diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2019-10-25 00:37:42 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2019-10-25 02:03:54 +0200 |
commit | 0a3eb0893cb4bd1b12f07a79069d1c7f5e991495 (patch) | |
tree | 1bf0ffeb710b3438fee224d0a657606b4c36b495 /R/logistic.solution.R | |
parent | 053bf27d3f265c7a7378e2df3e00cf891e0d1bb2 (diff) |
Use roxygen for functions and methods
Diffstat (limited to 'R/logistic.solution.R')
-rw-r--r-- | R/logistic.solution.R | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/R/logistic.solution.R b/R/logistic.solution.R index a3bddab3..d9db13d7 100644 --- a/R/logistic.solution.R +++ b/R/logistic.solution.R @@ -1,3 +1,58 @@ +#' Logistic kinetics +#' +#' Function describing exponential decline from a defined starting value, with +#' an increasing rate constant, supposedly caused by microbial growth +#' +#' @param t Time. +#' @param parent.0 Starting value for the response variable at time zero. +#' @param kmax Maximum rate constant. +#' @param k0 Minumum rate constant effective at time zero. +#' @param r Growth rate of the increase in the rate constant. +#' @return The value of the response variable at time \code{t}. +#' @note The solution of the logistic model reduces to the +#' \code{\link{SFO.solution}} if \code{k0} is equal to \code{kmax}. +#' @references FOCUS (2014) \dQuote{Generic guidance for Estimating Persistence +#' and Degradation Kinetics from Environmental Fate Studies on Pesticides in +#' EU Registration} Report of the FOCUS Work Group on Degradation Kinetics, +#' Version 1.1, 18 December 2014 +#' \url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics} +#' @examples +#' +#' # Reproduce the plot on page 57 of FOCUS (2014) +#' plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.2), +#' from = 0, to = 100, ylim = c(0, 100), +#' xlab = "Time", ylab = "Residue") +#' plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.4), +#' from = 0, to = 100, add = TRUE, lty = 2, col = 2) +#' plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.8), +#' from = 0, to = 100, add = TRUE, lty = 3, col = 3) +#' plot(function(x) logistic.solution(x, 100, 0.08, 0.001, 0.2), +#' from = 0, to = 100, add = TRUE, lty = 4, col = 4) +#' plot(function(x) logistic.solution(x, 100, 0.08, 0.08, 0.2), +#' from = 0, to = 100, add = TRUE, lty = 5, col = 5) +#' legend("topright", inset = 0.05, +#' legend = paste0("k0 = ", c(0.0001, 0.0001, 0.0001, 0.001, 0.08), +#' ", r = ", c(0.2, 0.4, 0.8, 0.2, 0.2)), +#' lty = 1:5, col = 1:5) +#' +#' # Fit with synthetic data +#' logistic <- mkinmod(parent = mkinsub("logistic")) +#' +#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) +#' parms_logistic <- c(kmax = 0.08, k0 = 0.0001, r = 0.2) +#' d_logistic <- mkinpredict(logistic, +#' parms_logistic, c(parent = 100), +#' sampling_times) +#' d_2_1 <- add_err(d_logistic, +#' sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), +#' n = 1, reps = 2, digits = 5, LOD = 0.1, seed = 123456)[[1]] +#' +#' m <- mkinfit("logistic", d_2_1, quiet = TRUE) +#' plot_sep(m) +#' summary(m)$bpar +#' endpoints(m)$distimes +#' +#' @export logistic.solution <- function(t, parent.0, kmax, k0, r) { parent = parent.0 * (kmax / (kmax - k0 + k0 * exp (r * t))) ^(kmax/r) |