diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2019-10-25 00:37:42 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2019-10-25 02:03:54 +0200 |
commit | 0a3eb0893cb4bd1b12f07a79069d1c7f5e991495 (patch) | |
tree | 1bf0ffeb710b3438fee224d0a657606b4c36b495 /R/summary.mkinfit.R | |
parent | 053bf27d3f265c7a7378e2df3e00cf891e0d1bb2 (diff) |
Use roxygen for functions and methods
Diffstat (limited to 'R/summary.mkinfit.R')
-rw-r--r-- | R/summary.mkinfit.R | 272 |
1 files changed, 272 insertions, 0 deletions
diff --git a/R/summary.mkinfit.R b/R/summary.mkinfit.R new file mode 100644 index 00000000..90f32da9 --- /dev/null +++ b/R/summary.mkinfit.R @@ -0,0 +1,272 @@ +#' Summary method for class "mkinfit" +#' +#' Lists model equations, initial parameter values, optimised parameters with +#' some uncertainty statistics, the chi2 error levels calculated according to +#' FOCUS guidance (2006) as defined therein, formation fractions, DT50 values +#' and optionally the data, consisting of observed, predicted and residual +#' values. +#' +#' @param object an object of class \code{\link{mkinfit}}. +#' @param x an object of class \code{summary.mkinfit}. +#' @param data logical, indicating whether the data should be included in the +#' summary. +#' @param distimes logical, indicating whether DT50 and DT90 values should be +#' included. +#' @param alpha error level for confidence interval estimation from t +#' distribution +#' @param digits Number of digits to use for printing +#' @param \dots optional arguments passed to methods like \code{print}. +#' @importFrom stats qt pt cov2cor +#' @return The summary function returns a list with components, among others +#' \item{version, Rversion}{The mkin and R versions used} +#' \item{date.fit, date.summary}{The dates where the fit and the summary were +#' produced} +#' \item{diffs}{The differential equations used in the model} +#' \item{use_of_ff}{Was maximum or minimum use made of formation fractions} +#' \item{bpar}{Optimised and backtransformed +#' parameters} +#' \item{data}{The data (see Description above).} +#' \item{start}{The starting values and bounds, if applicable, for optimised +#' parameters.} +#' \item{fixed}{The values of fixed parameters.} +#' \item{errmin }{The chi2 error levels for +#' each observed variable.} +#' \item{bparms.ode}{All backtransformed ODE +#' parameters, for use as starting parameters for related models.} +#' \item{errparms}{Error model parameters.} +#' \item{ff}{The estimated formation fractions derived from the fitted +#' model.} +#' \item{distimes}{The DT50 and DT90 values for each observed variable.} +#' \item{SFORB}{If applicable, eigenvalues of SFORB components of the model.} +#' The print method is called for its side effect, i.e. printing the summary. +#' @author Johannes Ranke +#' @references FOCUS (2006) \dQuote{Guidance Document on Estimating Persistence +#' and Degradation Kinetics from Environmental Fate Studies on Pesticides in +#' EU Registration} Report of the FOCUS Work Group on Degradation Kinetics, +#' EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, +#' \url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics} +#' @examples +#' +#' summary(mkinfit(mkinmod(parent = mkinsub("SFO")), FOCUS_2006_A, quiet = TRUE)) +#' +#' @export +summary.mkinfit <- function(object, data = TRUE, distimes = TRUE, alpha = 0.05, ...) { + param <- object$par + pnames <- names(param) + bpnames <- names(object$bparms.optim) + epnames <- names(object$errparms) + p <- length(param) + mod_vars <- names(object$mkinmod$diffs) + covar <- try(solve(object$hessian), silent = TRUE) + covar_notrans <- try(solve(object$hessian_notrans), silent = TRUE) + rdf <- object$df.residual + + if (!is.numeric(covar) | is.na(covar[1])) { + covar <- NULL + se <- lci <- uci <- rep(NA, p) + } else { + rownames(covar) <- colnames(covar) <- pnames + se <- sqrt(diag(covar)) + lci <- param + qt(alpha/2, rdf) * se + uci <- param + qt(1-alpha/2, rdf) * se + } + + beparms.optim <- c(object$bparms.optim, object$par[epnames]) + if (!is.numeric(covar_notrans) | is.na(covar_notrans[1])) { + covar_notrans <- NULL + se_notrans <- tval <- pval <- rep(NA, p) + } else { + rownames(covar_notrans) <- colnames(covar_notrans) <- c(bpnames, epnames) + se_notrans <- sqrt(diag(covar_notrans)) + tval <- beparms.optim / se_notrans + pval <- pt(abs(tval), rdf, lower.tail = FALSE) + } + + names(se) <- pnames + + param <- cbind(param, se, lci, uci) + dimnames(param) <- list(pnames, c("Estimate", "Std. Error", "Lower", "Upper")) + + bparam <- cbind(Estimate = beparms.optim, se_notrans, + "t value" = tval, "Pr(>t)" = pval, Lower = NA, Upper = NA) + + # Transform boundaries of CI for one parameter at a time, + # with the exception of sets of formation fractions (single fractions are OK). + f_names_skip <- character(0) + for (box in mod_vars) { # Figure out sets of fractions to skip + f_names <- grep(paste("^f", box, sep = "_"), pnames, value = TRUE) + n_paths <- length(f_names) + if (n_paths > 1) f_names_skip <- c(f_names_skip, f_names) + } + + for (pname in pnames) { + if (!pname %in% f_names_skip) { + par.lower <- param[pname, "Lower"] + par.upper <- param[pname, "Upper"] + names(par.lower) <- names(par.upper) <- pname + bpl <- backtransform_odeparms(par.lower, object$mkinmod, + object$transform_rates, + object$transform_fractions) + bpu <- backtransform_odeparms(par.upper, object$mkinmod, + object$transform_rates, + object$transform_fractions) + bparam[names(bpl), "Lower"] <- bpl + bparam[names(bpu), "Upper"] <- bpu + } + } + bparam[epnames, c("Lower", "Upper")] <- param[epnames, c("Lower", "Upper")] + + ans <- list( + version = as.character(utils::packageVersion("mkin")), + Rversion = paste(R.version$major, R.version$minor, sep="."), + date.fit = object$date, + date.summary = date(), + solution_type = object$solution_type, + warning = object$warning, + use_of_ff = object$mkinmod$use_of_ff, + error_model_algorithm = object$error_model_algorithm, + df = c(p, rdf), + covar = covar, + covar_notrans = covar_notrans, + err_mod = object$err_mod, + niter = object$iterations, + calls = object$calls, + time = object$time, + par = param, + bpar = bparam) + + if (!is.null(object$version)) { + ans$fit_version <- object$version + ans$fit_Rversion <- object$Rversion + } + + ans$diffs <- object$mkinmod$diffs + if(data) ans$data <- object$data + ans$start <- object$start + ans$start_transformed <- object$start_transformed + + ans$fixed <- object$fixed + + ans$errmin <- mkinerrmin(object, alpha = 0.05) + + if (object$calls > 0) { + if (!is.null(ans$covar)){ + Corr <- cov2cor(ans$covar) + rownames(Corr) <- colnames(Corr) <- rownames(ans$par) + ans$Corr <- Corr + } else { + warning("Could not calculate correlation; no covariance matrix") + } + } + + ans$bparms.ode <- object$bparms.ode + ep <- endpoints(object) + if (length(ep$ff) != 0) + ans$ff <- ep$ff + if (distimes) ans$distimes <- ep$distimes + if (length(ep$SFORB) != 0) ans$SFORB <- ep$SFORB + if (!is.null(object$d_3_message)) ans$d_3_message <- object$d_3_message + class(ans) <- c("summary.mkinfit", "summary.modFit") + return(ans) +} + +#' @rdname summary.mkinfit +#' @export +print.summary.mkinfit <- function(x, digits = max(3, getOption("digits") - 3), ...) { + if (is.null(x$fit_version)) { + cat("mkin version: ", x$version, "\n") + cat("R version: ", x$Rversion, "\n") + } else { + cat("mkin version used for fitting: ", x$fit_version, "\n") + cat("R version used for fitting: ", x$fit_Rversion, "\n") + } + + cat("Date of fit: ", x$date.fit, "\n") + cat("Date of summary:", x$date.summary, "\n") + + if (!is.null(x$warning)) cat("\n\nWarning:", x$warning, "\n\n") + + cat("\nEquations:\n") + nice_diffs <- gsub("^(d.*) =", "\\1/dt =", x[["diffs"]]) + writeLines(strwrap(nice_diffs, exdent = 11)) + df <- x$df + rdf <- df[2] + + cat("\nModel predictions using solution type", x$solution_type, "\n") + + cat("\nFitted using", x$calls, "model solutions performed in", x$time[["elapsed"]], "s\n") + + if (!is.null(x$err_mod)) { + cat("\nError model: ") + cat(switch(x$err_mod, + const = "Constant variance", + obs = "Variance unique to each observed variable", + tc = "Two-component variance function"), "\n") + + cat("\nError model algorithm:", x$error_model_algorithm, "\n") + if (!is.null(x$d_3_message)) cat(x$d_3_message, "\n") + } + + cat("\nStarting values for parameters to be optimised:\n") + print(x$start) + + cat("\nStarting values for the transformed parameters actually optimised:\n") + print(x$start_transformed) + + cat("\nFixed parameter values:\n") + if(length(x$fixed$value) == 0) cat("None\n") + else print(x$fixed) + + cat("\nOptimised, transformed parameters with symmetric confidence intervals:\n") + print(signif(x$par, digits = digits)) + + if (x$calls > 0) { + cat("\nParameter correlation:\n") + if (!is.null(x$covar)){ + print(x$Corr, digits = digits, ...) + } else { + cat("No covariance matrix") + } + } + + cat("\nBacktransformed parameters:\n") + cat("Confidence intervals for internally transformed parameters are asymmetric.\n") + if ((x$version) < "0.9-36") { + cat("To get the usual (questionable) t-test, upgrade mkin and repeat the fit.\n") + print(signif(x$bpar, digits = digits)) + } else { + cat("t-test (unrealistically) based on the assumption of normal distribution\n") + cat("for estimators of untransformed parameters.\n") + print(signif(x$bpar[, c(1, 3, 4, 5, 6)], digits = digits)) + } + + cat("\nFOCUS Chi2 error levels in percent:\n") + x$errmin$err.min <- 100 * x$errmin$err.min + print(x$errmin, digits=digits,...) + + printSFORB <- !is.null(x$SFORB) + if(printSFORB){ + cat("\nEstimated Eigenvalues of SFORB model(s):\n") + print(x$SFORB, digits=digits,...) + } + + printff <- !is.null(x$ff) + if(printff){ + cat("\nResulting formation fractions:\n") + print(data.frame(ff = x$ff), digits=digits,...) + } + + printdistimes <- !is.null(x$distimes) + if(printdistimes){ + cat("\nEstimated disappearance times:\n") + print(x$distimes, digits=digits,...) + } + + printdata <- !is.null(x$data) + if (printdata){ + cat("\nData:\n") + print(format(x$data, digits = digits, ...), row.names = FALSE) + } + + invisible(x) +} |