aboutsummaryrefslogtreecommitdiff
path: root/docs/articles
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2022-07-08 17:39:44 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2022-07-08 17:39:44 +0200
commitf35e0b3d3b9f41bee2f5cc357afcb69e3aadad15 (patch)
tree675d90c517a0e8a32c7c3af8ef631a5c588503d4 /docs/articles
parent16a7ed9548b37fe3c68c993651226fdc2dda6402 (diff)
Store DLL info in mkinmod objects for performance
Thanks to Tomas Kalibera for his analysis of the problem on the r-package-devel mailing list and for the suggestion on how to fix it. See the current benchmark vignette for the new data on mkin 1.1.1 with R 4.2.1, with unprecedented performance.
Diffstat (limited to 'docs/articles')
-rw-r--r--docs/articles/FOCUS_L.html1176
-rw-r--r--docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.pngbin36101 -> 36120 bytes
-rw-r--r--docs/articles/index.html2
-rw-r--r--docs/articles/web_only/benchmarks.html33
-rw-r--r--docs/articles/web_only/dimethenamid_2018.html92
5 files changed, 663 insertions, 640 deletions
diff --git a/docs/articles/FOCUS_L.html b/docs/articles/FOCUS_L.html
index d3918ef4..7d36c77c 100644
--- a/docs/articles/FOCUS_L.html
+++ b/docs/articles/FOCUS_L.html
@@ -33,7 +33,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.1.0</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.1.1</span>
</span>
</div>
@@ -105,7 +105,7 @@
<h1 data-toc-skip>Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
<h4 data-toc-skip class="author">Johannes Ranke</h4>
- <h4 data-toc-skip class="date">Last change 18 May 2022 (rebuilt 2022-06-30)</h4>
+ <h4 data-toc-skip class="date">Last change 18 May 2022 (rebuilt 2022-07-08)</h4>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/FOCUS_L.rmd" class="external-link"><code>vignettes/FOCUS_L.rmd</code></a></small>
<div class="hidden name"><code>FOCUS_L.rmd</code></div>
@@ -119,197 +119,189 @@
</h2>
<p>The following code defines example dataset L1 from the FOCUS kinetics report, p. 284:</p>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="st"><a href="https://pkgdown.jrwb.de/mkin/">"mkin"</a></span>, quietly <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>
-<span class="va">FOCUS_2006_L1</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span>
- t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">1</span>, <span class="fl">2</span>, <span class="fl">3</span>, <span class="fl">5</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">21</span>, <span class="fl">30</span><span class="op">)</span>, each <span class="op">=</span> <span class="fl">2</span><span class="op">)</span>,
- parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">88.3</span>, <span class="fl">91.4</span>, <span class="fl">85.6</span>, <span class="fl">84.5</span>, <span class="fl">78.9</span>, <span class="fl">77.6</span>,
- <span class="fl">72.0</span>, <span class="fl">71.9</span>, <span class="fl">50.3</span>, <span class="fl">59.4</span>, <span class="fl">47.0</span>, <span class="fl">45.1</span>,
- <span class="fl">27.7</span>, <span class="fl">27.3</span>, <span class="fl">10.0</span>, <span class="fl">10.4</span>, <span class="fl">2.9</span>, <span class="fl">4.0</span><span class="op">)</span><span class="op">)</span>
-<span class="va">FOCUS_2006_L1_mkin</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L1</span><span class="op">)</span></code></pre></div>
+<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="st"><a href="https://pkgdown.jrwb.de/mkin/">"mkin"</a></span>, quietly <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
+<span><span class="va">FOCUS_2006_L1</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>
+<span> t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">1</span>, <span class="fl">2</span>, <span class="fl">3</span>, <span class="fl">5</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">21</span>, <span class="fl">30</span><span class="op">)</span>, each <span class="op">=</span> <span class="fl">2</span><span class="op">)</span>,</span>
+<span> parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">88.3</span>, <span class="fl">91.4</span>, <span class="fl">85.6</span>, <span class="fl">84.5</span>, <span class="fl">78.9</span>, <span class="fl">77.6</span>,</span>
+<span> <span class="fl">72.0</span>, <span class="fl">71.9</span>, <span class="fl">50.3</span>, <span class="fl">59.4</span>, <span class="fl">47.0</span>, <span class="fl">45.1</span>,</span>
+<span> <span class="fl">27.7</span>, <span class="fl">27.3</span>, <span class="fl">10.0</span>, <span class="fl">10.4</span>, <span class="fl">2.9</span>, <span class="fl">4.0</span><span class="op">)</span><span class="op">)</span></span>
+<span><span class="va">FOCUS_2006_L1_mkin</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L1</span><span class="op">)</span></span></code></pre></div>
<p>Here we use the assumptions of simple first order (SFO), the case of declining rate constant over time (FOMC) and the case of two different phases of the kinetics (DFOP). For a more detailed discussion of the models, please see the FOCUS kinetics report.</p>
<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>"SFO"</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="va">m.L1.SFO</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">FOCUS_2006_L1_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>
-<span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L1.SFO</span><span class="op">)</span></code></pre></div>
-<pre><code><span class="co">## mkin version used for fitting: 1.1.0 </span>
-<span class="co">## R version used for fitting: 4.2.1 </span>
-<span class="co">## Date of fit: Thu Jun 30 10:43:59 2022 </span>
-<span class="co">## Date of summary: Thu Jun 30 10:43:59 2022 </span>
-<span class="co">## </span>
-<span class="co">## Equations:</span>
-<span class="co">## d_parent/dt = - k_parent * parent</span>
-<span class="co">## </span>
-<span class="co">## Model predictions using solution type analytical </span>
-<span class="co">## </span>
-<span class="co">## Fitted using 133 model solutions performed in 0.032 s</span>
-<span class="co">## </span>
-<span class="co">## Error model: Constant variance </span>
-<span class="co">## </span>
-<span class="co">## Error model algorithm: OLS </span>
-<span class="co">## </span>
-<span class="co">## Starting values for parameters to be optimised:</span>
-<span class="co">## value type</span>
-<span class="co">## parent_0 89.85 state</span>
-<span class="co">## k_parent 0.10 deparm</span>
-<span class="co">## </span>
-<span class="co">## Starting values for the transformed parameters actually optimised:</span>
-<span class="co">## value lower upper</span>
-<span class="co">## parent_0 89.850000 -Inf Inf</span>
-<span class="co">## log_k_parent -2.302585 -Inf Inf</span>
-<span class="co">## </span>
-<span class="co">## Fixed parameter values:</span>
-<span class="co">## None</span>
-<span class="co">## </span>
-<span class="co">## Results:</span>
-<span class="co">## </span>
-<span class="co">## AIC BIC logLik</span>
-<span class="co">## 93.88778 96.5589 -43.94389</span>
-<span class="co">## </span>
-<span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span>
-<span class="co">## Estimate Std. Error Lower Upper</span>
-<span class="co">## parent_0 92.470 1.28200 89.740 95.200</span>
-<span class="co">## log_k_parent -2.347 0.03763 -2.428 -2.267</span>
-<span class="co">## sigma 2.780 0.46330 1.792 3.767</span>
-<span class="co">## </span>
-<span class="co">## Parameter correlation:</span>
-<span class="co">## parent_0 log_k_parent sigma</span>
-<span class="co">## parent_0 1.000e+00 6.186e-01 -1.516e-09</span>
-<span class="co">## log_k_parent 6.186e-01 1.000e+00 -3.124e-09</span>
-<span class="co">## sigma -1.516e-09 -3.124e-09 1.000e+00</span>
-<span class="co">## </span>
-<span class="co">## Backtransformed parameters:</span>
-<span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span>
-<span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span>
-<span class="co">## for estimators of untransformed parameters.</span>
-<span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span>
-<span class="co">## parent_0 92.47000 72.13 8.824e-21 89.74000 95.2000</span>
-<span class="co">## k_parent 0.09561 26.57 2.487e-14 0.08824 0.1036</span>
-<span class="co">## sigma 2.78000 6.00 1.216e-05 1.79200 3.7670</span>
-<span class="co">## </span>
-<span class="co">## FOCUS Chi2 error levels in percent:</span>
-<span class="co">## err.min n.optim df</span>
-<span class="co">## All data 3.424 2 7</span>
-<span class="co">## parent 3.424 2 7</span>
-<span class="co">## </span>
-<span class="co">## Estimated disappearance times:</span>
-<span class="co">## DT50 DT90</span>
-<span class="co">## parent 7.249 24.08</span>
-<span class="co">## </span>
-<span class="co">## Data:</span>
-<span class="co">## time variable observed predicted residual</span>
-<span class="co">## 0 parent 88.3 92.471 -4.1710</span>
-<span class="co">## 0 parent 91.4 92.471 -1.0710</span>
-<span class="co">## 1 parent 85.6 84.039 1.5610</span>
-<span class="co">## 1 parent 84.5 84.039 0.4610</span>
-<span class="co">## 2 parent 78.9 76.376 2.5241</span>
-<span class="co">## 2 parent 77.6 76.376 1.2241</span>
-<span class="co">## 3 parent 72.0 69.412 2.5884</span>
-<span class="co">## 3 parent 71.9 69.412 2.4884</span>
-<span class="co">## 5 parent 50.3 57.330 -7.0301</span>
-<span class="co">## 5 parent 59.4 57.330 2.0699</span>
-<span class="co">## 7 parent 47.0 47.352 -0.3515</span>
-<span class="co">## 7 parent 45.1 47.352 -2.2515</span>
-<span class="co">## 14 parent 27.7 24.247 3.4528</span>
-<span class="co">## 14 parent 27.3 24.247 3.0528</span>
-<span class="co">## 21 parent 10.0 12.416 -2.4163</span>
-<span class="co">## 21 parent 10.4 12.416 -2.0163</span>
-<span class="co">## 30 parent 2.9 5.251 -2.3513</span>
-<span class="co">## 30 parent 4.0 5.251 -1.2513</span></code></pre>
+<code class="sourceCode R"><span><span class="va">m.L1.SFO</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">FOCUS_2006_L1_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
+<span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L1.SFO</span><span class="op">)</span></span></code></pre></div>
+<pre><code><span><span class="co">## mkin version used for fitting: 1.1.1 </span></span>
+<span><span class="co">## R version used for fitting: 4.2.1 </span></span>
+<span><span class="co">## Date of fit: Fri Jul 8 17:34:00 2022 </span></span>
+<span><span class="co">## Date of summary: Fri Jul 8 17:34:00 2022 </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Equations:</span></span>
+<span><span class="co">## d_parent/dt = - k_parent * parent</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Model predictions using solution type analytical </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fitted using 133 model solutions performed in 0.028 s</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model: Constant variance </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model algorithm: OLS </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for parameters to be optimised:</span></span>
+<span><span class="co">## value type</span></span>
+<span><span class="co">## parent_0 89.85 state</span></span>
+<span><span class="co">## k_parent 0.10 deparm</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
+<span><span class="co">## value lower upper</span></span>
+<span><span class="co">## parent_0 89.850000 -Inf Inf</span></span>
+<span><span class="co">## log_k_parent -2.302585 -Inf Inf</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fixed parameter values:</span></span>
+<span><span class="co">## None</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Results:</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## AIC BIC logLik</span></span>
+<span><span class="co">## 93.88778 96.5589 -43.94389</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
+<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
+<span><span class="co">## parent_0 92.470 1.28200 89.740 95.200</span></span>
+<span><span class="co">## log_k_parent -2.347 0.03763 -2.428 -2.267</span></span>
+<span><span class="co">## sigma 2.780 0.46330 1.792 3.767</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Parameter correlation:</span></span>
+<span><span class="co">## parent_0 log_k_parent sigma</span></span>
+<span><span class="co">## parent_0 1.000e+00 6.186e-01 -1.712e-09</span></span>
+<span><span class="co">## log_k_parent 6.186e-01 1.000e+00 -3.237e-09</span></span>
+<span><span class="co">## sigma -1.712e-09 -3.237e-09 1.000e+00</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Backtransformed parameters:</span></span>
+<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
+<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
+<span><span class="co">## for estimators of untransformed parameters.</span></span>
+<span><span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span></span>
+<span><span class="co">## parent_0 92.47000 72.13 8.824e-21 89.74000 95.2000</span></span>
+<span><span class="co">## k_parent 0.09561 26.57 2.487e-14 0.08824 0.1036</span></span>
+<span><span class="co">## sigma 2.78000 6.00 1.216e-05 1.79200 3.7670</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
+<span><span class="co">## err.min n.optim df</span></span>
+<span><span class="co">## All data 3.424 2 7</span></span>
+<span><span class="co">## parent 3.424 2 7</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Estimated disappearance times:</span></span>
+<span><span class="co">## DT50 DT90</span></span>
+<span><span class="co">## parent 7.249 24.08</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Data:</span></span>
+<span><span class="co">## time variable observed predicted residual</span></span>
+<span><span class="co">## 0 parent 88.3 92.471 -4.1710</span></span>
+<span><span class="co">## 0 parent 91.4 92.471 -1.0710</span></span>
+<span><span class="co">## 1 parent 85.6 84.039 1.5610</span></span>
+<span><span class="co">## 1 parent 84.5 84.039 0.4610</span></span>
+<span><span class="co">## 2 parent 78.9 76.376 2.5241</span></span>
+<span><span class="co">## 2 parent 77.6 76.376 1.2241</span></span>
+<span><span class="co">## 3 parent 72.0 69.412 2.5884</span></span>
+<span><span class="co">## 3 parent 71.9 69.412 2.4884</span></span>
+<span><span class="co">## 5 parent 50.3 57.330 -7.0301</span></span>
+<span><span class="co">## 5 parent 59.4 57.330 2.0699</span></span>
+<span><span class="co">## 7 parent 47.0 47.352 -0.3515</span></span>
+<span><span class="co">## 7 parent 45.1 47.352 -2.2515</span></span>
+<span><span class="co">## 14 parent 27.7 24.247 3.4528</span></span>
+<span><span class="co">## 14 parent 27.3 24.247 3.0528</span></span>
+<span><span class="co">## 21 parent 10.0 12.416 -2.4163</span></span>
+<span><span class="co">## 21 parent 10.4 12.416 -2.0163</span></span>
+<span><span class="co">## 30 parent 2.9 5.251 -2.3513</span></span>
+<span><span class="co">## 30 parent 4.0 5.251 -1.2513</span></span></code></pre>
<p>A plot of the fit is obtained with the plot function for mkinfit objects.</p>
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L1.SFO</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>, main <span class="op">=</span> <span class="st">"FOCUS L1 - SFO"</span><span class="op">)</span></code></pre></div>
+<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L1.SFO</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>, main <span class="op">=</span> <span class="st">"FOCUS L1 - SFO"</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-4-1.png" width="576"></p>
<p>The residual plot can be easily obtained by</p>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="fu"><a href="../reference/mkinresplot.html">mkinresplot</a></span><span class="op">(</span><span class="va">m.L1.SFO</span>, ylab <span class="op">=</span> <span class="st">"Observed"</span>, xlab <span class="op">=</span> <span class="st">"Time"</span><span class="op">)</span></code></pre></div>
+<code class="sourceCode R"><span><span class="fu"><a href="../reference/mkinresplot.html">mkinresplot</a></span><span class="op">(</span><span class="va">m.L1.SFO</span>, ylab <span class="op">=</span> <span class="st">"Observed"</span>, xlab <span class="op">=</span> <span class="st">"Time"</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-5-1.png" width="576"></p>
<p>For comparison, the FOMC model is fitted as well, and the <span class="math inline">\(\chi^2\)</span> error level is checked.</p>
<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="va">m.L1.FOMC</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="va">FOCUS_2006_L1_mkin</span>, quiet<span class="op">=</span><span class="cn">TRUE</span><span class="op">)</span></code></pre></div>
-<pre><code><span class="co">## Warning in mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation did not converge:</span>
-<span class="co">## false convergence (8)</span></code></pre>
-<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L1.FOMC</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>, main <span class="op">=</span> <span class="st">"FOCUS L1 - FOMC"</span><span class="op">)</span></code></pre></div>
+<code class="sourceCode R"><span><span class="va">m.L1.FOMC</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="va">FOCUS_2006_L1_mkin</span>, quiet<span class="op">=</span><span class="cn">TRUE</span><span class="op">)</span></span>
+<span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L1.FOMC</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>, main <span class="op">=</span> <span class="st">"FOCUS L1 - FOMC"</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-6-1.png" width="576"></p>
-<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L1.FOMC</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div>
-<pre><code><span class="co">## Warning in sqrt(diag(covar)): NaNs produced</span></code></pre>
-<pre><code><span class="co">## Warning in sqrt(1/diag(V)): NaNs produced</span></code></pre>
-<pre><code><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is</span>
-<span class="co">## doubtful</span></code></pre>
-<pre><code><span class="co">## mkin version used for fitting: 1.1.0 </span>
-<span class="co">## R version used for fitting: 4.2.1 </span>
-<span class="co">## Date of fit: Thu Jun 30 10:44:00 2022 </span>
-<span class="co">## Date of summary: Thu Jun 30 10:44:00 2022 </span>
-<span class="co">## </span>
-<span class="co">## Equations:</span>
-<span class="co">## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent</span>
-<span class="co">## </span>
-<span class="co">## Model predictions using solution type analytical </span>
-<span class="co">## </span>
-<span class="co">## Fitted using 369 model solutions performed in 0.082 s</span>
-<span class="co">## </span>
-<span class="co">## Error model: Constant variance </span>
-<span class="co">## </span>
-<span class="co">## Error model algorithm: OLS </span>
-<span class="co">## </span>
-<span class="co">## Starting values for parameters to be optimised:</span>
-<span class="co">## value type</span>
-<span class="co">## parent_0 89.85 state</span>
-<span class="co">## alpha 1.00 deparm</span>
-<span class="co">## beta 10.00 deparm</span>
-<span class="co">## </span>
-<span class="co">## Starting values for the transformed parameters actually optimised:</span>
-<span class="co">## value lower upper</span>
-<span class="co">## parent_0 89.850000 -Inf Inf</span>
-<span class="co">## log_alpha 0.000000 -Inf Inf</span>
-<span class="co">## log_beta 2.302585 -Inf Inf</span>
-<span class="co">## </span>
-<span class="co">## Fixed parameter values:</span>
-<span class="co">## None</span>
-<span class="co">## </span>
-<span class="co">## </span>
-<span class="co">## Warning(s): </span>
-<span class="co">## Optimisation did not converge:</span>
-<span class="co">## false convergence (8)</span>
-<span class="co">## </span>
-<span class="co">## Results:</span>
-<span class="co">## </span>
-<span class="co">## AIC BIC logLik</span>
-<span class="co">## 95.88781 99.44929 -43.9439</span>
-<span class="co">## </span>
-<span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span>
-<span class="co">## Estimate Std. Error Lower Upper</span>
-<span class="co">## parent_0 92.47 1.2820 89.720 95.220</span>
-<span class="co">## log_alpha 13.78 NaN NaN NaN</span>
-<span class="co">## log_beta 16.13 NaN NaN NaN</span>
-<span class="co">## sigma 2.78 0.4598 1.794 3.766</span>
-<span class="co">## </span>
-<span class="co">## Parameter correlation:</span>
-<span class="co">## parent_0 log_alpha log_beta sigma</span>
-<span class="co">## parent_0 1.0000000 NaN NaN 0.0001671</span>
-<span class="co">## log_alpha NaN 1 NaN NaN</span>
-<span class="co">## log_beta NaN NaN 1 NaN</span>
-<span class="co">## sigma 0.0001671 NaN NaN 1.0000000</span>
-<span class="co">## </span>
-<span class="co">## Backtransformed parameters:</span>
-<span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span>
-<span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span>
-<span class="co">## for estimators of untransformed parameters.</span>
-<span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span>
-<span class="co">## parent_0 9.247e+01 NA NA 89.720 95.220</span>
-<span class="co">## alpha 9.658e+05 NA NA NA NA</span>
-<span class="co">## beta 1.010e+07 NA NA NA NA</span>
-<span class="co">## sigma 2.780e+00 NA NA 1.794 3.766</span>
-<span class="co">## </span>
-<span class="co">## FOCUS Chi2 error levels in percent:</span>
-<span class="co">## err.min n.optim df</span>
-<span class="co">## All data 3.619 3 6</span>
-<span class="co">## parent 3.619 3 6</span>
-<span class="co">## </span>
-<span class="co">## Estimated disappearance times:</span>
-<span class="co">## DT50 DT90 DT50back</span>
-<span class="co">## parent 7.25 24.08 7.25</span></code></pre>
+<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L1.FOMC</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
+<pre><code><span><span class="co">## Warning in sqrt(diag(covar)): NaNs produced</span></span></code></pre>
+<pre><code><span><span class="co">## Warning in sqrt(1/diag(V)): NaNs produced</span></span></code></pre>
+<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is</span></span>
+<span><span class="co">## doubtful</span></span></code></pre>
+<pre><code><span><span class="co">## mkin version used for fitting: 1.1.1 </span></span>
+<span><span class="co">## R version used for fitting: 4.2.1 </span></span>
+<span><span class="co">## Date of fit: Fri Jul 8 17:34:00 2022 </span></span>
+<span><span class="co">## Date of summary: Fri Jul 8 17:34:00 2022 </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Equations:</span></span>
+<span><span class="co">## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Model predictions using solution type analytical </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fitted using 357 model solutions performed in 0.07 s</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model: Constant variance </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model algorithm: OLS </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for parameters to be optimised:</span></span>
+<span><span class="co">## value type</span></span>
+<span><span class="co">## parent_0 89.85 state</span></span>
+<span><span class="co">## alpha 1.00 deparm</span></span>
+<span><span class="co">## beta 10.00 deparm</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
+<span><span class="co">## value lower upper</span></span>
+<span><span class="co">## parent_0 89.850000 -Inf Inf</span></span>
+<span><span class="co">## log_alpha 0.000000 -Inf Inf</span></span>
+<span><span class="co">## log_beta 2.302585 -Inf Inf</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fixed parameter values:</span></span>
+<span><span class="co">## None</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Results:</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## AIC BIC logLik</span></span>
+<span><span class="co">## 95.88804 99.44953 -43.94402</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
+<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
+<span><span class="co">## parent_0 92.47 1.2820 89.720 95.220</span></span>
+<span><span class="co">## log_alpha 11.37 NaN NaN NaN</span></span>
+<span><span class="co">## log_beta 13.72 NaN NaN NaN</span></span>
+<span><span class="co">## sigma 2.78 0.4621 1.789 3.771</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Parameter correlation:</span></span>
+<span><span class="co">## parent_0 log_alpha log_beta sigma</span></span>
+<span><span class="co">## parent_0 1.0000000 NaN NaN 0.0005548</span></span>
+<span><span class="co">## log_alpha NaN 1 NaN NaN</span></span>
+<span><span class="co">## log_beta NaN NaN 1 NaN</span></span>
+<span><span class="co">## sigma 0.0005548 NaN NaN 1.0000000</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Backtransformed parameters:</span></span>
+<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
+<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
+<span><span class="co">## for estimators of untransformed parameters.</span></span>
+<span><span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span></span>
+<span><span class="co">## parent_0 92.47 NA NA 89.720 95.220</span></span>
+<span><span class="co">## alpha 87110.00 NA NA NA NA</span></span>
+<span><span class="co">## beta 911100.00 NA NA NA NA</span></span>
+<span><span class="co">## sigma 2.78 NA NA 1.789 3.771</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
+<span><span class="co">## err.min n.optim df</span></span>
+<span><span class="co">## All data 3.619 3 6</span></span>
+<span><span class="co">## parent 3.619 3 6</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Estimated disappearance times:</span></span>
+<span><span class="co">## DT50 DT90 DT50back</span></span>
+<span><span class="co">## parent 7.249 24.08 7.249</span></span></code></pre>
<p>We get a warning that the default optimisation algorithm <code>Port</code> did not converge, which is an indication that the model is overparameterised, <em>i.e.</em> contains too many parameters that are ill-defined as a consequence.</p>
<p>And in fact, due to the higher number of parameters, and the lower number of degrees of freedom of the fit, the <span class="math inline">\(\chi^2\)</span> error level is actually higher for the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the parameters <code>log_alpha</code> and <code>log_beta</code> internally fitted in the model have excessive confidence intervals, that span more than 25 orders of magnitude (!) when backtransformed to the scale of <code>alpha</code> and <code>beta</code>. Also, the t-test for significant difference from zero does not indicate such a significant difference, with p-values greater than 0.1, and finally, the parameter correlation of <code>log_alpha</code> and <code>log_beta</code> is 1.000, clearly indicating that the model is overparameterised.</p>
<p>The <span class="math inline">\(\chi^2\)</span> error levels reported in Appendix 3 and Appendix 7 to the FOCUS kinetics report are rounded to integer percentages and partly deviate by one percentage point from the results calculated by mkin. The reason for this is not known. However, mkin gives the same <span class="math inline">\(\chi^2\)</span> error levels as the kinfit package and the calculation routines of the kinfit package have been extensively compared to the results obtained by the KinGUI software, as documented in the kinfit package vignette. KinGUI was the first widely used standard package in this field. Also, the calculation of <span class="math inline">\(\chi^2\)</span> error levels was compared with KinGUII, CAKE and DegKin manager in a project sponsored by the German Umweltbundesamt <span class="citation">(Ranke 2014)</span>.</p>
@@ -318,21 +310,21 @@
<h2 id="laboratory-data-l2">Laboratory Data L2<a class="anchor" aria-label="anchor" href="#laboratory-data-l2"></a>
</h2>
<p>The following code defines example dataset L2 from the FOCUS kinetics report, p. 287:</p>
-<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="va">FOCUS_2006_L2</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span>
- t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">1</span>, <span class="fl">3</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">28</span><span class="op">)</span>, each <span class="op">=</span> <span class="fl">2</span><span class="op">)</span>,
- parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">96.1</span>, <span class="fl">91.8</span>, <span class="fl">41.4</span>, <span class="fl">38.7</span>,
- <span class="fl">19.3</span>, <span class="fl">22.3</span>, <span class="fl">4.6</span>, <span class="fl">4.6</span>,
- <span class="fl">2.6</span>, <span class="fl">1.2</span>, <span class="fl">0.3</span>, <span class="fl">0.6</span><span class="op">)</span><span class="op">)</span>
-<span class="va">FOCUS_2006_L2_mkin</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L2</span><span class="op">)</span></code></pre></div>
+<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="va">FOCUS_2006_L2</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>
+<span> t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">1</span>, <span class="fl">3</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">28</span><span class="op">)</span>, each <span class="op">=</span> <span class="fl">2</span><span class="op">)</span>,</span>
+<span> parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">96.1</span>, <span class="fl">91.8</span>, <span class="fl">41.4</span>, <span class="fl">38.7</span>,</span>
+<span> <span class="fl">19.3</span>, <span class="fl">22.3</span>, <span class="fl">4.6</span>, <span class="fl">4.6</span>,</span>
+<span> <span class="fl">2.6</span>, <span class="fl">1.2</span>, <span class="fl">0.3</span>, <span class="fl">0.6</span><span class="op">)</span><span class="op">)</span></span>
+<span><span class="va">FOCUS_2006_L2_mkin</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L2</span><span class="op">)</span></span></code></pre></div>
<div class="section level3">
<h3 id="sfo-fit-for-l2">SFO fit for L2<a class="anchor" aria-label="anchor" href="#sfo-fit-for-l2"></a>
</h3>
<p>Again, the SFO model is fitted and the result is plotted. The residual plot can be obtained simply by adding the argument <code>show_residuals</code> to the plot command.</p>
-<div class="sourceCode" id="cb15"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="va">m.L2.SFO</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">FOCUS_2006_L2_mkin</span>, quiet<span class="op">=</span><span class="cn">TRUE</span><span class="op">)</span>
-<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L2.SFO</span>, show_residuals <span class="op">=</span> <span class="cn">TRUE</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>,
- main <span class="op">=</span> <span class="st">"FOCUS L2 - SFO"</span><span class="op">)</span></code></pre></div>
+<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="va">m.L2.SFO</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">FOCUS_2006_L2_mkin</span>, quiet<span class="op">=</span><span class="cn">TRUE</span><span class="op">)</span></span>
+<span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L2.SFO</span>, show_residuals <span class="op">=</span> <span class="cn">TRUE</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>,</span>
+<span> main <span class="op">=</span> <span class="st">"FOCUS L2 - SFO"</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-8-1.png" width="672"></p>
<p>The <span class="math inline">\(\chi^2\)</span> error level of 14% suggests that the model does not fit very well. This is also obvious from the plots of the fit, in which we have included the residual plot.</p>
<p>In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at day 5), and there is an underestimation beyond that point.</p>
@@ -342,169 +334,169 @@
<h3 id="fomc-fit-for-l2">FOMC fit for L2<a class="anchor" aria-label="anchor" href="#fomc-fit-for-l2"></a>
</h3>
<p>For comparison, the FOMC model is fitted as well, and the <span class="math inline">\(\chi^2\)</span> error level is checked.</p>
-<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="va">m.L2.FOMC</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="va">FOCUS_2006_L2_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>
-<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L2.FOMC</span>, show_residuals <span class="op">=</span> <span class="cn">TRUE</span>,
- main <span class="op">=</span> <span class="st">"FOCUS L2 - FOMC"</span><span class="op">)</span></code></pre></div>
+<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="va">m.L2.FOMC</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="va">FOCUS_2006_L2_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
+<span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L2.FOMC</span>, show_residuals <span class="op">=</span> <span class="cn">TRUE</span>,</span>
+<span> main <span class="op">=</span> <span class="st">"FOCUS L2 - FOMC"</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-9-1.png" width="672"></p>
-<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L2.FOMC</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div>
-<pre><code><span class="co">## mkin version used for fitting: 1.1.0 </span>
-<span class="co">## R version used for fitting: 4.2.1 </span>
-<span class="co">## Date of fit: Thu Jun 30 10:44:01 2022 </span>
-<span class="co">## Date of summary: Thu Jun 30 10:44:01 2022 </span>
-<span class="co">## </span>
-<span class="co">## Equations:</span>
-<span class="co">## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent</span>
-<span class="co">## </span>
-<span class="co">## Model predictions using solution type analytical </span>
-<span class="co">## </span>
-<span class="co">## Fitted using 239 model solutions performed in 0.049 s</span>
-<span class="co">## </span>
-<span class="co">## Error model: Constant variance </span>
-<span class="co">## </span>
-<span class="co">## Error model algorithm: OLS </span>
-<span class="co">## </span>
-<span class="co">## Starting values for parameters to be optimised:</span>
-<span class="co">## value type</span>
-<span class="co">## parent_0 93.95 state</span>
-<span class="co">## alpha 1.00 deparm</span>
-<span class="co">## beta 10.00 deparm</span>
-<span class="co">## </span>
-<span class="co">## Starting values for the transformed parameters actually optimised:</span>
-<span class="co">## value lower upper</span>
-<span class="co">## parent_0 93.950000 -Inf Inf</span>
-<span class="co">## log_alpha 0.000000 -Inf Inf</span>
-<span class="co">## log_beta 2.302585 -Inf Inf</span>
-<span class="co">## </span>
-<span class="co">## Fixed parameter values:</span>
-<span class="co">## None</span>
-<span class="co">## </span>
-<span class="co">## Results:</span>
-<span class="co">## </span>
-<span class="co">## AIC BIC logLik</span>
-<span class="co">## 61.78966 63.72928 -26.89483</span>
-<span class="co">## </span>
-<span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span>
-<span class="co">## Estimate Std. Error Lower Upper</span>
-<span class="co">## parent_0 93.7700 1.6130 90.05000 97.4900</span>
-<span class="co">## log_alpha 0.3180 0.1559 -0.04149 0.6776</span>
-<span class="co">## log_beta 0.2102 0.2493 -0.36460 0.7850</span>
-<span class="co">## sigma 2.2760 0.4645 1.20500 3.3470</span>
-<span class="co">## </span>
-<span class="co">## Parameter correlation:</span>
-<span class="co">## parent_0 log_alpha log_beta sigma</span>
-<span class="co">## parent_0 1.000e+00 -1.151e-01 -2.085e-01 -7.828e-09</span>
-<span class="co">## log_alpha -1.151e-01 1.000e+00 9.741e-01 -1.602e-07</span>
-<span class="co">## log_beta -2.085e-01 9.741e-01 1.000e+00 -1.372e-07</span>
-<span class="co">## sigma -7.828e-09 -1.602e-07 -1.372e-07 1.000e+00</span>
-<span class="co">## </span>
-<span class="co">## Backtransformed parameters:</span>
-<span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span>
-<span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span>
-<span class="co">## for estimators of untransformed parameters.</span>
-<span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span>
-<span class="co">## parent_0 93.770 58.120 4.267e-12 90.0500 97.490</span>
-<span class="co">## alpha 1.374 6.414 1.030e-04 0.9594 1.969</span>
-<span class="co">## beta 1.234 4.012 1.942e-03 0.6945 2.192</span>
-<span class="co">## sigma 2.276 4.899 5.977e-04 1.2050 3.347</span>
-<span class="co">## </span>
-<span class="co">## FOCUS Chi2 error levels in percent:</span>
-<span class="co">## err.min n.optim df</span>
-<span class="co">## All data 6.205 3 3</span>
-<span class="co">## parent 6.205 3 3</span>
-<span class="co">## </span>
-<span class="co">## Estimated disappearance times:</span>
-<span class="co">## DT50 DT90 DT50back</span>
-<span class="co">## parent 0.8092 5.356 1.612</span></code></pre>
+<div class="sourceCode" id="cb15"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L2.FOMC</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
+<pre><code><span><span class="co">## mkin version used for fitting: 1.1.1 </span></span>
+<span><span class="co">## R version used for fitting: 4.2.1 </span></span>
+<span><span class="co">## Date of fit: Fri Jul 8 17:34:01 2022 </span></span>
+<span><span class="co">## Date of summary: Fri Jul 8 17:34:01 2022 </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Equations:</span></span>
+<span><span class="co">## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Model predictions using solution type analytical </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fitted using 239 model solutions performed in 0.044 s</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model: Constant variance </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model algorithm: OLS </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for parameters to be optimised:</span></span>
+<span><span class="co">## value type</span></span>
+<span><span class="co">## parent_0 93.95 state</span></span>
+<span><span class="co">## alpha 1.00 deparm</span></span>
+<span><span class="co">## beta 10.00 deparm</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
+<span><span class="co">## value lower upper</span></span>
+<span><span class="co">## parent_0 93.950000 -Inf Inf</span></span>
+<span><span class="co">## log_alpha 0.000000 -Inf Inf</span></span>
+<span><span class="co">## log_beta 2.302585 -Inf Inf</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fixed parameter values:</span></span>
+<span><span class="co">## None</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Results:</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## AIC BIC logLik</span></span>
+<span><span class="co">## 61.78966 63.72928 -26.89483</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
+<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
+<span><span class="co">## parent_0 93.7700 1.6130 90.05000 97.4900</span></span>
+<span><span class="co">## log_alpha 0.3180 0.1559 -0.04149 0.6776</span></span>
+<span><span class="co">## log_beta 0.2102 0.2493 -0.36460 0.7850</span></span>
+<span><span class="co">## sigma 2.2760 0.4645 1.20500 3.3470</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Parameter correlation:</span></span>
+<span><span class="co">## parent_0 log_alpha log_beta sigma</span></span>
+<span><span class="co">## parent_0 1.000e+00 -1.151e-01 -2.085e-01 -7.637e-09</span></span>
+<span><span class="co">## log_alpha -1.151e-01 1.000e+00 9.741e-01 -1.617e-07</span></span>
+<span><span class="co">## log_beta -2.085e-01 9.741e-01 1.000e+00 -1.387e-07</span></span>
+<span><span class="co">## sigma -7.637e-09 -1.617e-07 -1.387e-07 1.000e+00</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Backtransformed parameters:</span></span>
+<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
+<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
+<span><span class="co">## for estimators of untransformed parameters.</span></span>
+<span><span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span></span>
+<span><span class="co">## parent_0 93.770 58.120 4.267e-12 90.0500 97.490</span></span>
+<span><span class="co">## alpha 1.374 6.414 1.030e-04 0.9594 1.969</span></span>
+<span><span class="co">## beta 1.234 4.012 1.942e-03 0.6945 2.192</span></span>
+<span><span class="co">## sigma 2.276 4.899 5.977e-04 1.2050 3.347</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
+<span><span class="co">## err.min n.optim df</span></span>
+<span><span class="co">## All data 6.205 3 3</span></span>
+<span><span class="co">## parent 6.205 3 3</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Estimated disappearance times:</span></span>
+<span><span class="co">## DT50 DT90 DT50back</span></span>
+<span><span class="co">## parent 0.8092 5.356 1.612</span></span></code></pre>
<p>The error level at which the <span class="math inline">\(\chi^2\)</span> test passes is much lower in this case. Therefore, the FOMC model provides a better description of the data, as less experimental error has to be assumed in order to explain the data.</p>
</div>
<div class="section level3">
<h3 id="dfop-fit-for-l2">DFOP fit for L2<a class="anchor" aria-label="anchor" href="#dfop-fit-for-l2"></a>
</h3>
<p>Fitting the four parameter DFOP model further reduces the <span class="math inline">\(\chi^2\)</span> error level.</p>
-<div class="sourceCode" id="cb19"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="va">m.L2.DFOP</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="va">FOCUS_2006_L2_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>
-<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L2.DFOP</span>, show_residuals <span class="op">=</span> <span class="cn">TRUE</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>,
- main <span class="op">=</span> <span class="st">"FOCUS L2 - DFOP"</span><span class="op">)</span></code></pre></div>
+<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="va">m.L2.DFOP</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="va">FOCUS_2006_L2_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
+<span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L2.DFOP</span>, show_residuals <span class="op">=</span> <span class="cn">TRUE</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>,</span>
+<span> main <span class="op">=</span> <span class="st">"FOCUS L2 - DFOP"</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-10-1.png" width="672"></p>
-<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L2.DFOP</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div>
-<pre><code><span class="co">## mkin version used for fitting: 1.1.0 </span>
-<span class="co">## R version used for fitting: 4.2.1 </span>
-<span class="co">## Date of fit: Thu Jun 30 10:44:01 2022 </span>
-<span class="co">## Date of summary: Thu Jun 30 10:44:01 2022 </span>
-<span class="co">## </span>
-<span class="co">## Equations:</span>
-<span class="co">## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span>
-<span class="co">## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))</span>
-<span class="co">## * parent</span>
-<span class="co">## </span>
-<span class="co">## Model predictions using solution type analytical </span>
-<span class="co">## </span>
-<span class="co">## Fitted using 581 model solutions performed in 0.132 s</span>
-<span class="co">## </span>
-<span class="co">## Error model: Constant variance </span>
-<span class="co">## </span>
-<span class="co">## Error model algorithm: OLS </span>
-<span class="co">## </span>
-<span class="co">## Starting values for parameters to be optimised:</span>
-<span class="co">## value type</span>
-<span class="co">## parent_0 93.95 state</span>
-<span class="co">## k1 0.10 deparm</span>
-<span class="co">## k2 0.01 deparm</span>
-<span class="co">## g 0.50 deparm</span>
-<span class="co">## </span>
-<span class="co">## Starting values for the transformed parameters actually optimised:</span>
-<span class="co">## value lower upper</span>
-<span class="co">## parent_0 93.950000 -Inf Inf</span>
-<span class="co">## log_k1 -2.302585 -Inf Inf</span>
-<span class="co">## log_k2 -4.605170 -Inf Inf</span>
-<span class="co">## g_qlogis 0.000000 -Inf Inf</span>
-<span class="co">## </span>
-<span class="co">## Fixed parameter values:</span>
-<span class="co">## None</span>
-<span class="co">## </span>
-<span class="co">## Results:</span>
-<span class="co">## </span>
-<span class="co">## AIC BIC logLik</span>
-<span class="co">## 52.36695 54.79148 -21.18347</span>
-<span class="co">## </span>
-<span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span>
-<span class="co">## Estimate Std. Error Lower Upper</span>
-<span class="co">## parent_0 93.950 9.998e-01 91.5900 96.3100</span>
-<span class="co">## log_k1 3.112 1.842e+03 -4353.0000 4359.0000</span>
-<span class="co">## log_k2 -1.088 6.285e-02 -1.2370 -0.9394</span>
-<span class="co">## g_qlogis -0.399 9.946e-02 -0.6342 -0.1638</span>
-<span class="co">## sigma 1.414 2.886e-01 0.7314 2.0960</span>
-<span class="co">## </span>
-<span class="co">## Parameter correlation:</span>
-<span class="co">## parent_0 log_k1 log_k2 g_qlogis sigma</span>
-<span class="co">## parent_0 1.000e+00 6.783e-07 -3.390e-10 2.665e-01 -2.967e-10</span>
-<span class="co">## log_k1 6.783e-07 1.000e+00 1.116e-04 -2.196e-04 -1.031e-05</span>
-<span class="co">## log_k2 -3.390e-10 1.116e-04 1.000e+00 -7.903e-01 2.917e-09</span>
-<span class="co">## g_qlogis 2.665e-01 -2.196e-04 -7.903e-01 1.000e+00 -4.408e-09</span>
-<span class="co">## sigma -2.967e-10 -1.031e-05 2.917e-09 -4.408e-09 1.000e+00</span>
-<span class="co">## </span>
-<span class="co">## Backtransformed parameters:</span>
-<span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span>
-<span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span>
-<span class="co">## for estimators of untransformed parameters.</span>
-<span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span>
-<span class="co">## parent_0 93.9500 9.397e+01 2.036e-12 91.5900 96.3100</span>
-<span class="co">## k1 22.4800 5.553e-04 4.998e-01 0.0000 Inf</span>
-<span class="co">## k2 0.3369 1.591e+01 4.697e-07 0.2904 0.3909</span>
-<span class="co">## g 0.4016 1.680e+01 3.238e-07 0.3466 0.4591</span>
-<span class="co">## sigma 1.4140 4.899e+00 8.776e-04 0.7314 2.0960</span>
-<span class="co">## </span>
-<span class="co">## FOCUS Chi2 error levels in percent:</span>
-<span class="co">## err.min n.optim df</span>
-<span class="co">## All data 2.53 4 2</span>
-<span class="co">## parent 2.53 4 2</span>
-<span class="co">## </span>
-<span class="co">## Estimated disappearance times:</span>
-<span class="co">## DT50 DT90 DT50back DT50_k1 DT50_k2</span>
-<span class="co">## parent 0.5335 5.311 1.599 0.03084 2.058</span></code></pre>
+<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L2.DFOP</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
+<pre><code><span><span class="co">## mkin version used for fitting: 1.1.1 </span></span>
+<span><span class="co">## R version used for fitting: 4.2.1 </span></span>
+<span><span class="co">## Date of fit: Fri Jul 8 17:34:01 2022 </span></span>
+<span><span class="co">## Date of summary: Fri Jul 8 17:34:01 2022 </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Equations:</span></span>
+<span><span class="co">## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span></span>
+<span><span class="co">## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))</span></span>
+<span><span class="co">## * parent</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Model predictions using solution type analytical </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fitted using 581 model solutions performed in 0.119 s</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model: Constant variance </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model algorithm: OLS </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for parameters to be optimised:</span></span>
+<span><span class="co">## value type</span></span>
+<span><span class="co">## parent_0 93.95 state</span></span>
+<span><span class="co">## k1 0.10 deparm</span></span>
+<span><span class="co">## k2 0.01 deparm</span></span>
+<span><span class="co">## g 0.50 deparm</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
+<span><span class="co">## value lower upper</span></span>
+<span><span class="co">## parent_0 93.950000 -Inf Inf</span></span>
+<span><span class="co">## log_k1 -2.302585 -Inf Inf</span></span>
+<span><span class="co">## log_k2 -4.605170 -Inf Inf</span></span>
+<span><span class="co">## g_qlogis 0.000000 -Inf Inf</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fixed parameter values:</span></span>
+<span><span class="co">## None</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Results:</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## AIC BIC logLik</span></span>
+<span><span class="co">## 52.36695 54.79148 -21.18347</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
+<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
+<span><span class="co">## parent_0 93.950 9.998e-01 91.5900 96.3100</span></span>
+<span><span class="co">## log_k1 3.113 1.845e+03 -4360.0000 4367.0000</span></span>
+<span><span class="co">## log_k2 -1.088 6.285e-02 -1.2370 -0.9394</span></span>
+<span><span class="co">## g_qlogis -0.399 9.946e-02 -0.6342 -0.1638</span></span>
+<span><span class="co">## sigma 1.414 2.886e-01 0.7314 2.0960</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Parameter correlation:</span></span>
+<span><span class="co">## parent_0 log_k1 log_k2 g_qlogis sigma</span></span>
+<span><span class="co">## parent_0 1.000e+00 6.784e-07 -5.188e-10 2.665e-01 -5.800e-10</span></span>
+<span><span class="co">## log_k1 6.784e-07 1.000e+00 1.114e-04 -2.191e-04 -1.029e-05</span></span>
+<span><span class="co">## log_k2 -5.188e-10 1.114e-04 1.000e+00 -7.903e-01 5.080e-09</span></span>
+<span><span class="co">## g_qlogis 2.665e-01 -2.191e-04 -7.903e-01 1.000e+00 -7.991e-09</span></span>
+<span><span class="co">## sigma -5.800e-10 -1.029e-05 5.080e-09 -7.991e-09 1.000e+00</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Backtransformed parameters:</span></span>
+<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
+<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
+<span><span class="co">## for estimators of untransformed parameters.</span></span>
+<span><span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span></span>
+<span><span class="co">## parent_0 93.9500 9.397e+01 2.036e-12 91.5900 96.3100</span></span>
+<span><span class="co">## k1 22.4800 5.544e-04 4.998e-01 0.0000 Inf</span></span>
+<span><span class="co">## k2 0.3369 1.591e+01 4.697e-07 0.2904 0.3909</span></span>
+<span><span class="co">## g 0.4016 1.680e+01 3.238e-07 0.3466 0.4591</span></span>
+<span><span class="co">## sigma 1.4140 4.899e+00 8.776e-04 0.7314 2.0960</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
+<span><span class="co">## err.min n.optim df</span></span>
+<span><span class="co">## All data 2.53 4 2</span></span>
+<span><span class="co">## parent 2.53 4 2</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Estimated disappearance times:</span></span>
+<span><span class="co">## DT50 DT90 DT50back DT50_k1 DT50_k2</span></span>
+<span><span class="co">## parent 0.5335 5.311 1.599 0.03083 2.058</span></span></code></pre>
<p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the chi^2 error level criterion.</p>
</div>
</div>
@@ -512,20 +504,20 @@
<h2 id="laboratory-data-l3">Laboratory Data L3<a class="anchor" aria-label="anchor" href="#laboratory-data-l3"></a>
</h2>
<p>The following code defines example dataset L3 from the FOCUS kinetics report, p. 290.</p>
-<div class="sourceCode" id="cb22"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="va">FOCUS_2006_L3</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span>
- t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">3</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">30</span>, <span class="fl">60</span>, <span class="fl">91</span>, <span class="fl">120</span><span class="op">)</span>,
- parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">97.8</span>, <span class="fl">60</span>, <span class="fl">51</span>, <span class="fl">43</span>, <span class="fl">35</span>, <span class="fl">22</span>, <span class="fl">15</span>, <span class="fl">12</span><span class="op">)</span><span class="op">)</span>
-<span class="va">FOCUS_2006_L3_mkin</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L3</span><span class="op">)</span></code></pre></div>
+<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="va">FOCUS_2006_L3</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>
+<span> t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">3</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">30</span>, <span class="fl">60</span>, <span class="fl">91</span>, <span class="fl">120</span><span class="op">)</span>,</span>
+<span> parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">97.8</span>, <span class="fl">60</span>, <span class="fl">51</span>, <span class="fl">43</span>, <span class="fl">35</span>, <span class="fl">22</span>, <span class="fl">15</span>, <span class="fl">12</span><span class="op">)</span><span class="op">)</span></span>
+<span><span class="va">FOCUS_2006_L3_mkin</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L3</span><span class="op">)</span></span></code></pre></div>
<div class="section level3">
<h3 id="fit-multiple-models">Fit multiple models<a class="anchor" aria-label="anchor" href="#fit-multiple-models"></a>
</h3>
<p>As of mkin version 0.9-39 (June 2015), we can fit several models to one or more datasets in one call to the function <code>mmkin</code>. The datasets have to be passed in a list, in this case a named list holding only the L3 dataset prepared above.</p>
-<div class="sourceCode" id="cb23"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="co"># Only use one core here, not to offend the CRAN checks</span>
-<span class="va">mm.L3</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span>, <span class="st">"DFOP"</span><span class="op">)</span>, cores <span class="op">=</span> <span class="fl">1</span>,
- <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="st">"FOCUS L3"</span> <span class="op">=</span> <span class="va">FOCUS_2006_L3_mkin</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>
-<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">)</span></code></pre></div>
+<div class="sourceCode" id="cb21"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="co"># Only use one core here, not to offend the CRAN checks</span></span>
+<span><span class="va">mm.L3</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span>, <span class="st">"DFOP"</span><span class="op">)</span>, cores <span class="op">=</span> <span class="fl">1</span>,</span>
+<span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="st">"FOCUS L3"</span> <span class="op">=</span> <span class="va">FOCUS_2006_L3_mkin</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
+<span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-12-1.png" width="700"></p>
<p>The <span class="math inline">\(\chi^2\)</span> error level of 21% as well as the plot suggest that the SFO model does not fit very well. The FOMC model performs better, with an error level at which the <span class="math inline">\(\chi^2\)</span> test passes of 7%. Fitting the four parameter DFOP model further reduces the <span class="math inline">\(\chi^2\)</span> error level considerably.</p>
</div>
@@ -534,96 +526,96 @@
</h3>
<p>The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.</p>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.</p>
+<div class="sourceCode" id="cb22"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div>
+<pre><code><span><span class="co">## mkin version used for fitting: 1.1.1 </span></span>
+<span><span class="co">## R version used for fitting: 4.2.1 </span></span>
+<span><span class="co">## Date of fit: Fri Jul 8 17:34:02 2022 </span></span>
+<span><span class="co">## Date of summary: Fri Jul 8 17:34:02 2022 </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Equations:</span></span>
+<span><span class="co">## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span></span>
+<span><span class="co">## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))</span></span>
+<span><span class="co">## * parent</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Model predictions using solution type analytical </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fitted using 376 model solutions performed in 0.072 s</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model: Constant variance </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model algorithm: OLS </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for parameters to be optimised:</span></span>
+<span><span class="co">## value type</span></span>
+<span><span class="co">## parent_0 97.80 state</span></span>
+<span><span class="co">## k1 0.10 deparm</span></span>
+<span><span class="co">## k2 0.01 deparm</span></span>
+<span><span class="co">## g 0.50 deparm</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
+<span><span class="co">## value lower upper</span></span>
+<span><span class="co">## parent_0 97.800000 -Inf Inf</span></span>
+<span><span class="co">## log_k1 -2.302585 -Inf Inf</span></span>
+<span><span class="co">## log_k2 -4.605170 -Inf Inf</span></span>
+<span><span class="co">## g_qlogis 0.000000 -Inf Inf</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fixed parameter values:</span></span>
+<span><span class="co">## None</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Results:</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## AIC BIC logLik</span></span>
+<span><span class="co">## 32.97732 33.37453 -11.48866</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
+<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
+<span><span class="co">## parent_0 97.7500 1.01900 94.5000 101.000000</span></span>
+<span><span class="co">## log_k1 -0.6612 0.10050 -0.9812 -0.341300</span></span>
+<span><span class="co">## log_k2 -4.2860 0.04322 -4.4230 -4.148000</span></span>
+<span><span class="co">## g_qlogis -0.1739 0.05270 -0.3416 -0.006142</span></span>
+<span><span class="co">## sigma 1.0170 0.25430 0.2079 1.827000</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Parameter correlation:</span></span>
+<span><span class="co">## parent_0 log_k1 log_k2 g_qlogis sigma</span></span>
+<span><span class="co">## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 -9.632e-08</span></span>
+<span><span class="co">## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 7.145e-07</span></span>
+<span><span class="co">## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 1.021e-06</span></span>
+<span><span class="co">## g_qlogis 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -7.925e-07</span></span>
+<span><span class="co">## sigma -9.632e-08 7.145e-07 1.021e-06 -7.925e-07 1.000e+00</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Backtransformed parameters:</span></span>
+<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
+<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
+<span><span class="co">## for estimators of untransformed parameters.</span></span>
+<span><span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span></span>
+<span><span class="co">## parent_0 97.75000 95.960 1.248e-06 94.50000 101.00000</span></span>
+<span><span class="co">## k1 0.51620 9.947 1.081e-03 0.37490 0.71090</span></span>
+<span><span class="co">## k2 0.01376 23.140 8.840e-05 0.01199 0.01579</span></span>
+<span><span class="co">## g 0.45660 34.920 2.581e-05 0.41540 0.49850</span></span>
+<span><span class="co">## sigma 1.01700 4.000 1.400e-02 0.20790 1.82700</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
+<span><span class="co">## err.min n.optim df</span></span>
+<span><span class="co">## All data 2.225 4 4</span></span>
+<span><span class="co">## parent 2.225 4 4</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Estimated disappearance times:</span></span>
+<span><span class="co">## DT50 DT90 DT50back DT50_k1 DT50_k2</span></span>
+<span><span class="co">## parent 7.464 123 37.03 1.343 50.37</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Data:</span></span>
+<span><span class="co">## time variable observed predicted residual</span></span>
+<span><span class="co">## 0 parent 97.8 97.75 0.05396</span></span>
+<span><span class="co">## 3 parent 60.0 60.45 -0.44933</span></span>
+<span><span class="co">## 7 parent 51.0 49.44 1.56338</span></span>
+<span><span class="co">## 14 parent 43.0 43.84 -0.83632</span></span>
+<span><span class="co">## 30 parent 35.0 35.15 -0.14707</span></span>
+<span><span class="co">## 60 parent 22.0 23.26 -1.25919</span></span>
+<span><span class="co">## 91 parent 15.0 15.18 -0.18181</span></span>
+<span><span class="co">## 120 parent 12.0 10.19 1.81395</span></span></code></pre>
<div class="sourceCode" id="cb24"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></code></pre></div>
-<pre><code><span class="co">## mkin version used for fitting: 1.1.0 </span>
-<span class="co">## R version used for fitting: 4.2.1 </span>
-<span class="co">## Date of fit: Thu Jun 30 10:44:02 2022 </span>
-<span class="co">## Date of summary: Thu Jun 30 10:44:02 2022 </span>
-<span class="co">## </span>
-<span class="co">## Equations:</span>
-<span class="co">## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span>
-<span class="co">## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))</span>
-<span class="co">## * parent</span>
-<span class="co">## </span>
-<span class="co">## Model predictions using solution type analytical </span>
-<span class="co">## </span>
-<span class="co">## Fitted using 376 model solutions performed in 0.08 s</span>
-<span class="co">## </span>
-<span class="co">## Error model: Constant variance </span>
-<span class="co">## </span>
-<span class="co">## Error model algorithm: OLS </span>
-<span class="co">## </span>
-<span class="co">## Starting values for parameters to be optimised:</span>
-<span class="co">## value type</span>
-<span class="co">## parent_0 97.80 state</span>
-<span class="co">## k1 0.10 deparm</span>
-<span class="co">## k2 0.01 deparm</span>
-<span class="co">## g 0.50 deparm</span>
-<span class="co">## </span>
-<span class="co">## Starting values for the transformed parameters actually optimised:</span>
-<span class="co">## value lower upper</span>
-<span class="co">## parent_0 97.800000 -Inf Inf</span>
-<span class="co">## log_k1 -2.302585 -Inf Inf</span>
-<span class="co">## log_k2 -4.605170 -Inf Inf</span>
-<span class="co">## g_qlogis 0.000000 -Inf Inf</span>
-<span class="co">## </span>
-<span class="co">## Fixed parameter values:</span>
-<span class="co">## None</span>
-<span class="co">## </span>
-<span class="co">## Results:</span>
-<span class="co">## </span>
-<span class="co">## AIC BIC logLik</span>
-<span class="co">## 32.97732 33.37453 -11.48866</span>
-<span class="co">## </span>
-<span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span>
-<span class="co">## Estimate Std. Error Lower Upper</span>
-<span class="co">## parent_0 97.7500 1.01900 94.5000 101.000000</span>
-<span class="co">## log_k1 -0.6612 0.10050 -0.9812 -0.341300</span>
-<span class="co">## log_k2 -4.2860 0.04322 -4.4230 -4.148000</span>
-<span class="co">## g_qlogis -0.1739 0.05270 -0.3416 -0.006142</span>
-<span class="co">## sigma 1.0170 0.25430 0.2079 1.827000</span>
-<span class="co">## </span>
-<span class="co">## Parameter correlation:</span>
-<span class="co">## parent_0 log_k1 log_k2 g_qlogis sigma</span>
-<span class="co">## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 -9.664e-08</span>
-<span class="co">## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 7.147e-07</span>
-<span class="co">## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 1.022e-06</span>
-<span class="co">## g_qlogis 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -7.926e-07</span>
-<span class="co">## sigma -9.664e-08 7.147e-07 1.022e-06 -7.926e-07 1.000e+00</span>
-<span class="co">## </span>
-<span class="co">## Backtransformed parameters:</span>
-<span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span>
-<span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span>
-<span class="co">## for estimators of untransformed parameters.</span>
-<span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span>
-<span class="co">## parent_0 97.75000 95.960 1.248e-06 94.50000 101.00000</span>
-<span class="co">## k1 0.51620 9.947 1.081e-03 0.37490 0.71090</span>
-<span class="co">## k2 0.01376 23.140 8.840e-05 0.01199 0.01579</span>
-<span class="co">## g 0.45660 34.920 2.581e-05 0.41540 0.49850</span>
-<span class="co">## sigma 1.01700 4.000 1.400e-02 0.20790 1.82700</span>
-<span class="co">## </span>
-<span class="co">## FOCUS Chi2 error levels in percent:</span>
-<span class="co">## err.min n.optim df</span>
-<span class="co">## All data 2.225 4 4</span>
-<span class="co">## parent 2.225 4 4</span>
-<span class="co">## </span>
-<span class="co">## Estimated disappearance times:</span>
-<span class="co">## DT50 DT90 DT50back DT50_k1 DT50_k2</span>
-<span class="co">## parent 7.464 123 37.03 1.343 50.37</span>
-<span class="co">## </span>
-<span class="co">## Data:</span>
-<span class="co">## time variable observed predicted residual</span>
-<span class="co">## 0 parent 97.8 97.75 0.05396</span>
-<span class="co">## 3 parent 60.0 60.45 -0.44933</span>
-<span class="co">## 7 parent 51.0 49.44 1.56338</span>
-<span class="co">## 14 parent 43.0 43.84 -0.83632</span>
-<span class="co">## 30 parent 35.0 35.15 -0.14707</span>
-<span class="co">## 60 parent 22.0 23.26 -1.25919</span>
-<span class="co">## 91 parent 15.0 15.18 -0.18181</span>
-<span class="co">## 120 parent 12.0 10.19 1.81395</span></code></pre>
-<div class="sourceCode" id="cb26"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></code></pre></div>
+<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-13-1.png" width="700"></p>
<p>Here, a look to the model plot, the confidence intervals of the parameters and the correlation matrix suggest that the parameter estimates are reliable, and the DFOP model can be used as the best-fit model based on the <span class="math inline">\(\chi^2\)</span> error level criterion for laboratory data L3.</p>
<p>This is also an example where the standard t-test for the parameter <code>g_ilr</code> is misleading, as it tests for a significant difference from zero. In this case, zero appears to be the correct value for this parameter, and the confidence interval for the backtransformed parameter <code>g</code> is quite narrow.</p>
@@ -633,155 +625,155 @@
<h2 id="laboratory-data-l4">Laboratory Data L4<a class="anchor" aria-label="anchor" href="#laboratory-data-l4"></a>
</h2>
<p>The following code defines example dataset L4 from the FOCUS kinetics report, p. 293:</p>
-<div class="sourceCode" id="cb27"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="va">FOCUS_2006_L4</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span>
- t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">3</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">30</span>, <span class="fl">60</span>, <span class="fl">91</span>, <span class="fl">120</span><span class="op">)</span>,
- parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">96.6</span>, <span class="fl">96.3</span>, <span class="fl">94.3</span>, <span class="fl">88.8</span>, <span class="fl">74.9</span>, <span class="fl">59.9</span>, <span class="fl">53.5</span>, <span class="fl">49.0</span><span class="op">)</span><span class="op">)</span>
-<span class="va">FOCUS_2006_L4_mkin</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L4</span><span class="op">)</span></code></pre></div>
+<div class="sourceCode" id="cb25"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="va">FOCUS_2006_L4</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>
+<span> t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">3</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">30</span>, <span class="fl">60</span>, <span class="fl">91</span>, <span class="fl">120</span><span class="op">)</span>,</span>
+<span> parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">96.6</span>, <span class="fl">96.3</span>, <span class="fl">94.3</span>, <span class="fl">88.8</span>, <span class="fl">74.9</span>, <span class="fl">59.9</span>, <span class="fl">53.5</span>, <span class="fl">49.0</span><span class="op">)</span><span class="op">)</span></span>
+<span><span class="va">FOCUS_2006_L4_mkin</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L4</span><span class="op">)</span></span></code></pre></div>
<p>Fits of the SFO and FOMC models, plots and summaries are produced below:</p>
-<div class="sourceCode" id="cb28"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="co"># Only use one core here, not to offend the CRAN checks</span>
-<span class="va">mm.L4</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span><span class="op">)</span>, cores <span class="op">=</span> <span class="fl">1</span>,
- <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="st">"FOCUS L4"</span> <span class="op">=</span> <span class="va">FOCUS_2006_L4_mkin</span><span class="op">)</span>,
- quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>
-<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">)</span></code></pre></div>
+<div class="sourceCode" id="cb26"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="co"># Only use one core here, not to offend the CRAN checks</span></span>
+<span><span class="va">mm.L4</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span><span class="op">)</span>, cores <span class="op">=</span> <span class="fl">1</span>,</span>
+<span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="st">"FOCUS L4"</span> <span class="op">=</span> <span class="va">FOCUS_2006_L4_mkin</span><span class="op">)</span>,</span>
+<span> quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
+<span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-15-1.png" width="700"></p>
<p>The <span class="math inline">\(\chi^2\)</span> error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the <span class="math inline">\(\chi^2\)</span> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p>
+<div class="sourceCode" id="cb27"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">[[</span><span class="st">"SFO"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
+<pre><code><span><span class="co">## mkin version used for fitting: 1.1.1 </span></span>
+<span><span class="co">## R version used for fitting: 4.2.1 </span></span>
+<span><span class="co">## Date of fit: Fri Jul 8 17:34:02 2022 </span></span>
+<span><span class="co">## Date of summary: Fri Jul 8 17:34:02 2022 </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Equations:</span></span>
+<span><span class="co">## d_parent/dt = - k_parent * parent</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Model predictions using solution type analytical </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fitted using 142 model solutions performed in 0.026 s</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model: Constant variance </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model algorithm: OLS </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for parameters to be optimised:</span></span>
+<span><span class="co">## value type</span></span>
+<span><span class="co">## parent_0 96.6 state</span></span>
+<span><span class="co">## k_parent 0.1 deparm</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
+<span><span class="co">## value lower upper</span></span>
+<span><span class="co">## parent_0 96.600000 -Inf Inf</span></span>
+<span><span class="co">## log_k_parent -2.302585 -Inf Inf</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fixed parameter values:</span></span>
+<span><span class="co">## None</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Results:</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## AIC BIC logLik</span></span>
+<span><span class="co">## 47.12133 47.35966 -20.56067</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
+<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
+<span><span class="co">## parent_0 96.440 1.69900 92.070 100.800</span></span>
+<span><span class="co">## log_k_parent -5.030 0.07059 -5.211 -4.848</span></span>
+<span><span class="co">## sigma 3.162 0.79050 1.130 5.194</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Parameter correlation:</span></span>
+<span><span class="co">## parent_0 log_k_parent sigma</span></span>
+<span><span class="co">## parent_0 1.000e+00 5.938e-01 3.440e-07</span></span>
+<span><span class="co">## log_k_parent 5.938e-01 1.000e+00 5.885e-07</span></span>
+<span><span class="co">## sigma 3.440e-07 5.885e-07 1.000e+00</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Backtransformed parameters:</span></span>
+<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
+<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
+<span><span class="co">## for estimators of untransformed parameters.</span></span>
+<span><span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span></span>
+<span><span class="co">## parent_0 96.440000 56.77 1.604e-08 92.070000 1.008e+02</span></span>
+<span><span class="co">## k_parent 0.006541 14.17 1.578e-05 0.005455 7.842e-03</span></span>
+<span><span class="co">## sigma 3.162000 4.00 5.162e-03 1.130000 5.194e+00</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
+<span><span class="co">## err.min n.optim df</span></span>
+<span><span class="co">## All data 3.287 2 6</span></span>
+<span><span class="co">## parent 3.287 2 6</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Estimated disappearance times:</span></span>
+<span><span class="co">## DT50 DT90</span></span>
+<span><span class="co">## parent 106 352</span></span></code></pre>
<div class="sourceCode" id="cb29"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">[[</span><span class="st">"SFO"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div>
-<pre><code><span class="co">## mkin version used for fitting: 1.1.0 </span>
-<span class="co">## R version used for fitting: 4.2.1 </span>
-<span class="co">## Date of fit: Thu Jun 30 10:44:02 2022 </span>
-<span class="co">## Date of summary: Thu Jun 30 10:44:02 2022 </span>
-<span class="co">## </span>
-<span class="co">## Equations:</span>
-<span class="co">## d_parent/dt = - k_parent * parent</span>
-<span class="co">## </span>
-<span class="co">## Model predictions using solution type analytical </span>
-<span class="co">## </span>
-<span class="co">## Fitted using 142 model solutions performed in 0.03 s</span>
-<span class="co">## </span>
-<span class="co">## Error model: Constant variance </span>
-<span class="co">## </span>
-<span class="co">## Error model algorithm: OLS </span>
-<span class="co">## </span>
-<span class="co">## Starting values for parameters to be optimised:</span>
-<span class="co">## value type</span>
-<span class="co">## parent_0 96.6 state</span>
-<span class="co">## k_parent 0.1 deparm</span>
-<span class="co">## </span>
-<span class="co">## Starting values for the transformed parameters actually optimised:</span>
-<span class="co">## value lower upper</span>
-<span class="co">## parent_0 96.600000 -Inf Inf</span>
-<span class="co">## log_k_parent -2.302585 -Inf Inf</span>
-<span class="co">## </span>
-<span class="co">## Fixed parameter values:</span>
-<span class="co">## None</span>
-<span class="co">## </span>
-<span class="co">## Results:</span>
-<span class="co">## </span>
-<span class="co">## AIC BIC logLik</span>
-<span class="co">## 47.12133 47.35966 -20.56067</span>
-<span class="co">## </span>
-<span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span>
-<span class="co">## Estimate Std. Error Lower Upper</span>
-<span class="co">## parent_0 96.440 1.69900 92.070 100.800</span>
-<span class="co">## log_k_parent -5.030 0.07059 -5.211 -4.848</span>
-<span class="co">## sigma 3.162 0.79050 1.130 5.194</span>
-<span class="co">## </span>
-<span class="co">## Parameter correlation:</span>
-<span class="co">## parent_0 log_k_parent sigma</span>
-<span class="co">## parent_0 1.000e+00 5.938e-01 3.387e-07</span>
-<span class="co">## log_k_parent 5.938e-01 1.000e+00 5.830e-07</span>
-<span class="co">## sigma 3.387e-07 5.830e-07 1.000e+00</span>
-<span class="co">## </span>
-<span class="co">## Backtransformed parameters:</span>
-<span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span>
-<span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span>
-<span class="co">## for estimators of untransformed parameters.</span>
-<span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span>
-<span class="co">## parent_0 96.440000 56.77 1.604e-08 92.070000 1.008e+02</span>
-<span class="co">## k_parent 0.006541 14.17 1.578e-05 0.005455 7.842e-03</span>
-<span class="co">## sigma 3.162000 4.00 5.162e-03 1.130000 5.194e+00</span>
-<span class="co">## </span>
-<span class="co">## FOCUS Chi2 error levels in percent:</span>
-<span class="co">## err.min n.optim df</span>
-<span class="co">## All data 3.287 2 6</span>
-<span class="co">## parent 3.287 2 6</span>
-<span class="co">## </span>
-<span class="co">## Estimated disappearance times:</span>
-<span class="co">## DT50 DT90</span>
-<span class="co">## parent 106 352</span></code></pre>
-<div class="sourceCode" id="cb31"><pre class="downlit sourceCode r">
-<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">[[</span><span class="st">"FOMC"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div>
-<pre><code><span class="co">## mkin version used for fitting: 1.1.0 </span>
-<span class="co">## R version used for fitting: 4.2.1 </span>
-<span class="co">## Date of fit: Thu Jun 30 10:44:02 2022 </span>
-<span class="co">## Date of summary: Thu Jun 30 10:44:03 2022 </span>
-<span class="co">## </span>
-<span class="co">## Equations:</span>
-<span class="co">## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent</span>
-<span class="co">## </span>
-<span class="co">## Model predictions using solution type analytical </span>
-<span class="co">## </span>
-<span class="co">## Fitted using 224 model solutions performed in 0.045 s</span>
-<span class="co">## </span>
-<span class="co">## Error model: Constant variance </span>
-<span class="co">## </span>
-<span class="co">## Error model algorithm: OLS </span>
-<span class="co">## </span>
-<span class="co">## Starting values for parameters to be optimised:</span>
-<span class="co">## value type</span>
-<span class="co">## parent_0 96.6 state</span>
-<span class="co">## alpha 1.0 deparm</span>
-<span class="co">## beta 10.0 deparm</span>
-<span class="co">## </span>
-<span class="co">## Starting values for the transformed parameters actually optimised:</span>
-<span class="co">## value lower upper</span>
-<span class="co">## parent_0 96.600000 -Inf Inf</span>
-<span class="co">## log_alpha 0.000000 -Inf Inf</span>
-<span class="co">## log_beta 2.302585 -Inf Inf</span>
-<span class="co">## </span>
-<span class="co">## Fixed parameter values:</span>
-<span class="co">## None</span>
-<span class="co">## </span>
-<span class="co">## Results:</span>
-<span class="co">## </span>
-<span class="co">## AIC BIC logLik</span>
-<span class="co">## 40.37255 40.69032 -16.18628</span>
-<span class="co">## </span>
-<span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span>
-<span class="co">## Estimate Std. Error Lower Upper</span>
-<span class="co">## parent_0 99.1400 1.2670 95.6300 102.7000</span>
-<span class="co">## log_alpha -0.3506 0.2616 -1.0770 0.3756</span>
-<span class="co">## log_beta 4.1740 0.3938 3.0810 5.2670</span>
-<span class="co">## sigma 1.8300 0.4575 0.5598 3.1000</span>
-<span class="co">## </span>
-<span class="co">## Parameter correlation:</span>
-<span class="co">## parent_0 log_alpha log_beta sigma</span>
-<span class="co">## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.468e-07</span>
-<span class="co">## log_alpha -4.696e-01 1.000e+00 9.889e-01 2.478e-08</span>
-<span class="co">## log_beta -5.543e-01 9.889e-01 1.000e+00 5.211e-08</span>
-<span class="co">## sigma -2.468e-07 2.478e-08 5.211e-08 1.000e+00</span>
-<span class="co">## </span>
-<span class="co">## Backtransformed parameters:</span>
-<span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span>
-<span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span>
-<span class="co">## for estimators of untransformed parameters.</span>
-<span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span>
-<span class="co">## parent_0 99.1400 78.250 7.993e-08 95.6300 102.700</span>
-<span class="co">## alpha 0.7042 3.823 9.365e-03 0.3407 1.456</span>
-<span class="co">## beta 64.9800 2.540 3.201e-02 21.7800 193.900</span>
-<span class="co">## sigma 1.8300 4.000 8.065e-03 0.5598 3.100</span>
-<span class="co">## </span>
-<span class="co">## FOCUS Chi2 error levels in percent:</span>
-<span class="co">## err.min n.optim df</span>
-<span class="co">## All data 2.029 3 5</span>
-<span class="co">## parent 2.029 3 5</span>
-<span class="co">## </span>
-<span class="co">## Estimated disappearance times:</span>
-<span class="co">## DT50 DT90 DT50back</span>
-<span class="co">## parent 108.9 1644 494.9</span></code></pre>
+<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">[[</span><span class="st">"FOMC"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
+<pre><code><span><span class="co">## mkin version used for fitting: 1.1.1 </span></span>
+<span><span class="co">## R version used for fitting: 4.2.1 </span></span>
+<span><span class="co">## Date of fit: Fri Jul 8 17:34:02 2022 </span></span>
+<span><span class="co">## Date of summary: Fri Jul 8 17:34:02 2022 </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Equations:</span></span>
+<span><span class="co">## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Model predictions using solution type analytical </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fitted using 224 model solutions performed in 0.041 s</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model: Constant variance </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Error model algorithm: OLS </span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for parameters to be optimised:</span></span>
+<span><span class="co">## value type</span></span>
+<span><span class="co">## parent_0 96.6 state</span></span>
+<span><span class="co">## alpha 1.0 deparm</span></span>
+<span><span class="co">## beta 10.0 deparm</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
+<span><span class="co">## value lower upper</span></span>
+<span><span class="co">## parent_0 96.600000 -Inf Inf</span></span>
+<span><span class="co">## log_alpha 0.000000 -Inf Inf</span></span>
+<span><span class="co">## log_beta 2.302585 -Inf Inf</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Fixed parameter values:</span></span>
+<span><span class="co">## None</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Results:</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## AIC BIC logLik</span></span>
+<span><span class="co">## 40.37255 40.69032 -16.18628</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
+<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
+<span><span class="co">## parent_0 99.1400 1.2670 95.6300 102.7000</span></span>
+<span><span class="co">## log_alpha -0.3506 0.2616 -1.0770 0.3756</span></span>
+<span><span class="co">## log_beta 4.1740 0.3938 3.0810 5.2670</span></span>
+<span><span class="co">## sigma 1.8300 0.4575 0.5598 3.1000</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Parameter correlation:</span></span>
+<span><span class="co">## parent_0 log_alpha log_beta sigma</span></span>
+<span><span class="co">## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.563e-07</span></span>
+<span><span class="co">## log_alpha -4.696e-01 1.000e+00 9.889e-01 4.066e-08</span></span>
+<span><span class="co">## log_beta -5.543e-01 9.889e-01 1.000e+00 6.818e-08</span></span>
+<span><span class="co">## sigma -2.563e-07 4.066e-08 6.818e-08 1.000e+00</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Backtransformed parameters:</span></span>
+<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
+<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
+<span><span class="co">## for estimators of untransformed parameters.</span></span>
+<span><span class="co">## Estimate t value Pr(&gt;t) Lower Upper</span></span>
+<span><span class="co">## parent_0 99.1400 78.250 7.993e-08 95.6300 102.700</span></span>
+<span><span class="co">## alpha 0.7042 3.823 9.365e-03 0.3407 1.456</span></span>
+<span><span class="co">## beta 64.9800 2.540 3.201e-02 21.7800 193.900</span></span>
+<span><span class="co">## sigma 1.8300 4.000 8.065e-03 0.5598 3.100</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
+<span><span class="co">## err.min n.optim df</span></span>
+<span><span class="co">## All data 2.029 3 5</span></span>
+<span><span class="co">## parent 2.029 3 5</span></span>
+<span><span class="co">## </span></span>
+<span><span class="co">## Estimated disappearance times:</span></span>
+<span><span class="co">## DT50 DT90 DT50back</span></span>
+<span><span class="co">## parent 108.9 1644 494.9</span></span></code></pre>
</div>
<div class="section level2">
<h2 class="unnumbered" id="references">References<a class="anchor" aria-label="anchor" href="#references"></a>
@@ -811,7 +803,7 @@
<div class="pkgdown">
<p></p>
-<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.2.</p>
+<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.5.</p>
</div>
</footer>
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png
index b6130527..b56e91e1 100644
--- a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png
+++ b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png
Binary files differ
diff --git a/docs/articles/index.html b/docs/articles/index.html
index 717c34a8..9cdfa9de 100644
--- a/docs/articles/index.html
+++ b/docs/articles/index.html
@@ -17,7 +17,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.1.0</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.1.1</span>
</span>
</div>
diff --git a/docs/articles/web_only/benchmarks.html b/docs/articles/web_only/benchmarks.html
index 393d0218..2f7730bd 100644
--- a/docs/articles/web_only/benchmarks.html
+++ b/docs/articles/web_only/benchmarks.html
@@ -33,7 +33,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.1.0</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.1.1</span>
</span>
</div>
@@ -105,7 +105,7 @@
<h1 data-toc-skip>Benchmark timings for mkin</h1>
<h4 data-toc-skip class="author">Johannes Ranke</h4>
- <h4 data-toc-skip class="date">Last change 1 July 2022 (rebuilt 2022-07-01)</h4>
+ <h4 data-toc-skip class="date">Last change 1 July 2022 (rebuilt 2022-07-08)</h4>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/web_only/benchmarks.rmd" class="external-link"><code>vignettes/web_only/benchmarks.rmd</code></a></small>
<div class="hidden name"><code>benchmarks.rmd</code></div>
@@ -309,6 +309,14 @@
<td align="right">1.877</td>
<td align="right">3.906</td>
</tr>
+<tr class="odd">
+<td align="left">Linux</td>
+<td align="left">i7-4710MQ</td>
+<td align="left">4.2.1</td>
+<td align="left">1.1.1</td>
+<td align="right">1.644</td>
+<td align="right">3.172</td>
+</tr>
</tbody>
</table>
</div>
@@ -453,6 +461,15 @@
<td align="right">8.058</td>
<td align="right">3.339</td>
</tr>
+<tr class="odd">
+<td align="left">Linux</td>
+<td align="left">i7-4710MQ</td>
+<td align="left">4.2.1</td>
+<td align="left">1.1.1</td>
+<td align="right">1.230</td>
+<td align="right">5.839</td>
+<td align="right">2.444</td>
+</tr>
</tbody>
</table>
</div>
@@ -642,6 +659,18 @@
<td align="right">2.302</td>
<td align="right">3.463</td>
</tr>
+<tr class="odd">
+<td align="left">Linux</td>
+<td align="left">i7-4710MQ</td>
+<td align="left">4.2.1</td>
+<td align="left">1.1.1</td>
+<td align="right">0.678</td>
+<td align="right">1.095</td>
+<td align="right">1.149</td>
+<td align="right">3.247</td>
+<td align="right">1.658</td>
+<td align="right">2.472</td>
+</tr>
</tbody>
</table>
</div>
diff --git a/docs/articles/web_only/dimethenamid_2018.html b/docs/articles/web_only/dimethenamid_2018.html
index 25fd9f9e..b020a7b0 100644
--- a/docs/articles/web_only/dimethenamid_2018.html
+++ b/docs/articles/web_only/dimethenamid_2018.html
@@ -33,7 +33,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.1.0</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.1.1</span>
</span>
</div>
@@ -105,7 +105,7 @@
<h1 data-toc-skip>Example evaluations of the dimethenamid data from 2018</h1>
<h4 data-toc-skip class="author">Johannes Ranke</h4>
- <h4 data-toc-skip class="date">Last change 1 July 2022, built on 01 Jul 2022</h4>
+ <h4 data-toc-skip class="date">Last change 1 July 2022, built on 08 Jul 2022</h4>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/web_only/dimethenamid_2018.rmd" class="external-link"><code>vignettes/web_only/dimethenamid_2018.rmd</code></a></small>
<div class="hidden name"><code>dimethenamid_2018.rmd</code></div>
@@ -178,7 +178,7 @@ Status of individual fits:
dataset
model Calke Borstel Flaach BBA 2.2 BBA 2.3 Elliot
- DFOP OK OK C OK C OK
+ DFOP OK OK OK OK C OK
OK: No warnings
C: Optimisation did not converge:
@@ -286,21 +286,23 @@ DMTA_0 97.99583 96.50079 99.4909
k1 0.06377 0.03432 0.0932
k2 0.00848 0.00444 0.0125
g 0.95701 0.91313 1.0009
-a.1 1.82141 1.65974 1.9831
-SD.DMTA_0 1.64787 0.45779 2.8379
+a.1 1.82141 1.60516 2.0377
+SD.DMTA_0 1.64787 0.45729 2.8384
SD.k1 0.57439 0.24731 0.9015
-SD.k2 0.03296 -2.50143 2.5673
-SD.g 1.10266 0.32371 1.8816</code></pre>
+SD.k2 0.03296 -2.50524 2.5712
+SD.g 1.10266 0.32354 1.8818</code></pre>
<p>While the other parameters converge to credible values, the variance of k2 (<code>omega2.k2</code>) converges to a very small value. The printout of the <code>saem.mmkin</code> model shows that the estimated standard deviation of k2 across the population of soils (<code>SD.k2</code>) is ill-defined, indicating overparameterisation of this model.</p>
<p>When the DFOP model is fitted with the two-component error model, we also observe that the estimated variance of k2 becomes very small, while being ill-defined, as illustrated by the excessive confidence interval of <code>SD.k2</code>.</p>
<div class="sourceCode" id="cb25"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">f_parent_saemix_dfop_tc</span> <span class="op">&lt;-</span> <span class="fu">mkin</span><span class="fu">::</span><span class="fu"><a href="../../reference/saem.html">saem</a></span><span class="op">(</span><span class="va">f_parent_mkin_tc</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> control <span class="op">=</span> <span class="va">saemix_control</span>, transformations <span class="op">=</span> <span class="st">"saemix"</span><span class="op">)</span></span>
<span><span class="va">f_parent_saemix_dfop_tc_moreiter</span> <span class="op">&lt;-</span> <span class="fu">mkin</span><span class="fu">::</span><span class="fu"><a href="../../reference/saem.html">saem</a></span><span class="op">(</span><span class="va">f_parent_mkin_tc</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span>
-<span> control <span class="op">=</span> <span class="va">saemix_control_moreiter</span>, transformations <span class="op">=</span> <span class="st">"saemix"</span><span class="op">)</span></span>
-<span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_parent_saemix_dfop_tc</span><span class="op">$</span><span class="va">so</span>, plot.type <span class="op">=</span> <span class="st">"convergence"</span><span class="op">)</span></span></code></pre></div>
+<span> control <span class="op">=</span> <span class="va">saemix_control_moreiter</span>, transformations <span class="op">=</span> <span class="st">"saemix"</span><span class="op">)</span></span></code></pre></div>
+<pre><code>Likelihood cannot be computed by Importance Sampling.</code></pre>
+<div class="sourceCode" id="cb27"><pre class="downlit sourceCode r">
+<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_parent_saemix_dfop_tc</span><span class="op">$</span><span class="va">so</span>, plot.type <span class="op">=</span> <span class="st">"convergence"</span><span class="op">)</span></span></code></pre></div>
<p><img src="dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc-1.png" width="700"></p>
-<div class="sourceCode" id="cb26"><pre class="downlit sourceCode r">
+<div class="sourceCode" id="cb28"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">f_parent_saemix_dfop_tc</span><span class="op">)</span></span></code></pre></div>
<pre><code>Kinetic nonlinear mixed-effects model fit by SAEM
Structural model:
@@ -316,21 +318,21 @@ Likelihood computed by importance sampling
666 664 -323
Fitted parameters:
- estimate lower upper
-DMTA_0 98.27617 96.3088 100.2436
-k1 0.06437 0.0337 0.0950
-k2 0.00880 0.0063 0.0113
-g 0.95249 0.9100 0.9949
-a.1 1.06161 0.8625 1.2607
-b.1 0.02967 0.0226 0.0367
-SD.DMTA_0 2.06075 0.4187 3.7028
-SD.k1 0.59357 0.2561 0.9310
-SD.k2 0.00292 -10.2960 10.3019
-SD.g 1.05725 0.3808 1.7337</code></pre>
+ estimate lower upper
+DMTA_0 9.82e+01 96.27937 100.1783
+k1 6.41e-02 0.03333 0.0948
+k2 8.56e-03 0.00608 0.0110
+g 9.55e-01 0.91440 0.9947
+a.1 1.07e+00 0.86542 1.2647
+b.1 2.96e-02 0.02258 0.0367
+SD.DMTA_0 2.04e+00 0.40629 3.6678
+SD.k1 5.98e-01 0.25796 0.9373
+SD.k2 5.28e-04 -58.93251 58.9336
+SD.g 1.04e+00 0.36509 1.7083</code></pre>
<p>Doubling the number of iterations in the first phase of the algorithm leads to a slightly lower likelihood, and therefore to slightly higher AIC and BIC values. With even more iterations, the algorithm stops with an error message. This is related to the variance of k2 approximating zero and has been submitted as a <a href="https://github.com/saemixdevelopment/saemixextension/issues/29" class="external-link">bug to the saemix package</a>, as the algorithm does not converge in this case.</p>
<p>An alternative way to fit DFOP in combination with the two-component error model is to use the model formulation with transformed parameters as used per default in mkin. When using this option, convergence is slower, but eventually the algorithm stops as well with the same error message.</p>
<p>The four combinations (SFO/const, SFO/tc, DFOP/const and DFOP/tc) and the version with increased iterations can be compared using the model comparison function of the saemix package:</p>
-<div class="sourceCode" id="cb28"><pre class="downlit sourceCode r">
+<div class="sourceCode" id="cb30"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">AIC_parent_saemix</span> <span class="op">&lt;-</span> <span class="fu">saemix</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/compare.saemix.html" class="external-link">compare.saemix</a></span><span class="op">(</span></span>
<span> <span class="va">f_parent_saemix_sfo_const</span><span class="op">$</span><span class="va">so</span>,</span>
<span> <span class="va">f_parent_saemix_sfo_tc</span><span class="op">$</span><span class="va">so</span>,</span>
@@ -338,7 +340,7 @@ SD.g 1.05725 0.3808 1.7337</code></pre>
<span> <span class="va">f_parent_saemix_dfop_tc</span><span class="op">$</span><span class="va">so</span>,</span>
<span> <span class="va">f_parent_saemix_dfop_tc_moreiter</span><span class="op">$</span><span class="va">so</span><span class="op">)</span></span></code></pre></div>
<pre><code>Likelihoods calculated by importance sampling</code></pre>
-<div class="sourceCode" id="cb30"><pre class="downlit sourceCode r">
+<div class="sourceCode" id="cb32"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/colnames.html" class="external-link">rownames</a></span><span class="op">(</span><span class="va">AIC_parent_saemix</span><span class="op">)</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span></span>
<span> <span class="st">"SFO const"</span>, <span class="st">"SFO tc"</span>, <span class="st">"DFOP const"</span>, <span class="st">"DFOP tc"</span>, <span class="st">"DFOP tc more iterations"</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">AIC_parent_saemix</span><span class="op">)</span></span></code></pre></div>
@@ -346,10 +348,10 @@ SD.g 1.05725 0.3808 1.7337</code></pre>
SFO const 796.38 795.34
SFO tc 798.38 797.13
DFOP const 705.75 703.88
-DFOP tc 665.65 663.57
-DFOP tc more iterations 665.88 663.80</code></pre>
+DFOP tc 665.72 663.63
+DFOP tc more iterations NaN NaN</code></pre>
<p>In order to check the influence of the likelihood calculation algorithms implemented in saemix, the likelihood from Gaussian quadrature is added to the best fit, and the AIC values obtained from the three methods are compared.</p>
-<div class="sourceCode" id="cb32"><pre class="downlit sourceCode r">
+<div class="sourceCode" id="cb34"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">f_parent_saemix_dfop_tc</span><span class="op">$</span><span class="va">so</span> <span class="op">&lt;-</span></span>
<span> <span class="fu">saemix</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/llgq.saemix.html" class="external-link">llgq.saemix</a></span><span class="op">(</span><span class="va">f_parent_saemix_dfop_tc</span><span class="op">$</span><span class="va">so</span><span class="op">)</span></span>
<span><span class="va">AIC_parent_saemix_methods</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span></span>
@@ -359,11 +361,11 @@ DFOP tc more iterations 665.88 663.80</code></pre>
<span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">AIC_parent_saemix_methods</span><span class="op">)</span></span></code></pre></div>
<pre><code> is gq lin
-665.65 665.68 665.11 </code></pre>
+665.72 665.88 665.15 </code></pre>
<p>The AIC values based on importance sampling and Gaussian quadrature are very similar. Using linearisation is known to be less accurate, but still gives a similar value.</p>
<p>In order to illustrate that the comparison of the three method depends on the degree of convergence obtained in the fit, the same comparison is shown below for the fit using the defaults for the number of iterations and the number of MCMC chains.</p>
<p>When using OpenBlas for linear algebra, there is a large difference in the values obtained with Gaussian quadrature, so the larger number of iterations makes a lot of difference. When using the LAPACK version coming with Debian Bullseye, the AIC based on Gaussian quadrature is almost the same as the one obtained with the other methods, also when using defaults for the fit.</p>
-<div class="sourceCode" id="cb34"><pre class="downlit sourceCode r">
+<div class="sourceCode" id="cb36"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">f_parent_saemix_dfop_tc_defaults</span> <span class="op">&lt;-</span> <span class="fu">mkin</span><span class="fu">::</span><span class="fu"><a href="../../reference/saem.html">saem</a></span><span class="op">(</span><span class="va">f_parent_mkin_tc</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span><span class="op">)</span></span>
<span><span class="va">f_parent_saemix_dfop_tc_defaults</span><span class="op">$</span><span class="va">so</span> <span class="op">&lt;-</span></span>
<span> <span class="fu">saemix</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/llgq.saemix.html" class="external-link">llgq.saemix</a></span><span class="op">(</span><span class="va">f_parent_saemix_dfop_tc_defaults</span><span class="op">$</span><span class="va">so</span><span class="op">)</span></span>
@@ -374,14 +376,14 @@ DFOP tc more iterations 665.88 663.80</code></pre>
<span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">AIC_parent_saemix_methods_defaults</span><span class="op">)</span></span></code></pre></div>
<pre><code> is gq lin
-668.27 718.36 666.49 </code></pre>
+668.91 663.61 667.40 </code></pre>
</div>
</div>
<div class="section level3">
<h3 id="comparison">Comparison<a class="anchor" aria-label="anchor" href="#comparison"></a>
</h3>
<p>The following table gives the AIC values obtained with both backend packages using the same control parameters (800 iterations burn-in, 300 iterations second phase, 15 chains).</p>
-<div class="sourceCode" id="cb36"><pre class="downlit sourceCode r">
+<div class="sourceCode" id="cb38"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">AIC_all</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>
<span> check.names <span class="op">=</span> <span class="cn">FALSE</span>,</span>
<span> <span class="st">"Degradation model"</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"SFO"</span>, <span class="st">"DFOP"</span>, <span class="st">"DFOP"</span><span class="op">)</span>,</span>
@@ -406,7 +408,7 @@ DFOP tc more iterations 665.88 663.80</code></pre>
<td align="left">SFO</td>
<td align="left">const</td>
<td align="right">796.60</td>
-<td align="right">796.60</td>
+<td align="right">794.17</td>
<td align="right">796.38</td>
</tr>
<tr class="even">
@@ -420,15 +422,15 @@ DFOP tc more iterations 665.88 663.80</code></pre>
<td align="left">DFOP</td>
<td align="left">const</td>
<td align="right">NA</td>
-<td align="right">671.98</td>
+<td align="right">704.95</td>
<td align="right">705.75</td>
</tr>
<tr class="even">
<td align="left">DFOP</td>
<td align="left">tc</td>
<td align="right">671.91</td>
-<td align="right">665.11</td>
-<td align="right">665.65</td>
+<td align="right">665.15</td>
+<td align="right">665.72</td>
</tr>
</tbody>
</table>
@@ -443,15 +445,15 @@ DFOP tc more iterations 665.88 663.80</code></pre>
<div class="section level2">
<h2 id="session-info">Session Info<a class="anchor" aria-label="anchor" href="#session-info"></a>
</h2>
-<div class="sourceCode" id="cb37"><pre class="downlit sourceCode r">
+<div class="sourceCode" id="cb39"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/utils/sessionInfo.html" class="external-link">sessionInfo</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div>
<pre><code>R version 4.2.1 (2022-06-23)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Debian GNU/Linux 11 (bullseye)
Matrix products: default
-BLAS: /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3
-LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.13.so
+BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
+LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C
@@ -466,24 +468,24 @@ attached base packages:
[8] base
other attached packages:
-[1] saemix_3.0 npde_3.2 nlme_3.1-158 mkin_1.1.0 knitr_1.39
+[1] nlme_3.1-158 mkin_1.1.1 knitr_1.39
loaded via a namespace (and not attached):
[1] deSolve_1.32 zoo_1.8-10 tidyselect_1.1.2 xfun_0.31
[5] bslib_0.3.1 purrr_0.3.4 lattice_0.20-45 colorspace_2.0-3
- [9] vctrs_0.4.1 generics_0.1.2 htmltools_0.5.2 yaml_2.3.5
-[13] utf8_1.2.2 rlang_1.0.3 pkgdown_2.0.5 jquerylib_0.1.4
-[17] pillar_1.7.0 glue_1.6.2 DBI_1.1.3 lifecycle_1.0.1
+ [9] vctrs_0.4.1 generics_0.1.3 htmltools_0.5.2 yaml_2.3.5
+[13] utf8_1.2.2 rlang_1.0.3 pkgdown_2.0.5 saemix_3.0
+[17] jquerylib_0.1.4 pillar_1.7.0 glue_1.6.2 lifecycle_1.0.1
[21] stringr_1.4.0 munsell_0.5.0 gtable_0.3.0 ragg_1.2.2
-[25] codetools_0.2-18 memoise_2.0.1 evaluate_0.15 fastmap_1.1.0
+[25] memoise_2.0.1 evaluate_0.15 npde_3.2 fastmap_1.1.0
[29] lmtest_0.9-40 fansi_1.0.3 highr_0.9 scales_1.2.0
[33] cachem_1.0.6 desc_1.4.1 jsonlite_1.8.0 systemfonts_1.0.4
-[37] fs_1.5.2 gridExtra_2.3 textshaping_0.3.6 ggplot2_3.3.6
+[37] fs_1.5.2 textshaping_0.3.6 gridExtra_2.3 ggplot2_3.3.6
[41] digest_0.6.29 stringi_1.7.6 dplyr_1.0.9 grid_4.2.1
[45] rprojroot_2.0.3 cli_3.3.0 tools_4.2.1 magrittr_2.0.3
[49] sass_0.4.1 tibble_3.1.7 crayon_1.5.1 pkgconfig_2.0.3
-[53] ellipsis_0.3.2 assertthat_0.2.1 rmarkdown_2.14 mclust_5.4.10
-[57] R6_2.5.1 compiler_4.2.1 </code></pre>
+[53] ellipsis_0.3.2 rmarkdown_2.14 R6_2.5.1 mclust_5.4.10
+[57] compiler_4.2.1 </code></pre>
</div>
<div class="section level2">
<h2 id="references">References<a class="anchor" aria-label="anchor" href="#references"></a>

Contact - Imprint