diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2021-03-09 17:35:47 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2021-03-09 17:35:47 +0100 |
commit | c73b2f30ec836c949885784ab576e814eb8070a9 (patch) | |
tree | 7cfff70c5dae646fb464f4071e4ec444bbf40de1 /R | |
parent | 9a414d01985f9177745ce0ad234ef7fc1b9822bb (diff) |
Some improvements for borderline cases
- fit_with_errors for saem()
- test_log_parms for mean_degparms() and saem()
Diffstat (limited to 'R')
-rw-r--r-- | R/nlme.R | 37 | ||||
-rw-r--r-- | R/nlme.mmkin.R | 2 | ||||
-rw-r--r-- | R/saem.R | 31 |
3 files changed, 61 insertions, 9 deletions
@@ -36,7 +36,7 @@ #' nlme_f <- nlme_function(f) #' # These assignments are necessary for these objects to be #' # visible to nlme and augPred when evaluation is done by -#' # pkgdown to generated the html docs. +#' # pkgdown to generate the html docs. #' assign("nlme_f", nlme_f, globalenv()) #' assign("grouped_data", grouped_data, globalenv()) #' @@ -130,13 +130,44 @@ nlme_function <- function(object) { #' fixed and random effects, in the format required by the start argument of #' nlme for the case of a single grouping variable ds. #' @param random Should a list with fixed and random effects be returned? +#' @param test_log_parms If TRUE, log parameters are only considered in +#' the mean calculations if their untransformed counterparts (most likely +#' rate constants) pass the t-test for significant difference from zero. +#' @param conf.level Possibility to adjust the required confidence level +#' for parameter that are tested if requested by 'test_log_parms'. #' @export -mean_degparms <- function(object, random = FALSE) { +mean_degparms <- function(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6) +{ if (nrow(object) > 1) stop("Only row objects allowed") parm_mat_trans <- sapply(object, parms, transformed = TRUE) + + if (test_log_parms) { + parm_mat_dim <- dim(parm_mat_trans) + parm_mat_dimnames <- dimnames(parm_mat_trans) + + log_parm_trans_names <- grep("^log_", rownames(parm_mat_trans), value = TRUE) + log_parm_names <- gsub("^log_", "", log_parm_trans_names) + + t_test_back_OK <- matrix( + sapply(object, function(o) { + suppressWarnings(summary(o)$bpar[log_parm_names, "Pr(>t)"] < (1 - conf.level)) + }), nrow = length(log_parm_names)) + rownames(t_test_back_OK) <- log_parm_trans_names + + parm_mat_trans_OK <- parm_mat_trans + for (trans_parm in log_parm_trans_names) { + parm_mat_trans_OK[trans_parm, ] <- ifelse(t_test_back_OK[trans_parm, ], + parm_mat_trans[trans_parm, ], NA) + } + } else { + parm_mat_trans_OK <- parm_mat_trans + } + mean_degparm_names <- setdiff(rownames(parm_mat_trans), names(object[[1]]$errparms)) degparm_mat_trans <- parm_mat_trans[mean_degparm_names, , drop = FALSE] - fixed <- apply(degparm_mat_trans, 1, mean) + degparm_mat_trans_OK <- parm_mat_trans_OK[mean_degparm_names, , drop = FALSE] + + fixed <- apply(degparm_mat_trans_OK, 1, mean, na.rm = TRUE) if (random) { random <- t(apply(degparm_mat_trans[mean_degparm_names, , drop = FALSE], 2, function(column) column - fixed)) # If we only have one parameter, apply returns a vector so we get a single row diff --git a/R/nlme.mmkin.R b/R/nlme.mmkin.R index ff1f2fff..306600c6 100644 --- a/R/nlme.mmkin.R +++ b/R/nlme.mmkin.R @@ -24,7 +24,7 @@ get_deg_func <- function() { #' This functions sets up a nonlinear mixed effects model for an mmkin row #' object. An mmkin row object is essentially a list of mkinfit objects that #' have been obtained by fitting the same model to a list of datasets. -#' +#' #' Note that the convergence of the nlme algorithms depends on the quality #' of the data. In degradation kinetics, we often only have few datasets #' (e.g. data for few soils) and complicated degradation models, which may @@ -24,8 +24,16 @@ utils::globalVariables(c("predicted", "std")) #' SFO or DFOP is used for the parent and there is either no metabolite or one. #' @param degparms_start Parameter values given as a named numeric vector will #' be used to override the starting values obtained from the 'mmkin' object. +#' @param test_log_parms If TRUE, an attempt is made to use more robust starting +#' values for population parameters fitted as log parameters in mkin (like +#' rate constants) by only considering rate constants that pass the t-test +#' when calculating mean degradation parameters using [mean_degparms]. +#' @param conf.level Possibility to adjust the required confidence level +#' for parameter that are tested if requested by 'test_log_parms'. #' @param solution_type Possibility to specify the solution type in case the #' automatic choice is not desired +#' @param fail_with_errors Should a failure to compute standard errors +#' from the inverse of the Fisher Information Matrix be a failure? #' @param quiet Should we suppress the messages saemix prints at the beginning #' and the end of the optimisation process? #' @param control Passed to [saemix::saemix] @@ -51,7 +59,7 @@ utils::globalVariables(c("predicted", "std")) #' # The returned saem.mmkin object contains an SaemixObject, therefore we can use #' # functions from saemix #' library(saemix) -#' compare.saemix(list(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so)) +#' compare.saemix(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so) #' plot(f_saem_fomc$so, plot.type = "convergence") #' plot(f_saem_fomc$so, plot.type = "individual.fit") #' plot(f_saem_fomc$so, plot.type = "npde") @@ -59,7 +67,7 @@ utils::globalVariables(c("predicted", "std")) #' #' f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc") #' f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ]) -#' compare.saemix(list(f_saem_fomc$so, f_saem_fomc_tc$so)) +#' compare.saemix(f_saem_fomc$so, f_saem_fomc_tc$so) #' #' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), #' A1 = mkinsub("SFO")) @@ -104,19 +112,32 @@ saem <- function(object, ...) UseMethod("saem") saem.mmkin <- function(object, transformations = c("mkin", "saemix"), degparms_start = numeric(), + test_log_parms = FALSE, + conf.level = 0.6, solution_type = "auto", control = list(displayProgress = FALSE, print = FALSE, save = FALSE, save.graphs = FALSE), + fail_with_errors = TRUE, verbose = FALSE, quiet = FALSE, ...) { transformations <- match.arg(transformations) m_saemix <- saemix_model(object, verbose = verbose, - degparms_start = degparms_start, solution_type = solution_type, + degparms_start = degparms_start, + test_log_parms = test_log_parms, conf.level = conf.level, + solution_type = solution_type, transformations = transformations, ...) d_saemix <- saemix_data(object, verbose = verbose) fit_time <- system.time({ utils::capture.output(f_saemix <- saemix::saemix(m_saemix, d_saemix, control), split = !quiet) + FIM_failed <- NULL + if (any(is.na(f_saemix@results@se.fixed))) FIM_failed <- c(FIM_failed, "fixed effects") + if (any(is.na(c(f_saemix@results@se.omega, f_saemix@results@se.respar)))) { + FIM_failed <- c(FIM_failed, "random effects and residual error parameters") + } + if (!is.null(FIM_failed) & fail_with_errors) { + stop("Could not invert FIM for ", paste(FIM_failed, collapse = " and ")) + } }) transparms_optim <- f_saemix@results@fixed.effects @@ -203,13 +224,13 @@ print.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) { #' @return An [saemix::SaemixModel] object. #' @export saemix_model <- function(object, solution_type = "auto", transformations = c("mkin", "saemix"), - degparms_start = numeric(), verbose = FALSE, ...) + degparms_start = numeric(), test_log_parms = FALSE, verbose = FALSE, ...) { if (nrow(object) > 1) stop("Only row objects allowed") mkin_model <- object[[1]]$mkinmod - degparms_optim <- mean_degparms(object) + degparms_optim <- mean_degparms(object, test_log_parms = test_log_parms) if (transformations == "saemix") { degparms_optim <- backtransform_odeparms(degparms_optim, object[[1]]$mkinmod, |