diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2019-10-31 01:55:01 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2019-10-31 01:59:05 +0100 |
commit | 7091d3738e7e55acb20edb88772b228f6f5b6c98 (patch) | |
tree | b6e31700074605c702662e5238162c57de330453 /R/mkinfit.R | |
parent | 5e4ea59a41e00b05ea6664c08c7922e892e8ab77 (diff) |
Add likelihood ratio test and other methods, fixes
The likelihood ratio test method is lrtest, in addition,
methods for update and residuals were added.
Diffstat (limited to 'R/mkinfit.R')
-rw-r--r-- | R/mkinfit.R | 52 |
1 files changed, 39 insertions, 13 deletions
diff --git a/R/mkinfit.R b/R/mkinfit.R index a3e39053..27c769db 100644 --- a/R/mkinfit.R +++ b/R/mkinfit.R @@ -52,7 +52,9 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "time", "value")) #' default values. Otherwise, inital values for all error model parameters #' must be given. #' @param fixed_parms The names of parameters that should not be optimised but -#' rather kept at the values specified in \code{parms.ini}. +#' rather kept at the values specified in \code{parms.ini}. Alternatively, +#' a named numeric vector of parameters to be fixed, regardless of the values +#' in parms.ini. #' @param fixed_initials The names of model variables for which the initial #' state at time 0 should be excluded from the optimisation. Defaults to all #' state variables except for the first one. @@ -253,6 +255,12 @@ mkinfit <- function(mkinmod, observed, trace_parms = FALSE, ...) { + call <- match.call() + + # Derive the name used for the model + if (is.character(mkinmod)) mkinmod_name <- mkinmod + else mkinmod_name <- deparse(substitute(mkinmod)) + # Check mkinmod and generate a model for the variable whith the highest value # if a suitable string is given parent_models_available = c("SFO", "FOMC", "DFOP", "HS", "SFORB", "IORE", "logistic") @@ -302,6 +310,14 @@ mkinfit <- function(mkinmod, observed, # Define starting values for parameters where not specified by the user if (parms.ini[[1]] == "auto") parms.ini = vector() + # Override parms.ini for parameters given as a numeric vector in + # fixed_parms + if (is.numeric(fixed_parms)) { + fixed_parm_names <- names(fixed_parms) + parms.ini[fixed_parm_names] <- fixed_parms + fixed_parms <- fixed_parm_names + } + # Warn for inital parameter specifications that are not in the model wrongpar.names <- setdiff(names(parms.ini), mkinmod$parms) if (length(wrongpar.names) > 0) { @@ -384,15 +400,22 @@ mkinfit <- function(mkinmod, observed, # Set default for state.ini if appropriate parent_name = names(mkinmod$spec)[[1]] + parent_time_0 = subset(observed, time == 0 & name == parent_name)$value + parent_time_0_mean = mean(parent_time_0, na.rm = TRUE) + if (is.na(parent_time_0_mean)) { + state.ini_auto = c(100, rep(0, length(mkinmod$diffs) - 1)) + } else { + state.ini_auto = c(parent_time_0_mean, rep(0, length(mkinmod$diffs) - 1)) + } + names(state.ini_auto) <- mod_vars + if (state.ini[1] == "auto") { - parent_time_0 = subset(observed, time == 0 & name == parent_name)$value - parent_time_0_mean = mean(parent_time_0, na.rm = TRUE) - if (is.na(parent_time_0_mean)) { - state.ini = c(100, rep(0, length(mkinmod$diffs) - 1)) - } else { - state.ini = c(parent_time_0_mean, rep(0, length(mkinmod$diffs) - 1)) - } + state.ini_used <- state.ini_auto + } else { + state.ini_used <- state.ini_auto + state.ini_used[names(state.ini)] <- state.ini } + state.ini <- state.ini_used # Name the inital state variable values if they are not named yet if(is.null(names(state.ini))) names(state.ini) <- mod_vars @@ -799,19 +822,21 @@ mkinfit <- function(mkinmod, observed, names(c(degparms, errparms))) # Backtransform parameters - bparms.optim = backtransform_odeparms(fit$par, mkinmod, + bparms.optim = backtransform_odeparms(degparms, mkinmod, transform_rates = transform_rates, transform_fractions = transform_fractions) bparms.fixed = c(state.ini.fixed, parms.fixed) bparms.all = c(bparms.optim, parms.fixed) - fit$hessian_notrans <- try(numDeriv::hessian(cost_function, c(bparms.all, errparms), + fit$hessian_notrans <- try(numDeriv::hessian(cost_function, c(bparms.optim, errparms), OLS = FALSE, trans = FALSE, update_data = FALSE), silent = TRUE) - dimnames(fit$hessian_notrans) <- list(names(c(bparms.all, errparms)), - names(c(bparms.all, errparms))) + dimnames(fit$hessian_notrans) <- list(names(c(bparms.optim, errparms)), + names(c(bparms.optim, errparms))) }) + fit$call <- call + fit$error_model_algorithm <- error_model_algorithm if (fit$convergence != 0) { @@ -831,8 +856,9 @@ mkinfit <- function(mkinmod, observed, fit$calls <- calls fit$time <- fit_time - # We also need the model for summary and plotting + # We also need the model and a model name for summary and plotting fit$mkinmod <- mkinmod + fit$mkinmod$name <- mkinmod_name # We need data and predictions for summary and plotting fit$observed <- observed |