diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2019-04-08 18:00:25 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2019-04-08 18:00:25 +0200 |
commit | 5814be02f286ce96d6cff8d698aea6844e4025f1 (patch) | |
tree | bdc45984af83e9629abc968e5dd5193ace2c3a95 /R/logLik.mkinfit.R | |
parent | 5e8190f26611c094a1a5d877a314cbca53e3e530 (diff) |
Remove zero observations, adapt logLik
Zero observations at time zero made fitting the two-component error
model fail. A concentration of exactly zero does not make sense anyways,
as we generally have a limit of detection
Diffstat (limited to 'R/logLik.mkinfit.R')
-rw-r--r-- | R/logLik.mkinfit.R | 28 |
1 files changed, 4 insertions, 24 deletions
diff --git a/R/logLik.mkinfit.R b/R/logLik.mkinfit.R index d3f4232d..d812f177 100644 --- a/R/logLik.mkinfit.R +++ b/R/logLik.mkinfit.R @@ -1,4 +1,4 @@ -# Copyright (C) 2018 Johannes Ranke +# Copyright (C) 2018,2019 Johannes Ranke # Contact: jranke@uni-bremen.de # This file is part of the R package mkin @@ -16,29 +16,9 @@ # You should have received a copy of the GNU General Public License along with # this program. If not, see <http://www.gnu.org/licenses/> logLik.mkinfit <- function(object, ...) { - y_ij <- object$data$observed - yhat_ij <- object$data$predicted - if (is.null(object$data$err)) { - # For unweighted fits we estimate a single value for sigma from the residuals - err <- sd(object$data$residual) - n_var_comp <- 1 # Number of variance components estimated - } else { - err <- object$data$err - # For weighted fits we check for variance models used in IRLS - # If the variance values (err) were given and were not - # reweighted, the number of variance components estimated is zero - if (is.null(object$reweight.method)) { - n_var_comp <- 0 - } else { - n_var_comp <- switch(object$reweight.method, - obs = length(object$var_ms_unweighted), - tc = 2) - } - } - prob_dens <- dnorm(y_ij, yhat_ij, err) - val <- log(prod(prob_dens)) - class(val) <- "logLik" - attr(val, "df") <- length(coef(object)) + n_var_comp + val <- object$logLik + # Number of estimated parameters + attr(val, "df") <- length(object$bparms.optim) + length(object$errparms) return(val) } # vim: set ts=2 sw=2 expandtab: |