diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2019-05-07 08:12:27 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2019-05-07 08:12:27 +0200 |
commit | 8a3475c59f3d91ce5ce7d980d6de09360617e7fe (patch) | |
tree | a0a8bf1053e8bab09921b84916f1ace15e8ae8a4 /R | |
parent | 1ef7008be2a72a0847064ad9c2ddcfa16b055482 (diff) |
After the OLS step, use OLS parameter estimates
- Fix the respective error in the code
- Static documentation rebuilt by pkgdown
Diffstat (limited to 'R')
-rw-r--r-- | R/mkinfit.R | 48 |
1 files changed, 24 insertions, 24 deletions
diff --git a/R/mkinfit.R b/R/mkinfit.R index cca75690..664419be 100644 --- a/R/mkinfit.R +++ b/R/mkinfit.R @@ -280,8 +280,8 @@ mkinfit <- function(mkinmod, observed, assign("calls", calls + 1, inherits = TRUE) # Increase the model solution counter
P.orig <- P
- # Trace parameter values if requested
- if(trace_parms) cat(P, "\n")
+ # Trace parameter values if requested and if we are actually optimising
+ if(trace_parms & update_data) cat(P, "\n")
# If we do a local optimisation of the error model, the initials
# for the state variabels and the parameters are given as 'local'
@@ -343,23 +343,23 @@ mkinfit <- function(mkinmod, observed, data_log_lik <- merge(observed[c("name", "time", "value", "std")], out_long,
by = c("name", "time"), suffixes = c(".observed", ".predicted"))
- if (OLS) {
- nlogLik <- with(data_log_lik, sum((value.observed - value.predicted)^2))
- } else {
- nlogLik <- - with(data_log_lik,
- sum(dnorm(x = value.observed, mean = value.predicted, sd = std, log = TRUE)))
- }
-
- # We need the data at optimised parameters
+ # We only update likelihood and data during the optimisation, not during hessian calculations
if (update_data) {
+ if (OLS) {
+ nlogLik <- with(data_log_lik, sum((value.observed - value.predicted)^2))
+ } else {
+ nlogLik <- - with(data_log_lik,
+ sum(dnorm(x = value.observed, mean = value.predicted, sd = std, log = TRUE)))
+ }
+
assign("out_predicted", out_long, inherits = TRUE)
assign("data_errmod", data_log_lik, inherits = TRUE)
- }
- if (nlogLik < nlogLik.current) {
- assign("nlogLik.current", nlogLik, inherits = TRUE)
- if (!quiet) cat(ifelse(OLS, "Sum of squared residuals", "Negative log-likelihood"),
- " at call ", calls, ": ", nlogLik.current, "\n", sep = "")
+ if (nlogLik < nlogLik.current) {
+ assign("nlogLik.current", nlogLik, inherits = TRUE)
+ if (!quiet) cat(ifelse(OLS, "Sum of squared residuals", "Negative log-likelihood"),
+ " at call ", calls, ": ", nlogLik.current, "\n", sep = "")
+ }
}
return(nlogLik)
}
@@ -427,7 +427,7 @@ mkinfit <- function(mkinmod, observed, if (!quiet) message("Ordinary least squares optimisation")
parms.start <- c(state.ini.optim, transparms.optim)
fit.ols <- nlminb(parms.start, nlogLik, control = control,
- lower = lower[names(parms.start)],
+ lower = lower[names(parms.start)],
upper = upper[names(parms.start)], OLS = TRUE, ...)
if (err_mod == "const") {
@@ -443,14 +443,14 @@ mkinfit <- function(mkinmod, observed, # parameters
if (!quiet) message("Optimising the error model")
fit.err <- nlminb(errparms, nlogLik, control = control,
- lower = lower[names(errparms)],
+ lower = lower[names(errparms)],
upper = upper[names(errparms)],
local = fit.ols$par, ...)
errparms.tmp <- fit.err$par
if (!quiet) message("Optimising the complete model")
- parms.start <- c(state.ini.optim, transparms.optim, errparms.tmp)
+ parms.start <- c(fit.ols$par, errparms.tmp)
fit <- nlminb(parms.start, nlogLik,
- lower = lower[names(parms.start)],
+ lower = lower[names(parms.start)],
upper = upper[names(parms.start)],
control = control, ...)
fit$logLik <- - nlogLik.current
@@ -461,7 +461,7 @@ mkinfit <- function(mkinmod, observed, if (err_mod == "const") {
fit$par <- c(fit$par, sigma = sigma_mle)
}
- fit$hessian <- try(hessian(nlogLik, fit$par, update_data = FALSE), silent = TRUE)
+ fit$hessian <- try(numDeriv::hessian(nlogLik, fit$par, update_data = FALSE), silent = TRUE)
# Backtransform parameters
bparms.optim = backtransform_odeparms(fit$par, mkinmod,
@@ -470,7 +470,7 @@ mkinfit <- function(mkinmod, observed, bparms.fixed = c(state.ini.fixed, parms.fixed)
bparms.all = c(bparms.optim, parms.fixed)
- fit$hessian_notrans <- try(hessian(nlogLik, c(bparms.optim, fit$par[names(errparms)]),
+ fit$hessian_notrans <- try(numDeriv::hessian(nlogLik, c(bparms.optim, fit$par[names(errparms)]),
trans = FALSE, update_data = FALSE), silent = TRUE)
})
@@ -478,7 +478,7 @@ mkinfit <- function(mkinmod, observed, fit$warning = paste0("Optimisation did not converge:\n", fit$message)
warning(fit$warning)
} else {
- if(!quiet) cat("Optimisation successfully terminated.\n")
+ if(!quiet) message("Optimisation successfully terminated.\n")
}
# We need to return some more data for summary and plotting
@@ -657,7 +657,7 @@ summary.mkinfit <- function(object, data = TRUE, distimes = TRUE, alpha = 0.05, rownames(Corr) <- colnames(Corr) <- rownames(ans$par)
ans$Corr <- Corr
} else {
- warning("Could not estimate covariance matrix; singular system.")
+ warning("Could not calculate correlation; no covariance matrix")
}
}
@@ -720,7 +720,7 @@ print.summary.mkinfit <- function(x, digits = max(3, getOption("digits") - 3), . if (!is.null(x$cov.unscaled)){
print(x$Corr, digits = digits, ...)
} else {
- cat("Could not estimate covariance matrix; singular system.")
+ cat("No covariance matrix")
}
}
|