2.256196
-## deSolve, compiled 1.825299 1.843813 1.856078 1.862327 1.871467
+## deSolve, not compiled 25.042204 25.078629 25.467550 25.115054 25.680223
+## Eigenvalue based 2.273059 2.277424 2.285719 2.281790 2.292049
+## deSolve, compiled 1.878785 1.883750 1.891594 1.888716 1.897998
## max neval cld
-## 25.736998 3 b
-## 2.262771 3 a
-## 1.880606 3 a</code></pre>
+## 26.245391 3 b
+## 2.302308 3 a
+## 1.907281 3 a</code></pre>
<pre class="r"><code>autoplot(mb.1)</code></pre>
-<p><img src="" title alt width="672" /></p>
-<p>We see that using the compiled model is by a factor of 13.8 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
+<p><img src="" title alt width="672" /></p>
+<p>We see that using the compiled model is by a factor of 13.3 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>
<pre class="r"><code>rownames(smb.1) &lt;- smb.1$expr
smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
-## deSolve, not compiled 13.750973
-## Eigenvalue based 1.207962
+## deSolve, not compiled 13.297425
+## Eigenvalue based 1.208117
## deSolve, compiled 1.000000</code></pre>
</div>
<div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2">
@@ -285,18 +285,18 @@ smb.1[&quot;median&quot;]/smb.1[&quot;deSolve, compiled&quot;, &quot;median&quot
<pre class="r"><code>smb.2 &lt;- summary(mb.2)
print(mb.2)</code></pre>
<pre><code>## Unit: seconds
-## expr min lq mean median uq
-## deSolve, not compiled 54.725198 54.787875 54.893809 54.85055 54.978114
-## deSolve, compiled 3.618315 3.644838 3.670582 3.67136 3.696716
+## expr min lq mean median uq
+## deSolve, not compiled 53.69252 53.938844 54.137601 54.185167 54.360141
+## deSolve, compiled 3.42508 3.526298 3.588392 3.627516 3.670048
## max neval cld
-## 55.105678 3 b
-## 3.722071 3 a</code></pre>
+## 54.535116 3 b
+## 3.712579 3 a</code></pre>
<pre class="r"><code>smb.2[&quot;median&quot;]/smb.2[&quot;deSolve, compiled&quot;, &quot;median&quot;]</code></pre>
<pre><code>## median
## 1 NA
## 2 NA</code></pre>
<pre class="r"><code>autoplot(mb.2)</code></pre>
-<p><img src="" title alt width="672" /></p>
+<p><img src="" title alt width="672" /></p>
<p>Here we get a performance benefit of a factor of 14.9 using the version of the differential equation model compiled from C code!</p>
<p>This vignette was built with mkin 0.9.43 on</p>
<pre><code>## R version 3.3.1 (2016-06-21)

Contact - Imprint