diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2019-05-08 20:57:48 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2019-05-08 20:57:48 +0200 |
commit | c6079a807e2b400fe0c772603392aeacd887da2f (patch) | |
tree | 5b590e06de87ce9cd5c776fccfabc8a629a10cad /R/mkinerrplot.R | |
parent | c322a8102a399cbb1fe38c4c4ca4485cea8bc4e8 (diff) |
Add functionality to plot the error model
by plotting squared residuals against predicted values, and
showing the variance function used in the fitted error model.
Rebuild docs
Diffstat (limited to 'R/mkinerrplot.R')
-rw-r--r-- | R/mkinerrplot.R | 84 |
1 files changed, 84 insertions, 0 deletions
diff --git a/R/mkinerrplot.R b/R/mkinerrplot.R new file mode 100644 index 00000000..a2adcefa --- /dev/null +++ b/R/mkinerrplot.R @@ -0,0 +1,84 @@ +# Copyright (C) 2008-2014,2019 Johannes Ranke +# Contact: jranke@uni-bremen.de + +# This file is part of the R package mkin + +# mkin is free software: you can redistribute it and/or modify it under the +# terms of the GNU General Public License as published by the Free Software +# Foundation, either version 3 of the License, or (at your option) any later +# version. + +# This program is distributed in the hope that it will be useful, but WITHOUT +# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more +# details. + +# You should have received a copy of the GNU General Public License along with +# this program. If not, see <http://www.gnu.org/licenses/> +if(getRversion() >= '2.15.1') utils::globalVariables(c("variable", "residual")) + +mkinerrplot <- function (object, + obs_vars = names(object$mkinmod$map), + xlim = c(0, 1.1 * max(object$data$predicted)), + xlab = "Predicted", ylab = "Squared residual", + maxy = "auto", legend= TRUE, lpos = "topright", + col_obs = "auto", pch_obs = "auto", + ...) +{ + obs_vars_all <- as.character(unique(object$data$variable)) + + if (length(obs_vars) > 0){ + obs_vars <- intersect(obs_vars_all, obs_vars) + } else obs_vars <- obs_vars_all + + residuals <- subset(object$data, variable %in% obs_vars, residual) + + if (maxy == "auto") maxy = max(residuals^2, na.rm = TRUE) + + # Set colors and symbols + if (col_obs[1] == "auto") { + col_obs <- 1:length(obs_vars) + } + + if (pch_obs[1] == "auto") { + pch_obs <- 1:length(obs_vars) + } + names(col_obs) <- names(pch_obs) <- obs_vars + + plot(0, type = "n", + xlab = xlab, ylab = ylab, + xlim = xlim, + ylim = c(0, 1.2 * maxy), ...) + + for(obs_var in obs_vars){ + residuals_plot <- subset(object$data, variable == obs_var, c("predicted", "residual")) + points(residuals_plot[["predicted"]], + residuals_plot[["residual"]]^2, + pch = pch_obs[obs_var], col = col_obs[obs_var]) + } + + if (object$err_mod == "const") { + abline(h = object$errparms^2, lty = 2, col = col_obs[obs_var]) + } + if (object$err_mod == "obs") { + for (obs_var in obs_vars) { + sigma_name = paste0("sigma_", obs_var) + abline(h = object$errparms[sigma_name]^2, lty = 2, + col = col_obs[obs_var]) + } + } + if (object$err_mod == "tc") { + sigma_plot <- function(predicted) { + sigma_twocomp(predicted, + sigma_low = object$errparms[1], + rsd_high = object$errparms[2])^2 + } + plot(sigma_plot, from = 0, to = max(object$data$predicted), + add = TRUE, lty = 2, col = col_obs[obs_var]) + } + + if (legend == TRUE) { + legend(lpos, inset = c(0.05, 0.05), legend = obs_vars, + col = col_obs[obs_vars], pch = pch_obs[obs_vars]) + } +} |