diff options
author | jranke <jranke@edb9625f-4e0d-4859-8d74-9fd3b1da38cb> | 2012-05-07 18:51:46 +0000 |
---|---|---|
committer | jranke <jranke@edb9625f-4e0d-4859-8d74-9fd3b1da38cb> | 2012-05-07 18:51:46 +0000 |
commit | a6694c655fde246dd4d59b44fd10b22738b3fb08 (patch) | |
tree | a16b9a55477365562c90e918215d74811f90ef36 /R/mkinfit.R | |
parent | 1628fde60496532a610db7fecfc3c19efa56b8d6 (diff) |
- Moved the call to mkinerrmin to summary.mkinfit
- The argument to mkinerrmin is now an object of class mkinfit
- Fixed the allocation of parameters to observed variables in mkinerrmin
git-svn-id: svn+ssh://svn.r-forge.r-project.org/svnroot/kinfit/pkg/mkin@37 edb9625f-4e0d-4859-8d74-9fd3b1da38cb
Diffstat (limited to 'R/mkinfit.R')
-rw-r--r-- | R/mkinfit.R | 45 |
1 files changed, 12 insertions, 33 deletions
diff --git a/R/mkinfit.R b/R/mkinfit.R index cb0396f7..b2641e64 100644 --- a/R/mkinfit.R +++ b/R/mkinfit.R @@ -175,9 +175,9 @@ mkinfit <- function(mkinmod, observed, fit$mkinmod <- mkinmod
# We need data and predictions for summary and plotting
- fit$observed <- mkin_long_to_wide(observed)
- predicted_long <- mkin_wide_to_long(out_predicted, time = "time")
- fit$predicted <- out_predicted
+ fit$observed <- observed
+ fit$obs_vars <- obs_vars
+ fit$predicted <- mkin_wide_to_long(out_predicted, time = "time")
# Collect initial parameter values in two dataframes
fit$start <- data.frame(initial = c(state.ini.optim,
@@ -189,35 +189,11 @@ mkinfit <- function(mkinmod, observed, value = c(state.ini.fixed, parms.fixed))
fit$fixed$type = c(rep("state", length(state.ini.fixed)), rep("deparm", length(parms.fixed)))
- # Calculate chi2 error levels according to FOCUS (2006)
- means <- aggregate(value ~ time + name, data = observed, mean, na.rm=TRUE)
- errdata <- merge(means, predicted_long, by = c("time", "name"), suffixes = c("_mean", "_pred"))
- errdata <- errdata[order(errdata$time, errdata$name), ]
- errmin.overall <- mkinerrmin(errdata, length(parms.optim) + length(state.ini.optim))
-
- errmin <- data.frame(err.min = errmin.overall$err.min,
- n.optim = errmin.overall$n.optim, df = errmin.overall$df)
- rownames(errmin) <- "All data"
- for (obs_var in obs_vars)
- {
- errdata.var <- subset(errdata, name == obs_var)
- n.k.optim <- length(grep(paste("k", obs_var, sep="_"), names(parms.optim)))
- n.initials.optim <- length(grep(paste(obs_var, ".*", "_0", sep=""), names(state.ini.optim)))
- n.optim <- n.k.optim + n.initials.optim
- if ("alpha" %in% names(parms.optim)) n.optim <- n.optim + 1
- if ("beta" %in% names(parms.optim)) n.optim <- n.optim + 1
- if ("k1" %in% names(parms.optim)) n.optim <- n.optim + 1
- if ("k2" %in% names(parms.optim)) n.optim <- n.optim + 1
- if ("g" %in% names(parms.optim)) n.optim <- n.optim + 1
- if ("tb" %in% names(parms.optim)) n.optim <- n.optim + 1
- errmin.tmp <- mkinerrmin(errdata.var, n.optim)
- errmin[obs_var, c("err.min", "n.optim", "df")] <- errmin.tmp
- }
- fit$errmin <- errmin
- # Calculate dissipation times DT50 and DT90 and, if necessary, formation fractions
- # from optimised parameters
parms.all = backtransform_odeparms(c(fit$par, parms.fixed), mod_vars)
+
+ # Calculate dissipation times DT50 and DT90 and, if necessary, formation
+ # fractions and SFORB eigenvalues from optimised parameters
fit$distimes <- data.frame(DT50 = rep(NA, length(obs_vars)), DT90 = rep(NA, length(obs_vars)),
row.names = obs_vars)
fit$ff <- vector()
@@ -305,7 +281,7 @@ mkinfit <- function(mkinmod, observed, }
# Collect observed, predicted and residuals
- data <- merge(observed, predicted_long, by = c("time", "name"))
+ data <- merge(fit$observed, fit$predicted, by = c("time", "name"))
names(data) <- c("time", "variable", "observed", "predicted")
data$residual <- data$observed - data$predicted
data$variable <- ordered(data$variable, levels = obs_vars)
@@ -362,9 +338,12 @@ summary.mkinfit <- function(object, data = TRUE, distimes = TRUE, ...) { ans$start <- object$start
ans$fixed <- object$fixed
- ans$errmin <- object$errmin
+
+ ans$errmin <- mkinerrmin(object, alpha = 0.05)
+
ans$parms.all <- object$parms.all
- ans$ff <- object$ff
+ if (!is.null(object$ff))
+ ans$ff <- object$ff
if(distimes) ans$distimes <- object$distimes
if(length(object$SFORB) != 0) ans$SFORB <- object$SFORB
class(ans) <- c("summary.mkinfit", "summary.modFit")
|