diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2021-02-03 16:41:31 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2021-02-03 18:18:19 +0100 |
commit | f0ef23a7598e5d19648ae4edc2b74e0fba27a41c (patch) | |
tree | 03af20e730330e148acf3a7c008d82387dbe52eb /R | |
parent | 82814b17ec182467c25325d747fffa8ffbe4bb33 (diff) |
Prepare for v1.0.0v1.0.0
- Improve authorship and copyright information
- Prepare pkgdown config
- Remove dependence on saemix as we need the development version which
is not ready for CRAN
- Temporarily remove saemix interface to check code coverage of the rest
Diffstat (limited to 'R')
-rw-r--r-- | R/endpoints.R | 8 | ||||
-rw-r--r-- | R/plot.mixed.mmkin.R | 23 | ||||
-rw-r--r-- | R/saem.R | 512 | ||||
-rw-r--r-- | R/summary.saem.mmkin.R | 268 |
4 files changed, 5 insertions, 806 deletions
diff --git a/R/endpoints.R b/R/endpoints.R index f1f47581..b5872e68 100644 --- a/R/endpoints.R +++ b/R/endpoints.R @@ -10,8 +10,8 @@ #' Additional DT50 values are calculated from the FOMC DT90 and k1 and k2 from #' HS and DFOP, as well as from Eigenvalues b1 and b2 of any SFORB models #' -#' @param fit An object of class [mkinfit], [nlme.mmkin] or -#' [saem.mmkin]. Or another object that has list components +#' @param fit An object of class [mkinfit] or [nlme.mmkin] +#' or another object that has list components #' mkinmod containing an [mkinmod] degradation model, and two numeric vectors, #' bparms.optim and bparms.fixed, that contain parameter values #' for that model. @@ -20,8 +20,8 @@ #' and, if applicable, a vector of formation fractions named ff #' and, if the SFORB model was in use, a vector of eigenvalues #' of these SFORB models, equivalent to DFOP rate constants -#' @note The function is used internally by [summary.mkinfit], -#' [summary.nlme.mmkin] and [summary.saem.mmkin]. +#' @note The function is used internally by [summary.mkinfit] +#' and [summary.nlme.mmkin] #' @author Johannes Ranke #' @examples #' diff --git a/R/plot.mixed.mmkin.R b/R/plot.mixed.mmkin.R index 1674d855..5a0b7412 100644 --- a/R/plot.mixed.mmkin.R +++ b/R/plot.mixed.mmkin.R @@ -2,7 +2,7 @@ utils::globalVariables("ds") #' Plot predictions from a fitted nonlinear mixed model obtained via an mmkin row object #' -#' @param x An object of class [mixed.mmkin], [saem.mmkin] or [nlme.mmkin] +#' @param x An object of class [mixed.mmkin], [nlme.mmkin] #' @param i A numeric index to select datasets for which to plot the individual predictions, #' in case plots get too large #' @inheritParams plot.mkinfit @@ -39,15 +39,6 @@ utils::globalVariables("ds") #' f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3)) #' plot(f_nlme) #' -#' f_saem <- saem(f, transformations = "saemix") -#' plot(f_saem) -#' -#' # We can overlay the two variants if we generate predictions -#' pred_nlme <- mkinpredict(dfop_sfo, -#' f_nlme$bparms.optim[-1], -#' c(parent = f_nlme$bparms.optim[[1]], A1 = 0), -#' seq(0, 180, by = 0.2)) -#' plot(f_saem, pred_over = list(nlme = pred_nlme)) #' } #' @export plot.mixed.mmkin <- function(x, @@ -91,18 +82,6 @@ plot.mixed.mmkin <- function(x, type = ifelse(standardized, "pearson", "response")) } - if (inherits(x, "saem.mmkin")) { - if (x$transformations == "saemix") backtransform = FALSE - degparms_i <- saemix::psi(x$so) - rownames(degparms_i) <- ds_names - degparms_i_names <- setdiff(x$so@results@name.fixed, names(fit_1$errparms)) - colnames(degparms_i) <- degparms_i_names - residual_type = ifelse(standardized, "standardized", "residual") - residuals <- x$data[[residual_type]] - degparms_pop <- x$so@results@fixed.effects - names(degparms_pop) <- degparms_i_names - } - degparms_fixed <- fit_1$fixed$value names(degparms_fixed) <- rownames(fit_1$fixed) degparms_all <- cbind(as.matrix(degparms_i), diff --git a/R/saem.R b/R/saem.R deleted file mode 100644 index fd2a77b4..00000000 --- a/R/saem.R +++ /dev/null @@ -1,512 +0,0 @@ -utils::globalVariables(c("predicted", "std")) - -#' Fit nonlinear mixed models with SAEM -#' -#' This function uses [saemix::saemix()] as a backend for fitting nonlinear mixed -#' effects models created from [mmkin] row objects using the Stochastic Approximation -#' Expectation Maximisation algorithm (SAEM). -#' -#' An mmkin row object is essentially a list of mkinfit objects that have been -#' obtained by fitting the same model to a list of datasets using [mkinfit]. -#' -#' Starting values for the fixed effects (population mean parameters, argument -#' psi0 of [saemix::saemixModel()] are the mean values of the parameters found -#' using [mmkin]. -#' -#' @param object An [mmkin] row object containing several fits of the same -#' [mkinmod] model to different datasets -#' @param verbose Should we print information about created objects of -#' type [saemix::SaemixModel] and [saemix::SaemixData]? -#' @param transformations Per default, all parameter transformations are done -#' in mkin. If this argument is set to 'saemix', parameter transformations -#' are done in 'saemix' for the supported cases. Currently this is only -#' supported in cases where the initial concentration of the parent is not fixed, -#' SFO or DFOP is used for the parent and there is either no metabolite or one. -#' @param degparms_start Parameter values given as a named numeric vector will -#' be used to override the starting values obtained from the 'mmkin' object. -#' @param solution_type Possibility to specify the solution type in case the -#' automatic choice is not desired -#' @param quiet Should we suppress the messages saemix prints at the beginning -#' and the end of the optimisation process? -#' @param control Passed to [saemix::saemix] -#' @param \dots Further parameters passed to [saemix::saemixModel]. -#' @return An S3 object of class 'saem.mmkin', containing the fitted -#' [saemix::SaemixObject] as a list component named 'so'. The -#' object also inherits from 'mixed.mmkin'. -#' @seealso [summary.saem.mmkin] [plot.mixed.mmkin] -#' @examples -#' \dontrun{ -#' ds <- lapply(experimental_data_for_UBA_2019[6:10], -#' function(x) subset(x$data[c("name", "time", "value")])) -#' names(ds) <- paste("Dataset", 6:10) -#' f_mmkin_parent_p0_fixed <- mmkin("FOMC", ds, -#' state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE) -#' f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed) -#' -#' f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE) -#' f_saem_sfo <- saem(f_mmkin_parent["SFO", ]) -#' f_saem_fomc <- saem(f_mmkin_parent["FOMC", ]) -#' f_saem_dfop <- saem(f_mmkin_parent["DFOP", ]) -#' -#' # The returned saem.mmkin object contains an SaemixObject, therefore we can use -#' # functions from saemix -#' library(saemix) -#' compare.saemix(list(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so)) -#' plot(f_saem_fomc$so, plot.type = "convergence") -#' plot(f_saem_fomc$so, plot.type = "individual.fit") -#' plot(f_saem_fomc$so, plot.type = "npde") -#' plot(f_saem_fomc$so, plot.type = "vpc") -#' -#' f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc") -#' f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ]) -#' compare.saemix(list(f_saem_fomc$so, f_saem_fomc_tc$so)) -#' -#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), -#' A1 = mkinsub("SFO")) -#' fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"), -#' A1 = mkinsub("SFO")) -#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), -#' A1 = mkinsub("SFO")) -#' # The following fit uses analytical solutions for SFO-SFO and DFOP-SFO, -#' # and compiled ODEs for FOMC that are much slower -#' f_mmkin <- mmkin(list( -#' "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo), -#' ds, quiet = TRUE) -#' # saem fits of SFO-SFO and DFOP-SFO to these data take about five seconds -#' # each on this system, as we use analytical solutions written for saemix. -#' # When using the analytical solutions written for mkin this took around -#' # four minutes -#' f_saem_sfo_sfo <- saem(f_mmkin["SFO-SFO", ]) -#' f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ]) -#' # We can use print, plot and summary methods to check the results -#' print(f_saem_dfop_sfo) -#' plot(f_saem_dfop_sfo) -#' summary(f_saem_dfop_sfo, data = TRUE) -#' -#' # The following takes about 6 minutes -#' #f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve", -#' # control = list(nbiter.saemix = c(200, 80), nbdisplay = 10)) -#' -#' #saemix::compare.saemix(list( -#' # f_saem_dfop_sfo$so, -#' # f_saem_dfop_sfo_deSolve$so)) -#' -#' # If the model supports it, we can also use eigenvalue based solutions, which -#' # take a similar amount of time -#' #f_saem_sfo_sfo_eigen <- saem(f_mmkin["SFO-SFO", ], solution_type = "eigen", -#' # control = list(nbiter.saemix = c(200, 80), nbdisplay = 10)) -#' } -#' @export -saem <- function(object, ...) UseMethod("saem") - -#' @rdname saem -#' @export -saem.mmkin <- function(object, - transformations = c("mkin", "saemix"), - degparms_start = numeric(), - solution_type = "auto", - control = list(displayProgress = FALSE, print = FALSE, - save = FALSE, save.graphs = FALSE), - verbose = FALSE, quiet = FALSE, ...) -{ - transformations <- match.arg(transformations) - m_saemix <- saemix_model(object, verbose = verbose, - degparms_start = degparms_start, solution_type = solution_type, - transformations = transformations, ...) - d_saemix <- saemix_data(object, verbose = verbose) - - fit_time <- system.time({ - utils::capture.output(f_saemix <- saemix::saemix(m_saemix, d_saemix, control), split = !quiet) - }) - - transparms_optim <- f_saemix@results@fixed.effects - names(transparms_optim) <- f_saemix@results@name.fixed - - if (transformations == "mkin") { - bparms_optim <- backtransform_odeparms(transparms_optim, - object[[1]]$mkinmod, - object[[1]]$transform_rates, - object[[1]]$transform_fractions) - } else { - bparms_optim <- transparms_optim - } - - return_data <- nlme_data(object) - - return_data$predicted <- f_saemix@model@model( - psi = saemix::psi(f_saemix), - id = as.numeric(return_data$ds), - xidep = return_data[c("time", "name")]) - - return_data <- transform(return_data, - residual = predicted - value, - std = sigma_twocomp(predicted, - f_saemix@results@respar[1], f_saemix@results@respar[2])) - return_data <- transform(return_data, - standardized = residual / std) - - result <- list( - mkinmod = object[[1]]$mkinmod, - mmkin = object, - solution_type = object[[1]]$solution_type, - transformations = transformations, - transform_rates = object[[1]]$transform_rates, - transform_fractions = object[[1]]$transform_fractions, - so = f_saemix, - time = fit_time, - mean_dp_start = attr(m_saemix, "mean_dp_start"), - bparms.optim = bparms_optim, - bparms.fixed = object[[1]]$bparms.fixed, - data = return_data, - err_mod = object[[1]]$err_mod, - date.fit = date(), - saemixversion = as.character(utils::packageVersion("saemix")), - mkinversion = as.character(utils::packageVersion("mkin")), - Rversion = paste(R.version$major, R.version$minor, sep=".") - ) - - class(result) <- c("saem.mmkin", "mixed.mmkin") - return(result) -} - -#' @export -#' @rdname saem -#' @param x An saem.mmkin object to print -#' @param digits Number of digits to use for printing -print.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) { - cat( "Kinetic nonlinear mixed-effects model fit by SAEM" ) - cat("\nStructural model:\n") - diffs <- x$mmkin[[1]]$mkinmod$diffs - nice_diffs <- gsub("^(d.*) =", "\\1/dt =", diffs) - writeLines(strwrap(nice_diffs, exdent = 11)) - cat("\nData:\n") - cat(nrow(x$data), "observations of", - length(unique(x$data$name)), "variable(s) grouped in", - length(unique(x$data$ds)), "datasets\n") - - cat("\nLikelihood computed by importance sampling\n") - print(data.frame( - AIC = AIC(x$so, type = "is"), - BIC = BIC(x$so, type = "is"), - logLik = logLik(x$so, type = "is"), - row.names = " "), digits = digits) - - cat("\nFitted parameters:\n") - conf.int <- x$so@results@conf.int[c("estimate", "lower", "upper")] - rownames(conf.int) <- x$so@results@conf.int[["name"]] - print(conf.int, digits = digits) - - invisible(x) -} - -#' @rdname saem -#' @return An [saemix::SaemixModel] object. -#' @export -saemix_model <- function(object, solution_type = "auto", transformations = c("mkin", "saemix"), - degparms_start = numeric(), verbose = FALSE, ...) -{ - if (nrow(object) > 1) stop("Only row objects allowed") - - mkin_model <- object[[1]]$mkinmod - - degparms_optim <- mean_degparms(object) - if (transformations == "saemix") { - degparms_optim <- backtransform_odeparms(degparms_optim, - object[[1]]$mkinmod, - object[[1]]$transform_rates, - object[[1]]$transform_fractions) - } - degparms_fixed <- object[[1]]$bparms.fixed - - # Transformations are done in the degradation function - transform.par = rep(0, length(degparms_optim)) - - odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE) - odeini_fixed_parm_names <- grep('_0$', names(degparms_fixed), value = TRUE) - - odeparms_fixed_names <- setdiff(names(degparms_fixed), odeini_fixed_parm_names) - odeparms_fixed <- degparms_fixed[odeparms_fixed_names] - - odeini_fixed <- degparms_fixed[odeini_fixed_parm_names] - names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names) - - model_function <- FALSE - - # Model functions with analytical solutions - # Fixed parameters, use_of_ff = "min" and turning off sinks currently not supported here - # In general, we need to consider exactly how the parameters in mkinfit were specified, - # as the parameters are currently mapped by position in these solutions - sinks <- sapply(mkin_model$spec, function(x) x$sink) - if (length(odeparms_fixed) == 0 & mkin_model$use_of_ff == "max" & all(sinks)) { - # Parent only - if (length(mkin_model$spec) == 1) { - parent_type <- mkin_model$spec[[1]]$type - if (length(odeini_fixed) == 1) { - if (parent_type == "SFO") { - stop("saemix needs at least two parameters to work on.") - } - if (parent_type == "FOMC") { - model_function <- function(psi, id, xidep) { - odeini_fixed / (xidep[, "time"]/exp(psi[id, 2]) + 1)^exp(psi[id, 1]) - } - } - if (parent_type == "DFOP") { - model_function <- function(psi, id, xidep) { - g <- plogis(psi[id, 3]) - t <- xidep[, "time"] - odeini_fixed * (g * exp(- exp(psi[id, 1]) * t) + - (1 - g) * exp(- exp(psi[id, 2]) * t)) - } - } - if (parent_type == "HS") { - model_function <- function(psi, id, xidep) { - tb <- exp(psi[id, 3]) - t <- xidep[, "time"] - k1 = exp(psi[id, 1]) - odeini_fixed * ifelse(t <= tb, - exp(- k1 * t), - exp(- k1 * tb) * exp(- exp(psi[id, 2]) * (t - tb))) - } - } - } else { - if (parent_type == "SFO") { - if (transformations == "mkin") { - model_function <- function(psi, id, xidep) { - psi[id, 1] * exp( - exp(psi[id, 2]) * xidep[, "time"]) - } - } else { - model_function <- function(psi, id, xidep) { - psi[id, 1] * exp( - psi[id, 2] * xidep[, "time"]) - } - transform.par = c(0, 1) - } - } - if (parent_type == "FOMC") { - model_function <- function(psi, id, xidep) { - psi[id, 1] / (xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, 2]) - } - } - if (parent_type == "DFOP") { - if (transformations == "mkin") { - model_function <- function(psi, id, xidep) { - g <- plogis(psi[id, 4]) - t <- xidep[, "time"] - psi[id, 1] * (g * exp(- exp(psi[id, 2]) * t) + - (1 - g) * exp(- exp(psi[id, 3]) * t)) - } - } else { - model_function <- function(psi, id, xidep) { - g <- psi[id, 4] - t <- xidep[, "time"] - psi[id, 1] * (g * exp(- psi[id, 2] * t) + - (1 - g) * exp(- psi[id, 3] * t)) - } - transform.par = c(0, 1, 1, 3) - } - } - if (parent_type == "HS") { - model_function <- function(psi, id, xidep) { - tb <- exp(psi[id, 4]) - t <- xidep[, "time"] - k1 = exp(psi[id, 2]) - psi[id, 1] * ifelse(t <= tb, - exp(- k1 * t), - exp(- k1 * tb) * exp(- exp(psi[id, 3]) * (t - tb))) - } - } - } - } - - # Parent with one metabolite - # Parameter names used in the model functions are as in - # https://nbviewer.jupyter.org/urls/jrwb.de/nb/Symbolic%20ODE%20solutions%20for%20mkin.ipynb - types <- unname(sapply(mkin_model$spec, function(x) x$type)) - if (length(mkin_model$spec) == 2 &! "SFORB" %in% types ) { - # Initial value for the metabolite (n20) must be fixed - if (names(odeini_fixed) == names(mkin_model$spec)[2]) { - n20 <- odeini_fixed - parent_name <- names(mkin_model$spec)[1] - if (identical(types, c("SFO", "SFO"))) { - if (transformations == "mkin") { - model_function <- function(psi, id, xidep) { - t <- xidep[, "time"] - n10 <- psi[id, 1] - k1 <- exp(psi[id, 2]) - k2 <- exp(psi[id, 3]) - f12 <- plogis(psi[id, 4]) - ifelse(xidep[, "name"] == parent_name, - n10 * exp(- k1 * t), - (((k2 - k1) * n20 - f12 * k1 * n10) * exp(- k2 * t)) / (k2 - k1) + - (f12 * k1 * n10 * exp(- k1 * t)) / (k2 - k1) - ) - } - } else { - model_function <- function(psi, id, xidep) { - t <- xidep[, "time"] - n10 <- psi[id, 1] - k1 <- psi[id, 2] - k2 <- psi[id, 3] - f12 <- psi[id, 4] - ifelse(xidep[, "name"] == parent_name, - n10 * exp(- k1 * t), - (((k2 - k1) * n20 - f12 * k1 * n10) * exp(- k2 * t)) / (k2 - k1) + - (f12 * k1 * n10 * exp(- k1 * t)) / (k2 - k1) - ) - } - transform.par = c(0, 1, 1, 3) - } - } - if (identical(types, c("DFOP", "SFO"))) { - if (transformations == "mkin") { - model_function <- function(psi, id, xidep) { - t <- xidep[, "time"] - n10 <- psi[id, 1] - k2 <- exp(psi[id, 2]) - f12 <- plogis(psi[id, 3]) - l1 <- exp(psi[id, 4]) - l2 <- exp(psi[id, 5]) - g <- plogis(psi[id, 6]) - ifelse(xidep[, "name"] == parent_name, - n10 * (g * exp(- l1 * t) + (1 - g) * exp(- l2 * t)), - ((f12 * g - f12) * l2 * n10 * exp(- l2 * t)) / (l2 - k2) - - (f12 * g * l1 * n10 * exp(- l1 * t)) / (l1 - k2) + - ((((l1 - k2) * l2 - k2 * l1 + k2^2) * n20 + - ((f12 * l1 + (f12 * g - f12) * k2) * l2 - - f12 * g * k2 * l1) * n10) * exp( - k2 * t)) / - ((l1 - k2) * l2 - k2 * l1 + k2^2) - ) - } - } else { - model_function <- function(psi, id, xidep) { - t <- xidep[, "time"] - n10 <- psi[id, 1] - k2 <- psi[id, 2] - f12 <- psi[id, 3] - l1 <- psi[id, 4] - l2 <- psi[id, 5] - g <- psi[id, 6] - ifelse(xidep[, "name"] == parent_name, - n10 * (g * exp(- l1 * t) + (1 - g) * exp(- l2 * t)), - ((f12 * g - f12) * l2 * n10 * exp(- l2 * t)) / (l2 - k2) - - (f12 * g * l1 * n10 * exp(- l1 * t)) / (l1 - k2) + - ((((l1 - k2) * l2 - k2 * l1 + k2^2) * n20 + - ((f12 * l1 + (f12 * g - f12) * k2) * l2 - - f12 * g * k2 * l1) * n10) * exp( - k2 * t)) / - ((l1 - k2) * l2 - k2 * l1 + k2^2) - ) - } - transform.par = c(0, 1, 3, 1, 1, 3) - } - } - } - } - } - - if (is.function(model_function) & solution_type == "auto") { - solution_type = "analytical saemix" - } else { - - if (solution_type == "auto") - solution_type <- object[[1]]$solution_type - - model_function <- function(psi, id, xidep) { - - uid <- unique(id) - - res_list <- lapply(uid, function(i) { - - transparms_optim <- as.numeric(psi[i, ]) # psi[i, ] is a dataframe when called in saemix.predict - names(transparms_optim) <- names(degparms_optim) - - odeini_optim <- transparms_optim[odeini_optim_parm_names] - names(odeini_optim) <- gsub('_0$', '', odeini_optim_parm_names) - - odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)] - - ode_transparms_optim_names <- setdiff(names(transparms_optim), odeini_optim_parm_names) - odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model, - transform_rates = object[[1]]$transform_rates, - transform_fractions = object[[1]]$transform_fractions) - odeparms <- c(odeparms_optim, odeparms_fixed) - - xidep_i <- subset(xidep, id == i) - - if (solution_type == "analytical") { - out_values <- mkin_model$deg_func(xidep_i, odeini, odeparms) - } else { - - i_time <- xidep_i$time - i_name <- xidep_i$name - - out_wide <- mkinpredict(mkin_model, - odeparms = odeparms, odeini = odeini, - solution_type = solution_type, - outtimes = sort(unique(i_time)), - na_stop = FALSE - ) - - out_index <- cbind(as.character(i_time), as.character(i_name)) - out_values <- out_wide[out_index] - } - return(out_values) - }) - res <- unlist(res_list) - return(res) - } - } - - error.model <- switch(object[[1]]$err_mod, - const = "constant", - tc = "combined", - obs = "constant") - - if (object[[1]]$err_mod == "obs") { - warning("The error model 'obs' (variance by variable) can currently not be transferred to an saemix model") - } - - error.init <- switch(object[[1]]$err_mod, - const = c(a = mean(sapply(object, function(x) x$errparms)), b = 1), - tc = c(a = mean(sapply(object, function(x) x$errparms[1])), - b = mean(sapply(object, function(x) x$errparms[2]))), - obs = c(a = mean(sapply(object, function(x) x$errparms)), b = 1)) - - degparms_psi0 <- degparms_optim - degparms_psi0[names(degparms_start)] <- degparms_start - psi0_matrix <- matrix(degparms_psi0, nrow = 1) - colnames(psi0_matrix) <- names(degparms_psi0) - - res <- saemix::saemixModel(model_function, - psi0 = psi0_matrix, - "Mixed model generated from mmkin object", - transform.par = transform.par, - error.model = error.model, - verbose = verbose - ) - attr(res, "mean_dp_start") <- degparms_optim - return(res) -} - -#' @rdname saem -#' @return An [saemix::SaemixData] object. -#' @export -saemix_data <- function(object, verbose = FALSE, ...) { - if (nrow(object) > 1) stop("Only row objects allowed") - ds_names <- colnames(object) - - ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")]) - names(ds_list) <- ds_names - ds_saemix_all <- purrr::map_dfr(ds_list, function(x) x, .id = "ds") - ds_saemix <- data.frame(ds = ds_saemix_all$ds, - name = as.character(ds_saemix_all$variable), - time = ds_saemix_all$time, - value = ds_saemix_all$observed, - stringsAsFactors = FALSE) - - res <- saemix::saemixData(ds_saemix, - name.group = "ds", - name.predictors = c("time", "name"), - name.response = "value", - verbose = verbose, - ...) - return(res) -} diff --git a/R/summary.saem.mmkin.R b/R/summary.saem.mmkin.R deleted file mode 100644 index e92c561c..00000000 --- a/R/summary.saem.mmkin.R +++ /dev/null @@ -1,268 +0,0 @@ -#' Summary method for class "saem.mmkin" -#' -#' Lists model equations, initial parameter values, optimised parameters -#' for fixed effects (population), random effects (deviations from the -#' population mean) and residual error model, as well as the resulting -#' endpoints such as formation fractions and DT50 values. Optionally -#' (default is FALSE), the data are listed in full. -#' -#' @param object an object of class [saem.mmkin] -#' @param x an object of class [summary.saem.mmkin] -#' @param data logical, indicating whether the full data should be included in -#' the summary. -#' @param verbose Should the summary be verbose? -#' @param distimes logical, indicating whether DT50 and DT90 values should be -#' included. -#' @param digits Number of digits to use for printing -#' @param \dots optional arguments passed to methods like \code{print}. -#' @return The summary function returns a list based on the [saemix::SaemixObject] -#' obtained in the fit, with at least the following additional components -#' \item{saemixversion, mkinversion, Rversion}{The saemix, mkin and R versions used} -#' \item{date.fit, date.summary}{The dates where the fit and the summary were -#' produced} -#' \item{diffs}{The differential equations used in the degradation model} -#' \item{use_of_ff}{Was maximum or minimum use made of formation fractions} -#' \item{data}{The data} -#' \item{confint_trans}{Transformed parameters as used in the optimisation, with confidence intervals} -#' \item{confint_back}{Backtransformed parameters, with confidence intervals if available} -#' \item{confint_errmod}{Error model parameters with confidence intervals} -#' \item{ff}{The estimated formation fractions derived from the fitted -#' model.} -#' \item{distimes}{The DT50 and DT90 values for each observed variable.} -#' \item{SFORB}{If applicable, eigenvalues of SFORB components of the model.} -#' The print method is called for its side effect, i.e. printing the summary. -#' @importFrom stats predict vcov -#' @author Johannes Ranke for the mkin specific parts -#' saemix authors for the parts inherited from saemix. -#' @examples -#' # Generate five datasets following DFOP-SFO kinetics -#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) -#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "m1"), -#' m1 = mkinsub("SFO"), quiet = TRUE) -#' set.seed(1234) -#' k1_in <- rlnorm(5, log(0.1), 0.3) -#' k2_in <- rlnorm(5, log(0.02), 0.3) -#' g_in <- plogis(rnorm(5, qlogis(0.5), 0.3)) -#' f_parent_to_m1_in <- plogis(rnorm(5, qlogis(0.3), 0.3)) -#' k_m1_in <- rlnorm(5, log(0.02), 0.3) -#' -#' pred_dfop_sfo <- function(k1, k2, g, f_parent_to_m1, k_m1) { -#' mkinpredict(dfop_sfo, -#' c(k1 = k1, k2 = k2, g = g, f_parent_to_m1 = f_parent_to_m1, k_m1 = k_m1), -#' c(parent = 100, m1 = 0), -#' sampling_times) -#' } -#' -#' ds_mean_dfop_sfo <- lapply(1:5, function(i) { -#' mkinpredict(dfop_sfo, -#' c(k1 = k1_in[i], k2 = k2_in[i], g = g_in[i], -#' f_parent_to_m1 = f_parent_to_m1_in[i], k_m1 = k_m1_in[i]), -#' c(parent = 100, m1 = 0), -#' sampling_times) -#' }) -#' names(ds_mean_dfop_sfo) <- paste("ds", 1:5) -#' -#' ds_syn_dfop_sfo <- lapply(ds_mean_dfop_sfo, function(ds) { -#' add_err(ds, -#' sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2), -#' n = 1)[[1]] -#' }) -#' -#' \dontrun{ -#' # Evaluate using mmkin and saem -#' f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo, -#' quiet = TRUE, error_model = "tc", cores = 5) -#' f_saem_dfop_sfo <- saem(f_mmkin_dfop_sfo) -#' summary(f_saem_dfop_sfo, data = TRUE) -#' } -#' -#' @export -summary.saem.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...) { - - mod_vars <- names(object$mkinmod$diffs) - - pnames <- names(object$mean_dp_start) - np <- length(pnames) - - conf.int <- object$so@results@conf.int - rownames(conf.int) <- conf.int$name - confint_trans <- as.matrix(conf.int[pnames, c("estimate", "lower", "upper")]) - colnames(confint_trans)[1] <- "est." - - # In case objects were produced by earlier versions of saem - if (is.null(object$transformations)) object$transformations <- "mkin" - - if (object$transformations == "mkin") { - bp <- backtransform_odeparms(confint_trans[, "est."], object$mkinmod, - object$transform_rates, object$transform_fractions) - bpnames <- names(bp) - - # Transform boundaries of CI for one parameter at a time, - # with the exception of sets of formation fractions (single fractions are OK). - f_names_skip <- character(0) - for (box in mod_vars) { # Figure out sets of fractions to skip - f_names <- grep(paste("^f", box, sep = "_"), pnames, value = TRUE) - n_paths <- length(f_names) - if (n_paths > 1) f_names_skip <- c(f_names_skip, f_names) - } - - confint_back <- matrix(NA, nrow = length(bp), ncol = 3, - dimnames = list(bpnames, colnames(confint_trans))) - confint_back[, "est."] <- bp - - for (pname in pnames) { - if (!pname %in% f_names_skip) { - par.lower <- confint_trans[pname, "lower"] - par.upper <- confint_trans[pname, "upper"] - names(par.lower) <- names(par.upper) <- pname - bpl <- backtransform_odeparms(par.lower, object$mkinmod, - object$transform_rates, - object$transform_fractions) - bpu <- backtransform_odeparms(par.upper, object$mkinmod, - object$transform_rates, - object$transform_fractions) - confint_back[names(bpl), "lower"] <- bpl - confint_back[names(bpu), "upper"] <- bpu - } - } - } else { - confint_back <- confint_trans - } - - # Correlation of fixed effects (inspired by summary.nlme) - varFix <- vcov(object$so)[1:np, 1:np] - stdFix <- sqrt(diag(varFix)) - object$corFixed <- array( - t(varFix/stdFix)/stdFix, - dim(varFix), - list(pnames, pnames)) - - # Random effects - rnames <- paste0("SD.", pnames) - confint_ranef <- as.matrix(conf.int[rnames, c("estimate", "lower", "upper")]) - colnames(confint_ranef)[1] <- "est." - - # Error model - enames <- if (object$err_mod == "const") "a.1" else c("a.1", "b.1") - confint_errmod <- as.matrix(conf.int[enames, c("estimate", "lower", "upper")]) - colnames(confint_errmod)[1] <- "est." - - - object$confint_trans <- confint_trans - object$confint_ranef <- confint_ranef - object$confint_errmod <- confint_errmod - object$confint_back <- confint_back - - object$date.summary = date() - object$use_of_ff = object$mkinmod$use_of_ff - object$error_model_algorithm = object$mmkin_orig[[1]]$error_model_algorithm - err_mod = object$mmkin_orig[[1]]$err_mod - - object$diffs <- object$mkinmod$diffs - object$print_data <- data # boolean: Should we print the data? - so_pred <- object$so@results@predictions - - names(object$data)[4] <- "observed" # rename value to observed - - object$verbose <- verbose - - object$fixed <- object$mmkin_orig[[1]]$fixed - object$AIC = AIC(object$so) - object$BIC = BIC(object$so) - object$logLik = logLik(object$so, method = "is") - - ep <- endpoints(object) - if (length(ep$ff) != 0) - object$ff <- ep$ff - if (distimes) object$distimes <- ep$distimes - if (length(ep$SFORB) != 0) object$SFORB <- ep$SFORB - class(object) <- c("summary.saem.mmkin") - return(object) -} - -#' @rdname summary.saem.mmkin -#' @export -print.summary.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...) { - cat("saemix version used for fitting: ", x$saemixversion, "\n") - cat("mkin version used for pre-fitting: ", x$mkinversion, "\n") - cat("R version used for fitting: ", x$Rversion, "\n") - - cat("Date of fit: ", x$date.fit, "\n") - cat("Date of summary:", x$date.summary, "\n") - - cat("\nEquations:\n") - nice_diffs <- gsub("^(d.*) =", "\\1/dt =", x[["diffs"]]) - writeLines(strwrap(nice_diffs, exdent = 11)) - - cat("\nData:\n") - cat(nrow(x$data), "observations of", - length(unique(x$data$name)), "variable(s) grouped in", - length(unique(x$data$ds)), "datasets\n") - - cat("\nModel predictions using solution type", x$solution_type, "\n") - - cat("\nFitted in", x$time[["elapsed"]], "s using", paste(x$so@options$nbiter.saemix, collapse = ", "), "iterations\n") - - cat("\nVariance model: ") - cat(switch(x$err_mod, - const = "Constant variance", - obs = "Variance unique to each observed variable", - tc = "Two-component variance function"), "\n") - - cat("\nMean of starting values for individual parameters:\n") - print(x$mean_dp_start, digits = digits) - - cat("\nFixed degradation parameter values:\n") - if(length(x$fixed$value) == 0) cat("None\n") - else print(x$fixed, digits = digits) - - cat("\nResults:\n\n") - cat("Likelihood computed by importance sampling\n") - print(data.frame(AIC = x$AIC, BIC = x$BIC, logLik = x$logLik, - row.names = " "), digits = digits) - - cat("\nOptimised parameters:\n") - print(x$confint_trans, digits = digits) - - if (nrow(x$confint_trans) > 1) { - corr <- x$corFixed - class(corr) <- "correlation" - print(corr, title = "\nCorrelation:", ...) - } - - cat("\nRandom effects:\n") - print(x$confint_ranef, digits = digits) - - cat("\nVariance model:\n") - print(x$confint_errmod, digits = digits) - - if (x$transformations == "mkin") { - cat("\nBacktransformed parameters:\n") - print(x$confint_back, digits = digits) - } - - printSFORB <- !is.null(x$SFORB) - if(printSFORB){ - cat("\nEstimated Eigenvalues of SFORB model(s):\n") - print(x$SFORB, digits = digits,...) - } - - printff <- !is.null(x$ff) - if(printff){ - cat("\nResulting formation fractions:\n") - print(data.frame(ff = x$ff), digits = digits,...) - } - - printdistimes <- !is.null(x$distimes) - if(printdistimes){ - cat("\nEstimated disappearance times:\n") - print(x$distimes, digits = digits,...) - } - - if (x$print_data){ - cat("\nData:\n") - print(format(x$data, digits = digits, ...), row.names = FALSE) - } - - invisible(x) -} |