diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2019-10-25 00:37:42 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2019-10-25 02:03:54 +0200 |
commit | 0a3eb0893cb4bd1b12f07a79069d1c7f5e991495 (patch) | |
tree | 1bf0ffeb710b3438fee224d0a657606b4c36b495 /R/ilr.R | |
parent | 053bf27d3f265c7a7378e2df3e00cf891e0d1bb2 (diff) |
Use roxygen for functions and methods
Diffstat (limited to 'R/ilr.R')
-rw-r--r-- | R/ilr.R | 46 |
1 files changed, 43 insertions, 3 deletions
@@ -1,6 +1,3 @@ -# Copyright (C) 2012 René Lehmann, Johannes Ranke -# Contact: jranke@uni-bremen.de - # This file is part of the R package mkin # mkin is free software: you can redistribute it and/or modify it under the @@ -16,6 +13,47 @@ # You should have received a copy of the GNU General Public License along with # this program. If not, see <http://www.gnu.org/licenses/> +#' Function to perform isometric log-ratio transformation +#' +#' This implementation is a special case of the class of isometric log-ratio +#' transformations. +#' +#' @aliases ilr invilr +#' @param x A numeric vector. Naturally, the forward transformation is only +#' sensible for vectors with all elements being greater than zero. +#' @return The result of the forward or backward transformation. The returned +#' components always sum to 1 for the case of the inverse log-ratio +#' transformation. +#' @author René Lehmann and Johannes Ranke +#' @seealso Another implementation can be found in R package +#' \code{robCompositions}. +#' @references Peter Filzmoser, Karel Hron (2008) Outlier Detection for +#' Compositional Data Using Robust Methods. Math Geosci 40 233-248 +#' @keywords manip +#' @examples +#' +#' # Order matters +#' ilr(c(0.1, 1, 10)) +#' ilr(c(10, 1, 0.1)) +#' # Equal entries give ilr transformations with zeros as elements +#' ilr(c(3, 3, 3)) +#' # Almost equal entries give small numbers +#' ilr(c(0.3, 0.4, 0.3)) +#' # Only the ratio between the numbers counts, not their sum +#' invilr(ilr(c(0.7, 0.29, 0.01))) +#' invilr(ilr(2.1 * c(0.7, 0.29, 0.01))) +#' # Inverse transformation of larger numbers gives unequal elements +#' invilr(-10) +#' invilr(c(-10, 0)) +#' # The sum of the elements of the inverse ilr is 1 +#' sum(invilr(c(-10, 0))) +#' # This is why we do not need all elements of the inverse transformation to go back: +#' a <- c(0.1, 0.3, 0.5) +#' b <- invilr(a) +#' length(b) # Four elements +#' ilr(c(b[1:3], 1 - sum(b[1:3]))) # Gives c(0.1, 0.3, 0.5) +#' +#' @export ilr <- function(x) { z <- vector() for (i in 1:(length(x) - 1)) { @@ -24,6 +62,8 @@ ilr <- function(x) { return(z) } +#' @rdname ilr +#' @export invilr<-function(x) { D <- length(x) + 1 z <- c(x, 0) |