diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2022-08-14 14:57:13 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2022-08-14 14:57:13 +0200 |
commit | eb8b56ed6f83e3c7df63e48f9488362363d26709 (patch) | |
tree | 14e1fba1bd096d8d5adf2f3e7c1d5e4e53187401 /R | |
parent | 118b3753740ff4e7dc777baac7e769950005697b (diff) |
Basic multistart method for saem.mmkin objects
Diffstat (limited to 'R')
-rw-r--r-- | R/multistart.R | 26 | ||||
-rw-r--r-- | R/parms.mkinfit.R | 30 |
2 files changed, 42 insertions, 14 deletions
diff --git a/R/multistart.R b/R/multistart.R index db482cc4..819fcc1b 100644 --- a/R/multistart.R +++ b/R/multistart.R @@ -7,18 +7,38 @@ #' inspired by the article on practical identifiabiliy in the frame of nonlinear #' mixed-effects models by Duchesne et al (2021). #' +#' Currently, parallel execution of the fits is only supported using +#' [parallel::mclapply], i.e. not available on Windows. +#' +#' @param object The fit object to work with +#' @param n How many different combinations of starting parameters should be +#' used? +#' @param cores How many fits should be run in parallel? +#' @param \dots Passed to the update function. +#' @return A list of [saem.mmkin] objects, with class attributes +#' 'multistart.saem.mmkin' and 'multistart'. +#' #' @references Duchesne R, Guillemin A, Gandrillon O, Crauste F. Practical #' identifiability in the frame of nonlinear mixed effects models: the example #' of the in vitro erythropoiesis. BMC Bioinformatics. 2021 Oct 4;22(1):478. #' doi: 10.1186/s12859-021-04373-4. #' @export -multistart <- function(object, n = 50, ...) +multistart <- function(object, n = 50, cores = 1, ...) { UseMethod("multistart", object) } #' @rdname multistart #' @export -multistart.saem.mmkin <- function(object, n = 50, ...) { - +multistart.saem.mmkin <- function(object, n = 50, cores = 1, ...) { + start_parms <- apply( + parms(object$mmkin, errparms = FALSE), 1, + function(x) stats::runif(n, min(x), max(x)) + ) + + res <- parallel::mclapply(1:n, function(x) { + update(object, degparms_start = start_parms[x], ...) + }, mc.cores = cores) + class(res) <- c("multistart.saem.mmkin", "multistart") + return(res) } diff --git a/R/parms.mkinfit.R b/R/parms.mkinfit.R index a1f2d209..31ca05bc 100644 --- a/R/parms.mkinfit.R +++ b/R/parms.mkinfit.R @@ -8,9 +8,9 @@ #' [mkinfit()] objects and for [mmkin()] objects. #' @param \dots Not used #' @return For mkinfit objects, a numeric vector of fitted model parameters. -#' For mmkin row objects, a matrix with the parameters with a -#' row for each dataset. If the mmkin object has more than one row, a list of -#' such matrices is returned. +#' For mmkin row objects, a matrix with the parameters with a row for each +#' dataset. If the mmkin object has more than one row, a list of such matrices +#' is returned. #' @examples #' # mkinfit objects #' fit <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE) @@ -34,27 +34,35 @@ parms <- function(object, ...) UseMethod("parms", object) } -#' @param transformed Should the parameters be returned -#' as used internally during the optimisation? +#' @param transformed Should the parameters be returned as used internally +#' during the optimisation? +#' @param errparms Should the error model parameters be returned +#' in addition to the degradation parameters? #' @rdname parms #' @export -parms.mkinfit <- function(object, transformed = FALSE, ...) +parms.mkinfit <- function(object, transformed = FALSE, errparms = TRUE, ...) { - if (transformed) object$par - else c(object$bparms.optim, object$errparms) + res <- if (transformed) object$par + else c(object$bparms.optim, object$errparms) + if (!errparms) { + res[setdiff(names(res), names(object$errparms))] + } + else return(res) } #' @rdname parms #' @export -parms.mmkin <- function(object, transformed = FALSE, ...) +parms.mmkin <- function(object, transformed = FALSE, errparms = TRUE, ...) { if (nrow(object) == 1) { - res <- sapply(object, parms, transformed = transformed, ...) + res <- sapply(object, parms, transformed = transformed, + errparms = errparms, ...) colnames(res) <- colnames(object) } else { res <- list() for (i in 1:nrow(object)) { - res[[i]] <- parms(object[i, ], transformed = transformed, ...) + res[[i]] <- parms(object[i, ], transformed = transformed, + errparms = errparms, ...) } names(res) <- rownames(object) } |