diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2020-11-07 11:54:13 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2020-11-07 11:54:13 +0100 |
commit | cda47972e2b6a9610e3118dcd2270d7a1c76de3d (patch) | |
tree | 171a0bf2f7386b5451a581a40667bdb6a5d5a991 /R/saemix.R | |
parent | fcf06c40ec314e91ad3fdae3392f008509d70b2e (diff) |
Make deSolve predictions within saemix robust
Also, exclude the saemix function when loading saemix in the example
code, to prevent overriding our generic
Diffstat (limited to 'R/saemix.R')
-rw-r--r-- | R/saemix.R | 36 |
1 files changed, 23 insertions, 13 deletions
@@ -18,13 +18,18 @@ #' @param object An [mmkin] row object containing several fits of the same #' [mkinmod] model to different datasets #' @param verbose Should we print information about created objects? +#' @param cores The number of cores to be used for multicore processing using +#' [parallel::mclapply()]. Using more than 1 core is experimental and may +#' lead to uncontrolled forking, apparently depending on the BLAS version +#' used. #' @param \dots Further parameters passed to [saemix::saemixData] #' and [saemix::saemixModel]. #' @return An [saemix::SaemixObject]. #' @examples #' \dontrun{ -#' # We do not load the saemix package, as this would override our saemix -#' # generic +#' # We can load saemix, but should exclude the saemix function +#' # as it would mask our generic version of it +#' library(saemix, exclude = "saemix") #' ds <- lapply(experimental_data_for_UBA_2019[6:10], #' function(x) subset(x$data[c("name", "time", "value")])) #' names(ds) <- paste("Dataset", 6:10) @@ -37,18 +42,25 @@ #' f_saemix_fomc <- saemix(f_mmkin_parent["FOMC", ]) #' f_saemix_dfop <- saemix(f_mmkin_parent["DFOP", ]) #' -#' # We can use functions from the saemix package by prepending saemix:: -#' saemix::compare.saemix(list(f_saemix_sfo, f_saemix_fomc, f_saemix_dfop)) +#' # As this returns an SaemixObject, we can use functions from saemix +#' compare.saemix(list(f_saemix_sfo, f_saemix_fomc, f_saemix_dfop)) #' #' f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc") #' f_saemix_fomc_tc <- saemix(f_mmkin_parent_tc["FOMC", ]) -#' saemix::compare.saemix(list(f_saemix_fomc, f_saemix_fomc_tc)) +#' compare.saemix(list(f_saemix_fomc, f_saemix_fomc_tc)) #' #' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), #' A1 = mkinsub("SFO")) -#' f_mmkin <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE) +#' f_mmkin <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, solution_type = "analytical") +#' # This takes about 4 minutes on my system #' f_saemix <- saemix(f_mmkin) #' +#' # Using a single core, it takes about 6 minutes, using 10 cores it is slower +#' # instead of faster +#' f_mmkin_des <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, solution_type = "deSolve") +#' f_saemix_des <- saemix(f_mmkin_des, cores = 1) +#' compare.saemix(list(f_saemix, f_saemix_des)) +#' #' } #' @export saemix <- function(model, data, control, ...) UseMethod("saemix") @@ -58,9 +70,10 @@ saemix <- function(model, data, control, ...) UseMethod("saemix") saemix.mmkin <- function(model, data, control = list(displayProgress = FALSE, print = FALSE, save = FALSE, save.graphs = FALSE), + cores = 1, verbose = FALSE, suppressPlot = TRUE, ...) { - m_saemix <- saemix_model(model, verbose = verbose) + m_saemix <- saemix_model(model, cores = cores, verbose = verbose) d_saemix <- saemix_data(model, verbose = verbose) if (suppressPlot) { # We suppress the log-likelihood curve that saemix currently @@ -74,15 +87,10 @@ saemix.mmkin <- function(model, data, dev.off() unlink(tmp) } - class(result) <- c("saemix.mmkin", "saemix") return(result) } #' @rdname saemix -#' @param cores The number of cores to be used for multicore processing using -#' [parallel::mclapply()]. Using more than 1 core is experimental and may -#' lead to uncontrolled forking, apparently depending on the BLAS version -#' used. #' @return An [saemix::SaemixModel] object. #' @export saemix_model <- function(object, cores = 1, verbose = FALSE, ...) { @@ -203,7 +211,9 @@ saemix_model <- function(object, cores = 1, verbose = FALSE, ...) { out_wide <- mkinpredict(mkin_model, odeparms = odeparms, odeini = odeini, solution_type = solution_type, - outtimes = sort(unique(i_time))) + outtimes = sort(unique(i_time)), + na_stop = FALSE + ) out_index <- cbind(as.character(i_time), as.character(i_name)) out_values <- out_wide[out_index] |