aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2021-04-21 16:40:50 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2021-04-21 16:40:50 +0200
commit9907f17aa98bddfe60e82a71c70a2fea914a02f7 (patch)
tree4d5d959cdd19f32068bae406372df4b8a8f59fd6
parent34d1c5f23edfb60548bc5a9dd99c2f3af92acef1 (diff)
parentc74b79c983fe9fc872bac1262040e82f16049477 (diff)
Merge branch 'master' into saemix
-rw-r--r--DESCRIPTION2
-rw-r--r--NEWS.md8
-rw-r--r--R/mmkin.R5
-rw-r--r--R/plot.mkinfit.R2
-rw-r--r--check.log2
-rw-r--r--docs/articles/FOCUS_D.html16
-rw-r--r--docs/articles/FOCUS_D_files/figure-html/plot-1.pngbin79176 -> 79749 bytes
-rw-r--r--docs/articles/FOCUS_D_files/figure-html/plot_2-1.pngbin24025 -> 24279 bytes
-rw-r--r--docs/articles/FOCUS_D_files/header-attrs-2.7/header-attrs.js12
-rw-r--r--docs/articles/FOCUS_L.html62
-rw-r--r--docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.pngbin42203 -> 42472 bytes
-rw-r--r--docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.pngbin82006 -> 83163 bytes
-rw-r--r--docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.pngbin32751 -> 33123 bytes
-rw-r--r--docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.pngbin57939 -> 58647 bytes
-rw-r--r--docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.pngbin35238 -> 35678 bytes
-rw-r--r--docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.pngbin21999 -> 22090 bytes
-rw-r--r--docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.pngbin35640 -> 36105 bytes
-rw-r--r--docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.pngbin41399 -> 41395 bytes
-rw-r--r--docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.pngbin40983 -> 40745 bytes
-rw-r--r--docs/articles/FOCUS_L_files/header-attrs-2.7/header-attrs.js12
-rw-r--r--docs/articles/mkin.html6
-rw-r--r--docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.pngbin89958 -> 89961 bytes
-rw-r--r--docs/articles/mkin_files/header-attrs-2.7/header-attrs.js12
-rw-r--r--docs/articles/twa.html6
-rw-r--r--docs/articles/twa_files/header-attrs-2.7/header-attrs.js12
-rw-r--r--docs/articles/web_only/FOCUS_Z.html6
-rw-r--r--docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.pngbin66640 -> 66566 bytes
-rw-r--r--docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.pngbin106038 -> 105728 bytes
-rw-r--r--docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.pngbin105042 -> 104598 bytes
-rw-r--r--docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.pngbin75626 -> 75131 bytes
-rw-r--r--docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.pngbin35744 -> 36162 bytes
-rw-r--r--docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.pngbin66640 -> 66566 bytes
-rw-r--r--docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.pngbin66424 -> 66341 bytes
-rw-r--r--docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.pngbin80520 -> 80289 bytes
-rw-r--r--docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.pngbin105149 -> 104958 bytes
-rw-r--r--docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.pngbin104479 -> 104309 bytes
-rw-r--r--docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.pngbin88890 -> 88640 bytes
-rw-r--r--docs/articles/web_only/FOCUS_Z_files/header-attrs-2.7/header-attrs.js12
-rw-r--r--docs/articles/web_only/NAFTA_examples.html6
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p10-1.pngbin78793 -> 79833 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p11-1.pngbin75470 -> 76357 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.pngbin80755 -> 81683 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.pngbin69885 -> 70857 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p13-1.pngbin77126 -> 78065 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p14-1.pngbin79693 -> 80776 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.pngbin75945 -> 76982 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.pngbin78004 -> 78986 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p16-1.pngbin93075 -> 94024 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.pngbin81521 -> 82684 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.pngbin79783 -> 80778 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p6-1.pngbin81974 -> 83064 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p7-1.pngbin101606 -> 102575 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p8-1.pngbin91429 -> 92480 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.pngbin77612 -> 78544 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.pngbin75129 -> 76187 bytes
-rw-r--r--docs/articles/web_only/NAFTA_examples_files/header-attrs-2.7/header-attrs.js12
-rw-r--r--docs/articles/web_only/benchmarks.html26
-rw-r--r--docs/articles/web_only/benchmarks_files/header-attrs-2.7/header-attrs.js12
-rw-r--r--docs/news/index.html3
-rw-r--r--docs/pkgdown.yml2
-rw-r--r--docs/reference/D24_2014.html2
-rw-r--r--docs/reference/Extract.mmkin.html2
-rw-r--r--docs/reference/Rplot001.pngbin27746 -> 27637 bytes
-rw-r--r--docs/reference/Rplot003.pngbin15333 -> 33192 bytes
-rw-r--r--docs/reference/Rplot004.pngbin10647 -> 23509 bytes
-rw-r--r--docs/reference/Rplot005.pngbin19233 -> 23509 bytes
-rw-r--r--docs/reference/Rplot006.pngbin24545 -> 22129 bytes
-rw-r--r--docs/reference/Rplot007.pngbin24992 -> 25211 bytes
-rw-r--r--docs/reference/add_err-1.pngbin108676 -> 109666 bytes
-rw-r--r--docs/reference/add_err-2.pngbin63336 -> 63614 bytes
-rw-r--r--docs/reference/add_err-3.pngbin58909 -> 59316 bytes
-rw-r--r--docs/reference/add_err.html2
-rw-r--r--docs/reference/confint.mkinfit.html6
-rw-r--r--docs/reference/dimethenamid_2018.html2
-rw-r--r--docs/reference/experimental_data_for_UBA-1.pngbin102212 -> 102839 bytes
-rw-r--r--docs/reference/experimental_data_for_UBA.html2
-rw-r--r--docs/reference/f_time_norm_focus.html2
-rw-r--r--docs/reference/focus_soil_moisture.html2
-rw-r--r--docs/reference/logLik.mkinfit.html2
-rw-r--r--docs/reference/mccall81_245T-1.pngbin62537 -> 62564 bytes
-rw-r--r--docs/reference/mccall81_245T.html2
-rw-r--r--docs/reference/mixed-1.pngbin219866 -> 219876 bytes
-rw-r--r--docs/reference/mixed.html2
-rw-r--r--docs/reference/mkinds.html2
-rw-r--r--docs/reference/mkindsg.html2
-rw-r--r--docs/reference/mkinfit-1.pngbin65835 -> 66042 bytes
-rw-r--r--docs/reference/mkinfit.html28
-rw-r--r--docs/reference/mkinmod.html6
-rw-r--r--docs/reference/mkinpredict.html6
-rw-r--r--docs/reference/mkinresplot-1.pngbin23819 -> 23907 bytes
-rw-r--r--docs/reference/mkinresplot.html2
-rw-r--r--docs/reference/mmkin-1.pngbin110459 -> 110844 bytes
-rw-r--r--docs/reference/mmkin-2.pngbin107057 -> 107612 bytes
-rw-r--r--docs/reference/mmkin-3.pngbin96062 -> 96248 bytes
-rw-r--r--docs/reference/mmkin-4.pngbin67191 -> 66653 bytes
-rw-r--r--docs/reference/mmkin-5.pngbin64880 -> 65046 bytes
-rw-r--r--docs/reference/mmkin.html11
-rw-r--r--docs/reference/nlme-1.pngbin70133 -> 70244 bytes
-rw-r--r--docs/reference/nlme-2.pngbin94031 -> 94239 bytes
-rw-r--r--docs/reference/nlme.html2
-rw-r--r--docs/reference/nlme.mmkin-1.pngbin124677 -> 124827 bytes
-rw-r--r--docs/reference/nlme.mmkin-2.pngbin169523 -> 169698 bytes
-rw-r--r--docs/reference/nlme.mmkin-3.pngbin172692 -> 172809 bytes
-rw-r--r--docs/reference/nlme.mmkin.html2
-rw-r--r--docs/reference/parms.html2
-rw-r--r--docs/reference/plot.mixed.mmkin-1.pngbin85433 -> 84976 bytes
-rw-r--r--docs/reference/plot.mkinfit-1.pngbin53151 -> 53333 bytes
-rw-r--r--docs/reference/plot.mkinfit-2.pngbin73254 -> 72971 bytes
-rw-r--r--docs/reference/plot.mkinfit-3.pngbin67810 -> 67908 bytes
-rw-r--r--docs/reference/plot.mkinfit-4.pngbin72295 -> 72505 bytes
-rw-r--r--docs/reference/plot.mkinfit-5.pngbin66560 -> 66973 bytes
-rw-r--r--docs/reference/plot.mkinfit-6.pngbin72717 -> 72699 bytes
-rw-r--r--docs/reference/plot.mkinfit-7.pngbin73553 -> 74240 bytes
-rw-r--r--docs/reference/plot.mkinfit.html2
-rw-r--r--docs/reference/plot.mmkin-1.pngbin48997 -> 49701 bytes
-rw-r--r--docs/reference/plot.mmkin-2.pngbin49376 -> 50025 bytes
-rw-r--r--docs/reference/plot.mmkin-3.pngbin46202 -> 46360 bytes
-rw-r--r--docs/reference/plot.mmkin-4.pngbin33057 -> 33389 bytes
-rw-r--r--docs/reference/plot.mmkin-5.pngbin57372 -> 58129 bytes
-rw-r--r--docs/reference/plot.mmkin.html2
-rw-r--r--docs/reference/reexports.html2
-rw-r--r--docs/reference/sigma_twocomp-1.pngbin43910 -> 43766 bytes
-rw-r--r--docs/reference/sigma_twocomp.html2
-rw-r--r--docs/reference/summary.nlme.mmkin.html12
-rw-r--r--docs/reference/transform_odeparms.html2
-rw-r--r--man/mmkin.Rd5
-rw-r--r--test.log49
-rw-r--r--tests/figs/plotting/mkinfit-plot-for-focus-c-with-residuals-like-in-gmkin.svg42
-rw-r--r--tests/figs/plotting/mkinfit-plot-for-focus-c-with-sep-true.svg42
-rw-r--r--tests/figs/plotting/plot-res-for-focus-c.svg42
-rw-r--r--tests/figs/plotting/plot-res-for-focus-d.svg98
-rw-r--r--vignettes/FOCUS_D.html66
-rw-r--r--vignettes/FOCUS_L.html128
-rw-r--r--vignettes/web_only/mkin_benchmarks.rdabin1074 -> 1133 bytes
134 files changed, 445 insertions, 374 deletions
diff --git a/DESCRIPTION b/DESCRIPTION
index 5bd507ff..48aaf81f 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -2,7 +2,7 @@ Package: mkin
Type: Package
Title: Kinetic Evaluation of Chemical Degradation Data
Version: 1.0.4.9000
-Date: 2021-02-24
+Date: 2021-04-21
Authors@R: c(
person("Johannes", "Ranke", role = c("aut", "cre", "cph"),
email = "jranke@uni-bremen.de",
diff --git a/NEWS.md b/NEWS.md
index a91523bd..d80e152c 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -16,12 +16,14 @@
- 'plot.mixed.mmkin': Gains arguments 'test_log_parms' and 'conf.level'
-# mkin 1.0.4 (Unreleased)
-
-- 'plot.mixed.mmkin': Reset graphical parameters on exit
+# mkin 1.0.4 (2021-04-20)
- All plotting functions setting graphical parameters: Use on.exit() for resetting graphical parameters
+- 'plot.mkinfit': Use xlab and xlim for the residual plot if show_residuals is TRUE
+
+- 'mmkin': Use cores = 1 per default on Windows to make it easier for first time users
+
# mkin 1.0.3 (2021-02-15)
- Review and update README, the 'Introduction to mkin' vignette and some of the help pages
diff --git a/R/mmkin.R b/R/mmkin.R
index 030fb27b..fe04129e 100644
--- a/R/mmkin.R
+++ b/R/mmkin.R
@@ -13,7 +13,8 @@
#' is only used when the \code{cluster} argument is \code{NULL}. On Windows
#' machines, cores > 1 is not supported, you need to use the \code{cluster}
#' argument to use multiple logical processors. Per default, all cores
-#' detected by [parallel::detectCores()] are used.
+#' detected by [parallel::detectCores()] are used, except on Windows where
+#' the default is 1.
#' @param cluster A cluster as returned by \code{\link{makeCluster}} to be used
#' for parallel execution.
#' @param \dots Further arguments that will be passed to \code{\link{mkinfit}}.
@@ -75,7 +76,7 @@
#'
#' @export mmkin
mmkin <- function(models = c("SFO", "FOMC", "DFOP"), datasets,
- cores = parallel::detectCores(), cluster = NULL, ...)
+ cores = if (Sys.info()["sysname"] == "Windows") 1 else parallel::detectCores(), cluster = NULL, ...)
{
call <- match.call()
parent_models_available = c("SFO", "FOMC", "DFOP", "HS", "SFORB", "IORE", "logistic")
diff --git a/R/plot.mkinfit.R b/R/plot.mkinfit.R
index 2e319aae..1d4ea543 100644
--- a/R/plot.mkinfit.R
+++ b/R/plot.mkinfit.R
@@ -278,7 +278,7 @@ plot.mkinfit <- function(x, fit = x,
if (show_residuals) {
mkinresplot(fit, obs_vars = row_obs_vars, standardized = standardized,
pch_obs = pch_obs[row_obs_vars], col_obs = col_obs[row_obs_vars],
- legend = FALSE, frame = frame, xlab = xlab)
+ legend = FALSE, frame = frame, xlab = xlab, xlim = xlim)
}
# Show error model plot if requested
diff --git a/check.log b/check.log
index 6e19f958..7de944a5 100644
--- a/check.log
+++ b/check.log
@@ -1,5 +1,5 @@
* using log directory ‘/home/jranke/git/mkin/mkin.Rcheck’
-* using R version 4.0.4 (2021-02-15)
+* using R version 4.0.5 (2021-03-31)
* using platform: x86_64-pc-linux-gnu (64-bit)
* using session charset: UTF-8
* using options ‘--no-tests --as-cran’
diff --git a/docs/articles/FOCUS_D.html b/docs/articles/FOCUS_D.html
index 08acf58b..1bfba6e5 100644
--- a/docs/articles/FOCUS_D.html
+++ b/docs/articles/FOCUS_D.html
@@ -31,7 +31,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
@@ -94,13 +94,13 @@
- </header><script src="FOCUS_D_files/header-attrs-2.6/header-attrs.js"></script><script src="FOCUS_D_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
+ </header><script src="FOCUS_D_files/header-attrs-2.7/header-attrs.js"></script><script src="FOCUS_D_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
<div class="col-md-9 contents">
<div class="page-header toc-ignore">
<h1 data-toc-skip>Example evaluation of FOCUS Example Dataset D</h1>
<h4 class="author">Johannes Ranke</h4>
- <h4 class="date">Last change 31 January 2019 (rebuilt 2021-02-15)</h4>
+ <h4 class="date">Last change 31 January 2019 (rebuilt 2021-03-31)</h4>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/FOCUS_D.rmd"><code>vignettes/FOCUS_D.rmd</code></a></small>
<div class="hidden name"><code>FOCUS_D.rmd</code></div>
@@ -185,10 +185,10 @@
<p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p>
<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">fit</span><span class="op">)</span></code></pre></div>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:50:27 2021
-## Date of summary: Mon Feb 15 17:50:28 2021
+<pre><code>## mkin version used for fitting: 1.0.4
+## R version used for fitting: 4.0.4
+## Date of fit: Wed Mar 31 19:18:28 2021
+## Date of summary: Wed Mar 31 19:18:29 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -196,7 +196,7 @@
##
## Model predictions using solution type analytical
##
-## Fitted using 401 model solutions performed in 0.161 s
+## Fitted using 401 model solutions performed in 0.159 s
##
## Error model: Constant variance
##
diff --git a/docs/articles/FOCUS_D_files/figure-html/plot-1.png b/docs/articles/FOCUS_D_files/figure-html/plot-1.png
index abf26715..c3a5d56e 100644
--- a/docs/articles/FOCUS_D_files/figure-html/plot-1.png
+++ b/docs/articles/FOCUS_D_files/figure-html/plot-1.png
Binary files differ
diff --git a/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png b/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png
index f4937894..42e48dee 100644
--- a/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png
+++ b/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png
Binary files differ
diff --git a/docs/articles/FOCUS_D_files/header-attrs-2.7/header-attrs.js b/docs/articles/FOCUS_D_files/header-attrs-2.7/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/articles/FOCUS_D_files/header-attrs-2.7/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/articles/FOCUS_L.html b/docs/articles/FOCUS_L.html
index ab9739bc..7074816c 100644
--- a/docs/articles/FOCUS_L.html
+++ b/docs/articles/FOCUS_L.html
@@ -31,7 +31,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
@@ -94,13 +94,13 @@
- </header><script src="FOCUS_L_files/header-attrs-2.6/header-attrs.js"></script><script src="FOCUS_L_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
+ </header><script src="FOCUS_L_files/header-attrs-2.7/header-attrs.js"></script><script src="FOCUS_L_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
<div class="col-md-9 contents">
<div class="page-header toc-ignore">
<h1 data-toc-skip>Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
<h4 class="author">Johannes Ranke</h4>
- <h4 class="date">Last change 17 November 2016 (rebuilt 2021-02-15)</h4>
+ <h4 class="date">Last change 17 November 2016 (rebuilt 2021-03-31)</h4>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/FOCUS_L.rmd"><code>vignettes/FOCUS_L.rmd</code></a></small>
<div class="hidden name"><code>FOCUS_L.rmd</code></div>
@@ -126,10 +126,10 @@
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">m.L1.SFO</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">FOCUS_2006_L1_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">m.L1.SFO</span><span class="op">)</span></code></pre></div>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:50:30 2021
-## Date of summary: Mon Feb 15 17:50:30 2021
+<pre><code>## mkin version used for fitting: 1.0.4
+## R version used for fitting: 4.0.4
+## Date of fit: Wed Mar 31 19:18:31 2021
+## Date of summary: Wed Mar 31 19:18:31 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -232,10 +232,10 @@
<pre><code>## Warning in sqrt(1/diag(V)): NaNs produced</code></pre>
<pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
## doubtful</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:50:31 2021
-## Date of summary: Mon Feb 15 17:50:31 2021
+<pre><code>## mkin version used for fitting: 1.0.4
+## R version used for fitting: 4.0.4
+## Date of fit: Wed Mar 31 19:18:32 2021
+## Date of summary: Wed Mar 31 19:18:32 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -344,10 +344,10 @@
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-9-1.png" width="672"></p>
<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">m.L2.FOMC</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:50:31 2021
-## Date of summary: Mon Feb 15 17:50:31 2021
+<pre><code>## mkin version used for fitting: 1.0.4
+## R version used for fitting: 4.0.4
+## Date of fit: Wed Mar 31 19:18:32 2021
+## Date of summary: Wed Mar 31 19:18:32 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -425,10 +425,10 @@
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-10-1.png" width="672"></p>
<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">m.L2.DFOP</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:50:32 2021
-## Date of summary: Mon Feb 15 17:50:32 2021
+<pre><code>## mkin version used for fitting: 1.0.4
+## R version used for fitting: 4.0.4
+## Date of fit: Wed Mar 31 19:18:33 2021
+## Date of summary: Wed Mar 31 19:18:33 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -531,10 +531,10 @@
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p>
<div class="sourceCode" id="cb24"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></code></pre></div>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:50:32 2021
-## Date of summary: Mon Feb 15 17:50:32 2021
+<pre><code>## mkin version used for fitting: 1.0.4
+## R version used for fitting: 4.0.4
+## Date of fit: Wed Mar 31 19:18:33 2021
+## Date of summary: Wed Mar 31 19:18:33 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -644,10 +644,10 @@
<p>The <span class="math inline">\(\chi^2\)</span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline">\(\chi^2\)</span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p>
<div class="sourceCode" id="cb29"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">[[</span><span class="st">"SFO"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:50:33 2021
-## Date of summary: Mon Feb 15 17:50:33 2021
+<pre><code>## mkin version used for fitting: 1.0.4
+## R version used for fitting: 4.0.4
+## Date of fit: Wed Mar 31 19:18:34 2021
+## Date of summary: Wed Mar 31 19:18:34 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -709,10 +709,10 @@
## parent 106 352</code></pre>
<div class="sourceCode" id="cb31"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">[[</span><span class="st">"FOMC"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:50:33 2021
-## Date of summary: Mon Feb 15 17:50:33 2021
+<pre><code>## mkin version used for fitting: 1.0.4
+## R version used for fitting: 4.0.4
+## Date of fit: Wed Mar 31 19:18:34 2021
+## Date of summary: Wed Mar 31 19:18:34 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png
index e9c0b0a0..5f95a506 100644
--- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png
+++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png
Binary files differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png
index 3e03954d..82dc16c4 100644
--- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png
+++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png
Binary files differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png
index 8c9e8fd4..06082027 100644
--- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png
+++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png
Binary files differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png
index b3aa8334..75522f2f 100644
--- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png
+++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png
Binary files differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png
index 477829a5..145053fd 100644
--- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png
+++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png
Binary files differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png
index e8f21107..8fbe2159 100644
--- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png
+++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png
Binary files differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png
index c0e08884..b1840a39 100644
--- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png
+++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png
Binary files differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png
index 310b4f3b..f85a349f 100644
--- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png
+++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png
Binary files differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png
index 570f0026..a29ce1ff 100644
--- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png
+++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png
Binary files differ
diff --git a/docs/articles/FOCUS_L_files/header-attrs-2.7/header-attrs.js b/docs/articles/FOCUS_L_files/header-attrs-2.7/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/articles/FOCUS_L_files/header-attrs-2.7/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/articles/mkin.html b/docs/articles/mkin.html
index 6dbb093d..a0fccc16 100644
--- a/docs/articles/mkin.html
+++ b/docs/articles/mkin.html
@@ -31,7 +31,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
@@ -94,13 +94,13 @@
- </header><script src="mkin_files/header-attrs-2.6/header-attrs.js"></script><script src="mkin_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
+ </header><script src="mkin_files/header-attrs-2.7/header-attrs.js"></script><script src="mkin_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
<div class="col-md-9 contents">
<div class="page-header toc-ignore">
<h1 data-toc-skip>Introduction to mkin</h1>
<h4 class="author">Johannes Ranke</h4>
- <h4 class="date">Last change 15 February 2021 (rebuilt 2021-02-15)</h4>
+ <h4 class="date">Last change 15 February 2021 (rebuilt 2021-03-31)</h4>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/mkin.rmd"><code>vignettes/mkin.rmd</code></a></small>
<div class="hidden name"><code>mkin.rmd</code></div>
diff --git a/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png b/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png
index bf38fdd7..8a182047 100644
--- a/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png
+++ b/docs/articles/mkin_files/figure-html/unnamed-chunk-2-1.png
Binary files differ
diff --git a/docs/articles/mkin_files/header-attrs-2.7/header-attrs.js b/docs/articles/mkin_files/header-attrs-2.7/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/articles/mkin_files/header-attrs-2.7/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/articles/twa.html b/docs/articles/twa.html
index 2e3d2f96..167f60d3 100644
--- a/docs/articles/twa.html
+++ b/docs/articles/twa.html
@@ -31,7 +31,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
@@ -94,13 +94,13 @@
- </header><script src="twa_files/header-attrs-2.6/header-attrs.js"></script><script src="twa_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
+ </header><script src="twa_files/header-attrs-2.7/header-attrs.js"></script><script src="twa_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
<div class="col-md-9 contents">
<div class="page-header toc-ignore">
<h1 data-toc-skip>Calculation of time weighted average concentrations with mkin</h1>
<h4 class="author">Johannes Ranke</h4>
- <h4 class="date">Last change 18 September 2019 (rebuilt 2021-02-15)</h4>
+ <h4 class="date">Last change 18 September 2019 (rebuilt 2021-03-31)</h4>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/twa.rmd"><code>vignettes/twa.rmd</code></a></small>
<div class="hidden name"><code>twa.rmd</code></div>
diff --git a/docs/articles/twa_files/header-attrs-2.7/header-attrs.js b/docs/articles/twa_files/header-attrs-2.7/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/articles/twa_files/header-attrs-2.7/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/articles/web_only/FOCUS_Z.html b/docs/articles/web_only/FOCUS_Z.html
index 57fc3545..e4a6cb52 100644
--- a/docs/articles/web_only/FOCUS_Z.html
+++ b/docs/articles/web_only/FOCUS_Z.html
@@ -31,7 +31,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
@@ -94,13 +94,13 @@
- </header><script src="FOCUS_Z_files/header-attrs-2.6/header-attrs.js"></script><script src="FOCUS_Z_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
+ </header><script src="FOCUS_Z_files/header-attrs-2.7/header-attrs.js"></script><script src="FOCUS_Z_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
<div class="col-md-9 contents">
<div class="page-header toc-ignore">
<h1 data-toc-skip>Example evaluation of FOCUS dataset Z</h1>
<h4 class="author">Johannes Ranke</h4>
- <h4 class="date">Last change 16 January 2018 (rebuilt 2021-02-15)</h4>
+ <h4 class="date">Last change 16 January 2018 (rebuilt 2021-03-31)</h4>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/web_only/FOCUS_Z.rmd"><code>vignettes/web_only/FOCUS_Z.rmd</code></a></small>
<div class="hidden name"><code>FOCUS_Z.rmd</code></div>
diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png
index 2213c446..2e70b207 100644
--- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png
+++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png
Binary files differ
diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png
index 61b04d3a..4a205020 100644
--- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png
+++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png
Binary files differ
diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png
index 409f1203..8b07d497 100644
--- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png
+++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png
Binary files differ
diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png
index 4d6820cd..4765c9fe 100644
--- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png
+++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png
Binary files differ
diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png
index 2e504961..e005446b 100644
--- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png
+++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png
Binary files differ
diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png
index 2213c446..2e70b207 100644
--- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png
+++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png
Binary files differ
diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png
index 7ab743af..f06ee667 100644
--- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png
+++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png
Binary files differ
diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png
index 2e0dce77..b8e0e900 100644
--- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png
+++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png
Binary files differ
diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png
index 458299c1..14dd7805 100644
--- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png
+++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png
Binary files differ
diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png
index eb833066..414bc941 100644
--- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png
+++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png
Binary files differ
diff --git a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png
index e7501cbb..0a83f8ea 100644
--- a/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png
+++ b/docs/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png
Binary files differ
diff --git a/docs/articles/web_only/FOCUS_Z_files/header-attrs-2.7/header-attrs.js b/docs/articles/web_only/FOCUS_Z_files/header-attrs-2.7/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/articles/web_only/FOCUS_Z_files/header-attrs-2.7/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/articles/web_only/NAFTA_examples.html b/docs/articles/web_only/NAFTA_examples.html
index e79375b3..65a71b56 100644
--- a/docs/articles/web_only/NAFTA_examples.html
+++ b/docs/articles/web_only/NAFTA_examples.html
@@ -31,7 +31,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
@@ -94,13 +94,13 @@
- </header><script src="NAFTA_examples_files/header-attrs-2.6/header-attrs.js"></script><script src="NAFTA_examples_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
+ </header><script src="NAFTA_examples_files/header-attrs-2.7/header-attrs.js"></script><script src="NAFTA_examples_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
<div class="col-md-9 contents">
<div class="page-header toc-ignore">
<h1 data-toc-skip>Evaluation of example datasets from Attachment 1 to the US EPA SOP for the NAFTA guidance</h1>
<h4 class="author">Johannes Ranke</h4>
- <h4 class="date">26 February 2019 (rebuilt 2021-02-15)</h4>
+ <h4 class="date">26 February 2019 (rebuilt 2021-03-31)</h4>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/web_only/NAFTA_examples.rmd"><code>vignettes/web_only/NAFTA_examples.rmd</code></a></small>
<div class="hidden name"><code>NAFTA_examples.rmd</code></div>
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png
index f5420ce8..b1c874cc 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png
index 0ae4bd9f..9dfa26fb 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png
index 57a48119..cdae6520 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png
index c42d45f0..57672896 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png
index 52dea51e..1e4995a8 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png
index ca1f29be..93bb7173 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png
index f69e6d3b..a2ee7966 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png
index 71fcd257..a40bd581 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png
index 820501a3..690c91ef 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png
index e264d2ea..c1284b83 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png
index e5b656a4..d40ad7e7 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png
index c9664c77..8c2ae01b 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png
index a81f814c..fbf566f7 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png
index 75d72e7c..1e137ddf 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png
index 3ce13a97..efc16dda 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png b/docs/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png
index e2cf2f83..53addbd2 100644
--- a/docs/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png
+++ b/docs/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png
Binary files differ
diff --git a/docs/articles/web_only/NAFTA_examples_files/header-attrs-2.7/header-attrs.js b/docs/articles/web_only/NAFTA_examples_files/header-attrs-2.7/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/articles/web_only/NAFTA_examples_files/header-attrs-2.7/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/articles/web_only/benchmarks.html b/docs/articles/web_only/benchmarks.html
index 9908c224..290906c1 100644
--- a/docs/articles/web_only/benchmarks.html
+++ b/docs/articles/web_only/benchmarks.html
@@ -31,7 +31,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
@@ -94,13 +94,13 @@
- </header><script src="benchmarks_files/header-attrs-2.6/header-attrs.js"></script><script src="benchmarks_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
+ </header><script src="benchmarks_files/header-attrs-2.7/header-attrs.js"></script><script src="benchmarks_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
<div class="col-md-9 contents">
<div class="page-header toc-ignore">
<h1 data-toc-skip>Benchmark timings for mkin</h1>
<h4 class="author">Johannes Ranke</h4>
- <h4 class="date">Last change 13 May 2020 (rebuilt 2021-02-15)</h4>
+ <h4 class="date">Last change 13 May 2020 (rebuilt 2021-03-31)</h4>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/master/vignettes/web_only/benchmarks.rmd"><code>vignettes/web_only/benchmarks.rmd</code></a></small>
<div class="hidden name"><code>benchmarks.rmd</code></div>
@@ -232,6 +232,11 @@
<td align="right">1.881</td>
<td align="right">3.504</td>
</tr>
+<tr class="even">
+<td align="left">1.0.4</td>
+<td align="right">1.867</td>
+<td align="right">3.450</td>
+</tr>
</tbody>
</table>
</div>
@@ -301,6 +306,12 @@
<td align="right">6.344</td>
<td align="right">2.798</td>
</tr>
+<tr class="even">
+<td align="left">1.0.4</td>
+<td align="right">1.415</td>
+<td align="right">6.364</td>
+<td align="right">2.820</td>
+</tr>
</tbody>
</table>
</div>
@@ -400,6 +411,15 @@
<td align="right">1.923</td>
<td align="right">2.839</td>
</tr>
+<tr class="even">
+<td align="left">1.0.4</td>
+<td align="right">0.785</td>
+<td align="right">1.252</td>
+<td align="right">1.466</td>
+<td align="right">3.091</td>
+<td align="right">1.936</td>
+<td align="right">2.826</td>
+</tr>
</tbody>
</table>
</div>
diff --git a/docs/articles/web_only/benchmarks_files/header-attrs-2.7/header-attrs.js b/docs/articles/web_only/benchmarks_files/header-attrs-2.7/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/articles/web_only/benchmarks_files/header-attrs-2.7/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/news/index.html b/docs/news/index.html
index 3a52a093..2905c120 100644
--- a/docs/news/index.html
+++ b/docs/news/index.html
@@ -145,8 +145,9 @@
<h1 class="page-header" data-toc-text="1.0.4">
<a href="#mkin-104-unreleased" class="anchor"></a>mkin 1.0.4 (Unreleased)</h1>
<ul>
-<li><p>‘plot.mixed.mmkin’: Reset graphical parameters on exit</p></li>
<li><p>All plotting functions setting graphical parameters: Use on.exit() for resetting graphical parameters</p></li>
+<li><p>‘plot.mkinfit’: Use xlab and xlim for the residual plot if show_residuals is TRUE</p></li>
+<li><p>‘mmkin’: Use cores = 1 per default on Windows to make it easier for first time users</p></li>
</ul>
</div>
<div id="mkin-103-2021-02-15" class="section level1">
diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml
index 49dceae1..3f97ea94 100644
--- a/docs/pkgdown.yml
+++ b/docs/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
web_only/NAFTA_examples: NAFTA_examples.html
web_only/benchmarks: benchmarks.html
web_only/compiled_models: compiled_models.html
-last_built: 2021-02-24T14:04Z
+last_built: 2021-04-20T14:34Z
urls:
reference: https://pkgdown.jrwb.de/mkin/reference
article: https://pkgdown.jrwb.de/mkin/articles
diff --git a/docs/reference/D24_2014.html b/docs/reference/D24_2014.html
index e2d47f1b..c59bfad6 100644
--- a/docs/reference/D24_2014.html
+++ b/docs/reference/D24_2014.html
@@ -77,7 +77,7 @@ constrained by data protection regulations." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/Extract.mmkin.html b/docs/reference/Extract.mmkin.html
index 5a99cf1b..b1c73ba5 100644
--- a/docs/reference/Extract.mmkin.html
+++ b/docs/reference/Extract.mmkin.html
@@ -72,7 +72,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/Rplot001.png b/docs/reference/Rplot001.png
index 1cbcb153..49fb9af1 100644
--- a/docs/reference/Rplot001.png
+++ b/docs/reference/Rplot001.png
Binary files differ
diff --git a/docs/reference/Rplot003.png b/docs/reference/Rplot003.png
index 19198739..eba202e9 100644
--- a/docs/reference/Rplot003.png
+++ b/docs/reference/Rplot003.png
Binary files differ
diff --git a/docs/reference/Rplot004.png b/docs/reference/Rplot004.png
index 1028a9c4..a4f878c8 100644
--- a/docs/reference/Rplot004.png
+++ b/docs/reference/Rplot004.png
Binary files differ
diff --git a/docs/reference/Rplot005.png b/docs/reference/Rplot005.png
index aa844051..a4f878c8 100644
--- a/docs/reference/Rplot005.png
+++ b/docs/reference/Rplot005.png
Binary files differ
diff --git a/docs/reference/Rplot006.png b/docs/reference/Rplot006.png
index 81525882..ff8a5d83 100644
--- a/docs/reference/Rplot006.png
+++ b/docs/reference/Rplot006.png
Binary files differ
diff --git a/docs/reference/Rplot007.png b/docs/reference/Rplot007.png
index 10b7455a..3405a171 100644
--- a/docs/reference/Rplot007.png
+++ b/docs/reference/Rplot007.png
Binary files differ
diff --git a/docs/reference/add_err-1.png b/docs/reference/add_err-1.png
index 9ba106db..70118923 100644
--- a/docs/reference/add_err-1.png
+++ b/docs/reference/add_err-1.png
Binary files differ
diff --git a/docs/reference/add_err-2.png b/docs/reference/add_err-2.png
index 3088c40e..69b820c2 100644
--- a/docs/reference/add_err-2.png
+++ b/docs/reference/add_err-2.png
Binary files differ
diff --git a/docs/reference/add_err-3.png b/docs/reference/add_err-3.png
index 493a761a..1de78fa7 100644
--- a/docs/reference/add_err-3.png
+++ b/docs/reference/add_err-3.png
Binary files differ
diff --git a/docs/reference/add_err.html b/docs/reference/add_err.html
index 6fbecd14..18ca517e 100644
--- a/docs/reference/add_err.html
+++ b/docs/reference/add_err.html
@@ -74,7 +74,7 @@ may depend on the predicted value and is specified as a standard deviation." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/confint.mkinfit.html b/docs/reference/confint.mkinfit.html
index 06e78459..e81e0c7b 100644
--- a/docs/reference/confint.mkinfit.html
+++ b/docs/reference/confint.mkinfit.html
@@ -79,7 +79,7 @@ method of Venzon and Moolgavkar (1988)." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
@@ -285,13 +285,13 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37,
<span class='va'>f_d_1</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>FOCUS_2006_D</span>, <span class='va'>value</span> <span class='op'>!=</span> <span class='fl'>0</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span><span class='va'>ci_profile</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"profile"</span>, cores <span class='op'>=</span> <span class='fl'>1</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span><span class='op'>)</span>
</div><div class='output co'>#&gt; user system elapsed
-#&gt; 4.255 1.029 3.937 </div><div class='input'><span class='co'># Using more cores does not save much time here, as parent_0 takes up most of the time</span>
+#&gt; 3.871 0.000 3.871 </div><div class='input'><span class='co'># Using more cores does not save much time here, as parent_0 takes up most of the time</span>
<span class='co'># If we additionally exclude parent_0 (the confidence of which is often of</span>
<span class='co'># minor interest), we get a nice performance improvement if we use at least 4 cores</span>
<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span><span class='va'>ci_profile_no_parent_0</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"profile"</span>,
<span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"k_parent_sink"</span>, <span class='st'>"k_parent_m1"</span>, <span class='st'>"k_m1_sink"</span>, <span class='st'>"sigma"</span><span class='op'>)</span>, cores <span class='op'>=</span> <span class='va'>n_cores</span><span class='op'>)</span><span class='op'>)</span>
</div><div class='output co'>#&gt; <span class='message'>Profiling the likelihood</span></div><div class='output co'>#&gt; user system elapsed
-#&gt; 1.469 0.092 0.911 </div><div class='input'><span class='va'>ci_profile</span>
+#&gt; 1.484 0.116 0.923 </div><div class='input'><span class='va'>ci_profile</span>
</div><div class='output co'>#&gt; 2.5% 97.5%
#&gt; parent_0 96.456003640 1.027703e+02
#&gt; k_parent_sink 0.040762501 5.549764e-02
diff --git a/docs/reference/dimethenamid_2018.html b/docs/reference/dimethenamid_2018.html
index 6845f74f..3b6ae721 100644
--- a/docs/reference/dimethenamid_2018.html
+++ b/docs/reference/dimethenamid_2018.html
@@ -77,7 +77,7 @@ constrained by data protection regulations." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/experimental_data_for_UBA-1.png b/docs/reference/experimental_data_for_UBA-1.png
index 33946ded..5527c07f 100644
--- a/docs/reference/experimental_data_for_UBA-1.png
+++ b/docs/reference/experimental_data_for_UBA-1.png
Binary files differ
diff --git a/docs/reference/experimental_data_for_UBA.html b/docs/reference/experimental_data_for_UBA.html
index 77f75678..4da8d6c3 100644
--- a/docs/reference/experimental_data_for_UBA.html
+++ b/docs/reference/experimental_data_for_UBA.html
@@ -100,7 +100,7 @@ Dataset 12 is from the Renewal Assessment Report (RAR) for thifensulfuron-methyl
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/f_time_norm_focus.html b/docs/reference/f_time_norm_focus.html
index aa494b27..a0899ac8 100644
--- a/docs/reference/f_time_norm_focus.html
+++ b/docs/reference/f_time_norm_focus.html
@@ -73,7 +73,7 @@ in Appendix 8 to the FOCUS kinetics guidance (FOCUS 2014, p. 369)." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/focus_soil_moisture.html b/docs/reference/focus_soil_moisture.html
index 61f235db..bbacc554 100644
--- a/docs/reference/focus_soil_moisture.html
+++ b/docs/reference/focus_soil_moisture.html
@@ -73,7 +73,7 @@ corresponds to pF2, MWHC to pF 1 and 1/3 bar to pF 2.5." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/logLik.mkinfit.html b/docs/reference/logLik.mkinfit.html
index 9e5b4069..83fb4e48 100644
--- a/docs/reference/logLik.mkinfit.html
+++ b/docs/reference/logLik.mkinfit.html
@@ -76,7 +76,7 @@ the error model." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/mccall81_245T-1.png b/docs/reference/mccall81_245T-1.png
index 91fe060e..478462ae 100644
--- a/docs/reference/mccall81_245T-1.png
+++ b/docs/reference/mccall81_245T-1.png
Binary files differ
diff --git a/docs/reference/mccall81_245T.html b/docs/reference/mccall81_245T.html
index b7dca4a7..4f8d3fa0 100644
--- a/docs/reference/mccall81_245T.html
+++ b/docs/reference/mccall81_245T.html
@@ -74,7 +74,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/mixed-1.png b/docs/reference/mixed-1.png
index 28a376f4..b9454c86 100644
--- a/docs/reference/mixed-1.png
+++ b/docs/reference/mixed-1.png
Binary files differ
diff --git a/docs/reference/mixed.html b/docs/reference/mixed.html
index 23d955e3..b4f8db16 100644
--- a/docs/reference/mixed.html
+++ b/docs/reference/mixed.html
@@ -72,7 +72,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/mkinds.html b/docs/reference/mkinds.html
index 5111a9e0..fe89012c 100644
--- a/docs/reference/mkinds.html
+++ b/docs/reference/mkinds.html
@@ -75,7 +75,7 @@ provided by this package come as mkinds objects nevertheless." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/mkindsg.html b/docs/reference/mkindsg.html
index 003e5e8f..a9686e4c 100644
--- a/docs/reference/mkindsg.html
+++ b/docs/reference/mkindsg.html
@@ -75,7 +75,7 @@ dataset if no data are supplied." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/mkinfit-1.png b/docs/reference/mkinfit-1.png
index de2a90a9..e1d0f2f4 100644
--- a/docs/reference/mkinfit-1.png
+++ b/docs/reference/mkinfit-1.png
Binary files differ
diff --git a/docs/reference/mkinfit.html b/docs/reference/mkinfit.html
index 180f2ee7..2c162e49 100644
--- a/docs/reference/mkinfit.html
+++ b/docs/reference/mkinfit.html
@@ -80,7 +80,7 @@ likelihood function." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
@@ -431,10 +431,10 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6
<span class='co'># Use shorthand notation for parent only degradation</span>
<span class='va'>fit</span> <span class='op'>&lt;-</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='st'>"FOMC"</span>, <span class='va'>FOCUS_2006_C</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; mkin version used for fitting: 1.0.3
-#&gt; R version used for fitting: 4.0.3
-#&gt; Date of fit: Mon Feb 15 13:43:26 2021
-#&gt; Date of summary: Mon Feb 15 13:43:26 2021
+</div><div class='output co'>#&gt; mkin version used for fitting: 1.0.4
+#&gt; R version used for fitting: 4.0.4
+#&gt; Date of fit: Wed Mar 31 19:15:41 2021
+#&gt; Date of summary: Wed Mar 31 19:15:41 2021
#&gt;
#&gt; Equations:
#&gt; d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -574,10 +574,10 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6
analytical <span class='op'>=</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>,
solution_type <span class='op'>=</span> <span class='st'>"analytical"</span><span class='op'>)</span><span class='op'>)</span>
<span class='op'>}</span>
-</div><div class='output co'>#&gt; test relative elapsed
-#&gt; 3 analytical 1.000 0.550
-#&gt; 1 deSolve_compiled 1.731 0.952
-#&gt; 2 eigen 2.662 1.464</div><div class='input'><span class='co'># }</span>
+</div><div class='output co'>#&gt; <span class='message'>Loading required package: rbenchmark</span></div><div class='output co'>#&gt; test relative elapsed
+#&gt; 3 analytical 1.000 0.547
+#&gt; 1 deSolve_compiled 1.717 0.939
+#&gt; 2 eigen 2.644 1.446</div><div class='input'><span class='co'># }</span>
<span class='co'># Use stepwise fitting, using optimised parameters from parent only fit, FOMC-SFO</span>
<span class='co'># \dontrun{</span>
@@ -598,10 +598,10 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6
#&gt; 2 6 -64.983 -1 0.3075 0.5792</div><div class='input'><span class='co'># Also, the missing standard error for log_beta and the t-tests for alpha</span>
<span class='co'># and beta indicate overparameterisation</span>
<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.FOMC_SFO.tc</span>, data <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#&gt; <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#&gt; <span class='warning'>Warning: diag(.) had 0 or NA entries; non-finite result is doubtful</span></div><div class='output co'>#&gt; mkin version used for fitting: 1.0.3
-#&gt; R version used for fitting: 4.0.3
-#&gt; Date of fit: Mon Feb 15 13:43:38 2021
-#&gt; Date of summary: Mon Feb 15 13:43:38 2021
+</div><div class='output co'>#&gt; <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#&gt; <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#&gt; <span class='warning'>Warning: diag(.) had 0 or NA entries; non-finite result is doubtful</span></div><div class='output co'>#&gt; mkin version used for fitting: 1.0.4
+#&gt; R version used for fitting: 4.0.4
+#&gt; Date of fit: Wed Mar 31 19:15:53 2021
+#&gt; Date of summary: Wed Mar 31 19:15:53 2021
#&gt;
#&gt; Equations:
#&gt; d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -610,7 +610,7 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6
#&gt;
#&gt; Model predictions using solution type deSolve
#&gt;
-#&gt; Fitted using 3729 model solutions performed in 2.802 s
+#&gt; Fitted using 3729 model solutions performed in 2.798 s
#&gt;
#&gt; Error model: Two-component variance function
#&gt;
diff --git a/docs/reference/mkinmod.html b/docs/reference/mkinmod.html
index 4ce9468a..1e8ad60d 100644
--- a/docs/reference/mkinmod.html
+++ b/docs/reference/mkinmod.html
@@ -78,7 +78,7 @@ mkinmod." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
@@ -348,7 +348,7 @@ Evaluating and Calculating Degradation Kinetics in Environmental Media</p>
parent <span class='op'>=</span> <span class='fu'>mkinsub</span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"m1"</span>, full_name <span class='op'>=</span> <span class='st'>"Test compound"</span><span class='op'>)</span>,
m1 <span class='op'>=</span> <span class='fu'>mkinsub</span><span class='op'>(</span><span class='st'>"SFO"</span>, full_name <span class='op'>=</span> <span class='st'>"Metabolite M1"</span><span class='op'>)</span>,
name <span class='op'>=</span> <span class='st'>"SFO_SFO"</span>, dll_dir <span class='op'>=</span> <span class='va'>DLL_dir</span>, unload <span class='op'>=</span> <span class='cn'>TRUE</span>, overwrite <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'>Copied DLL from /tmp/RtmpiJ2M4Z/filee097a4a94a921.so to /home/jranke/.local/share/mkin/SFO_SFO.so</span></div><div class='input'><span class='co'># Now we can save the model and restore it in a new session</span>
+</div><div class='output co'>#&gt; <span class='message'>Copied DLL from /tmp/Rtmp17EVw2/file269cfd5cc541a9.so to /home/jranke/.local/share/mkin/SFO_SFO.so</span></div><div class='input'><span class='co'># Now we can save the model and restore it in a new session</span>
<span class='fu'><a href='https://rdrr.io/r/base/readRDS.html'>saveRDS</a></span><span class='op'>(</span><span class='va'>SFO_SFO.2</span>, file <span class='op'>=</span> <span class='st'>"~/SFO_SFO.rds"</span><span class='op'>)</span>
<span class='co'># Terminate the R session here if you would like to check, and then do</span>
<span class='kw'><a href='https://rdrr.io/r/base/library.html'>library</a></span><span class='op'>(</span><span class='va'><a href='https://pkgdown.jrwb.de/mkin/'>mkin</a></span><span class='op'>)</span>
@@ -397,7 +397,7 @@ Evaluating and Calculating Degradation Kinetics in Environmental Media</p>
#&gt; })
#&gt; return(predicted)
#&gt; }
-#&gt; &lt;environment: 0x55555b0c2760&gt;</div><div class='input'>
+#&gt; &lt;environment: 0x55555c17ae90&gt;</div><div class='input'>
<span class='co'># If we have several parallel metabolites</span>
<span class='co'># (compare tests/testthat/test_synthetic_data_for_UBA_2014.R)</span>
<span class='va'>m_synth_DFOP_par</span> <span class='op'>&lt;-</span> <span class='fu'>mkinmod</span><span class='op'>(</span>
diff --git a/docs/reference/mkinpredict.html b/docs/reference/mkinpredict.html
index 25e26419..5775ba62 100644
--- a/docs/reference/mkinpredict.html
+++ b/docs/reference/mkinpredict.html
@@ -74,7 +74,7 @@ kinetic parameters and initial values for the state variables." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
@@ -410,8 +410,8 @@ as these always return mapped output.</p></td>
</div><div class='output co'>#&gt; test relative elapsed
#&gt; 2 deSolve_compiled 1.0 0.005
#&gt; 4 analytical 1.0 0.005
-#&gt; 1 eigen 4.4 0.022
-#&gt; 3 deSolve 47.0 0.235</div><div class='input'>
+#&gt; 1 eigen 4.0 0.020
+#&gt; 3 deSolve 46.2 0.231</div><div class='input'>
<span class='co'># \dontrun{</span>
<span class='co'># Predict from a fitted model</span>
<span class='va'>f</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_2006_C</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
diff --git a/docs/reference/mkinresplot-1.png b/docs/reference/mkinresplot-1.png
index ffd34f6f..963aa5b7 100644
--- a/docs/reference/mkinresplot-1.png
+++ b/docs/reference/mkinresplot-1.png
Binary files differ
diff --git a/docs/reference/mkinresplot.html b/docs/reference/mkinresplot.html
index 04ff15b8..fe3150e7 100644
--- a/docs/reference/mkinresplot.html
+++ b/docs/reference/mkinresplot.html
@@ -75,7 +75,7 @@ argument show_residuals = TRUE." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/mmkin-1.png b/docs/reference/mmkin-1.png
index 0db3379f..f6bb2131 100644
--- a/docs/reference/mmkin-1.png
+++ b/docs/reference/mmkin-1.png
Binary files differ
diff --git a/docs/reference/mmkin-2.png b/docs/reference/mmkin-2.png
index 024a9892..50102a3d 100644
--- a/docs/reference/mmkin-2.png
+++ b/docs/reference/mmkin-2.png
Binary files differ
diff --git a/docs/reference/mmkin-3.png b/docs/reference/mmkin-3.png
index a23d7cb9..9aa7f0db 100644
--- a/docs/reference/mmkin-3.png
+++ b/docs/reference/mmkin-3.png
Binary files differ
diff --git a/docs/reference/mmkin-4.png b/docs/reference/mmkin-4.png
index 89975db5..f4f413d1 100644
--- a/docs/reference/mmkin-4.png
+++ b/docs/reference/mmkin-4.png
Binary files differ
diff --git a/docs/reference/mmkin-5.png b/docs/reference/mmkin-5.png
index a2f34983..48ab2c50 100644
--- a/docs/reference/mmkin-5.png
+++ b/docs/reference/mmkin-5.png
Binary files differ
diff --git a/docs/reference/mmkin.html b/docs/reference/mmkin.html
index c9800fe7..caba300e 100644
--- a/docs/reference/mmkin.html
+++ b/docs/reference/mmkin.html
@@ -75,7 +75,7 @@ datasets specified in its first two arguments." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
@@ -155,7 +155,7 @@ datasets specified in its first two arguments.</p>
<pre class="usage"><span class='fu'>mmkin</span><span class='op'>(</span>
models <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span><span class='op'>)</span>,
<span class='va'>datasets</span>,
- cores <span class='op'>=</span> <span class='fu'>parallel</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/r/parallel/detectCores.html'>detectCores</a></span><span class='op'>(</span><span class='op'>)</span>,
+ cores <span class='op'>=</span> <span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/Sys.info.html'>Sys.info</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>[</span><span class='st'>"sysname"</span><span class='op'>]</span> <span class='op'>==</span> <span class='st'>"Windows"</span><span class='op'>)</span> <span class='fl'>1</span> <span class='kw'>else</span> <span class='fu'>parallel</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/r/parallel/detectCores.html'>detectCores</a></span><span class='op'>(</span><span class='op'>)</span>,
cluster <span class='op'>=</span> <span class='cn'>NULL</span>,
<span class='va'>...</span>
<span class='op'>)</span>
@@ -183,7 +183,8 @@ data for <code><a href='mkinfit.html'>mkinfit</a></code>.</p></td>
is only used when the <code>cluster</code> argument is <code>NULL</code>. On Windows
machines, cores &gt; 1 is not supported, you need to use the <code>cluster</code>
argument to use multiple logical processors. Per default, all cores
-detected by <code><a href='https://rdrr.io/r/parallel/detectCores.html'>parallel::detectCores()</a></code> are used.</p></td>
+detected by <code><a href='https://rdrr.io/r/parallel/detectCores.html'>parallel::detectCores()</a></code> are used, except on Windows where
+the default is 1.</p></td>
</tr>
<tr>
<th>cluster</th>
@@ -234,9 +235,9 @@ plotting.</p></div>
<span class='va'>time_default</span>
</div><div class='output co'>#&gt; user system elapsed
-#&gt; 4.630 0.415 1.717 </div><div class='input'><span class='va'>time_1</span>
+#&gt; 4.656 0.403 1.734 </div><div class='input'><span class='va'>time_1</span>
</div><div class='output co'>#&gt; user system elapsed
-#&gt; 5.694 0.000 5.694 </div><div class='input'>
+#&gt; 5.627 0.004 5.631 </div><div class='input'>
<span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>fits.0</span><span class='op'>[[</span><span class='st'>"SFO_lin"</span>, <span class='fl'>2</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span>
</div><div class='output co'>#&gt; $ff
#&gt; parent_M1 parent_sink M1_M2 M1_sink
diff --git a/docs/reference/nlme-1.png b/docs/reference/nlme-1.png
index 728cc557..c41adc27 100644
--- a/docs/reference/nlme-1.png
+++ b/docs/reference/nlme-1.png
Binary files differ
diff --git a/docs/reference/nlme-2.png b/docs/reference/nlme-2.png
index e8167455..c0d8e857 100644
--- a/docs/reference/nlme-2.png
+++ b/docs/reference/nlme-2.png
Binary files differ
diff --git a/docs/reference/nlme.html b/docs/reference/nlme.html
index 7b0c6a97..c6b43aab 100644
--- a/docs/reference/nlme.html
+++ b/docs/reference/nlme.html
@@ -75,7 +75,7 @@ datasets. They are used internally by the nlme.mmkin() method." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/nlme.mmkin-1.png b/docs/reference/nlme.mmkin-1.png
index 9186c135..90ede880 100644
--- a/docs/reference/nlme.mmkin-1.png
+++ b/docs/reference/nlme.mmkin-1.png
Binary files differ
diff --git a/docs/reference/nlme.mmkin-2.png b/docs/reference/nlme.mmkin-2.png
index d395fe02..0d140fd1 100644
--- a/docs/reference/nlme.mmkin-2.png
+++ b/docs/reference/nlme.mmkin-2.png
Binary files differ
diff --git a/docs/reference/nlme.mmkin-3.png b/docs/reference/nlme.mmkin-3.png
index 40518a59..8a60b52b 100644
--- a/docs/reference/nlme.mmkin-3.png
+++ b/docs/reference/nlme.mmkin-3.png
Binary files differ
diff --git a/docs/reference/nlme.mmkin.html b/docs/reference/nlme.mmkin.html
index 189e34ef..03448606 100644
--- a/docs/reference/nlme.mmkin.html
+++ b/docs/reference/nlme.mmkin.html
@@ -74,7 +74,7 @@ have been obtained by fitting the same model to a list of datasets." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/parms.html b/docs/reference/parms.html
index e45d6a5c..b4346b13 100644
--- a/docs/reference/parms.html
+++ b/docs/reference/parms.html
@@ -74,7 +74,7 @@ considering the error structure that was assumed for the fit." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/plot.mixed.mmkin-1.png b/docs/reference/plot.mixed.mmkin-1.png
index 2224d96e..65660abe 100644
--- a/docs/reference/plot.mixed.mmkin-1.png
+++ b/docs/reference/plot.mixed.mmkin-1.png
Binary files differ
diff --git a/docs/reference/plot.mkinfit-1.png b/docs/reference/plot.mkinfit-1.png
index e5da9f1c..54e5c46f 100644
--- a/docs/reference/plot.mkinfit-1.png
+++ b/docs/reference/plot.mkinfit-1.png
Binary files differ
diff --git a/docs/reference/plot.mkinfit-2.png b/docs/reference/plot.mkinfit-2.png
index a11d1680..ff8418a3 100644
--- a/docs/reference/plot.mkinfit-2.png
+++ b/docs/reference/plot.mkinfit-2.png
Binary files differ
diff --git a/docs/reference/plot.mkinfit-3.png b/docs/reference/plot.mkinfit-3.png
index c976d4b1..54f2b981 100644
--- a/docs/reference/plot.mkinfit-3.png
+++ b/docs/reference/plot.mkinfit-3.png
Binary files differ
diff --git a/docs/reference/plot.mkinfit-4.png b/docs/reference/plot.mkinfit-4.png
index c8bc00fe..7a7bfc6c 100644
--- a/docs/reference/plot.mkinfit-4.png
+++ b/docs/reference/plot.mkinfit-4.png
Binary files differ
diff --git a/docs/reference/plot.mkinfit-5.png b/docs/reference/plot.mkinfit-5.png
index 6631aa68..6a6741e7 100644
--- a/docs/reference/plot.mkinfit-5.png
+++ b/docs/reference/plot.mkinfit-5.png
Binary files differ
diff --git a/docs/reference/plot.mkinfit-6.png b/docs/reference/plot.mkinfit-6.png
index 946b20c5..c4d0b9c7 100644
--- a/docs/reference/plot.mkinfit-6.png
+++ b/docs/reference/plot.mkinfit-6.png
Binary files differ
diff --git a/docs/reference/plot.mkinfit-7.png b/docs/reference/plot.mkinfit-7.png
index 10807ea8..802b00ef 100644
--- a/docs/reference/plot.mkinfit-7.png
+++ b/docs/reference/plot.mkinfit-7.png
Binary files differ
diff --git a/docs/reference/plot.mkinfit.html b/docs/reference/plot.mkinfit.html
index b80c672d..ff6da93e 100644
--- a/docs/reference/plot.mkinfit.html
+++ b/docs/reference/plot.mkinfit.html
@@ -74,7 +74,7 @@ observed data together with the solution of the fitted model." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/plot.mmkin-1.png b/docs/reference/plot.mmkin-1.png
index 647dfb8a..d06d683c 100644
--- a/docs/reference/plot.mmkin-1.png
+++ b/docs/reference/plot.mmkin-1.png
Binary files differ
diff --git a/docs/reference/plot.mmkin-2.png b/docs/reference/plot.mmkin-2.png
index 1bc1c9db..d3678aca 100644
--- a/docs/reference/plot.mmkin-2.png
+++ b/docs/reference/plot.mmkin-2.png
Binary files differ
diff --git a/docs/reference/plot.mmkin-3.png b/docs/reference/plot.mmkin-3.png
index 50d6ffac..f84d5782 100644
--- a/docs/reference/plot.mmkin-3.png
+++ b/docs/reference/plot.mmkin-3.png
Binary files differ
diff --git a/docs/reference/plot.mmkin-4.png b/docs/reference/plot.mmkin-4.png
index e049fa16..9919dacb 100644
--- a/docs/reference/plot.mmkin-4.png
+++ b/docs/reference/plot.mmkin-4.png
Binary files differ
diff --git a/docs/reference/plot.mmkin-5.png b/docs/reference/plot.mmkin-5.png
index 2421995b..945b863f 100644
--- a/docs/reference/plot.mmkin-5.png
+++ b/docs/reference/plot.mmkin-5.png
Binary files differ
diff --git a/docs/reference/plot.mmkin.html b/docs/reference/plot.mmkin.html
index 20f9033d..3348e050 100644
--- a/docs/reference/plot.mmkin.html
+++ b/docs/reference/plot.mmkin.html
@@ -76,7 +76,7 @@ the fit of at least one model to the same dataset is shown." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/reexports.html b/docs/reference/reexports.html
index 864c4ff9..c6d716a1 100644
--- a/docs/reference/reexports.html
+++ b/docs/reference/reexports.html
@@ -79,7 +79,7 @@ below to see their documentation.
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/sigma_twocomp-1.png b/docs/reference/sigma_twocomp-1.png
index 6e61684e..fddb86a7 100644
--- a/docs/reference/sigma_twocomp-1.png
+++ b/docs/reference/sigma_twocomp-1.png
Binary files differ
diff --git a/docs/reference/sigma_twocomp.html b/docs/reference/sigma_twocomp.html
index 397582f0..1b4e45e4 100644
--- a/docs/reference/sigma_twocomp.html
+++ b/docs/reference/sigma_twocomp.html
@@ -73,7 +73,7 @@ dependence of the measured value \(y\):" />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/docs/reference/summary.nlme.mmkin.html b/docs/reference/summary.nlme.mmkin.html
index d6840425..8df9011d 100644
--- a/docs/reference/summary.nlme.mmkin.html
+++ b/docs/reference/summary.nlme.mmkin.html
@@ -76,7 +76,7 @@ endpoints such as formation fractions and DT50 values. Optionally
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
@@ -265,10 +265,10 @@ José Pinheiro and Douglas Bates for the components inherited from nlme</p>
#&gt; <span class='warning'>iteration limit reached without convergence (10)</span></div><div class='input'><span class='va'>f_nlme</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_mmkin</span><span class='op'>)</span>
</div><div class='output co'>#&gt; <span class='warning'>Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlme</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
</div><div class='output co'>#&gt; nlme version used for fitting: 3.1.152
-#&gt; mkin version used for pre-fitting: 1.0.3
-#&gt; R version used for fitting: 4.0.3
-#&gt; Date of fit: Mon Feb 15 13:46:13 2021
-#&gt; Date of summary: Mon Feb 15 13:46:13 2021
+#&gt; mkin version used for pre-fitting: 1.0.4
+#&gt; R version used for fitting: 4.0.4
+#&gt; Date of fit: Wed Mar 31 19:18:24 2021
+#&gt; Date of summary: Wed Mar 31 19:18:24 2021
#&gt;
#&gt; Equations:
#&gt; d_parent/dt = - k_parent * parent
@@ -278,7 +278,7 @@ José Pinheiro and Douglas Bates for the components inherited from nlme</p>
#&gt;
#&gt; Model predictions using solution type analytical
#&gt;
-#&gt; Fitted in 0.553 s using 4 iterations
+#&gt; Fitted in 0.537 s using 4 iterations
#&gt;
#&gt; Variance model: Two-component variance function
#&gt;
diff --git a/docs/reference/transform_odeparms.html b/docs/reference/transform_odeparms.html
index c3c756f6..bbaad91e 100644
--- a/docs/reference/transform_odeparms.html
+++ b/docs/reference/transform_odeparms.html
@@ -77,7 +77,7 @@ the ilr transformation is used." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.0.4</span>
</span>
</div>
diff --git a/man/mmkin.Rd b/man/mmkin.Rd
index 170ce8df..309761dd 100644
--- a/man/mmkin.Rd
+++ b/man/mmkin.Rd
@@ -9,7 +9,7 @@ more datasets}
mmkin(
models = c("SFO", "FOMC", "DFOP"),
datasets,
- cores = parallel::detectCores(),
+ cores = if (Sys.info()["sysname"] == "Windows") 1 else parallel::detectCores(),
cluster = NULL,
...
)
@@ -28,7 +28,8 @@ data for \code{\link{mkinfit}}.}
is only used when the \code{cluster} argument is \code{NULL}. On Windows
machines, cores > 1 is not supported, you need to use the \code{cluster}
argument to use multiple logical processors. Per default, all cores
-detected by \code{\link[parallel:detectCores]{parallel::detectCores()}} are used.}
+detected by \code{\link[parallel:detectCores]{parallel::detectCores()}} are used, except on Windows where
+the default is 1.}
\item{cluster}{A cluster as returned by \code{\link{makeCluster}} to be used
for parallel execution.}
diff --git a/test.log b/test.log
index 5f50c623..f2a60729 100644
--- a/test.log
+++ b/test.log
@@ -1,17 +1,16 @@
-Loading mkin
+ℹ Loading mkin
Loading required package: parallel
-Testing mkin
+ℹ Testing mkin
✔ | OK F W S | Context
✔ | 5 | AIC calculation
-✔ | 2 | Export dataset for reading into CAKE
-✔ | 14 | Results for FOCUS D established in expertise for UBA (Ranke 2014) [1.0 s]
-✔ | 4 | Calculation of FOCUS chi2 error levels [0.5 s]
-✔ | 7 | Fitting the SFORB model [3.5 s]
-✔ | 5 | Analytical solutions for coupled models [3.2 s]
+✔ | 5 | Analytical solutions for coupled models [3.3 s]
✔ | 5 | Calculation of Akaike weights
-✔ | 12 | Confidence intervals and p-values [1.1 s]
-✔ | 14 | Error model fitting [4.5 s]
+✔ | 2 | Export dataset for reading into CAKE
+✔ | 12 | Confidence intervals and p-values [1.3 s]
+✔ | 14 | Error model fitting [4.7 s]
✔ | 5 | Time step normalisation
+✔ | 4 | Calculation of FOCUS chi2 error levels [0.5 s]
+✔ | 14 | Results for FOCUS D established in expertise for UBA (Ranke 2014) [0.8 s]
✔ | 4 | Test fitting the decline of metabolites from their maximum [0.3 s]
✔ | 1 | Fitting the logistic model [0.2 s]
✔ | 35 1 | Nonlinear mixed-effects models [27.1 s]
@@ -20,25 +19,35 @@ Skip (test_mixed.R:161:3): saem results are reproducible for biphasic fits
Reason: Fitting with saemix takes around 10 minutes when using deSolve
────────────────────────────────────────────────────────────────────────────────
✔ | 2 | Test dataset classes mkinds and mkindsg
+✔ | 10 | Special cases of mkinfit calls [0.4 s]
✔ | 1 | mkinfit features [0.3 s]
-✔ | 10 | Special cases of mkinfit calls [0.3 s]
-✔ | 8 | mkinmod model generation and printing [0.2 s]
-✔ | 3 | Model predictions with mkinpredict [0.2 s]
-✔ | 16 | Evaluations according to 2015 NAFTA guidance [1.8 s]
+✔ | 8 | mkinmod model generation and printing [0.3 s]
+✔ | 3 | Model predictions with mkinpredict [0.3 s]
+✔ | 16 | Evaluations according to 2015 NAFTA guidance [1.7 s]
✔ | 9 | Nonlinear mixed-effects models with nlme [8.1 s]
-✔ | 16 | Plotting [2.0 s]
+✖ | 14 2 | Plotting [1.9 s]
+────────────────────────────────────────────────────────────────────────────────
+Failure (test_plot.R:40:5): Plotting mkinfit, mmkin and mixed model objects is reproducible
+Figures don't match: mixed-model-fit-for-saem-object-with-saemix-transformations.svg
+
+
+Failure (test_plot.R:55:5): Plotting mkinfit, mmkin and mixed model objects is reproducible
+Figures don't match: mixed-model-fit-for-saem-object-with-mkin-transformations.svg
+
+────────────────────────────────────────────────────────────────────────────────
✔ | 4 | Residuals extracted from mkinfit models
✔ | 2 | Complex test case from Schaefer et al. (2007) Piacenza paper [1.5 s]
-✔ | 4 | Summary [0.1 s]
+✔ | 7 | Fitting the SFORB model [3.9 s]
✔ | 1 | Summaries of old mkinfit objects
-✔ | 4 | Results for synthetic data established in expertise for UBA (Ranke 2014) [2.3 s]
-✔ | 9 | Hypothesis tests [8.3 s]
-✔ | 4 | Calculation of maximum time weighted average concentrations (TWAs) [2.5 s]
+✔ | 4 | Summary [0.1 s]
+✔ | 4 | Results for synthetic data established in expertise for UBA (Ranke 2014) [2.2 s]
+✔ | 9 | Hypothesis tests [8.2 s]
+✔ | 4 | Calculation of maximum time weighted average concentrations (TWAs) [2.4 s]
══ Results ═════════════════════════════════════════════════════════════════════
-Duration: 69.4 s
+Duration: 70.0 s
── Skipped tests ──────────────────────────────────────────────────────────────
● Fitting with saemix takes around 10 minutes when using deSolve (1)
-[ FAIL 0 | WARN 0 | SKIP 1 | PASS 206 ]
+[ FAIL 2 | WARN 0 | SKIP 1 | PASS 204 ]
diff --git a/tests/figs/plotting/mkinfit-plot-for-focus-c-with-residuals-like-in-gmkin.svg b/tests/figs/plotting/mkinfit-plot-for-focus-c-with-residuals-like-in-gmkin.svg
index a84e170d..bef1556f 100644
--- a/tests/figs/plotting/mkinfit-plot-for-focus-c-with-residuals-like-in-gmkin.svg
+++ b/tests/figs/plotting/mkinfit-plot-for-focus-c-with-residuals-like-in-gmkin.svg
@@ -75,21 +75,21 @@
<rect x='0.00' y='0.00' width='720.00' height='576.00' />
</clipPath>
</defs>
-<line x1='82.40' y1='502.56' x2='617.77' y2='502.56' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='82.40' y1='502.56' x2='671.31' y2='502.56' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<line x1='82.40' y1='502.56' x2='82.40' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='171.63' y1='502.56' x2='171.63' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='260.86' y1='502.56' x2='260.86' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='350.09' y1='502.56' x2='350.09' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='439.31' y1='502.56' x2='439.31' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='528.54' y1='502.56' x2='528.54' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='617.77' y1='502.56' x2='617.77' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='180.55' y1='502.56' x2='180.55' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='278.70' y1='502.56' x2='278.70' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='376.85' y1='502.56' x2='376.85' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='475.01' y1='502.56' x2='475.01' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='573.16' y1='502.56' x2='573.16' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='671.31' y1='502.56' x2='671.31' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='79.06' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='6.67px' lengthAdjust='spacingAndGlyphs'>0</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='164.96' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>20</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='254.18' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>40</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='343.41' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>60</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='432.64' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>80</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='518.53' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>100</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='607.76' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>120</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='173.88' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>20</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='272.03' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>40</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='370.18' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>60</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='468.33' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>80</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='563.15' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>100</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='661.30' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>120</text></g>
<line x1='59.04' y1='495.04' x2='59.04' y2='358.05' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<line x1='59.04' y1='495.04' x2='51.84' y2='495.04' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<line x1='59.04' y1='460.79' x2='51.84' y2='460.79' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
@@ -115,14 +115,14 @@
</clipPath>
</defs>
<circle cx='82.40' cy='408.68' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
-<circle cx='86.86' cy='446.01' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
-<circle cx='95.78' cy='447.33' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
-<circle cx='113.63' cy='392.86' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
-<circle cx='144.86' cy='367.89' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
-<circle cx='207.32' cy='381.45' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
-<circle cx='363.47' cy='399.15' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
-<circle cx='488.39' cy='399.83' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
-<circle cx='613.31' cy='422.44' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
+<circle cx='87.31' cy='446.01' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
+<circle cx='97.12' cy='447.33' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
+<circle cx='116.75' cy='392.86' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
+<circle cx='151.11' cy='367.89' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
+<circle cx='219.81' cy='381.45' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
+<circle cx='391.58' cy='399.15' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
+<circle cx='528.99' cy='399.83' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
+<circle cx='666.40' cy='422.44' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
<line x1='59.04' y1='426.55' x2='689.76' y2='426.55' style='stroke-width: 0.75; stroke-dasharray: 4.00,4.00;' clip-path='url(#cpNTkuMDR8Njg5Ljc2fDUwMi41NnwzNTAuNTM=)' />
<defs>
<clipPath id='cpNTkuMDR8Njg5Ljc2fDUwMi41Nnw1OS4wNA=='>
diff --git a/tests/figs/plotting/mkinfit-plot-for-focus-c-with-sep-true.svg b/tests/figs/plotting/mkinfit-plot-for-focus-c-with-sep-true.svg
index 9b16c583..54f0e961 100644
--- a/tests/figs/plotting/mkinfit-plot-for-focus-c-with-sep-true.svg
+++ b/tests/figs/plotting/mkinfit-plot-for-focus-c-with-sep-true.svg
@@ -86,21 +86,21 @@
<rect x='0.00' y='0.00' width='720.00' height='576.00' />
</clipPath>
</defs>
-<line x1='429.07' y1='502.56' x2='658.86' y2='502.56' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='429.07' y1='502.56' x2='681.84' y2='502.56' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<line x1='429.07' y1='502.56' x2='429.07' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='467.37' y1='502.56' x2='467.37' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='505.66' y1='502.56' x2='505.66' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='543.96' y1='502.56' x2='543.96' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='582.26' y1='502.56' x2='582.26' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='620.56' y1='502.56' x2='620.56' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='658.86' y1='502.56' x2='658.86' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='471.20' y1='502.56' x2='471.20' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='513.32' y1='502.56' x2='513.32' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='555.45' y1='502.56' x2='555.45' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='597.58' y1='502.56' x2='597.58' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='639.71' y1='502.56' x2='639.71' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='681.84' y1='502.56' x2='681.84' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='425.73' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='6.67px' lengthAdjust='spacingAndGlyphs'>0</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='460.69' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>20</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='498.99' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>40</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='537.29' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>60</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='575.59' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>80</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='610.55' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>100</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='648.85' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>120</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='464.52' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>20</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='506.65' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>40</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='548.78' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>60</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='590.91' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>80</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='629.70' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>100</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='671.83' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>120</text></g>
<line x1='419.04' y1='480.61' x2='419.04' y2='80.99' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<line x1='419.04' y1='480.61' x2='411.84' y2='480.61' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<line x1='419.04' y1='380.71' x2='411.84' y2='380.71' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
@@ -126,14 +126,14 @@
</clipPath>
</defs>
<circle cx='429.07' cy='228.69' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='430.98' cy='337.59' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='434.81' cy='341.43' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='442.47' cy='182.53' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='455.88' cy='109.69' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='482.69' cy='149.24' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='549.71' cy='200.88' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='603.33' cy='202.87' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='656.95' cy='268.81' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='431.17' cy='337.59' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='435.39' cy='341.43' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='443.81' cy='182.53' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='458.56' cy='109.69' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='488.05' cy='149.24' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='561.77' cy='200.88' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='620.75' cy='202.87' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='679.73' cy='268.81' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
<line x1='419.04' y1='280.80' x2='689.76' y2='280.80' style='stroke-width: 0.75; stroke-dasharray: 4.00,4.00;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
<defs>
<clipPath id='cpNTkuMDR8Njg5Ljc2fDUwMi41Nnw1OS4wNA=='>
diff --git a/tests/figs/plotting/plot-res-for-focus-c.svg b/tests/figs/plotting/plot-res-for-focus-c.svg
index 226d9014..3e6de1ce 100644
--- a/tests/figs/plotting/plot-res-for-focus-c.svg
+++ b/tests/figs/plotting/plot-res-for-focus-c.svg
@@ -75,21 +75,21 @@
<rect x='0.00' y='0.00' width='720.00' height='576.00' />
</clipPath>
</defs>
-<line x1='429.07' y1='502.56' x2='658.86' y2='502.56' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='429.07' y1='502.56' x2='681.84' y2='502.56' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<line x1='429.07' y1='502.56' x2='429.07' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='467.37' y1='502.56' x2='467.37' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='505.66' y1='502.56' x2='505.66' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='543.96' y1='502.56' x2='543.96' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='582.26' y1='502.56' x2='582.26' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='620.56' y1='502.56' x2='620.56' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='658.86' y1='502.56' x2='658.86' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='471.20' y1='502.56' x2='471.20' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='513.32' y1='502.56' x2='513.32' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='555.45' y1='502.56' x2='555.45' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='597.58' y1='502.56' x2='597.58' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='639.71' y1='502.56' x2='639.71' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='681.84' y1='502.56' x2='681.84' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='425.73' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='6.67px' lengthAdjust='spacingAndGlyphs'>0</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='460.69' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>20</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='498.99' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>40</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='537.29' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>60</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='575.59' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>80</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='610.55' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>100</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='648.85' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>120</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='464.52' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>20</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='506.65' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>40</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='548.78' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>60</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='590.91' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>80</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='629.70' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>100</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='671.83' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>120</text></g>
<line x1='419.04' y1='480.61' x2='419.04' y2='80.99' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<line x1='419.04' y1='480.61' x2='411.84' y2='480.61' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<line x1='419.04' y1='380.71' x2='411.84' y2='380.71' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
@@ -115,14 +115,14 @@
</clipPath>
</defs>
<circle cx='429.07' cy='228.69' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='430.98' cy='337.59' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='434.81' cy='341.43' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='442.47' cy='182.53' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='455.88' cy='109.69' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='482.69' cy='149.24' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='549.71' cy='200.88' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='603.33' cy='202.87' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='656.95' cy='268.81' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='431.17' cy='337.59' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='435.39' cy='341.43' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='443.81' cy='182.53' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='458.56' cy='109.69' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='488.05' cy='149.24' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='561.77' cy='200.88' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='620.75' cy='202.87' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='679.73' cy='268.81' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
<line x1='419.04' y1='280.80' x2='689.76' y2='280.80' style='stroke-width: 0.75; stroke-dasharray: 4.00,4.00;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
<defs>
<clipPath id='cpNTkuMDR8Njg5Ljc2fDUwMi41Nnw1OS4wNA=='>
diff --git a/tests/figs/plotting/plot-res-for-focus-d.svg b/tests/figs/plotting/plot-res-for-focus-d.svg
index 6504365c..222d85f6 100644
--- a/tests/figs/plotting/plot-res-for-focus-d.svg
+++ b/tests/figs/plotting/plot-res-for-focus-d.svg
@@ -110,21 +110,21 @@
<rect x='0.00' y='0.00' width='720.00' height='576.00' />
</clipPath>
</defs>
-<line x1='429.07' y1='502.56' x2='656.95' y2='502.56' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='429.07' y1='502.56' x2='679.73' y2='502.56' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<line x1='429.07' y1='502.56' x2='429.07' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='467.05' y1='502.56' x2='467.05' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='505.03' y1='502.56' x2='505.03' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='543.01' y1='502.56' x2='543.01' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='580.99' y1='502.56' x2='580.99' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='618.97' y1='502.56' x2='618.97' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
-<line x1='656.95' y1='502.56' x2='656.95' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='470.84' y1='502.56' x2='470.84' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='512.62' y1='502.56' x2='512.62' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='554.40' y1='502.56' x2='554.40' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='596.18' y1='502.56' x2='596.18' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='637.96' y1='502.56' x2='637.96' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
+<line x1='679.73' y1='502.56' x2='679.73' y2='509.76' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='425.73' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='6.67px' lengthAdjust='spacingAndGlyphs'>0</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='460.37' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>20</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='498.35' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>40</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='536.33' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>60</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='574.31' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>80</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='608.96' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>100</text></g>
-<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='646.94' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>120</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='464.17' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>20</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='505.95' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>40</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='547.73' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>60</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='589.51' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='13.34px' lengthAdjust='spacingAndGlyphs'>80</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='627.95' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>100</text></g>
+<g clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)'><text x='669.73' y='528.48' style='font-size: 12.00px; font-family: Liberation Sans;' textLength='20.02px' lengthAdjust='spacingAndGlyphs'>120</text></g>
<line x1='419.04' y1='438.61' x2='419.04' y2='122.99' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<line x1='419.04' y1='438.61' x2='411.84' y2='438.61' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
<line x1='419.04' y1='359.70' x2='411.84' y2='359.70' style='stroke-width: 0.75;' clip-path='url(#cpMC4wMHw3MjAuMDB8NTc2LjAwfDAuMDA=)' />
@@ -151,42 +151,42 @@
</defs>
<circle cx='429.07' cy='282.99' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
<circle cx='429.07' cy='242.27' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='430.97' cy='229.32' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='430.97' cy='245.10' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='434.76' cy='451.91' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='434.76' cy='361.02' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='442.36' cy='242.80' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='442.36' cy='198.46' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='455.65' cy='245.18' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='455.65' cy='255.12' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='468.95' cy='297.13' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='468.95' cy='294.92' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='495.53' cy='285.50' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='495.53' cy='284.55' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='524.02' cy='281.21' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='524.02' cy='282.16' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='571.49' cy='280.97' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<circle cx='571.49' cy='280.81' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='430.97,276.02 434.60,282.31 427.33,282.31 430.97,276.02 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='430.97,263.39 434.60,269.69 427.33,269.69 430.97,263.39 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='434.76,278.40 438.40,284.70 431.13,284.70 434.76,278.40 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='434.76,277.61 438.40,283.91 431.13,283.91 434.76,277.61 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='442.36,309.34 446.00,315.64 438.72,315.64 442.36,309.34 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='442.36,285.67 446.00,291.97 438.72,291.97 442.36,285.67 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='455.65,197.70 459.29,204.00 452.02,204.00 455.65,197.70 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='455.65,331.52 459.29,337.82 452.02,337.82 455.65,331.52 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='468.95,233.73 472.58,240.03 465.31,240.03 468.95,233.73 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='468.95,201.06 472.58,207.36 465.31,207.36 468.95,201.06 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='495.53,309.63 499.17,315.93 491.90,315.93 495.53,309.63 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='495.53,361.23 499.17,367.53 491.90,367.53 495.53,361.23 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='524.02,277.05 527.65,283.35 520.38,283.35 524.02,277.05 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='524.02,295.67 527.65,301.97 520.38,301.97 524.02,295.67 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='571.49,219.11 575.13,225.41 567.85,225.41 571.49,219.11 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='571.49,317.58 575.13,323.88 567.85,323.88 571.49,317.58 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='618.97,291.46 622.60,297.76 615.33,297.76 618.97,291.46 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='618.97,258.48 622.60,264.78 615.33,264.78 618.97,258.48 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='656.95,334.04 660.58,340.34 653.31,340.34 656.95,334.04 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
-<polyline points='656.95,205.27 660.58,211.57 653.31,211.57 656.95,205.27 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='431.16' cy='229.32' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='431.16' cy='245.10' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='435.33' cy='451.91' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='435.33' cy='361.02' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='443.69' cy='242.80' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='443.69' cy='198.46' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='458.31' cy='245.18' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='458.31' cy='255.12' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='472.93' cy='297.13' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='472.93' cy='294.92' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='502.18' cy='285.50' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='502.18' cy='284.55' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='533.51' cy='281.21' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='533.51' cy='282.16' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='585.73' cy='280.97' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<circle cx='585.73' cy='280.81' r='2.70pt' style='stroke-width: 0.75;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='431.16,276.02 434.79,282.31 427.52,282.31 431.16,276.02 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='431.16,263.39 434.79,269.69 427.52,269.69 431.16,263.39 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='435.33,278.40 438.97,284.70 431.70,284.70 435.33,278.40 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='435.33,277.61 438.97,283.91 431.70,283.91 435.33,277.61 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='443.69,309.34 447.33,315.64 440.05,315.64 443.69,309.34 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='443.69,285.67 447.33,291.97 440.05,291.97 443.69,285.67 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='458.31,197.70 461.95,204.00 454.67,204.00 458.31,197.70 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='458.31,331.52 461.95,337.82 454.67,337.82 458.31,331.52 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='472.93,233.73 476.57,240.03 469.30,240.03 472.93,233.73 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='472.93,201.06 476.57,207.36 469.30,207.36 472.93,201.06 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='502.18,309.63 505.81,315.93 498.54,315.93 502.18,309.63 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='502.18,361.23 505.81,367.53 498.54,367.53 502.18,361.23 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='533.51,277.05 537.15,283.35 529.87,283.35 533.51,277.05 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='533.51,295.67 537.15,301.97 529.87,301.97 533.51,295.67 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='585.73,219.11 589.37,225.41 582.10,225.41 585.73,219.11 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='585.73,317.58 589.37,323.88 582.10,323.88 585.73,317.58 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='637.96,291.46 641.59,297.76 634.32,297.76 637.96,291.46 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='637.96,258.48 641.59,264.78 634.32,264.78 637.96,258.48 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='679.73,334.04 683.37,340.34 676.10,340.34 679.73,334.04 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
+<polyline points='679.73,205.27 683.37,211.57 676.10,211.57 679.73,205.27 ' style='stroke-width: 0.75; stroke: #DF536B;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
<line x1='419.04' y1='280.80' x2='689.76' y2='280.80' style='stroke-width: 0.75; stroke-dasharray: 4.00,4.00;' clip-path='url(#cpNDE5LjA0fDY4OS43Nnw1MDIuNTZ8NTkuMDQ=)' />
<defs>
<clipPath id='cpNTkuMDR8Njg5Ljc2fDUwMi41Nnw1OS4wNA=='>
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html
index a158629a..de900708 100644
--- a/vignettes/FOCUS_D.html
+++ b/vignettes/FOCUS_D.html
@@ -60,6 +60,15 @@ if (!!window.navigator.userAgent.match("MSIE 8")) {
!function(a){"use strict";a.matchMedia=a.matchMedia||function(a){var b,c=a.documentElement,d=c.firstElementChild||c.firstChild,e=a.createElement("body"),f=a.createElement("div");return f.id="mq-test-1",f.style.cssText="position:absolute;top:-100em",e.style.background="none",e.appendChild(f),function(a){return f.innerHTML='&shy;<style media="'+a+'"> #mq-test-1 { width: 42px; }</style>',c.insertBefore(e,d),b=42===f.offsetWidth,c.removeChild(e),{matches:b,media:a}}}(a.document)}(this),function(a){"use strict";function b(){u(!0)}var c={};a.respond=c,c.update=function(){};var d=[],e=function(){var b=!1;try{b=new a.XMLHttpRequest}catch(c){b=new a.ActiveXObject("Microsoft.XMLHTTP")}return function(){return b}}(),f=function(a,b){var c=e();c&&(c.open("GET",a,!0),c.onreadystatechange=function(){4!==c.readyState||200!==c.status&&304!==c.status||b(c.responseText)},4!==c.readyState&&c.send(null))};if(c.ajax=f,c.queue=d,c.regex={media:/@media[^\{]+\{([^\{\}]*\{[^\}\{]*\})+/gi,keyframes:/@(?:\-(?:o|moz|webkit)\-)?keyframes[^\{]+\{(?:[^\{\}]*\{[^\}\{]*\})+[^\}]*\}/gi,urls:/(url\()['"]?([^\/\)'"][^:\)'"]+)['"]?(\))/g,findStyles:/@media *([^\{]+)\{([\S\s]+?)$/,only:/(only\s+)?([a-zA-Z]+)\s?/,minw:/\([\s]*min\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/,maxw:/\([\s]*max\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/},c.mediaQueriesSupported=a.matchMedia&&null!==a.matchMedia("only all")&&a.matchMedia("only all").matches,!c.mediaQueriesSupported){var g,h,i,j=a.document,k=j.documentElement,l=[],m=[],n=[],o={},p=30,q=j.getElementsByTagName("head")[0]||k,r=j.getElementsByTagName("base")[0],s=q.getElementsByTagName("link"),t=function(){var a,b=j.createElement("div"),c=j.body,d=k.style.fontSize,e=c&&c.style.fontSize,f=!1;return b.style.cssText="position:absolute;font-size:1em;width:1em",c||(c=f=j.createElement("body"),c.style.background="none"),k.style.fontSize="100%",c.style.fontSize="100%",c.appendChild(b),f&&k.insertBefore(c,k.firstChild),a=b.offsetWidth,f?k.removeChild(c):c.removeChild(b),k.style.fontSize=d,e&&(c.style.fontSize=e),a=i=parseFloat(a)},u=function(b){var c="clientWidth",d=k[c],e="CSS1Compat"===j.compatMode&&d||j.body[c]||d,f={},o=s[s.length-1],r=(new Date).getTime();if(b&&g&&p>r-g)return a.clearTimeout(h),h=a.setTimeout(u,p),void 0;g=r;for(var v in l)if(l.hasOwnProperty(v)){var w=l[v],x=w.minw,y=w.maxw,z=null===x,A=null===y,B="em";x&&(x=parseFloat(x)*(x.indexOf(B)>-1?i||t():1)),y&&(y=parseFloat(y)*(y.indexOf(B)>-1?i||t():1)),w.hasquery&&(z&&A||!(z||e>=x)||!(A||y>=e))||(f[w.media]||(f[w.media]=[]),f[w.media].push(m[w.rules]))}for(var C in n)n.hasOwnProperty(C)&&n[C]&&n[C].parentNode===q&&q.removeChild(n[C]);n.length=0;for(var D in f)if(f.hasOwnProperty(D)){var E=j.createElement("style"),F=f[D].join("\n");E.type="text/css",E.media=D,q.insertBefore(E,o.nextSibling),E.styleSheet?E.styleSheet.cssText=F:E.appendChild(j.createTextNode(F)),n.push(E)}},v=function(a,b,d){var e=a.replace(c.regex.keyframes,"").match(c.regex.media),f=e&&e.length||0;b=b.substring(0,b.lastIndexOf("/"));var g=function(a){return a.replace(c.regex.urls,"$1"+b+"$2$3")},h=!f&&d;b.length&&(b+="/"),h&&(f=1);for(var i=0;f>i;i++){var j,k,n,o;h?(j=d,m.push(g(a))):(j=e[i].match(c.regex.findStyles)&&RegExp.$1,m.push(RegExp.$2&&g(RegExp.$2))),n=j.split(","),o=n.length;for(var p=0;o>p;p++)k=n[p],l.push({media:k.split("(")[0].match(c.regex.only)&&RegExp.$2||"all",rules:m.length-1,hasquery:k.indexOf("(")>-1,minw:k.match(c.regex.minw)&&parseFloat(RegExp.$1)+(RegExp.$2||""),maxw:k.match(c.regex.maxw)&&parseFloat(RegExp.$1)+(RegExp.$2||"")})}u()},w=function(){if(d.length){var b=d.shift();f(b.href,function(c){v(c,b.href,b.media),o[b.href]=!0,a.setTimeout(function(){w()},0)})}},x=function(){for(var b=0;b<s.length;b++){var c=s[b],e=c.href,f=c.media,g=c.rel&&"stylesheet"===c.rel.toLowerCase();e&&g&&!o[e]&&(c.styleSheet&&c.styleSheet.rawCssText?(v(c.styleSheet.rawCssText,e,f),o[e]=!0):(!/^([a-zA-Z:]*\/\/)/.test(e)&&!r||e.replace(RegExp.$1,"").split("/")[0]===a.location.host)&&("//"===e.substring(0,2)&&(e=a.location.protocol+e),d.push({href:e,media:f})))}w()};x(),c.update=x,c.getEmValue=t,a.addEventListener?a.addEventListener("resize",b,!1):a.attachEvent&&a.attachEvent("onresize",b)}}(this);
};
</script>
+<style>h1 {font-size: 34px;}
+ h1.title {font-size: 38px;}
+ h2 {font-size: 30px;}
+ h3 {font-size: 24px;}
+ h4 {font-size: 18px;}
+ h5 {font-size: 16px;}
+ h6 {font-size: 12px;}
+ code {color: inherit; background-color: rgba(0, 0, 0, 0.04);}
+ pre:not([class]) { background-color: white }</style>
<script>
/**
@@ -232,11 +241,6 @@ color: #d14;
</style>
<style type="text/css">code{white-space: pre;}</style>
-<style type="text/css">
- pre:not([class]) {
- background-color: white;
- }
-</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
@@ -249,32 +253,6 @@ if (window.hljs) {
-<style type="text/css">
-h1 {
- font-size: 34px;
-}
-h1.title {
- font-size: 38px;
-}
-h2 {
- font-size: 30px;
-}
-h3 {
- font-size: 24px;
-}
-h4 {
- font-size: 18px;
-}
-h5 {
- font-size: 16px;
-}
-h6 {
- font-size: 12px;
-}
-.table th:not([align]) {
- text-align: left;
-}
-</style>
@@ -286,10 +264,6 @@ h6 {
margin-left: auto;
margin-right: auto;
}
-code {
- color: inherit;
- background-color: rgba(0, 0, 0, 0.04);
-}
img {
max-width:100%;
}
@@ -305,6 +279,9 @@ button.code-folding-btn:focus {
summary {
display: list-item;
}
+pre code {
+ padding: 0;
+}
</style>
@@ -317,7 +294,6 @@ summary {
max-height: 500px;
min-height: 44px;
overflow-y: auto;
- background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
@@ -381,13 +357,13 @@ summary {
-<div class="fluid-row" id="header">
+<div id="header">
<h1 class="title toc-ignore">Example evaluation of FOCUS Example Dataset D</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">Last change 31 January 2019 (rebuilt 2021-02-15)</h4>
+<h4 class="date">Last change 31 January 2019 (rebuilt 2021-04-21)</h4>
</div>
@@ -455,16 +431,16 @@ print(FOCUS_2006_D)</code></pre>
## of zero were removed from the data</code></pre>
<p>A plot of the fit including a residual plot for both observed variables is obtained using the <code>plot_sep</code> method for <code>mkinfit</code> objects, which shows separate graphs for all compounds and their residuals.</p>
<pre class="r"><code>plot_sep(fit, lpos = c(&quot;topright&quot;, &quot;bottomright&quot;))</code></pre>
-<p><img src="" width="768" /></p>
+<p><img src="" width="768" /></p>
<p>Confidence intervals for the parameter estimates are obtained using the <code>mkinparplot</code> function.</p>
<pre class="r"><code>mkinparplot(fit)</code></pre>
<p><img src="" width="768" /></p>
<p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code> objects.</p>
<pre class="r"><code>summary(fit)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:02 2021
-## Date of summary: Mon Feb 15 17:29:03 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:29 2021
+## Date of summary: Wed Apr 21 16:40:29 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -472,7 +448,7 @@ print(FOCUS_2006_D)</code></pre>
##
## Model predictions using solution type analytical
##
-## Fitted using 401 model solutions performed in 0.143 s
+## Fitted using 401 model solutions performed in 0.144 s
##
## Error model: Constant variance
##
@@ -616,7 +592,7 @@ $(document).ready(function () {
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
- $(this).parent().toggleClass('nav-tabs-open')
+ $(this).parent().toggleClass('nav-tabs-open');
});
});
</script>
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 3d8e02c2..4d0ff166 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -60,6 +60,15 @@ if (!!window.navigator.userAgent.match("MSIE 8")) {
!function(a){"use strict";a.matchMedia=a.matchMedia||function(a){var b,c=a.documentElement,d=c.firstElementChild||c.firstChild,e=a.createElement("body"),f=a.createElement("div");return f.id="mq-test-1",f.style.cssText="position:absolute;top:-100em",e.style.background="none",e.appendChild(f),function(a){return f.innerHTML='&shy;<style media="'+a+'"> #mq-test-1 { width: 42px; }</style>',c.insertBefore(e,d),b=42===f.offsetWidth,c.removeChild(e),{matches:b,media:a}}}(a.document)}(this),function(a){"use strict";function b(){u(!0)}var c={};a.respond=c,c.update=function(){};var d=[],e=function(){var b=!1;try{b=new a.XMLHttpRequest}catch(c){b=new a.ActiveXObject("Microsoft.XMLHTTP")}return function(){return b}}(),f=function(a,b){var c=e();c&&(c.open("GET",a,!0),c.onreadystatechange=function(){4!==c.readyState||200!==c.status&&304!==c.status||b(c.responseText)},4!==c.readyState&&c.send(null))};if(c.ajax=f,c.queue=d,c.regex={media:/@media[^\{]+\{([^\{\}]*\{[^\}\{]*\})+/gi,keyframes:/@(?:\-(?:o|moz|webkit)\-)?keyframes[^\{]+\{(?:[^\{\}]*\{[^\}\{]*\})+[^\}]*\}/gi,urls:/(url\()['"]?([^\/\)'"][^:\)'"]+)['"]?(\))/g,findStyles:/@media *([^\{]+)\{([\S\s]+?)$/,only:/(only\s+)?([a-zA-Z]+)\s?/,minw:/\([\s]*min\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/,maxw:/\([\s]*max\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/},c.mediaQueriesSupported=a.matchMedia&&null!==a.matchMedia("only all")&&a.matchMedia("only all").matches,!c.mediaQueriesSupported){var g,h,i,j=a.document,k=j.documentElement,l=[],m=[],n=[],o={},p=30,q=j.getElementsByTagName("head")[0]||k,r=j.getElementsByTagName("base")[0],s=q.getElementsByTagName("link"),t=function(){var a,b=j.createElement("div"),c=j.body,d=k.style.fontSize,e=c&&c.style.fontSize,f=!1;return b.style.cssText="position:absolute;font-size:1em;width:1em",c||(c=f=j.createElement("body"),c.style.background="none"),k.style.fontSize="100%",c.style.fontSize="100%",c.appendChild(b),f&&k.insertBefore(c,k.firstChild),a=b.offsetWidth,f?k.removeChild(c):c.removeChild(b),k.style.fontSize=d,e&&(c.style.fontSize=e),a=i=parseFloat(a)},u=function(b){var c="clientWidth",d=k[c],e="CSS1Compat"===j.compatMode&&d||j.body[c]||d,f={},o=s[s.length-1],r=(new Date).getTime();if(b&&g&&p>r-g)return a.clearTimeout(h),h=a.setTimeout(u,p),void 0;g=r;for(var v in l)if(l.hasOwnProperty(v)){var w=l[v],x=w.minw,y=w.maxw,z=null===x,A=null===y,B="em";x&&(x=parseFloat(x)*(x.indexOf(B)>-1?i||t():1)),y&&(y=parseFloat(y)*(y.indexOf(B)>-1?i||t():1)),w.hasquery&&(z&&A||!(z||e>=x)||!(A||y>=e))||(f[w.media]||(f[w.media]=[]),f[w.media].push(m[w.rules]))}for(var C in n)n.hasOwnProperty(C)&&n[C]&&n[C].parentNode===q&&q.removeChild(n[C]);n.length=0;for(var D in f)if(f.hasOwnProperty(D)){var E=j.createElement("style"),F=f[D].join("\n");E.type="text/css",E.media=D,q.insertBefore(E,o.nextSibling),E.styleSheet?E.styleSheet.cssText=F:E.appendChild(j.createTextNode(F)),n.push(E)}},v=function(a,b,d){var e=a.replace(c.regex.keyframes,"").match(c.regex.media),f=e&&e.length||0;b=b.substring(0,b.lastIndexOf("/"));var g=function(a){return a.replace(c.regex.urls,"$1"+b+"$2$3")},h=!f&&d;b.length&&(b+="/"),h&&(f=1);for(var i=0;f>i;i++){var j,k,n,o;h?(j=d,m.push(g(a))):(j=e[i].match(c.regex.findStyles)&&RegExp.$1,m.push(RegExp.$2&&g(RegExp.$2))),n=j.split(","),o=n.length;for(var p=0;o>p;p++)k=n[p],l.push({media:k.split("(")[0].match(c.regex.only)&&RegExp.$2||"all",rules:m.length-1,hasquery:k.indexOf("(")>-1,minw:k.match(c.regex.minw)&&parseFloat(RegExp.$1)+(RegExp.$2||""),maxw:k.match(c.regex.maxw)&&parseFloat(RegExp.$1)+(RegExp.$2||"")})}u()},w=function(){if(d.length){var b=d.shift();f(b.href,function(c){v(c,b.href,b.media),o[b.href]=!0,a.setTimeout(function(){w()},0)})}},x=function(){for(var b=0;b<s.length;b++){var c=s[b],e=c.href,f=c.media,g=c.rel&&"stylesheet"===c.rel.toLowerCase();e&&g&&!o[e]&&(c.styleSheet&&c.styleSheet.rawCssText?(v(c.styleSheet.rawCssText,e,f),o[e]=!0):(!/^([a-zA-Z:]*\/\/)/.test(e)&&!r||e.replace(RegExp.$1,"").split("/")[0]===a.location.host)&&("//"===e.substring(0,2)&&(e=a.location.protocol+e),d.push({href:e,media:f})))}w()};x(),c.update=x,c.getEmValue=t,a.addEventListener?a.addEventListener("resize",b,!1):a.attachEvent&&a.attachEvent("onresize",b)}}(this);
};
</script>
+<style>h1 {font-size: 34px;}
+ h1.title {font-size: 38px;}
+ h2 {font-size: 30px;}
+ h3 {font-size: 24px;}
+ h4 {font-size: 18px;}
+ h5 {font-size: 16px;}
+ h6 {font-size: 12px;}
+ code {color: inherit; background-color: rgba(0, 0, 0, 0.04);}
+ pre:not([class]) { background-color: white }</style>
<script>/*! jQuery UI - v1.11.4 - 2016-01-05
* http://jqueryui.com
* Includes: core.js, widget.js, mouse.js, position.js, draggable.js, droppable.js, resizable.js, selectable.js, sortable.js, accordion.js, autocomplete.js, button.js, dialog.js, menu.js, progressbar.js, selectmenu.js, slider.js, spinner.js, tabs.js, tooltip.js, effect.js, effect-blind.js, effect-bounce.js, effect-clip.js, effect-drop.js, effect-explode.js, effect-fade.js, effect-fold.js, effect-highlight.js, effect-puff.js, effect-pulsate.js, effect-scale.js, effect-shake.js, effect-size.js, effect-slide.js, effect-transfer.js
@@ -309,7 +318,7 @@ float: none;
self._setEventHandlers();
// Binding to the Window load event to make sure the correct scrollTop is calculated
- $(window).load(function() {
+ $(window).on("load", function() {
// Sets the active TOC item
self._setActiveElement(true);
@@ -1306,11 +1315,6 @@ color: #d14;
</style>
<style type="text/css">code{white-space: pre;}</style>
-<style type="text/css">
- pre:not([class]) {
- background-color: white;
- }
-</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
@@ -1323,32 +1327,6 @@ if (window.hljs) {
-<style type="text/css">
-h1 {
- font-size: 34px;
-}
-h1.title {
- font-size: 38px;
-}
-h2 {
- font-size: 30px;
-}
-h3 {
- font-size: 24px;
-}
-h4 {
- font-size: 18px;
-}
-h5 {
- font-size: 16px;
-}
-h6 {
- font-size: 12px;
-}
-.table th:not([align]) {
- text-align: left;
-}
-</style>
@@ -1360,10 +1338,6 @@ h6 {
margin-left: auto;
margin-right: auto;
}
-code {
- color: inherit;
- background-color: rgba(0, 0, 0, 0.04);
-}
img {
max-width:100%;
}
@@ -1379,6 +1353,9 @@ button.code-folding-btn:focus {
summary {
display: list-item;
}
+pre code {
+ padding: 0;
+}
</style>
@@ -1391,7 +1368,6 @@ summary {
max-height: 500px;
min-height: 44px;
overflow-y: auto;
- background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
@@ -1523,24 +1499,24 @@ div.tocify {
<!-- setup 3col/9col grid for toc_float and main content -->
-<div class="row-fluid">
-<div class="col-xs-12 col-sm-4 col-md-3">
+<div class="row">
+<div class="col-sm-12 col-md-4 col-lg-3">
<div id="TOC" class="tocify">
</div>
</div>
-<div class="toc-content col-xs-12 col-sm-8 col-md-9">
+<div class="toc-content col-sm-12 col-md-8 col-lg-9">
-<div class="fluid-row" id="header">
+<div id="header">
<h1 class="title toc-ignore">Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">Last change 17 November 2016 (rebuilt 2021-02-15)</h4>
+<h4 class="date">Last change 17 November 2016 (rebuilt 2021-04-21)</h4>
</div>
@@ -1559,10 +1535,10 @@ FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)</code></pre>
<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>&quot;SFO&quot;</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p>
<pre class="r"><code>m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:04 2021
-## Date of summary: Mon Feb 15 17:29:04 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:34 2021
+## Date of summary: Wed Apr 21 16:40:34 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -1660,17 +1636,17 @@ summary(m.L1.SFO)</code></pre>
<pre><code>## Warning in sqrt(1/diag(V)): NaNs produced</code></pre>
<pre><code>## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
## doubtful</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:04 2021
-## Date of summary: Mon Feb 15 17:29:04 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:34 2021
+## Date of summary: Wed Apr 21 16:40:34 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 369 model solutions performed in 0.083 s
+## Fitted using 369 model solutions performed in 0.087 s
##
## Error model: Constant variance
##
@@ -1752,7 +1728,7 @@ FOCUS_2006_L2_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L2)</code></pre>
<pre class="r"><code>m.L2.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L2_mkin, quiet=TRUE)
plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - SFO&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 14% suggests that the model does not fit very well. This is also obvious from the plots of the fit, in which we have included the residual plot.</p>
<p>In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at day 5), and there is an underestimation beyond that point.</p>
<p>We may add that it is difficult to judge the random nature of the residuals just from the three samplings at days 0, 1 and 3. Also, it is not clear <em>a priori</em> why a consistent underestimation after the approximate DT90 should be irrelevant. However, this can be rationalised by the fact that the FOCUS fate models generally only implement SFO kinetics.</p>
@@ -1763,12 +1739,12 @@ plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
<pre class="r"><code>m.L2.FOMC &lt;- mkinfit(&quot;FOMC&quot;, FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.FOMC, show_residuals = TRUE,
main = &quot;FOCUS L2 - FOMC&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:04 2021
-## Date of summary: Mon Feb 15 17:29:04 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:35 2021
+## Date of summary: Wed Apr 21 16:40:35 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -1841,12 +1817,12 @@ plot(m.L2.FOMC, show_residuals = TRUE,
<pre class="r"><code>m.L2.DFOP &lt;- mkinfit(&quot;DFOP&quot;, FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = &quot;FOCUS L2 - DFOP&quot;)</code></pre>
-<p><img src="" /><!-- --></p>
+<p><img src="" /><!-- --></p>
<pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:05 2021
-## Date of summary: Mon Feb 15 17:29:05 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:35 2021
+## Date of summary: Wed Apr 21 16:40:35 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -1943,10 +1919,10 @@ plot(mm.L3)</code></pre>
<p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p>
<pre class="r"><code>summary(mm.L3[[&quot;DFOP&quot;, 1]])</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:05 2021
-## Date of summary: Mon Feb 15 17:29:05 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:35 2021
+## Date of summary: Wed Apr 21 16:40:35 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -2051,10 +2027,10 @@ plot(mm.L4)</code></pre>
<p><img src="" /><!-- --></p>
<p>The <span class="math inline"><em>χ</em><sup>2</sup></span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline"><em>χ</em><sup>2</sup></span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p>
<pre class="r"><code>summary(mm.L4[[&quot;SFO&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:05 2021
-## Date of summary: Mon Feb 15 17:29:05 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:35 2021
+## Date of summary: Wed Apr 21 16:40:36 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -2115,17 +2091,17 @@ plot(mm.L4)</code></pre>
## DT50 DT90
## parent 106 352</code></pre>
<pre class="r"><code>summary(mm.L4[[&quot;FOMC&quot;, 1]], data = FALSE)</code></pre>
-<pre><code>## mkin version used for fitting: 1.0.3
-## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 17:29:05 2021
-## Date of summary: Mon Feb 15 17:29:05 2021
+<pre><code>## mkin version used for fitting: 1.0.4.9000
+## R version used for fitting: 4.0.5
+## Date of fit: Wed Apr 21 16:40:36 2021
+## Date of summary: Wed Apr 21 16:40:36 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 224 model solutions performed in 0.047 s
+## Fitted using 224 model solutions performed in 0.046 s
##
## Error model: Constant variance
##
@@ -2222,7 +2198,7 @@ $(document).ready(function () {
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
- $(this).parent().toggleClass('nav-tabs-open')
+ $(this).parent().toggleClass('nav-tabs-open');
});
});
</script>
diff --git a/vignettes/web_only/mkin_benchmarks.rda b/vignettes/web_only/mkin_benchmarks.rda
index 4421cf5b..fe4ab843 100644
--- a/vignettes/web_only/mkin_benchmarks.rda
+++ b/vignettes/web_only/mkin_benchmarks.rda
Binary files differ

Contact - Imprint