diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2014-11-12 13:44:17 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2014-11-12 13:44:17 +0100 |
commit | 401570aa9e58c4a2f2e939f37f496453d97d3f33 (patch) | |
tree | 27fbf0df9896c251506e084e0971fb26cda6da9a /R/mkinfit.R | |
parent | b4d253edcf71fbf4175bc73cdb9593eea816c358 (diff) | |
parent | 3516b626be1aeb639d0735e79449424d2e987d7a (diff) |
Merge branch 'master' into iore
Diffstat (limited to 'R/mkinfit.R')
-rw-r--r-- | R/mkinfit.R | 175 |
1 files changed, 127 insertions, 48 deletions
diff --git a/R/mkinfit.R b/R/mkinfit.R index 46121c6d..a6889b0b 100644 --- a/R/mkinfit.R +++ b/R/mkinfit.R @@ -23,12 +23,13 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "value")) mkinfit <- function(mkinmod, observed,
parms.ini = "auto",
- state.ini = c(100, rep(0, length(mkinmod$diffs) - 1)),
+ state.ini = "auto",
fixed_parms = NULL,
fixed_initials = names(mkinmod$diffs)[-1],
solution_type = "auto",
method.ode = "lsoda",
- method.modFit = "Marq",
+ method.modFit = c("Port", "Marq", "SANN", "Nelder-Mead", "BFGS", "CG", "L-BFGS-B"),
+ maxit.modFit = "auto",
control.modFit = list(),
transform_rates = TRUE,
transform_fractions = TRUE,
@@ -40,11 +41,36 @@ mkinfit <- function(mkinmod, observed, trace_parms = FALSE,
...)
{
+ # Check mkinmod and generate a model for the variable whith the highest value
+ # if a suitable string is given
+ parent_models_available = c("SFO", "FOMC", "DFOP", "HS", "SFORB")
+ if (class(mkinmod) != "mkinmod") {
+ presumed_parent_name = observed[which.max(observed$value), "name"]
+ if (mkinmod[[1]] %in% parent_models_available) {
+ speclist <- list(list(type = mkinmod, sink = TRUE))
+ names(speclist) <- presumed_parent_name
+ mkinmod <- mkinmod(speclist = speclist)
+ } else {
+ stop("Argument mkinmod must be of class mkinmod or a string containing one of\n ",
+ paste(parent_models_available, collapse = ", "))
+ }
+ }
+
+ # Check optimisation method and set maximum number of iterations if specified
+ method.modFit = match.arg(method.modFit)
+ if (maxit.modFit != "auto") {
+ if (method.modFit == "Marq") control.modFit$maxiter = maxit.modFit
+ if (method.modFit == "Port") control.modFit$iter.max = maxit.modFit
+ if (method.modFit %in% c("SANN", "Nelder-Mead", "BFGS", "CG", "L-BFGS-B")) {
+ control.modFit$maxit = maxit.modFit
+ }
+ }
+
# Get the names of the state variables in the model
mod_vars <- names(mkinmod$diffs)
# Get the names of observed variables
- obs_vars = names(mkinmod$spec)
+ obs_vars <- names(mkinmod$spec)
# Subset observed data with names of observed data in the model
observed <- subset(observed, name %in% obs_vars)
@@ -128,6 +154,18 @@ mkinfit <- function(mkinmod, observed, }
}
+ # Set default for state.ini if appropriate
+ parent_name = names(mkinmod$spec)[[1]]
+ if (state.ini[1] == "auto") {
+ parent_time_0 = subset(observed, time == 0 & name == parent_name)$value
+ parent_time_0_mean = mean(parent_time_0, na.rm = TRUE)
+ if (is.na(parent_time_0_mean)) {
+ state.ini = c(100, rep(0, length(mkinmod$diffs) - 1))
+ } else {
+ state.ini = c(parent_time_0_mean, rep(0, length(mkinmod$diffs) - 1))
+ }
+ }
+
# Name the inital state variable values if they are not named yet
if(is.null(names(state.ini))) names(state.ini) <- mod_vars
@@ -245,7 +283,7 @@ mkinfit <- function(mkinmod, observed, atol = atol, rtol = rtol, ...)
plot(0, type="n",
- xlim = range(observed$time), ylim = range(observed$value, na.rm=TRUE),
+ xlim = range(observed$time), ylim = c(0, max(observed$value, na.rm=TRUE)),
xlab = "Time", ylab = "Observed")
col_obs <- pch_obs <- 1:length(obs_vars)
lty_obs <- rep(1, length(obs_vars))
@@ -270,7 +308,7 @@ mkinfit <- function(mkinmod, observed, if (!transform_rates) {
index_k <- grep("^k_", names(lower))
lower[index_k] <- 0
- other_rate_parms <- intersect(c("alpha", "beta", "k1", "k2"), names(lower))
+ other_rate_parms <- intersect(c("alpha", "beta", "k1", "k2", "tb"), names(lower))
lower[other_rate_parms] <- 0
}
@@ -283,41 +321,65 @@ mkinfit <- function(mkinmod, observed, upper[other_fraction_parms] <- 1
}
- fit <- modFit(cost, c(state.ini.optim, transparms.optim),
- method = method.modFit, control = control.modFit,
- lower = lower, upper = upper, ...)
-
- # Reiterate the fit until convergence of the variance components (IRLS)
- # if requested by the user
- weight.ini = weight
- if (!is.null(err)) weight.ini = "manual"
-
- if (!is.null(reweight.method)) {
- if (reweight.method != "obs") stop("Only reweighting method 'obs' is implemented")
- if(!quiet) {
- cat("IRLS based on variance estimates for each observed variable\n")
- }
- if (!quiet) {
- cat("Initial variance estimates are:\n")
- print(signif(fit$var_ms_unweighted, 8))
- }
- reweight.diff = 1
- n.iter <- 0
- if (!is.null(err)) observed$err.ini <- observed[[err]]
- err = "err.irls"
- while (reweight.diff > reweight.tol & n.iter < reweight.max.iter) {
- n.iter <- n.iter + 1
- sigma.old <- sqrt(fit$var_ms_unweighted)
- observed[err] <- sqrt(fit$var_ms_unweighted)[as.character(observed$name)]
- fit <- modFit(cost, fit$par, method = method.modFit,
- control = control.modFit, lower = lower, upper = upper, ...)
- reweight.diff = sum((sqrt(fit$var_ms_unweighted) - sigma.old)^2)
+ # Do the fit and take the time
+ fit_time <- system.time({
+ fit <- modFit(cost, c(state.ini.optim, transparms.optim),
+ method = method.modFit, control = control.modFit,
+ lower = lower, upper = upper, ...)
+
+ # Reiterate the fit until convergence of the variance components (IRLS)
+ # if requested by the user
+ weight.ini = weight
+ if (!is.null(err)) weight.ini = "manual"
+
+ if (!is.null(reweight.method)) {
+ if (reweight.method != "obs") stop("Only reweighting method 'obs' is implemented")
+ if(!quiet) {
+ cat("IRLS based on variance estimates for each observed variable\n")
+ }
if (!quiet) {
- cat("Iteration", n.iter, "yields variance estimates:\n")
+ cat("Initial variance estimates are:\n")
print(signif(fit$var_ms_unweighted, 8))
- cat("Sum of squared differences to last variance estimates:",
- signif(reweight.diff, 2), "\n")
}
+ reweight.diff = 1
+ n.iter <- 0
+ if (!is.null(err)) observed$err.ini <- observed[[err]]
+ err = "err.irls"
+ while (reweight.diff > reweight.tol & n.iter < reweight.max.iter) {
+ n.iter <- n.iter + 1
+ sigma.old <- sqrt(fit$var_ms_unweighted)
+ observed[err] <- sqrt(fit$var_ms_unweighted)[as.character(observed$name)]
+ fit <- modFit(cost, fit$par, method = method.modFit,
+ control = control.modFit, lower = lower, upper = upper, ...)
+ reweight.diff = sum((sqrt(fit$var_ms_unweighted) - sigma.old)^2)
+ if (!quiet) {
+ cat("Iteration", n.iter, "yields variance estimates:\n")
+ print(signif(fit$var_ms_unweighted, 8))
+ cat("Sum of squared differences to last variance estimates:",
+ signif(reweight.diff, 2), "\n")
+ }
+ }
+ }
+ })
+
+ # Check for convergence
+ if (method.modFit == "Marq") {
+ if (!fit$info %in% c(1, 2, 3)) {
+ fit$warning = paste0("Optimisation by method ", method.modFit,
+ " did not converge.\n",
+ "The message returned by nls.lm is:\n",
+ fit$message)
+ warning(fit$warning)
+ }
+ }
+ if (method.modFit %in% c("Port", "SANN", "Nelder-Mead", "BFGS", "CG", "L-BFGS-B")) {
+ if (fit$convergence != 0) {
+ fit$warning = paste0("Optimisation by method ", method.modFit,
+ " did not converge.\n",
+ "Convergence code is ", fit$convergence,
+ ifelse(is.null(fit$message), "",
+ paste0("\nMessage is ", fit$message)))
+ warning(fit$warning)
}
}
@@ -325,6 +387,10 @@ mkinfit <- function(mkinmod, observed, fit$solution_type <- solution_type
fit$transform_rates <- transform_rates
fit$transform_fractions <- transform_fractions
+ fit$method.modFit <- method.modFit
+ fit$maxit.modFit <- maxit.modFit
+ fit$calls <- calls
+ fit$time <- fit_time
# We also need the model for summary and plotting
fit$mkinmod <- mkinmod
@@ -380,8 +446,11 @@ mkinfit <- function(mkinmod, observed, fit$bparms.optim <- bparms.optim
fit$bparms.fixed <- bparms.fixed
- # Return ode parameters for further fitting
+ # Return ode and state parameters for further fitting
fit$bparms.ode <- bparms.all[mkinmod$parms]
+ fit$bparms.state <- c(bparms.all[setdiff(names(bparms.all), names(fit$bparms.ode))],
+ state.ini.fixed)
+ names(fit$bparms.state) <- gsub("_0$", "", names(fit$bparms.state))
fit$date <- date()
@@ -451,6 +520,8 @@ summary.mkinfit <- function(object, data = TRUE, distimes = TRUE, alpha = 0.05, date.fit = object$date,
date.summary = date(),
solution_type = object$solution_type,
+ method.modFit = object$method.modFit,
+ warning = object$warning,
use_of_ff = object$mkinmod$use_of_ff,
weight.ini = object$weight.ini,
reweight.method = object$reweight.method,
@@ -463,6 +534,8 @@ summary.mkinfit <- function(object, data = TRUE, distimes = TRUE, alpha = 0.05, cov.scaled = covar * resvar,
info = object$info,
niter = object$iterations,
+ calls = object$calls,
+ time = object$time,
stopmess = message,
par = param,
bpar = bparam)
@@ -493,13 +566,17 @@ print.summary.mkinfit <- function(x, digits = max(3, getOption("digits") - 3), . cat("Date of fit: ", x$date.fit, "\n")
cat("Date of summary:", x$date.summary, "\n")
+ if (!is.null(x$warning)) cat("\n\nWarning:", x$warning, "\n\n")
+
cat("\nEquations:\n")
- print(noquote(as.character(x[["diffs"]])))
+ writeLines(strwrap(x[["diffs"]], exdent = 11))
df <- x$df
rdf <- df[2]
- cat("\nMethod used for solution of differential equation system:\n")
- cat(x$solution_type, "\n")
+ cat("\nModel predictions using solution type", x$solution_type, "\n")
+
+ cat("\nFitted with method", x$method.modFit,
+ "using", x$calls, "model solutions performed in", x$time[["elapsed"]], "s\n")
cat("\nWeighting:", x$weight.ini)
if(!is.null(x$reweight.method)) cat(" then iterative reweighting method",
@@ -519,13 +596,15 @@ print.summary.mkinfit <- function(x, digits = max(3, getOption("digits") - 3), . cat("\nOptimised, transformed parameters:\n")
print(signif(x$par, digits = digits))
- cat("\nParameter correlation:\n")
- if (!is.null(x$cov.unscaled)){
- Corr <- cov2cor(x$cov.unscaled)
- rownames(Corr) <- colnames(Corr) <- rownames(x$par)
- print(Corr, digits = digits, ...)
- } else {
- cat("Could not estimate covariance matrix; singular system:\n")
+ if (x$niter != 0) {
+ cat("\nParameter correlation:\n")
+ if (!is.null(x$cov.unscaled)){
+ Corr <- cov2cor(x$cov.unscaled)
+ rownames(Corr) <- colnames(Corr) <- rownames(x$par)
+ print(Corr, digits = digits, ...)
+ } else {
+ cat("Could not estimate covariance matrix; singular system:\n")
+ }
}
cat("\nResidual standard error:",
|