diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2020-05-26 18:38:51 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2020-05-26 18:52:01 +0200 |
commit | 675a733fa2acc08daabb9b8b571c7d658f281f73 (patch) | |
tree | ef29cec38aa6d446f7956c0e423cca6bed2e21c0 /R/confint.mkinfit.R | |
parent | 5e85d8856e7c9db3c52bb6ac5a0a81e2f0c6181c (diff) |
Use all cores per default, confint tolerance
Also, use more intelligent starting values for the variance of the
random effects for saemix. While this does not appear to speed up
the convergence, it shows where this variance is greatly reduced
by using mixed-effects models as opposed to the separate independent
fits.
Diffstat (limited to 'R/confint.mkinfit.R')
-rw-r--r-- | R/confint.mkinfit.R | 86 |
1 files changed, 47 insertions, 39 deletions
diff --git a/R/confint.mkinfit.R b/R/confint.mkinfit.R index 78dda95d..53eb45ee 100644 --- a/R/confint.mkinfit.R +++ b/R/confint.mkinfit.R @@ -27,7 +27,10 @@ #' @param backtransform If we approximate the likelihood in terms of the #' transformed parameters, should we backtransform the parameters with #' their confidence intervals? -#' @param cores The number of cores to be used for multicore processing. +#' @param rel_tol If the method is 'profile', what should be the accuracy +#' of the lower and upper bounds, relative to the estimate obtained from +#' the quadratic method? +#' @param cores The number of cores to be used for multicore processing. #' On Windows machines, cores > 1 is currently not supported. #' @param quiet Should we suppress the message "Profiling the likelihood" #' @return A matrix with columns giving lower and upper confidence limits for @@ -121,7 +124,7 @@ confint.mkinfit <- function(object, parm, level = 0.95, alpha = 1 - level, cutoff, method = c("quadratic", "profile"), transformed = TRUE, backtransform = TRUE, - cores = round(detectCores()/2), quiet = FALSE, ...) + cores = parallel::detectCores(), rel_tol = 0.01, quiet = FALSE, ...) { tparms <- parms(object, transformed = TRUE) bparms <- parms(object, transformed = FALSE) @@ -140,50 +143,50 @@ confint.mkinfit <- function(object, parm, a <- c(alpha / 2, 1 - (alpha / 2)) - if (method == "quadratic") { + quantiles <- qt(a, object$df.residual) - quantiles <- qt(a, object$df.residual) - - covar_pnames <- if (missing(parm)) { - if (transformed) tpnames else bpnames - } else { - parm - } + covar_pnames <- if (missing(parm)) { + if (transformed) tpnames else bpnames + } else { + parm + } - return_parms <- if (backtransform) bparms[return_pnames] - else tparms[return_pnames] + return_parms <- if (backtransform) bparms[return_pnames] + else tparms[return_pnames] - covar_parms <- if (transformed) tparms[covar_pnames] - else bparms[covar_pnames] + covar_parms <- if (transformed) tparms[covar_pnames] + else bparms[covar_pnames] - if (transformed) { - covar <- try(solve(object$hessian), silent = TRUE) - } else { - covar <- try(solve(object$hessian_notrans), silent = TRUE) - } + if (transformed) { + covar <- try(solve(object$hessian), silent = TRUE) + } else { + covar <- try(solve(object$hessian_notrans), silent = TRUE) + } - # If inverting the covariance matrix failed or produced NA values - if (!is.numeric(covar) | is.na(covar[1])) { - ses <- lci <- uci <- rep(NA, p) - } else { - ses <- sqrt(diag(covar))[covar_pnames] - lci <- covar_parms + quantiles[1] * ses - uci <- covar_parms + quantiles[2] * ses - if (transformed & backtransform) { - lci_back <- backtransform_odeparms(lci, - object$mkinmod, object$transform_rates, object$transform_fractions) - uci_back <- backtransform_odeparms(uci, - object$mkinmod, object$transform_rates, object$transform_fractions) - - return_errparm_names <- intersect(names(object$errparms), return_pnames) - lci <- c(lci_back, lci[return_errparm_names]) - uci <- c(uci_back, uci[return_errparm_names]) - } + # If inverting the covariance matrix failed or produced NA values + if (!is.numeric(covar) | is.na(covar[1])) { + ses <- lci <- uci <- rep(NA, p) + } else { + ses <- sqrt(diag(covar))[covar_pnames] + lci <- covar_parms + quantiles[1] * ses + uci <- covar_parms + quantiles[2] * ses + if (transformed & backtransform) { + lci_back <- backtransform_odeparms(lci, + object$mkinmod, object$transform_rates, object$transform_fractions) + uci_back <- backtransform_odeparms(uci, + object$mkinmod, object$transform_rates, object$transform_fractions) + + return_errparm_names <- intersect(names(object$errparms), return_pnames) + lci <- c(lci_back, lci[return_errparm_names]) + uci <- c(uci_back, uci[return_errparm_names]) } - ci <- cbind(lower = lci, upper = uci) } + ci <- cbind(lower = lci, upper = uci) if (method == "profile") { + + ci_quadratic <- ci + if (!quiet) message("Profiling the likelihood") lci <- uci <- rep(NA, p) @@ -215,9 +218,14 @@ confint.mkinfit <- function(object, parm, (cutoff - (object$logLik - profile_ll(x)))^2 } - lci_pname <- optimize(cost, lower = 0, upper = all_parms[pname])$minimum + lower_quadratic <- ci_quadratic["lower"][pname] + upper_quadratic <- ci_quadratic["upper"][pname] + ltol <- if (!is.na(lower_quadratic)) rel_tol * lower_quadratic else .Machine$double.eps^0.25 + utol <- if (!is.na(upper_quadratic)) rel_tol * upper_quadratic else .Machine$double.eps^0.25 + lci_pname <- optimize(cost, lower = 0, upper = all_parms[pname], tol = ltol)$minimum uci_pname <- optimize(cost, lower = all_parms[pname], - upper = ifelse(grepl("^f_|^g$", pname), 1, 15 * all_parms[pname]))$minimum + upper = ifelse(grepl("^f_|^g$", pname), 1, 15 * all_parms[pname]), + tol = utol)$minimum return(c(lci_pname, uci_pname)) } ci <- t(parallel::mcmapply(get_ci, profile_pnames, mc.cores = cores)) |