diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2020-05-08 15:22:54 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2020-05-08 15:22:54 +0200 |
commit | 636dade692b8eee012004a2740616385333efc48 (patch) | |
tree | 4b5d54da6f0ac77526b39ad092dfdaa7f64362bc /R/mkinfit.R | |
parent | 2c313bdb12c5fcae8272600021fcedbc99425130 (diff) |
Avoid duplicate merge in tc error model fit
This increases the performance in the complete test suite
by about 20 secs from 120 to around 100 secs.
I tried improving merge speed by using data.table on another
branch, but this did not give a noticeable performance gain.
Diffstat (limited to 'R/mkinfit.R')
-rw-r--r-- | R/mkinfit.R | 17 |
1 files changed, 7 insertions, 10 deletions
diff --git a/R/mkinfit.R b/R/mkinfit.R index f5e7e493..61593ce5 100644 --- a/R/mkinfit.R +++ b/R/mkinfit.R @@ -594,23 +594,20 @@ mkinfit <- function(mkinmod, observed, out_long <- mkin_wide_to_long(out, time = "time") + cost_data <- merge(observed[c("name", "time", "value")], out_long, + by = c("name", "time"), suffixes = c(".observed", ".predicted")) + if (err_mod == "const") { - observed$std <- if (OLS) NA else cost_errparms["sigma"] + cost_data$std <- if (OLS) NA else cost_errparms["sigma"] } if (err_mod == "obs") { - std_names <- paste0("sigma_", observed$name) - observed$std <- cost_errparms[std_names] + std_names <- paste0("sigma_", cost_data$name) + cost_data$std <- cost_errparms[std_names] } if (err_mod == "tc") { - tmp <- merge(observed, out_long, by = c("time", "name")) - tmp$name <- ordered(tmp$name, levels = obs_vars) - tmp <- tmp[order(tmp$name, tmp$time), ] - observed$std <- sqrt(cost_errparms["sigma_low"]^2 + tmp$value.y^2 * cost_errparms["rsd_high"]^2) + cost_data$std <- sqrt(cost_errparms["sigma_low"]^2 + cost_data$value.predicted^2 * cost_errparms["rsd_high"]^2) } - cost_data <- merge(observed[c("name", "time", "value", "std")], out_long, - by = c("name", "time"), suffixes = c(".observed", ".predicted")) - if (OLS) { # Cost is the sum of squared residuals cost <- with(cost_data, sum((value.observed - value.predicted)^2)) |