aboutsummaryrefslogtreecommitdiff
path: root/R
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2019-10-26 20:50:09 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2019-10-26 20:50:09 +0200
commit7b7729694363515007193d1c3e29e9b76271abb3 (patch)
tree3aa572fb56d26d4ad53463e320ee9e75ff4a2321 /R
parentaf2e1540cdad2fd00bb6216a38a754ff748629ad (diff)
parms and confint methods
The confint method can do profile likelihood based confidence intervals!
Diffstat (limited to 'R')
-rw-r--r--R/confint.mkinfit.R139
-rw-r--r--R/mkinfit.R49
-rw-r--r--R/parms.mkinfit.R24
3 files changed, 190 insertions, 22 deletions
diff --git a/R/confint.mkinfit.R b/R/confint.mkinfit.R
new file mode 100644
index 00000000..887adc9f
--- /dev/null
+++ b/R/confint.mkinfit.R
@@ -0,0 +1,139 @@
+#' Confidence intervals for parameters of mkinfit objects
+#'
+#' @param object An \code{\link{mkinfit}} object
+#' @param parm A vector of names of the parameters which are to be given
+#' confidence intervals. If missing, all parameters are considered.
+#' @param level The confidence level required
+#' @param alpha The allowed error probability, overrides 'level' if specified.
+#' @param method The 'profile' method searches the parameter space for the
+#' cutoff of the confidence intervals by means of a likelihood ratio test.
+#' The 'quadratic' method approximates the likelihood function at the
+#' optimised parameters using the second term of the Taylor expansion, using
+#' a second derivative (hessian) contained in the object.
+#' @param transformed If the quadratic approximation is used, should it be
+#' applied to the likelihood based on the transformed parameters?
+#' @param backtransform If we approximate the likelihood in terms of the
+#' transformed parameters, should we backtransform the parameters with
+#' their confidence intervals?
+#' @param distribution For the quadratic approximation, should we use
+#' the student t distribution or assume normal distribution for
+#' the parameter estimate
+#' @param quiet Should we suppress messages?
+#' @return A matrix with columns giving lower and upper confidence limits for
+#' each parameter.
+#' @references Pawitan Y (2013) In all likelihood - Statistical modelling and
+#' inference using likelihood. Clarendon Press, Oxford.
+#' @examples
+#' f <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE)
+#' confint(f, method = "quadratic")
+#' confint(f, method = "profile")
+#' @export
+confint.mkinfit <- function(object, parm,
+ level = 0.95, alpha = 1 - level,
+ method = c("profile", "quadratic"),
+ transformed = TRUE, backtransform = TRUE,
+ distribution = c("student_t", "normal"), quiet = FALSE, ...)
+{
+ tparms <- parms(object, transformed = TRUE)
+ bparms <- parms(object, transformed = FALSE)
+ tpnames <- names(tparms)
+ bpnames <- names(bparms)
+
+ return_pnames <- if (missing(parm)) {
+ if (backtransform) bpnames else tpnames
+ } else {
+ parm
+ }
+
+ p <- length(return_pnames)
+
+ method <- match.arg(method)
+
+ a <- c(alpha / 2, 1 - (alpha / 2))
+
+ if (method == "quadratic") {
+
+ distribution <- match.arg(distribution)
+
+ quantiles <- switch(distribution,
+ student_t = qt(a, object$df.residual),
+ normal = qnorm(a))
+
+ covar_pnames <- if (missing(parm)) {
+ if (transformed) tpnames else bpnames
+ } else {
+ parm
+ }
+
+ return_parms <- if (backtransform) bparms[return_pnames]
+ else tparms[return_pnames]
+
+ covar_parms <- if (transformed) tparms[covar_pnames]
+ else bparms[covar_pnames]
+
+ if (transformed) {
+ covar <- try(solve(object$hessian), silent = TRUE)
+ } else {
+ covar <- try(solve(object$hessian_notrans), silent = TRUE)
+ }
+
+ # If inverting the covariance matrix failed or produced NA values
+ if (!is.numeric(covar) | is.na(covar[1])) {
+ ses <- lci <- uci <- rep(NA, p)
+ } else {
+ ses <- sqrt(diag(covar))[covar_pnames]
+ lci <- covar_parms + quantiles[1] * ses
+ uci <- covar_parms + quantiles[2] * ses
+ if (backtransform) {
+ lci_back <- backtransform_odeparms(lci,
+ object$mkinmod, object$transform_rates, object$transform_fractions)
+ lci <- c(lci_back, lci[names(object$errparms)])
+ uci_back <- backtransform_odeparms(uci,
+ object$mkinmod, object$transform_rates, object$transform_fractions)
+ uci <- c(uci_back, uci[names(object$errparms)])
+ }
+ }
+ }
+
+ if (method == "profile") {
+ message("Profiling the likelihood")
+ lci <- uci <- rep(NA, p)
+ names(lci) <- names(uci) <- return_pnames
+
+ profile_pnames <- if(missing(parm)) names(parms(object))
+ else parm
+
+ # We do two-sided intervals based on the likelihood ratio
+ cutoff <- 0.5 * qchisq(1 - (alpha / 2), 1)
+
+ all_parms <- parms(object)
+
+ for (pname in profile_pnames)
+ {
+ pnames_free <- setdiff(names(all_parms), pname)
+ profile_ll <- function(x)
+ {
+ pll_cost <- function(P) {
+ parms_cost <- all_parms
+ parms_cost[pnames_free] <- P[pnames_free]
+ parms_cost[pname] <- x
+ - object$ll(parms_cost)
+ }
+ - nlminb(all_parms[pnames_free], pll_cost)$objective
+ }
+
+ cost <- function(x) {
+ (cutoff - (object$logLik - profile_ll(x)))^2
+ }
+
+ lci[pname] <- optimize(cost, lower = 0, upper = all_parms[pname])$minimum
+ uci[pname] <- optimize(cost, lower = all_parms[pname], upper = 15 * all_parms[pname])$minimum
+ }
+ }
+
+ ci <- cbind(lower = lci, upper = uci)
+ colnames(ci) <- paste0(
+ format(100 * a, trim = TRUE, scientific = FALSE, digits = 3), "%")
+
+ return(ci)
+}
diff --git a/R/mkinfit.R b/R/mkinfit.R
index 17fd59d0..a3e39053 100644
--- a/R/mkinfit.R
+++ b/R/mkinfit.R
@@ -1,7 +1,7 @@
if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "time", "value"))
#' Fit a kinetic model to data with one or more state variables
-#'
+#'
#' This function maximises the likelihood of the observed data using the Port
#' algorithm \code{\link{nlminb}}, and the specified initial or fixed
#' parameters and starting values. In each step of the optimsation, the
@@ -9,11 +9,11 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "time", "value"))
#' parameters of the selected error model are fitted simultaneously with the
#' degradation model parameters, as both of them are arguments of the
#' likelihood function.
-#'
+#'
#' Per default, parameters in the kinetic models are internally transformed in
#' order to better satisfy the assumption of a normal distribution of their
#' estimators.
-#'
+#'
#' @param mkinmod A list of class \code{\link{mkinmod}}, containing the kinetic
#' model to be fitted to the data, or one of the shorthand names ("SFO",
#' "FOMC", "DFOP", "HS", "SFORB", "IORE"). If a shorthand name is given, a
@@ -33,7 +33,7 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "time", "value"))
#' as indicated by \code{fixed_parms}. If set to "auto", initial values for
#' rate constants are set to default values. Using parameter names that are
#' not in the model gives an error.
-#'
+#'
#' It is possible to only specify a subset of the parameters that the model
#' needs. You can use the parameter lists "bparms.ode" from a previously
#' fitted model, which contains the differential equation parameters from
@@ -105,10 +105,10 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "time", "value"))
#' argument. The default value is 100.
#' @param error_model If the error model is "const", a constant standard
#' deviation is assumed.
-#'
+#'
#' If the error model is "obs", each observed variable is assumed to have its
#' own variance.
-#'
+#'
#' If the error model is "tc" (two-component error model), a two component
#' error model similar to the one described by Rocke and Lorenzato (1995) is
#' used for setting up the likelihood function. Note that this model
@@ -119,27 +119,27 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "time", "value"))
#' the error model. If the error model is "const", unweighted nonlinear
#' least squares fitting ("OLS") is selected. If the error model is "obs", or
#' "tc", the "d_3" algorithm is selected.
-#'
+#'
#' The algorithm "d_3" will directly minimize the negative log-likelihood and
#' - independently - also use the three step algorithm described below. The
#' fit with the higher likelihood is returned.
-#'
+#'
#' The algorithm "direct" will directly minimize the negative log-likelihood.
-#'
+#'
#' The algorithm "twostep" will minimize the negative log-likelihood after an
#' initial unweighted least squares optimisation step.
-#'
+#'
#' The algorithm "threestep" starts with unweighted least squares, then
#' optimizes only the error model using the degradation model parameters
#' found, and then minimizes the negative log-likelihood with free
#' degradation and error model parameters.
-#'
+#'
#' The algorithm "fourstep" starts with unweighted least squares, then
#' optimizes only the error model using the degradation model parameters
#' found, then optimizes the degradation model again with fixed error model
#' parameters, and finally minimizes the negative log-likelihood with free
#' degradation and error model parameters.
-#'
+#'
#' The algorithm "IRLS" (Iteratively Reweighted Least Squares) starts with
#' unweighted least squares, and then iterates optimization of the error
#' model parameters and subsequent optimization of the degradation model
@@ -161,20 +161,20 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "time", "value"))
#' @author Johannes Ranke
#' @seealso Plotting methods \code{\link{plot.mkinfit}} and
#' \code{\link{mkinparplot}}.
-#'
+#'
#' Comparisons of models fitted to the same data can be made using
#' \code{\link{AIC}} by virtue of the method \code{\link{logLik.mkinfit}}.
-#'
+#'
#' Fitting of several models to several datasets in a single call to
#' \code{\link{mmkin}}.
#' @source Rocke, David M. und Lorenzato, Stefan (1995) A two-component model
#' for measurement error in analytical chemistry. Technometrics 37(2), 176-184.
#' @examples
-#'
+#'
#' # Use shorthand notation for parent only degradation
#' fit <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE)
#' summary(fit)
-#'
+#'
#' # One parent compound, one metabolite, both single first order.
#' # Use mkinsub for convenience in model formulation. Pathway to sink included per default.
#' SFO_SFO <- mkinmod(
@@ -192,7 +192,7 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "time", "value"))
#' coef(fit.deSolve)
#' endpoints(fit.deSolve)
#' }
-#'
+#'
#' # Use stepwise fitting, using optimised parameters from parent only fit, FOMC
#' \dontrun{
#' FOMC_SFO <- mkinmod(
@@ -204,7 +204,7 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "time", "value"))
#' fit.FOMC = mkinfit("FOMC", FOCUS_2006_D, quiet = TRUE)
#' fit.FOMC_SFO <- mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE,
#' parms.ini = fit.FOMC$bparms.ode)
-#'
+#'
#' # Use stepwise fitting, using optimised parameters from parent only fit, SFORB
#' SFORB_SFO <- mkinmod(
#' parent = list(type = "SFORB", to = "m1", sink = TRUE),
@@ -217,7 +217,7 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "time", "value"))
#' fit.SFORB = mkinfit("SFORB", FOCUS_2006_D, quiet = TRUE)
#' fit.SFORB_SFO <- mkinfit(SFORB_SFO, FOCUS_2006_D, parms.ini = fit.SFORB$bparms.ode, quiet = TRUE)
#' }
-#'
+#'
#' \dontrun{
#' # Weighted fits, including IRLS
#' SFO_SFO.ff <- mkinmod(parent = mkinsub("SFO", "m1"),
@@ -229,8 +229,8 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "time", "value"))
#' f.tc <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, error_model = "tc", quiet = TRUE)
#' summary(f.tc)
#' }
-#'
-#'
+#'
+#'
#' @export
mkinfit <- function(mkinmod, observed,
parms.ini = "auto",
@@ -795,6 +795,8 @@ mkinfit <- function(mkinmod, observed,
fit$hessian <- try(numDeriv::hessian(cost_function, c(degparms, errparms), OLS = FALSE,
update_data = FALSE), silent = TRUE)
+ dimnames(fit$hessian) <- list(names(c(degparms, errparms)),
+ names(c(degparms, errparms)))
# Backtransform parameters
bparms.optim = backtransform_odeparms(fit$par, mkinmod,
@@ -805,6 +807,9 @@ mkinfit <- function(mkinmod, observed,
fit$hessian_notrans <- try(numDeriv::hessian(cost_function, c(bparms.all, errparms),
OLS = FALSE, trans = FALSE, update_data = FALSE), silent = TRUE)
+
+ dimnames(fit$hessian_notrans) <- list(names(c(bparms.all, errparms)),
+ names(c(bparms.all, errparms)))
})
fit$error_model_algorithm <- error_model_algorithm
@@ -839,7 +844,7 @@ mkinfit <- function(mkinmod, observed,
# Log-likelihood with possibility to fix degparms or errparms
fit$ll <- function(P, fixed_degparms = FALSE, fixed_errparms = FALSE) {
- - cost_function(P, fixed_degparms = fixed_degparms,
+ - cost_function(P, trans = FALSE, fixed_degparms = fixed_degparms,
fixed_errparms = fixed_errparms, OLS = FALSE, update_data = FALSE)
}
diff --git a/R/parms.mkinfit.R b/R/parms.mkinfit.R
new file mode 100644
index 00000000..250d9d1f
--- /dev/null
+++ b/R/parms.mkinfit.R
@@ -0,0 +1,24 @@
+#' Extract model parameters from mkinfit models
+#'
+#' This function always returns degradation model parameters as well as error
+#' model parameters, in order to avoid working with a fitted model without
+#' considering the error structure that was assumed for the fit.
+#'
+#' @param object A fitted model object
+#' @param complete Unused argument for compatibility with the generic coef function from base R
+#' @return A numeric vector of fitted model parameters
+#' @export
+parms <- function(object, ...)
+{
+ UseMethod("parms", object)
+}
+
+#' @param transformed Should the parameters be returned
+#' as used internally during the optimisation?
+#' @rdname parms
+#' @export
+parms.mkinfit <- function(object, transformed = FALSE, ...)
+{
+ if (transformed) object$par
+ else c(object$bparms.optim, object$errparms)
+}

Contact - Imprint