aboutsummaryrefslogtreecommitdiff
path: root/R/nlme.R
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2020-04-04 16:46:37 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2020-04-04 16:46:37 +0200
commit68f5f5c17e3e1c3f9272b9b663a4d7380433b530 (patch)
treeca0c3837b1144368b67bb86a3192675f10212b97 /R/nlme.R
parent8c19fc5261dc53dc7880b3f54f8f2adf413de996 (diff)
Add three functions to facilitate the use of nlme
Diffstat (limited to 'R/nlme.R')
-rw-r--r--R/nlme.R213
1 files changed, 213 insertions, 0 deletions
diff --git a/R/nlme.R b/R/nlme.R
new file mode 100644
index 00000000..b17fe15a
--- /dev/null
+++ b/R/nlme.R
@@ -0,0 +1,213 @@
+#' Estimation of parameter distributions from mmkin row objects
+#'
+#' This function sets up and attempts to fit a mixed effects model to
+#' an mmkin row object. An mmkin row object is essentially a list of mkinfit
+#' objects that have been obtained by fitting the same model to a list of
+#' datasets.
+#'
+#' @param object An mmkin row object containing several fits of the same model to different datasets
+#' @import nlme
+#' @importFrom purrr map_dfr
+#' @return A named vector containing mean values of the fitted degradation model parameters
+#' @rdname nlme
+#' @examples
+#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+#' m_SFO <- mkinmod(parent = mkinsub("SFO"))
+#' d_SFO_1 <- mkinpredict(m_SFO,
+#' c(k_parent_sink = 0.1),
+#' c(parent = 98), sampling_times)
+#' d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time")
+#' d_SFO_2 <- mkinpredict(m_SFO,
+#' c(k_parent_sink = 0.05),
+#' c(parent = 102), sampling_times)
+#' d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time")
+#' d_SFO_3 <- mkinpredict(m_SFO,
+#' c(k_parent_sink = 0.02),
+#' c(parent = 103), sampling_times)
+#' d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time")
+#'
+#' d1 <- add_err(d_SFO_1, function(value) 3, n = 1)
+#' d2 <- add_err(d_SFO_2, function(value) 2, n = 1)
+#' d3 <- add_err(d_SFO_3, function(value) 4, n = 1)
+#' ds <- c(d1 = d1, d2 = d2, d3 = d3)
+#'
+#' f <- mmkin("SFO", ds, cores = 1, quiet = TRUE)
+#' mean_dp <- mean_degparms(f)
+#' grouped_data <- nlme_data(f)
+#' nlme_f <- nlme_function(f)
+#'
+#' library(nlme)
+#' m_nlme <- nlme(value ~ nlme_f(name, time, parent_0, log_k_parent_sink),
+#' data = grouped_data,
+#' fixed = parent_0 + log_k_parent_sink ~ 1,
+#' random = pdDiag(parent_0 + log_k_parent_sink ~ 1),
+#' start = mean_dp)
+#' summary(m_nlme)
+#'
+#' \dontrun{
+#' Test on some real data
+#' ds_2 <- lapply(experimental_data_for_UBA_2019[6:10],
+#' function(x) x$data[c("name", "time", "value")])
+#' m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
+#' A1 = mkinsub("SFO"), use_of_ff = "min")
+#' m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"),
+#' A1 = mkinsub("SFO"), use_of_ff = "max")
+#' m_fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
+#' A1 = mkinsub("SFO"))
+#' m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
+#' A1 = mkinsub("SFO"))
+#' m_sforb_sfo <- mkinmod(parent = mkinsub("SFORB", "A1"),
+#' A1 = mkinsub("SFO"))
+#'
+#' f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo,
+#' "SFO-SFO-ff" = m_sfo_sfo_ff,
+#' "FOMC-SFO" = m_fomc_sfo,
+#' "DFOP-SFO" = m_dfop_sfo,
+#' "SFORB-SFO" = m_sforb_sfo),
+#' ds_2)
+#'
+#' grouped_data_2 <- nlme_data(f_2["SFO-SFO", ])
+#'
+#' mean_dp_sfo_sfo <- mean_degparms(f_2["SFO-SFO", ])
+#' mean_dp_sfo_sfo_ff <- mean_degparms(f_2["SFO-SFO-ff", ])
+#' mean_dp_fomc_sfo <- mean_degparms(f_2["FOMC-SFO", ])
+#' mean_dp_dfop_sfo <- mean_degparms(f_2["DFOP-SFO", ])
+#' mean_dp_sforb_sfo <- mean_degparms(f_2["SFORB-SFO", ])
+#'
+#' nlme_f_sfo_sfo <- nlme_function(f_2["SFO-SFO", ])
+#' nlme_f_sfo_sfo_ff <- nlme_function(f_2["SFO-SFO-ff", ])
+#' nlme_f_fomc_sfo <- nlme_function(f_2["FOMC-SFO", ])
+#'
+#' # Allowing for correlations between random effects leads to non-convergence
+#' f_nlme_sfo_sfo <- nlme(value ~ nlme_f_sfo_sfo(name, time,
+#' parent_0, log_k_parent_sink, log_k_parent_A1, log_k_A1_sink),
+#' data = grouped_data_2,
+#' fixed = parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1,
+#' random = pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1),
+#' start = mean_dp_sfo_sfo)
+#'
+#' # The same model fitted with transformed formation fractions does not converge
+#' f_nlme_sfo_sfo_ff <- nlme(value ~ nlme_f_sfo_sfo_ff(name, time,
+#' parent_0, log_k_parent, log_k_A1, f_parent_ilr_1),
+#' data = grouped_data_2,
+#' fixed = parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1,
+#' random = pdDiag(parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1),
+#' start = mean_dp_sfo_sfo_ff)
+#'
+#' # It does converge with this version of reduced random effects
+#' f_nlme_sfo_sfo_ff <- nlme(value ~ nlme_f_sfo_sfo_ff(name, time,
+#' parent_0, log_k_parent, log_k_A1, f_parent_ilr_1),
+#' data = grouped_data_2,
+#' fixed = parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1,
+#' random = pdDiag(parent_0 + log_k_parent ~ 1),
+#' start = mean_dp_sfo_sfo_ff)
+#'
+#' f_nlme_fomc_sfo <- nlme(value ~ nlme_f_fomc_sfo(name, time,
+#' parent_0, log_alpha, log_beta, log_k_A1, f_parent_ilr_1),
+#' data = grouped_data_2,
+#' fixed = parent_0 + log_alpha + log_beta + log_k_A1 + f_parent_ilr_1 ~ 1,
+#' random = pdDiag(parent_0 + log_alpha + log_beta + log_k_A1 + f_parent_ilr_1 ~ 1),
+#' start = mean_dp_fomc_sfo)
+#'
+#' # DFOP-SFO and SFORB-SFO did not converge with full random effects
+#'
+#' anova(f_nlme_fomc_sfo, f_nlme_sfo_sfo)
+#' }
+#' @export
+mean_degparms <- function(object) {
+ if (nrow(object) > 1) stop("Only row objects allowed")
+ p_mat_start_trans <- sapply(object, parms, transformed = TRUE)
+ mean_degparm_names <- setdiff(rownames(p_mat_start_trans), names(object[[1]]$errparms))
+ res <- apply(p_mat_start_trans[mean_degparm_names, ], 1, mean)
+ return(res)
+}
+
+#' @rdname nlme
+#' @importFrom purrr map_dfr
+#' @return A groupedData data object
+#' @export
+nlme_data <- function(object) {
+ if (nrow(object) > 1) stop("Only row objects allowed")
+ ds_names <- colnames(object)
+
+ ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
+ names(ds_list) <- ds_names
+ ds_nlme <- purrr::map_dfr(ds_list, function(x) x, .id = "ds")
+ ds_nlme$variable <- as.character(ds_nlme$variable)
+ ds_nlme_renamed <- data.frame(ds = ds_nlme$ds, name = ds_nlme$variable,
+ time = ds_nlme$time, value = ds_nlme$observed,
+ stringsAsFactors = FALSE)
+ ds_nlme_grouped <- groupedData(value ~ time | ds, ds_nlme_renamed)
+ return(ds_nlme_grouped)
+}
+
+#' @rdname nlme
+#' @return A function that can be used with nlme
+#' @export
+nlme_function <- function(object) {
+ if (nrow(object) > 1) stop("Only row objects allowed")
+
+ mkin_model <- object[[1]]$mkinmod
+
+ degparm_names <- names(mean_degparms(object))
+
+ # Inspired by https://stackoverflow.com/a/12983961/3805440
+ # and https://stackoverflow.com/a/26280789/3805440
+ model_function_alist <- replicate(length(degparm_names) + 2, substitute())
+ names(model_function_alist) <- c("name", "time", degparm_names)
+
+ model_function_body <- quote({
+ arg_frame <- as.data.frame(as.list((environment())), stringsAsFactors = FALSE)
+ res_frame <- arg_frame[1:2]
+ parm_frame <- arg_frame[-(1:2)]
+ parms_unique <- unique(parm_frame)
+
+ n_unique <- nrow(parms_unique)
+
+ times_ds <- list()
+ names_ds <- list()
+ for (i in 1:n_unique) {
+ times_ds[[i]] <-
+ arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "time"]
+ names_ds[[i]] <-
+ arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "name"]
+ }
+
+ res_list <- lapply(1:n_unique, function(x) {
+ transparms_optim <- unlist(parms_unique[x, , drop = TRUE])
+ parms_fixed <- object[[1]]$bparms.fixed
+
+ odeini_optim_parm_names <- grep('_0$', names(transparms_optim), value = TRUE)
+ odeini_optim <- transparms_optim[odeini_optim_parm_names]
+ names(odeini_optim) <- gsub('_0$', '', odeini_optim_parm_names)
+ odeini_fixed_parm_names <- grep('_0$', names(parms_fixed), value = TRUE)
+ odeini_fixed <- parms_fixed[odeini_fixed_parm_names]
+ names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names)
+ odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)]
+
+ ode_transparms_optim_names <- setdiff(names(transparms_optim), odeini_optim_parm_names)
+ odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model,
+ transform_rates = object[[1]]$transform_rates,
+ transform_fractions = object[[1]]$transform_fractions)
+ odeparms_fixed_names <- setdiff(names(parms_fixed), odeini_fixed_parm_names)
+ odeparms_fixed <- parms_fixed[odeparms_fixed_names]
+ odeparms <- c(odeparms_optim, odeparms_fixed)
+
+ out_wide <- mkinpredict(mkin_model,
+ odeparms = odeparms, odeini = odeini,
+ solution_type = object[[1]]$solution_type,
+ outtimes = sort(unique(times_ds[[x]])))
+ out_array <- out_wide[, -1, drop = FALSE]
+ rownames(out_array) <- as.character(unique(times_ds[[x]]))
+ out_times <- as.character(times_ds[[x]])
+ out_names <- as.character(names_ds[[x]])
+ out_values <- mapply(function(times, names) out_array[times, names],
+ out_times, out_names)
+ return(as.numeric(out_values))
+ })
+ res <- unlist(res_list)
+ return(res)
+ })
+ model_function <- as.function(c(model_function_alist, model_function_body))
+ return(model_function)
+}

Contact - Imprint