diff options
| author | Johannes Ranke <johannes.ranke@jrwb.de> | 2025-02-13 16:30:31 +0100 | 
|---|---|---|
| committer | Johannes Ranke <johannes.ranke@jrwb.de> | 2025-02-13 19:20:04 +0100 | 
| commit | 6476f5f49b373cd4cf05f2e73389df83e437d597 (patch) | |
| tree | d0ef15c0d2ab42d246f7c8ebaeb4e63f4a928699 /docs/dev/articles/2022_wp_1.1_dmta_parent.html | |
| parent | 786e50724d9d7cc8fe04171d28ed09ea8d698cc3 (diff) | |
Axis legend formatting, update vignettes
Diffstat (limited to 'docs/dev/articles/2022_wp_1.1_dmta_parent.html')
| -rw-r--r-- | docs/dev/articles/2022_wp_1.1_dmta_parent.html | 2177 | 
1 files changed, 0 insertions, 2177 deletions
| diff --git a/docs/dev/articles/2022_wp_1.1_dmta_parent.html b/docs/dev/articles/2022_wp_1.1_dmta_parent.html deleted file mode 100644 index 61bb81d3..00000000 --- a/docs/dev/articles/2022_wp_1.1_dmta_parent.html +++ /dev/null @@ -1,2177 +0,0 @@ -<!DOCTYPE html> -<!-- Generated by pkgdown: do not edit by hand --><html lang="en"> -<head> -<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> -<meta charset="utf-8"> -<meta http-equiv="X-UA-Compatible" content="IE=edge"> -<meta name="viewport" content="width=device-width, initial-scale=1.0"> -<title>Work package 1.1: Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P • mkin</title> -<!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"> -<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"> -<script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"> -<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"> -<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> -<script src="../pkgdown.js"></script><meta property="og:title" content="Work package 1.1: Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P"> -<meta property="og:description" content="mkin"> -<meta name="robots" content="noindex"> -<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> -<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> -<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> -<![endif]--> -</head> -<body data-spy="scroll" data-target="#toc"> -     - -    <div class="container template-article"> -      <header><div class="navbar navbar-default navbar-fixed-top" role="navigation"> -  <div class="container"> -    <div class="navbar-header"> -      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> -        <span class="sr-only">Toggle navigation</span> -        <span class="icon-bar"></span> -        <span class="icon-bar"></span> -        <span class="icon-bar"></span> -      </button> -      <span class="navbar-brand"> -        <a class="navbar-link" href="../index.html">mkin</a> -        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.2.2</span> -      </span> -    </div> - -    <div id="navbar" class="navbar-collapse collapse"> -      <ul class="nav navbar-nav"> -<li> -  <a href="../reference/index.html">Functions and data</a> -</li> -<li class="dropdown"> -  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> -    Articles -      -    <span class="caret"></span> -  </a> -  <ul class="dropdown-menu" role="menu"> -<li> -      <a href="../articles/mkin.html">Introduction to mkin</a> -    </li> -    <li> -      <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> -    </li> -    <li> -      <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> -    </li> -    <li> -      <a href="../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> -    </li> -    <li> -      <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> -    </li> -    <li> -      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> -    </li> -    <li> -      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> -    </li> -    <li> -      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> -    </li> -    <li> -      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> -    </li> -    <li> -      <a href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> -    </li> -    <li> -      <a href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a> -    </li> -  </ul> -</li> -<li> -  <a href="../news/index.html">News</a> -</li> -      </ul> -<ul class="nav navbar-nav navbar-right"> -<li> -  <a href="https://github.com/jranke/mkin/" class="external-link"> -    <span class="fab fa-github fa-lg"></span> -      -  </a> -</li> -      </ul> -</div> -<!--/.nav-collapse --> -  </div> -<!--/.container --> -</div> -<!--/.navbar --> - -       - -      </header><div class="row"> -  <div class="col-md-9 contents"> -    <div class="page-header toc-ignore"> -      <h1 data-toc-skip>Work package 1.1: Testing hierarchical parent -degradation kinetics with residue data on dimethenamid and -dimethenamid-P</h1> -                        <h4 data-toc-skip class="author">Johannes -Ranke</h4> -             -            <h4 data-toc-skip class="date">Last change on 5 January -2022, last compiled on 5 Januar 2023</h4> -       -      <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/2022_wp_1.1_dmta_parent.rmd" class="external-link"><code>vignettes/2022_wp_1.1_dmta_parent.rmd</code></a></small> -      <div class="hidden name"><code>2022_wp_1.1_dmta_parent.rmd</code></div> - -    </div> - -     -     -<div class="section level2"> -<h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a> -</h2> -<p>The purpose of this document is to demonstrate how nonlinear -hierarchical models (NLHM) based on the parent degradation models SFO, -FOMC, DFOP and HS can be fitted with the mkin package.</p> -<p>The mkin package is used in version 1.2.2. It contains the test data -and the functions used in the evaluations. The <code>saemix</code> -package is used as a backend for fitting the NLHM, but is also loaded to -make the convergence plot function available.</p> -<p>This document is processed with the <code>knitr</code> package, which -also provides the <code>kable</code> function that is used to improve -the display of tabular data in R markdown documents. For parallel -processing, the <code>parallel</code> package is used.</p> -<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://pkgdown.jrwb.de/mkin/">mkin</a></span><span class="op">)</span></span> -<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://yihui.org/knitr/" class="external-link">knitr</a></span><span class="op">)</span></span> -<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">saemix</span><span class="op">)</span></span> -<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">parallel</span><span class="op">)</span></span> -<span><span class="va">n_cores</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/detectCores.html" class="external-link">detectCores</a></span><span class="op">(</span><span class="op">)</span></span> -<span><span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/Sys.info.html" class="external-link">Sys.info</a></span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="st">"sysname"</span><span class="op">]</span> <span class="op">==</span> <span class="st">"Windows"</span><span class="op">)</span> <span class="op">{</span></span> -<span>  <span class="va">cl</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makePSOCKcluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> -<span><span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span> -<span>  <span class="va">cl</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makeForkCluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> -<span><span class="op">}</span></span></code></pre></div> -<div class="section level3"> -<h3 id="preprocessing-of-test-data">Preprocessing of test data<a class="anchor" aria-label="anchor" href="#preprocessing-of-test-data"></a> -</h3> -<p>The test data are available in the mkin package as an object of class -<code>mkindsg</code> (mkin dataset group) under the identifier -<code>dimethenamid_2018</code>. The following preprocessing steps are -still necessary:</p> -<ul> -<li>The data available for the enantiomer dimethenamid-P (DMTAP) are -renamed to have the same substance name as the data for the racemic -mixture dimethenamid (DMTA). The reason for this is that no difference -between their degradation behaviour was identified in the EU risk -assessment.</li> -<li>The data for transformation products and unnecessary columns are -discarded</li> -<li>The observation times of each dataset are multiplied with the -corresponding normalisation factor also available in the dataset, in -order to make it possible to describe all datasets with a single set of -parameters that are independent of temperature</li> -<li>Finally, datasets observed in the same soil (<code>Elliot 1</code> -and <code>Elliot 2</code>) are combined, resulting in dimethenamid -(DMTA) data from six soils.</li> -</ul> -<p>The following commented R code performs this preprocessing.</p> -<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="co"># Apply a function to each of the seven datasets in the mkindsg object to create a list</span></span> -<span><span class="va">dmta_ds</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="fl">1</span><span class="op">:</span><span class="fl">7</span>, <span class="kw">function</span><span class="op">(</span><span class="va">i</span><span class="op">)</span> <span class="op">{</span></span> -<span>  <span class="va">ds_i</span> <span class="op"><-</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span><span class="op">[[</span><span class="va">i</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">data</span>                     <span class="co"># Get a dataset</span></span> -<span>  <span class="va">ds_i</span><span class="op">[</span><span class="va">ds_i</span><span class="op">$</span><span class="va">name</span> <span class="op">==</span> <span class="st">"DMTAP"</span>, <span class="st">"name"</span><span class="op">]</span> <span class="op"><-</span>  <span class="st">"DMTA"</span>              <span class="co"># Rename DMTAP to DMTA</span></span> -<span>  <span class="va">ds_i</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/subset.html" class="external-link">subset</a></span><span class="op">(</span><span class="va">ds_i</span>, <span class="va">name</span> <span class="op">==</span> <span class="st">"DMTA"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"name"</span>, <span class="st">"time"</span>, <span class="st">"value"</span><span class="op">)</span><span class="op">)</span> <span class="co"># Select data</span></span> -<span>  <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op"><-</span> <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op">*</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">f_time_norm</span><span class="op">[</span><span class="va">i</span><span class="op">]</span>  <span class="co"># Normalise time</span></span> -<span>  <span class="va">ds_i</span>                                                       <span class="co"># Return the dataset</span></span> -<span><span class="op">}</span><span class="op">)</span></span> -<span></span> -<span><span class="co"># Use dataset titles as names for the list elements</span></span> -<span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">sapply</a></span><span class="op">(</span><span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span>, <span class="kw">function</span><span class="op">(</span><span class="va">ds</span><span class="op">)</span> <span class="va">ds</span><span class="op">$</span><span class="va">title</span><span class="op">)</span></span> -<span></span> -<span><span class="co"># Combine data for Elliot soil to obtain a named list with six elements</span></span> -<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/cbind.html" class="external-link">rbind</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span>, <span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span> <span class="co">#</span></span> -<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span> -<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span></code></pre></div> -<p>The following tables show the 6 datasets.</p> -<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="kw">for</span> <span class="op">(</span><span class="va">ds_name</span> <span class="kw">in</span> <span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span> -<span>    <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="fu"><a href="../reference/mkin_long_to_wide.html">mkin_long_to_wide</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="va">ds_name</span><span class="op">]</span><span class="op">]</span><span class="op">)</span>,</span> -<span>      caption <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste</a></span><span class="op">(</span><span class="st">"Dataset"</span>, <span class="va">ds_name</span><span class="op">)</span>,</span> -<span>      label <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste0</a></span><span class="op">(</span><span class="st">"tab:"</span>, <span class="va">ds_name</span><span class="op">)</span>, booktabs <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span><span class="op">)</span></span> -<span>    <span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="st">"\n\\clearpage\n"</span><span class="op">)</span></span> -<span><span class="op">}</span></span></code></pre></div> -<table class="table"> -<caption>Dataset Calke</caption> -<thead><tr class="header"> -<th align="right">time</th> -<th align="right">DMTA</th> -</tr></thead> -<tbody> -<tr class="odd"> -<td align="right">0</td> -<td align="right">95.8</td> -</tr> -<tr class="even"> -<td align="right">0</td> -<td align="right">98.7</td> -</tr> -<tr class="odd"> -<td align="right">14</td> -<td align="right">60.5</td> -</tr> -<tr class="even"> -<td align="right">30</td> -<td align="right">39.1</td> -</tr> -<tr class="odd"> -<td align="right">59</td> -<td align="right">15.2</td> -</tr> -<tr class="even"> -<td align="right">120</td> -<td align="right">4.8</td> -</tr> -<tr class="odd"> -<td align="right">120</td> -<td align="right">4.6</td> -</tr> -</tbody> -</table> -<table class="table"> -<caption>Dataset Borstel</caption> -<thead><tr class="header"> -<th align="right">time</th> -<th align="right">DMTA</th> -</tr></thead> -<tbody> -<tr class="odd"> -<td align="right">0.000000</td> -<td align="right">100.5</td> -</tr> -<tr class="even"> -<td align="right">0.000000</td> -<td align="right">99.6</td> -</tr> -<tr class="odd"> -<td align="right">1.941295</td> -<td align="right">91.9</td> -</tr> -<tr class="even"> -<td align="right">1.941295</td> -<td align="right">91.3</td> -</tr> -<tr class="odd"> -<td align="right">6.794534</td> -<td align="right">81.8</td> -</tr> -<tr class="even"> -<td align="right">6.794534</td> -<td align="right">82.1</td> -</tr> -<tr class="odd"> -<td align="right">13.589067</td> -<td align="right">69.1</td> -</tr> -<tr class="even"> -<td align="right">13.589067</td> -<td align="right">68.0</td> -</tr> -<tr class="odd"> -<td align="right">27.178135</td> -<td align="right">51.4</td> -</tr> -<tr class="even"> -<td align="right">27.178135</td> -<td align="right">51.4</td> -</tr> -<tr class="odd"> -<td align="right">56.297565</td> -<td align="right">27.6</td> -</tr> -<tr class="even"> -<td align="right">56.297565</td> -<td align="right">26.8</td> -</tr> -<tr class="odd"> -<td align="right">86.387643</td> -<td align="right">15.7</td> -</tr> -<tr class="even"> -<td align="right">86.387643</td> -<td align="right">15.3</td> -</tr> -<tr class="odd"> -<td align="right">115.507073</td> -<td align="right">7.9</td> -</tr> -<tr class="even"> -<td align="right">115.507073</td> -<td align="right">8.1</td> -</tr> -</tbody> -</table> -<table class="table"> -<caption>Dataset Flaach</caption> -<thead><tr class="header"> -<th align="right">time</th> -<th align="right">DMTA</th> -</tr></thead> -<tbody> -<tr class="odd"> -<td align="right">0.0000000</td> -<td align="right">96.5</td> -</tr> -<tr class="even"> -<td align="right">0.0000000</td> -<td align="right">96.8</td> -</tr> -<tr class="odd"> -<td align="right">0.0000000</td> -<td align="right">97.0</td> -</tr> -<tr class="even"> -<td align="right">0.6233856</td> -<td align="right">82.9</td> -</tr> -<tr class="odd"> -<td align="right">0.6233856</td> -<td align="right">86.7</td> -</tr> -<tr class="even"> -<td align="right">0.6233856</td> -<td align="right">87.4</td> -</tr> -<tr class="odd"> -<td align="right">1.8701567</td> -<td align="right">72.8</td> -</tr> -<tr class="even"> -<td align="right">1.8701567</td> -<td align="right">69.9</td> -</tr> -<tr class="odd"> -<td align="right">1.8701567</td> -<td align="right">71.9</td> -</tr> -<tr class="even"> -<td align="right">4.3636989</td> -<td align="right">51.4</td> -</tr> -<tr class="odd"> -<td align="right">4.3636989</td> -<td align="right">52.9</td> -</tr> -<tr class="even"> -<td align="right">4.3636989</td> -<td align="right">48.6</td> -</tr> -<tr class="odd"> -<td align="right">8.7273979</td> -<td align="right">28.5</td> -</tr> -<tr class="even"> -<td align="right">8.7273979</td> -<td align="right">27.3</td> -</tr> -<tr class="odd"> -<td align="right">8.7273979</td> -<td align="right">27.5</td> -</tr> -<tr class="even"> -<td align="right">13.0910968</td> -<td align="right">14.8</td> -</tr> -<tr class="odd"> -<td align="right">13.0910968</td> -<td align="right">13.4</td> -</tr> -<tr class="even"> -<td align="right">13.0910968</td> -<td align="right">14.4</td> -</tr> -<tr class="odd"> -<td align="right">17.4547957</td> -<td align="right">7.7</td> -</tr> -<tr class="even"> -<td align="right">17.4547957</td> -<td align="right">7.3</td> -</tr> -<tr class="odd"> -<td align="right">17.4547957</td> -<td align="right">8.1</td> -</tr> -<tr class="even"> -<td align="right">26.1821936</td> -<td align="right">2.0</td> -</tr> -<tr class="odd"> -<td align="right">26.1821936</td> -<td align="right">1.5</td> -</tr> -<tr class="even"> -<td align="right">26.1821936</td> -<td align="right">1.9</td> -</tr> -<tr class="odd"> -<td align="right">34.9095915</td> -<td align="right">1.3</td> -</tr> -<tr class="even"> -<td align="right">34.9095915</td> -<td align="right">1.0</td> -</tr> -<tr class="odd"> -<td align="right">34.9095915</td> -<td align="right">1.1</td> -</tr> -<tr class="even"> -<td align="right">43.6369893</td> -<td align="right">0.9</td> -</tr> -<tr class="odd"> -<td align="right">43.6369893</td> -<td align="right">0.7</td> -</tr> -<tr class="even"> -<td align="right">43.6369893</td> -<td align="right">0.7</td> -</tr> -<tr class="odd"> -<td align="right">52.3643872</td> -<td align="right">0.6</td> -</tr> -<tr class="even"> -<td align="right">52.3643872</td> -<td align="right">0.4</td> -</tr> -<tr class="odd"> -<td align="right">52.3643872</td> -<td align="right">0.5</td> -</tr> -<tr class="even"> -<td align="right">74.8062674</td> -<td align="right">0.4</td> -</tr> -<tr class="odd"> -<td align="right">74.8062674</td> -<td align="right">0.3</td> -</tr> -<tr class="even"> -<td align="right">74.8062674</td> -<td align="right">0.3</td> -</tr> -</tbody> -</table> -<table class="table"> -<caption>Dataset BBA 2.2</caption> -<thead><tr class="header"> -<th align="right">time</th> -<th align="right">DMTA</th> -</tr></thead> -<tbody> -<tr class="odd"> -<td align="right">0.0000000</td> -<td align="right">98.09</td> -</tr> -<tr class="even"> -<td align="right">0.0000000</td> -<td align="right">98.77</td> -</tr> -<tr class="odd"> -<td align="right">0.7678922</td> -<td align="right">93.52</td> -</tr> -<tr class="even"> -<td align="right">0.7678922</td> -<td align="right">92.03</td> -</tr> -<tr class="odd"> -<td align="right">2.3036765</td> -<td align="right">88.39</td> -</tr> -<tr class="even"> -<td align="right">2.3036765</td> -<td align="right">87.18</td> -</tr> -<tr class="odd"> -<td align="right">5.3752452</td> -<td align="right">69.38</td> -</tr> -<tr class="even"> -<td align="right">5.3752452</td> -<td align="right">71.06</td> -</tr> -<tr class="odd"> -<td align="right">10.7504904</td> -<td align="right">45.21</td> -</tr> -<tr class="even"> -<td align="right">10.7504904</td> -<td align="right">46.81</td> -</tr> -<tr class="odd"> -<td align="right">16.1257355</td> -<td align="right">30.54</td> -</tr> -<tr class="even"> -<td align="right">16.1257355</td> -<td align="right">30.07</td> -</tr> -<tr class="odd"> -<td align="right">21.5009807</td> -<td align="right">21.60</td> -</tr> -<tr class="even"> -<td align="right">21.5009807</td> -<td align="right">20.41</td> -</tr> -<tr class="odd"> -<td align="right">32.2514711</td> -<td align="right">9.10</td> -</tr> -<tr class="even"> -<td align="right">32.2514711</td> -<td align="right">9.70</td> -</tr> -<tr class="odd"> -<td align="right">43.0019614</td> -<td align="right">6.58</td> -</tr> -<tr class="even"> -<td align="right">43.0019614</td> -<td align="right">6.31</td> -</tr> -<tr class="odd"> -<td align="right">53.7524518</td> -<td align="right">3.47</td> -</tr> -<tr class="even"> -<td align="right">53.7524518</td> -<td align="right">3.52</td> -</tr> -<tr class="odd"> -<td align="right">64.5029421</td> -<td align="right">3.40</td> -</tr> -<tr class="even"> -<td align="right">64.5029421</td> -<td align="right">3.67</td> -</tr> -<tr class="odd"> -<td align="right">91.3791680</td> -<td align="right">1.62</td> -</tr> -<tr class="even"> -<td align="right">91.3791680</td> -<td align="right">1.62</td> -</tr> -</tbody> -</table> -<table class="table"> -<caption>Dataset BBA 2.3</caption> -<thead><tr class="header"> -<th align="right">time</th> -<th align="right">DMTA</th> -</tr></thead> -<tbody> -<tr class="odd"> -<td align="right">0.0000000</td> -<td align="right">99.33</td> -</tr> -<tr class="even"> -<td align="right">0.0000000</td> -<td align="right">97.44</td> -</tr> -<tr class="odd"> -<td align="right">0.6733938</td> -<td align="right">93.73</td> -</tr> -<tr class="even"> -<td align="right">0.6733938</td> -<td align="right">93.77</td> -</tr> -<tr class="odd"> -<td align="right">2.0201814</td> -<td align="right">87.84</td> -</tr> -<tr class="even"> -<td align="right">2.0201814</td> -<td align="right">89.82</td> -</tr> -<tr class="odd"> -<td align="right">4.7137565</td> -<td align="right">71.61</td> -</tr> -<tr class="even"> -<td align="right">4.7137565</td> -<td align="right">71.42</td> -</tr> -<tr class="odd"> -<td align="right">9.4275131</td> -<td align="right">45.60</td> -</tr> -<tr class="even"> -<td align="right">9.4275131</td> -<td align="right">45.42</td> -</tr> -<tr class="odd"> -<td align="right">14.1412696</td> -<td align="right">31.12</td> -</tr> -<tr class="even"> -<td align="right">14.1412696</td> -<td align="right">31.68</td> -</tr> -<tr class="odd"> -<td align="right">18.8550262</td> -<td align="right">23.20</td> -</tr> -<tr class="even"> -<td align="right">18.8550262</td> -<td align="right">24.13</td> -</tr> -<tr class="odd"> -<td align="right">28.2825393</td> -<td align="right">9.43</td> -</tr> -<tr class="even"> -<td align="right">28.2825393</td> -<td align="right">9.82</td> -</tr> -<tr class="odd"> -<td align="right">37.7100523</td> -<td align="right">7.08</td> -</tr> -<tr class="even"> -<td align="right">37.7100523</td> -<td align="right">8.64</td> -</tr> -<tr class="odd"> -<td align="right">47.1375654</td> -<td align="right">4.41</td> -</tr> -<tr class="even"> -<td align="right">47.1375654</td> -<td align="right">4.78</td> -</tr> -<tr class="odd"> -<td align="right">56.5650785</td> -<td align="right">4.92</td> -</tr> -<tr class="even"> -<td align="right">56.5650785</td> -<td align="right">5.08</td> -</tr> -<tr class="odd"> -<td align="right">80.1338612</td> -<td align="right">2.13</td> -</tr> -<tr class="even"> -<td align="right">80.1338612</td> -<td align="right">2.23</td> -</tr> -</tbody> -</table> -<table class="table"> -<caption>Dataset Elliot</caption> -<thead><tr class="header"> -<th align="right">time</th> -<th align="right">DMTA</th> -</tr></thead> -<tbody> -<tr class="odd"> -<td align="right">0.000000</td> -<td align="right">97.5</td> -</tr> -<tr class="even"> -<td align="right">0.000000</td> -<td align="right">100.7</td> -</tr> -<tr class="odd"> -<td align="right">1.228478</td> -<td align="right">86.4</td> -</tr> -<tr class="even"> -<td align="right">1.228478</td> -<td align="right">88.5</td> -</tr> -<tr class="odd"> -<td align="right">3.685435</td> -<td align="right">69.8</td> -</tr> -<tr class="even"> -<td align="right">3.685435</td> -<td align="right">77.1</td> -</tr> -<tr class="odd"> -<td align="right">8.599349</td> -<td align="right">59.0</td> -</tr> -<tr class="even"> -<td align="right">8.599349</td> -<td align="right">54.2</td> -</tr> -<tr class="odd"> -<td align="right">17.198697</td> -<td align="right">31.3</td> -</tr> -<tr class="even"> -<td align="right">17.198697</td> -<td align="right">33.5</td> -</tr> -<tr class="odd"> -<td align="right">25.798046</td> -<td align="right">19.6</td> -</tr> -<tr class="even"> -<td align="right">25.798046</td> -<td align="right">20.9</td> -</tr> -<tr class="odd"> -<td align="right">34.397395</td> -<td align="right">13.3</td> -</tr> -<tr class="even"> -<td align="right">34.397395</td> -<td align="right">15.8</td> -</tr> -<tr class="odd"> -<td align="right">51.596092</td> -<td align="right">6.7</td> -</tr> -<tr class="even"> -<td align="right">51.596092</td> -<td align="right">8.7</td> -</tr> -<tr class="odd"> -<td align="right">68.794789</td> -<td align="right">8.8</td> -</tr> -<tr class="even"> -<td align="right">68.794789</td> -<td align="right">8.7</td> -</tr> -<tr class="odd"> -<td align="right">103.192184</td> -<td align="right">6.0</td> -</tr> -<tr class="even"> -<td align="right">103.192184</td> -<td align="right">4.4</td> -</tr> -<tr class="odd"> -<td align="right">146.188928</td> -<td align="right">3.3</td> -</tr> -<tr class="even"> -<td align="right">146.188928</td> -<td align="right">2.8</td> -</tr> -<tr class="odd"> -<td align="right">223.583066</td> -<td align="right">1.4</td> -</tr> -<tr class="even"> -<td align="right">223.583066</td> -<td align="right">1.8</td> -</tr> -<tr class="odd"> -<td align="right">0.000000</td> -<td align="right">93.4</td> -</tr> -<tr class="even"> -<td align="right">0.000000</td> -<td align="right">103.2</td> -</tr> -<tr class="odd"> -<td align="right">1.228478</td> -<td align="right">89.2</td> -</tr> -<tr class="even"> -<td align="right">1.228478</td> -<td align="right">86.6</td> -</tr> -<tr class="odd"> -<td align="right">3.685435</td> -<td align="right">78.2</td> -</tr> -<tr class="even"> -<td align="right">3.685435</td> -<td align="right">78.1</td> -</tr> -<tr class="odd"> -<td align="right">8.599349</td> -<td align="right">55.6</td> -</tr> -<tr class="even"> -<td align="right">8.599349</td> -<td align="right">53.0</td> -</tr> -<tr class="odd"> -<td align="right">17.198697</td> -<td align="right">33.7</td> -</tr> -<tr class="even"> -<td align="right">17.198697</td> -<td align="right">33.2</td> -</tr> -<tr class="odd"> -<td align="right">25.798046</td> -<td align="right">20.9</td> -</tr> -<tr class="even"> -<td align="right">25.798046</td> -<td align="right">19.9</td> -</tr> -<tr class="odd"> -<td align="right">34.397395</td> -<td align="right">18.2</td> -</tr> -<tr class="even"> -<td align="right">34.397395</td> -<td align="right">12.7</td> -</tr> -<tr class="odd"> -<td align="right">51.596092</td> -<td align="right">7.8</td> -</tr> -<tr class="even"> -<td align="right">51.596092</td> -<td align="right">9.0</td> -</tr> -<tr class="odd"> -<td align="right">68.794789</td> -<td align="right">11.4</td> -</tr> -<tr class="even"> -<td align="right">68.794789</td> -<td align="right">9.0</td> -</tr> -<tr class="odd"> -<td align="right">103.192184</td> -<td align="right">3.9</td> -</tr> -<tr class="even"> -<td align="right">103.192184</td> -<td align="right">4.4</td> -</tr> -<tr class="odd"> -<td align="right">146.188928</td> -<td align="right">2.6</td> -</tr> -<tr class="even"> -<td align="right">146.188928</td> -<td align="right">3.4</td> -</tr> -<tr class="odd"> -<td align="right">223.583066</td> -<td align="right">2.0</td> -</tr> -<tr class="even"> -<td align="right">223.583066</td> -<td align="right">1.7</td> -</tr> -</tbody> -</table> -</div> -</div> -<div class="section level2"> -<h2 id="separate-evaluations">Separate evaluations<a class="anchor" aria-label="anchor" href="#separate-evaluations"></a> -</h2> -<p>In order to obtain suitable starting parameters for the NLHM fits, -separate fits of the four models to the data for each soil are generated -using the <code>mmkin</code> function from the <code>mkin</code> -package. In a first step, constant variance is assumed. Convergence is -checked with the <code>status</code> function.</p> -<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="va">deg_mods</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span>, <span class="st">"DFOP"</span>, <span class="st">"HS"</span><span class="op">)</span></span> -<span><span class="va">f_sep_const</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mmkin.html">mmkin</a></span><span class="op">(</span></span> -<span>  <span class="va">deg_mods</span>,</span> -<span>  <span class="va">dmta_ds</span>,</span> -<span>  error_model <span class="op">=</span> <span class="st">"const"</span>,</span> -<span>  quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span> -<span></span> -<span><span class="fu"><a href="../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_const</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> -<table class="table"> -<thead><tr class="header"> -<th align="left"></th> -<th align="left">Calke</th> -<th align="left">Borstel</th> -<th align="left">Flaach</th> -<th align="left">BBA 2.2</th> -<th align="left">BBA 2.3</th> -<th align="left">Elliot</th> -</tr></thead> -<tbody> -<tr class="odd"> -<td align="left">SFO</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -</tr> -<tr class="even"> -<td align="left">FOMC</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -</tr> -<tr class="odd"> -<td align="left">DFOP</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -</tr> -<tr class="even"> -<td align="left">HS</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">C</td> -<td align="left">OK</td> -<td align="left">OK</td> -</tr> -</tbody> -</table> -<p>In the table above, OK indicates convergence, and C indicates failure -to converge. All separate fits with constant variance converged, with -the sole exception of the HS fit to the BBA 2.2 data. To prepare for -fitting NLHM using the two-component error model, the separate fits are -updated assuming two-component error.</p> -<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="va">f_sep_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_sep_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span> -<span><span class="fu"><a href="../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_tc</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> -<table class="table"> -<thead><tr class="header"> -<th align="left"></th> -<th align="left">Calke</th> -<th align="left">Borstel</th> -<th align="left">Flaach</th> -<th align="left">BBA 2.2</th> -<th align="left">BBA 2.3</th> -<th align="left">Elliot</th> -</tr></thead> -<tbody> -<tr class="odd"> -<td align="left">SFO</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -</tr> -<tr class="even"> -<td align="left">FOMC</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">C</td> -<td align="left">OK</td> -</tr> -<tr class="odd"> -<td align="left">DFOP</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">C</td> -<td align="left">OK</td> -<td align="left">C</td> -<td align="left">OK</td> -</tr> -<tr class="even"> -<td align="left">HS</td> -<td align="left">OK</td> -<td align="left">C</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -<td align="left">OK</td> -</tr> -</tbody> -</table> -<p>Using the two-component error model, the one fit that did not -converge with constant variance did converge, but other non-SFO fits -failed to converge.</p> -</div> -<div class="section level2"> -<h2 id="hierarchichal-model-fits">Hierarchichal model fits<a class="anchor" aria-label="anchor" href="#hierarchichal-model-fits"></a> -</h2> -<p>The following code fits eight versions of hierarchical models to the -data, using SFO, FOMC, DFOP and HS for the parent compound, and using -either constant variance or two-component error for the error model. The -default parameter distribution model in mkin allows for variation of all -degradation parameters across the assumed population of soils. In other -words, each degradation parameter is associated with a random effect as -a first step. The <code>mhmkin</code> function makes it possible to fit -all eight versions in parallel (given a sufficient number of computing -cores being available) to save execution time.</p> -<p>Convergence plots and summaries for these fits are shown in the -appendix.</p> -<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="va">f_saem</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">f_sep_const</span>, <span class="va">f_sep_tc</span><span class="op">)</span>, transformations <span class="op">=</span> <span class="st">"saemix"</span><span class="op">)</span></span></code></pre></div> -<p>The output of the <code>status</code> function shows that all fits -terminated successfully.</p> -<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> -<table class="table"> -<thead><tr class="header"> -<th align="left"></th> -<th align="left">const</th> -<th align="left">tc</th> -</tr></thead> -<tbody> -<tr class="odd"> -<td align="left">SFO</td> -<td align="left">OK</td> -<td align="left">OK</td> -</tr> -<tr class="even"> -<td align="left">FOMC</td> -<td align="left">OK</td> -<td align="left">OK</td> -</tr> -<tr class="odd"> -<td align="left">DFOP</td> -<td align="left">OK</td> -<td align="left">OK</td> -</tr> -<tr class="even"> -<td align="left">HS</td> -<td align="left">OK</td> -<td align="left">OK</td> -</tr> -</tbody> -</table> -<p>The AIC and BIC values show that the biphasic models DFOP and HS give -the best fits.</p> -<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> -<table class="table"> -<thead><tr class="header"> -<th align="left"></th> -<th align="right">npar</th> -<th align="right">AIC</th> -<th align="right">BIC</th> -<th align="right">Lik</th> -</tr></thead> -<tbody> -<tr class="odd"> -<td align="left">SFO const</td> -<td align="right">5</td> -<td align="right">796.3</td> -<td align="right">795.3</td> -<td align="right">-393.2</td> -</tr> -<tr class="even"> -<td align="left">SFO tc</td> -<td align="right">6</td> -<td align="right">798.3</td> -<td align="right">797.1</td> -<td align="right">-393.2</td> -</tr> -<tr class="odd"> -<td align="left">FOMC const</td> -<td align="right">7</td> -<td align="right">734.2</td> -<td align="right">732.7</td> -<td align="right">-360.1</td> -</tr> -<tr class="even"> -<td align="left">FOMC tc</td> -<td align="right">8</td> -<td align="right">720.4</td> -<td align="right">718.8</td> -<td align="right">-352.2</td> -</tr> -<tr class="odd"> -<td align="left">DFOP const</td> -<td align="right">9</td> -<td align="right">711.8</td> -<td align="right">710.0</td> -<td align="right">-346.9</td> -</tr> -<tr class="even"> -<td align="left">HS const</td> -<td align="right">9</td> -<td align="right">714.0</td> -<td align="right">712.1</td> -<td align="right">-348.0</td> -</tr> -<tr class="odd"> -<td align="left">DFOP tc</td> -<td align="right">10</td> -<td align="right">665.5</td> -<td align="right">663.4</td> -<td align="right">-322.8</td> -</tr> -<tr class="even"> -<td align="left">HS tc</td> -<td align="right">10</td> -<td align="right">667.1</td> -<td align="right">665.0</td> -<td align="right">-323.6</td> -</tr> -</tbody> -</table> -<p>The DFOP model is preferred here, as it has a better mechanistic -basis for batch experiments with constant incubation conditions. Also, -it shows the lowest AIC and BIC values in the first set of fits when -combined with the two-component error model. Therefore, the DFOP model -was selected for further refinements of the fits with the aim to make -the model fully identifiable.</p> -<div class="section level3"> -<h3 id="parameter-identifiability-based-on-the-fisher-information-matrix">Parameter identifiability based on the Fisher Information -Matrix<a class="anchor" aria-label="anchor" href="#parameter-identifiability-based-on-the-fisher-information-matrix"></a> -</h3> -<p>Using the <code>illparms</code> function, ill-defined statistical -model parameters such as standard deviations of the degradation -parameters in the population and error model parameters can be -found.</p> -<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> -<table class="table"> -<thead><tr class="header"> -<th align="left"></th> -<th align="left">const</th> -<th align="left">tc</th> -</tr></thead> -<tbody> -<tr class="odd"> -<td align="left">SFO</td> -<td align="left"></td> -<td align="left">b.1</td> -</tr> -<tr class="even"> -<td align="left">FOMC</td> -<td align="left"></td> -<td align="left">sd(DMTA_0)</td> -</tr> -<tr class="odd"> -<td align="left">DFOP</td> -<td align="left">sd(k2)</td> -<td align="left">sd(k2)</td> -</tr> -<tr class="even"> -<td align="left">HS</td> -<td align="left"></td> -<td align="left">sd(tb)</td> -</tr> -</tbody> -</table> -<p>According to the <code>illparms</code> function, the fitted standard -deviation of the second kinetic rate constant <code>k2</code> is -ill-defined in both DFOP fits. This suggests that different values would -be obtained for this standard deviation when using different starting -values.</p> -<p>The thus identified overparameterisation is addressed by removing the -random effect for <code>k2</code> from the parameter model.</p> -<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="va">f_saem_dfop_tc_no_ranef_k2</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span>,</span> -<span>  no_random_effect <span class="op">=</span> <span class="st">"k2"</span><span class="op">)</span></span></code></pre></div> -<p>For the resulting fit, it is checked whether there are still -ill-defined parameters,</p> -<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2</span><span class="op">)</span></span></code></pre></div> -<p>which is not the case. Below, the refined model is compared with the -previous best model. The model without random effect for <code>k2</code> -is a reduced version of the previous model. Therefore, the models are -nested and can be compared using the likelihood ratio test. This is -achieved with the argument <code>test = TRUE</code> to the -<code>anova</code> function.</p> -<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span>, <span class="va">f_saem_dfop_tc_no_ranef_k2</span>, test <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span> <span class="op">|></span></span> -<span>  <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>format.args <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">4</span><span class="op">)</span><span class="op">)</span></span></code></pre></div> -<table class="table"> -<colgroup> -<col width="37%"> -<col width="6%"> -<col width="8%"> -<col width="8%"> -<col width="9%"> -<col width="9%"> -<col width="4%"> -<col width="15%"> -</colgroup> -<thead><tr class="header"> -<th align="left"></th> -<th align="right">npar</th> -<th align="right">AIC</th> -<th align="right">BIC</th> -<th align="right">Lik</th> -<th align="right">Chisq</th> -<th align="right">Df</th> -<th align="right">Pr(>Chisq)</th> -</tr></thead> -<tbody> -<tr class="odd"> -<td align="left">f_saem_dfop_tc_no_ranef_k2</td> -<td align="right">9</td> -<td align="right">663.8</td> -<td align="right">661.9</td> -<td align="right">-322.9</td> -<td align="right">NA</td> -<td align="right">NA</td> -<td align="right">NA</td> -</tr> -<tr class="even"> -<td align="left">f_saem[[“DFOP”, “tc”]]</td> -<td align="right">10</td> -<td align="right">665.5</td> -<td align="right">663.4</td> -<td align="right">-322.8</td> -<td align="right">0.2809</td> -<td align="right">1</td> -<td align="right">0.5961</td> -</tr> -</tbody> -</table> -<p>The AIC and BIC criteria are lower after removal of the ill-defined -random effect for <code>k2</code>. The p value of the likelihood ratio -test is much greater than 0.05, indicating that the model with the -higher likelihood (here the model with random effects for all -degradation parameters <code>f_saem[["DFOP", "tc"]]</code>) does not fit -significantly better than the model with the lower likelihood (the -reduced model <code>f_saem_dfop_tc_no_ranef_k2</code>).</p> -<p>Therefore, AIC, BIC and likelihood ratio test suggest the use of the -reduced model.</p> -<p>The convergence of the fit is checked visually.</p> -<div class="figure" style="text-align: center"> -<img src="2022_wp_1.1_dmta_parent_files/figure-html/convergence-saem-dfop-tc-no-ranef-k2-1.png" alt="Convergence plot for the NLHM DFOP fit with two-component error and without a random effect on 'k2'" width="864"><p class="caption"> -Convergence plot for the NLHM DFOP fit with two-component error and -without a random effect on ‘k2’ -</p> -</div> -<p>All parameters appear to have converged to a satisfactory degree. The -final fit is plotted using the plot method from the mkin package.</p> -<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2</span><span class="op">)</span></span></code></pre></div> -<div class="figure" style="text-align: center"> -<img src="2022_wp_1.1_dmta_parent_files/figure-html/plot-saem-dfop-tc-no-ranef-k2-1.png" alt="Plot of the final NLHM DFOP fit" width="864"><p class="caption"> -Plot of the final NLHM DFOP fit -</p> -</div> -<p>Finally, a summary report of the fit is produced.</p> -<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2</span><span class="op">)</span></span></code></pre></div> -<pre><code>saemix version used for fitting:      3.2  -mkin version used for pre-fitting:  1.2.2  -R version used for fitting:         4.2.2  -Date of fit:     Thu Jan  5 08:19:13 2023  -Date of summary: Thu Jan  5 08:19:13 2023  - -Equations: -d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * -           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) -           * DMTA - -Data: -155 observations of 1 variable(s) grouped in 6 datasets - -Model predictions using solution type analytical  - -Fitted in 4.075 s -Using 300, 100 iterations and 9 chains - -Variance model: Two-component variance function  - -Starting values for degradation parameters: -   DMTA_0        k1        k2         g  -98.759266  0.087034  0.009933  0.930827  - -Fixed degradation parameter values: -None - -Starting values for random effects (square root of initial entries in omega): -       DMTA_0 k1 k2 g -DMTA_0  98.76  0  0 0 -k1       0.00  1  0 0 -k2       0.00  0  1 0 -g        0.00  0  0 1 - -Starting values for error model parameters: -a.1 b.1  -  1   1  - -Results: - -Likelihood computed by importance sampling -    AIC   BIC logLik -  663.8 661.9 -322.9 - -Optimised parameters: -               est.     lower     upper -DMTA_0    98.228939 96.285869 100.17201 -k1         0.064063  0.033477   0.09465 -k2         0.008297  0.005824   0.01077 -g          0.953821  0.914328   0.99331 -a.1        1.068479  0.869538   1.26742 -b.1        0.029424  0.022406   0.03644 -SD.DMTA_0  2.030437  0.404824   3.65605 -SD.k1      0.594692  0.256660   0.93272 -SD.g       1.006754  0.361327   1.65218 - -Correlation:  -   DMTA_0  k1      k2      -k1  0.0218                 -k2  0.0556  0.0355         -g  -0.0516 -0.0284 -0.2800 - -Random effects: -            est.  lower  upper -SD.DMTA_0 2.0304 0.4048 3.6560 -SD.k1     0.5947 0.2567 0.9327 -SD.g      1.0068 0.3613 1.6522 - -Variance model: -       est.   lower   upper -a.1 1.06848 0.86954 1.26742 -b.1 0.02942 0.02241 0.03644 - -Estimated disappearance times: -      DT50 DT90 DT50back DT50_k1 DT50_k2 -DMTA 11.45 41.4    12.46   10.82   83.54</code></pre> -</div> -<div class="section level3"> -<h3 id="alternative-check-of-parameter-identifiability">Alternative check of parameter identifiability<a class="anchor" aria-label="anchor" href="#alternative-check-of-parameter-identifiability"></a> -</h3> -<p>The parameter check used in the <code>illparms</code> function is -based on a quadratic approximation of the likelihood surface near its -optimum, which is calculated using the Fisher Information Matrix (FIM). -An alternative way to check parameter identifiability based on a -multistart approach has recently been implemented in mkin.</p> -<p>The graph below shows boxplots of the parameters obtained in 50 runs -of the saem algorithm with different parameter combinations, sampled -from the range of the parameters obtained for the individual datasets -fitted separately using nonlinear regression.</p> -<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="va">f_saem_dfop_tc_multi</span> <span class="op"><-</span> <span class="fu"><a href="../reference/multistart.html">multistart</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span>, n <span class="op">=</span> <span class="fl">50</span>, cores <span class="op">=</span> <span class="fl">15</span><span class="op">)</span></span></code></pre></div> -<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/par.html" class="external-link">par</a></span><span class="op">(</span>mar <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">6.1</span>, <span class="fl">4.1</span>, <span class="fl">2.1</span>, <span class="fl">2.1</span><span class="op">)</span><span class="op">)</span></span> -<span><span class="fu"><a href="../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_multi</span>, lpos <span class="op">=</span> <span class="st">"bottomright"</span>, ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.3</span>, <span class="fl">10</span><span class="op">)</span>, las <span class="op">=</span> <span class="fl">2</span><span class="op">)</span></span></code></pre></div> -<div class="figure" style="text-align: center"> -<img src="2022_wp_1.1_dmta_parent_files/figure-html/multistart-full-par-1.png" alt="Scaled parameters from the multistart runs, full model" width="960"><p class="caption"> -Scaled parameters from the multistart runs, full model -</p> -</div> -<p>The graph clearly confirms the lack of identifiability of the -variance of <code>k2</code> in the full model. The overparameterisation -of the model also indicates a lack of identifiability of the variance of -parameter <code>g</code>.</p> -<p>The parameter boxplots of the multistart runs with the reduced model -shown below indicate that all runs give similar results, regardless of -the starting parameters.</p> -<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="va">f_saem_dfop_tc_no_ranef_k2_multi</span> <span class="op"><-</span> <span class="fu"><a href="../reference/multistart.html">multistart</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2</span>,</span> -<span>  n <span class="op">=</span> <span class="fl">50</span>, cores <span class="op">=</span> <span class="fl">15</span><span class="op">)</span></span></code></pre></div> -<div class="sourceCode" id="cb19"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/par.html" class="external-link">par</a></span><span class="op">(</span>mar <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">6.1</span>, <span class="fl">4.1</span>, <span class="fl">2.1</span>, <span class="fl">2.1</span><span class="op">)</span><span class="op">)</span></span> -<span><span class="fu"><a href="../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2_multi</span>, ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.5</span>, <span class="fl">2</span><span class="op">)</span>, las <span class="op">=</span> <span class="fl">2</span>,</span> -<span>  lpos <span class="op">=</span> <span class="st">"bottomright"</span><span class="op">)</span></span></code></pre></div> -<div class="figure" style="text-align: center"> -<img src="2022_wp_1.1_dmta_parent_files/figure-html/multistart-reduced-par-1.png" alt="Scaled parameters from the multistart runs, reduced model" width="960"><p class="caption"> -Scaled parameters from the multistart runs, reduced model -</p> -</div> -<p>When only the parameters of the top 25% of the fits are shown (based -on a feature introduced in mkin 1.2.2 currently under development), the -scatter is even less as shown below.</p> -<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r"> -<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/par.html" class="external-link">par</a></span><span class="op">(</span>mar <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">6.1</span>, <span class="fl">4.1</span>, <span class="fl">2.1</span>, <span class="fl">2.1</span><span class="op">)</span><span class="op">)</span></span> -<span><span class="fu"><a href="../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2_multi</span>, ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.5</span>, <span class="fl">2</span><span class="op">)</span>, las <span class="op">=</span> <span class="fl">2</span>, llquant <span class="op">=</span> <span class="fl">0.25</span>,</span> -<span>  lpos <span class="op">=</span> <span class="st">"bottomright"</span><span class="op">)</span></span></code></pre></div> -<div class="figure" style="text-align: center"> -<img src="2022_wp_1.1_dmta_parent_files/figure-html/multistart-reduced-par-llquant-1.png" alt="Scaled parameters from the multistart runs, reduced model, fits with the top 25\% likelihood values" width="960"><p class="caption"> -Scaled parameters from the multistart runs, reduced model, fits with the -top 25% likelihood values -</p> -</div> -</div> -</div> -<div class="section level2"> -<h2 id="conclusions">Conclusions<a class="anchor" aria-label="anchor" href="#conclusions"></a> -</h2> -<p>Fitting the four parent degradation models SFO, FOMC, DFOP and HS as -part of hierarchical model fits with two different error models and -normal distributions of the transformed degradation parameters works -without technical problems. The biphasic models DFOP and HS gave the -best fit to the data, but the default parameter distribution model was -not fully identifiable. Removing the random effect for the second -kinetic rate constant of the DFOP model resulted in a reduced model that -was fully identifiable and showed the lowest values for the model -selection criteria AIC and BIC. The reliability of the identification of -all model parameters was confirmed using multiple starting values.</p> -</div> -<div class="section level2"> -<h2 id="appendix">Appendix<a class="anchor" aria-label="anchor" href="#appendix"></a> -</h2> -<div class="section level3"> -<h3 id="hierarchical-model-fit-listings">Hierarchical model fit listings<a class="anchor" aria-label="anchor" href="#hierarchical-model-fit-listings"></a> -</h3> -<caption> -Hierarchical mkin fit of the SFO model with error model const -</caption> -<pre><code> -saemix version used for fitting:      3.2  -mkin version used for pre-fitting:  1.2.2  -R version used for fitting:         4.2.2  -Date of fit:     Thu Jan  5 08:19:06 2023  -Date of summary: Thu Jan  5 08:20:11 2023  - -Equations: -d_DMTA/dt = - k_DMTA * DMTA - -Data: -155 observations of 1 variable(s) grouped in 6 datasets - -Model predictions using solution type analytical  - -Fitted in 1.09 s -Using 300, 100 iterations and 9 chains - -Variance model: Constant variance  - -Starting values for degradation parameters: - DMTA_0  k_DMTA  -97.2953  0.0566  - -Fixed degradation parameter values: -None - -Starting values for random effects (square root of initial entries in omega): -       DMTA_0 k_DMTA -DMTA_0   97.3      0 -k_DMTA    0.0      1 - -Starting values for error model parameters: -a.1  -  1  - -Results: - -Likelihood computed by importance sampling -    AIC   BIC logLik -  796.3 795.3 -393.2 - -Optimised parameters: -              est.    lower   upper -DMTA_0    97.28130 95.71113 98.8515 -k_DMTA     0.05665  0.02909  0.0842 -a.1        2.66442  2.35579  2.9731 -SD.DMTA_0  1.54776  0.15447  2.9411 -SD.k_DMTA  0.60690  0.26248  0.9513 - -Correlation:  -       DMTA_0 -k_DMTA 0.0168 - -Random effects: -            est.  lower  upper -SD.DMTA_0 1.5478 0.1545 2.9411 -SD.k_DMTA 0.6069 0.2625 0.9513 - -Variance model: -     est. lower upper -a.1 2.664 2.356 2.973 - -Estimated disappearance times: -      DT50  DT90 -DMTA 12.24 40.65 - -</code></pre> -<p></p> -<caption> -Hierarchical mkin fit of the SFO model with error model tc -</caption> -<pre><code> -saemix version used for fitting:      3.2  -mkin version used for pre-fitting:  1.2.2  -R version used for fitting:         4.2.2  -Date of fit:     Thu Jan  5 08:19:07 2023  -Date of summary: Thu Jan  5 08:20:11 2023  - -Equations: -d_DMTA/dt = - k_DMTA * DMTA - -Data: -155 observations of 1 variable(s) grouped in 6 datasets - -Model predictions using solution type analytical  - -Fitted in 2.441 s -Using 300, 100 iterations and 9 chains - -Variance model: Two-component variance function  - -Starting values for degradation parameters: -  DMTA_0   k_DMTA  -96.99175  0.05603  - -Fixed degradation parameter values: -None - -Starting values for random effects (square root of initial entries in omega): -       DMTA_0 k_DMTA -DMTA_0  96.99      0 -k_DMTA   0.00      1 - -Starting values for error model parameters: -a.1 b.1  -  1   1  - -Results: - -Likelihood computed by importance sampling -    AIC   BIC logLik -  798.3 797.1 -393.2 - -Optimised parameters: -               est.     lower    upper -DMTA_0    97.271822 95.703157 98.84049 -k_DMTA     0.056638  0.029110  0.08417 -a.1        2.660081  2.230398  3.08976 -b.1        0.001665 -0.006911  0.01024 -SD.DMTA_0  1.545520  0.145035  2.94601 -SD.k_DMTA  0.606422  0.262274  0.95057 - -Correlation:  -       DMTA_0 -k_DMTA 0.0169 - -Random effects: -            est.  lower  upper -SD.DMTA_0 1.5455 0.1450 2.9460 -SD.k_DMTA 0.6064 0.2623 0.9506 - -Variance model: -        est.     lower   upper -a.1 2.660081  2.230398 3.08976 -b.1 0.001665 -0.006911 0.01024 - -Estimated disappearance times: -      DT50  DT90 -DMTA 12.24 40.65 - -</code></pre> -<p></p> -<caption> -Hierarchical mkin fit of the FOMC model with error model const -</caption> -<pre><code> -saemix version used for fitting:      3.2  -mkin version used for pre-fitting:  1.2.2  -R version used for fitting:         4.2.2  -Date of fit:     Thu Jan  5 08:19:06 2023  -Date of summary: Thu Jan  5 08:20:11 2023  - -Equations: -d_DMTA/dt = - (alpha/beta) * 1/((time/beta) + 1) * DMTA - -Data: -155 observations of 1 variable(s) grouped in 6 datasets - -Model predictions using solution type analytical  - -Fitted in 1.156 s -Using 300, 100 iterations and 9 chains - -Variance model: Constant variance  - -Starting values for degradation parameters: - DMTA_0   alpha    beta  - 98.292   9.909 156.341  - -Fixed degradation parameter values: -None - -Starting values for random effects (square root of initial entries in omega): -       DMTA_0 alpha beta -DMTA_0  98.29     0    0 -alpha    0.00     1    0 -beta     0.00     0    1 - -Starting values for error model parameters: -a.1  -  1  - -Results: - -Likelihood computed by importance sampling -    AIC   BIC logLik -  734.2 732.7 -360.1 - -Optimised parameters: -              est.   lower   upper -DMTA_0     98.3435 96.9033  99.784 -alpha       7.2007  2.5889  11.812 -beta      112.8746 34.8816 190.868 -a.1         2.0459  1.8054   2.286 -SD.DMTA_0   1.4795  0.2717   2.687 -SD.alpha    0.6396  0.1509   1.128 -SD.beta     0.6874  0.1587   1.216 - -Correlation:  -      DMTA_0  alpha   -alpha -0.1125         -beta  -0.1227  0.3632 - -Random effects: -            est.  lower upper -SD.DMTA_0 1.4795 0.2717 2.687 -SD.alpha  0.6396 0.1509 1.128 -SD.beta   0.6874 0.1587 1.216 - -Variance model: -     est. lower upper -a.1 2.046 1.805 2.286 - -Estimated disappearance times: -      DT50  DT90 DT50back -DMTA 11.41 42.53     12.8 - -</code></pre> -<p></p> -<caption> -Hierarchical mkin fit of the FOMC model with error model tc -</caption> -<pre><code> -saemix version used for fitting:      3.2  -mkin version used for pre-fitting:  1.2.2  -R version used for fitting:         4.2.2  -Date of fit:     Thu Jan  5 08:19:07 2023  -Date of summary: Thu Jan  5 08:20:11 2023  - -Equations: -d_DMTA/dt = - (alpha/beta) * 1/((time/beta) + 1) * DMTA - -Data: -155 observations of 1 variable(s) grouped in 6 datasets - -Model predictions using solution type analytical  - -Fitted in 2.729 s -Using 300, 100 iterations and 9 chains - -Variance model: Two-component variance function  - -Starting values for degradation parameters: -DMTA_0  alpha   beta  -98.772  4.663 92.597  - -Fixed degradation parameter values: -None - -Starting values for random effects (square root of initial entries in omega): -       DMTA_0 alpha beta -DMTA_0  98.77     0    0 -alpha    0.00     1    0 -beta     0.00     0    1 - -Starting values for error model parameters: -a.1 b.1  -  1   1  - -Results: - -Likelihood computed by importance sampling -    AIC   BIC logLik -  720.4 718.8 -352.2 - -Optimised parameters: -              est.    lower     upper -DMTA_0    98.99136 97.26011 100.72261 -alpha      5.86312  2.57485   9.15138 -beta      88.55571 29.20889 147.90254 -a.1        1.51063  1.24384   1.77741 -b.1        0.02824  0.02040   0.03609 -SD.DMTA_0  1.57436 -0.04867   3.19739 -SD.alpha   0.59871  0.17132   1.02611 -SD.beta    0.72994  0.22849   1.23139 - -Correlation:  -      DMTA_0  alpha   -alpha -0.1363         -beta  -0.1414  0.2542 - -Random effects: -            est.    lower upper -SD.DMTA_0 1.5744 -0.04867 3.197 -SD.alpha  0.5987  0.17132 1.026 -SD.beta   0.7299  0.22849 1.231 - -Variance model: -       est.  lower   upper -a.1 1.51063 1.2438 1.77741 -b.1 0.02824 0.0204 0.03609 - -Estimated disappearance times: -      DT50 DT90 DT50back -DMTA 11.11 42.6    12.82 - -</code></pre> -<p></p> -<caption> -Hierarchical mkin fit of the DFOP model with error model const -</caption> -<pre><code> -saemix version used for fitting:      3.2  -mkin version used for pre-fitting:  1.2.2  -R version used for fitting:         4.2.2  -Date of fit:     Thu Jan  5 08:19:07 2023  -Date of summary: Thu Jan  5 08:20:11 2023  - -Equations: -d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * -           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) -           * DMTA - -Data: -155 observations of 1 variable(s) grouped in 6 datasets - -Model predictions using solution type analytical  - -Fitted in 2.007 s -Using 300, 100 iterations and 9 chains - -Variance model: Constant variance  - -Starting values for degradation parameters: -  DMTA_0       k1       k2        g  -98.64383  0.09211  0.02999  0.76814  - -Fixed degradation parameter values: -None - -Starting values for random effects (square root of initial entries in omega): -       DMTA_0 k1 k2 g -DMTA_0  98.64  0  0 0 -k1       0.00  1  0 0 -k2       0.00  0  1 0 -g        0.00  0  0 1 - -Starting values for error model parameters: -a.1  -  1  - -Results: - -Likelihood computed by importance sampling -    AIC BIC logLik -  711.8 710 -346.9 - -Optimised parameters: -               est.     lower    upper -DMTA_0    98.092481 96.573898 99.61106 -k1         0.062499  0.030336  0.09466 -k2         0.009065 -0.005133  0.02326 -g          0.948967  0.862079  1.03586 -a.1        1.821671  1.604774  2.03857 -SD.DMTA_0  1.677785  0.472066  2.88350 -SD.k1      0.634962  0.270788  0.99914 -SD.k2      1.033498 -0.205994  2.27299 -SD.g       1.710046  0.428642  2.99145 - -Correlation:  -   DMTA_0  k1      k2      -k1  0.0246                 -k2  0.0491  0.0953         -g  -0.0552 -0.0889 -0.4795 - -Random effects: -           est.   lower  upper -SD.DMTA_0 1.678  0.4721 2.8835 -SD.k1     0.635  0.2708 0.9991 -SD.k2     1.033 -0.2060 2.2730 -SD.g      1.710  0.4286 2.9914 - -Variance model: -     est. lower upper -a.1 1.822 1.605 2.039 - -Estimated disappearance times: -      DT50 DT90 DT50back DT50_k1 DT50_k2 -DMTA 11.79 42.8    12.88   11.09   76.46 - -</code></pre> -<p></p> -<caption> -Hierarchical mkin fit of the DFOP model with error model tc -</caption> -<pre><code> -saemix version used for fitting:      3.2  -mkin version used for pre-fitting:  1.2.2  -R version used for fitting:         4.2.2  -Date of fit:     Thu Jan  5 08:19:08 2023  -Date of summary: Thu Jan  5 08:20:11 2023  - -Equations: -d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * -           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) -           * DMTA - -Data: -155 observations of 1 variable(s) grouped in 6 datasets - -Model predictions using solution type analytical  - -Fitted in 3.033 s -Using 300, 100 iterations and 9 chains - -Variance model: Two-component variance function  - -Starting values for degradation parameters: -   DMTA_0        k1        k2         g  -98.759266  0.087034  0.009933  0.930827  - -Fixed degradation parameter values: -None - -Starting values for random effects (square root of initial entries in omega): -       DMTA_0 k1 k2 g -DMTA_0  98.76  0  0 0 -k1       0.00  1  0 0 -k2       0.00  0  1 0 -g        0.00  0  0 1 - -Starting values for error model parameters: -a.1 b.1  -  1   1  - -Results: - -Likelihood computed by importance sampling -    AIC   BIC logLik -  665.5 663.4 -322.8 - -Optimised parameters: -               est.     lower     upper -DMTA_0    98.377019 96.447952 100.30609 -k1         0.064843  0.034607   0.09508 -k2         0.008895  0.006368   0.01142 -g          0.949696  0.903815   0.99558 -a.1        1.065241  0.865754   1.26473 -b.1        0.029340  0.022336   0.03634 -SD.DMTA_0  2.007754  0.387982   3.62753 -SD.k1      0.580473  0.250286   0.91066 -SD.k2      0.006105 -4.920337   4.93255 -SD.g       1.097149  0.412779   1.78152 - -Correlation:  -   DMTA_0  k1      k2      -k1  0.0235                 -k2  0.0595  0.0424         -g  -0.0470 -0.0278 -0.2731 - -Random effects: -              est.   lower  upper -SD.DMTA_0 2.007754  0.3880 3.6275 -SD.k1     0.580473  0.2503 0.9107 -SD.k2     0.006105 -4.9203 4.9325 -SD.g      1.097149  0.4128 1.7815 - -Variance model: -       est.   lower   upper -a.1 1.06524 0.86575 1.26473 -b.1 0.02934 0.02234 0.03634 - -Estimated disappearance times: -      DT50  DT90 DT50back DT50_k1 DT50_k2 -DMTA 11.36 41.32    12.44   10.69   77.92 - -</code></pre> -<p></p> -<caption> -Hierarchical mkin fit of the HS model with error model const -</caption> -<pre><code> -saemix version used for fitting:      3.2  -mkin version used for pre-fitting:  1.2.2  -R version used for fitting:         4.2.2  -Date of fit:     Thu Jan  5 08:19:07 2023  -Date of summary: Thu Jan  5 08:20:11 2023  - -Equations: -d_DMTA/dt = - ifelse(time <= tb, k1, k2) * DMTA - -Data: -155 observations of 1 variable(s) grouped in 6 datasets - -Model predictions using solution type analytical  - -Fitted in 2.004 s -Using 300, 100 iterations and 9 chains - -Variance model: Constant variance  - -Starting values for degradation parameters: -  DMTA_0       k1       k2       tb  -97.82176  0.06931  0.02997 11.13945  - -Fixed degradation parameter values: -None - -Starting values for random effects (square root of initial entries in omega): -       DMTA_0 k1 k2 tb -DMTA_0  97.82  0  0  0 -k1       0.00  1  0  0 -k2       0.00  0  1  0 -tb       0.00  0  0  1 - -Starting values for error model parameters: -a.1  -  1  - -Results: - -Likelihood computed by importance sampling -  AIC   BIC logLik -  714 712.1   -348 - -Optimised parameters: -              est.    lower    upper -DMTA_0    98.16102 96.47747 99.84456 -k1         0.07876  0.05261  0.10491 -k2         0.02227  0.01706  0.02747 -tb        13.99089 -7.40049 35.38228 -a.1        1.82305  1.60700  2.03910 -SD.DMTA_0  1.88413  0.56204  3.20622 -SD.k1      0.34292  0.10482  0.58102 -SD.k2      0.19851  0.01718  0.37985 -SD.tb      1.68168  0.58064  2.78272 - -Correlation:  -   DMTA_0  k1      k2      -k1  0.0142                 -k2  0.0001 -0.0025         -tb  0.0165 -0.1256 -0.0301 - -Random effects: -            est.   lower  upper -SD.DMTA_0 1.8841 0.56204 3.2062 -SD.k1     0.3429 0.10482 0.5810 -SD.k2     0.1985 0.01718 0.3798 -SD.tb     1.6817 0.58064 2.7827 - -Variance model: -     est. lower upper -a.1 1.823 1.607 2.039 - -Estimated disappearance times: -      DT50  DT90 DT50back DT50_k1 DT50_k2 -DMTA 8.801 67.91    20.44   8.801   31.13 - -</code></pre> -<p></p> -<caption> -Hierarchical mkin fit of the HS model with error model tc -</caption> -<pre><code> -saemix version used for fitting:      3.2  -mkin version used for pre-fitting:  1.2.2  -R version used for fitting:         4.2.2  -Date of fit:     Thu Jan  5 08:19:08 2023  -Date of summary: Thu Jan  5 08:20:11 2023  - -Equations: -d_DMTA/dt = - ifelse(time <= tb, k1, k2) * DMTA - -Data: -155 observations of 1 variable(s) grouped in 6 datasets - -Model predictions using solution type analytical  - -Fitted in 3.287 s -Using 300, 100 iterations and 9 chains - -Variance model: Two-component variance function  - -Starting values for degradation parameters: -  DMTA_0       k1       k2       tb  -98.45190  0.07525  0.02576 19.19375  - -Fixed degradation parameter values: -None - -Starting values for random effects (square root of initial entries in omega): -       DMTA_0 k1 k2 tb -DMTA_0  98.45  0  0  0 -k1       0.00  1  0  0 -k2       0.00  0  1  0 -tb       0.00  0  0  1 - -Starting values for error model parameters: -a.1 b.1  -  1   1  - -Results: - -Likelihood computed by importance sampling -    AIC BIC logLik -  667.1 665 -323.6 - -Optimised parameters: -              est.    lower    upper -DMTA_0    97.76570 95.81350 99.71791 -k1         0.05855  0.03080  0.08630 -k2         0.02337  0.01664  0.03010 -tb        31.09638 29.38289 32.80987 -a.1        1.08835  0.88590  1.29080 -b.1        0.02964  0.02257  0.03671 -SD.DMTA_0  2.04877  0.42607  3.67147 -SD.k1      0.59166  0.25621  0.92711 -SD.k2      0.30698  0.09561  0.51835 -SD.tb      0.01274 -0.10914  0.13462 - -Correlation:  -   DMTA_0  k1      k2      -k1  0.0160                 -k2 -0.0070 -0.0024         -tb -0.0668 -0.0103 -0.2013 - -Random effects: -             est.    lower  upper -SD.DMTA_0 2.04877  0.42607 3.6715 -SD.k1     0.59166  0.25621 0.9271 -SD.k2     0.30698  0.09561 0.5183 -SD.tb     0.01274 -0.10914 0.1346 - -Variance model: -       est.   lower   upper -a.1 1.08835 0.88590 1.29080 -b.1 0.02964 0.02257 0.03671 - -Estimated disappearance times: -      DT50  DT90 DT50back DT50_k1 DT50_k2 -DMTA 11.84 51.71    15.57   11.84   29.66 - -</code></pre> -<p></p> -</div> -<div class="section level3"> -<h3 id="hierarchical-model-convergence-plots">Hierarchical model convergence plots<a class="anchor" aria-label="anchor" href="#hierarchical-model-convergence-plots"></a> -</h3> -<div class="figure" style="text-align: center"> -<img src="2022_wp_1.1_dmta_parent_files/figure-html/convergence-saem-sfo-const-1.png" alt="Convergence plot for the NLHM SFO fit with constant variance" width="864"><p class="caption"> -Convergence plot for the NLHM SFO fit with constant variance -</p> -</div> -<div class="figure" style="text-align: center"> -<img src="2022_wp_1.1_dmta_parent_files/figure-html/convergence-saem-sfo-tc-1.png" alt="Convergence plot for the NLHM SFO fit with two-component error" width="864"><p class="caption"> -Convergence plot for the NLHM SFO fit with two-component error -</p> -</div> -<div class="figure" style="text-align: center"> -<img src="2022_wp_1.1_dmta_parent_files/figure-html/convergence-saem-fomc-const-1.png" alt="Convergence plot for the NLHM FOMC fit with constant variance" width="864"><p class="caption"> -Convergence plot for the NLHM FOMC fit with constant variance -</p> -</div> -<div class="figure" style="text-align: center"> -<img src="2022_wp_1.1_dmta_parent_files/figure-html/convergence-saem-fomc-tc-1.png" alt="Convergence plot for the NLHM FOMC fit with two-component error" width="864"><p class="caption"> -Convergence plot for the NLHM FOMC fit with two-component error -</p> -</div> -<div class="figure" style="text-align: center"> -<img src="2022_wp_1.1_dmta_parent_files/figure-html/convergence-saem-dfop-const-1.png" alt="Convergence plot for the NLHM DFOP fit with constant variance" width="864"><p class="caption"> -Convergence plot for the NLHM DFOP fit with constant variance -</p> -</div> -<div class="figure" style="text-align: center"> -<img src="2022_wp_1.1_dmta_parent_files/figure-html/convergence-saem-dfop-tc-1.png" alt="Convergence plot for the NLHM DFOP fit with two-component error" width="864"><p class="caption"> -Convergence plot for the NLHM DFOP fit with two-component error -</p> -</div> -<div class="figure" style="text-align: center"> -<img src="2022_wp_1.1_dmta_parent_files/figure-html/convergence-saem-hs-const-1.png" alt="Convergence plot for the NLHM HS fit with constant variance" width="864"><p class="caption"> -Convergence plot for the NLHM HS fit with constant variance -</p> -</div> -<div class="figure" style="text-align: center"> -<img src="2022_wp_1.1_dmta_parent_files/figure-html/convergence-saem-hs-tc-1.png" alt="Convergence plot for the NLHM HS fit with two-component error" width="864"><p class="caption"> -Convergence plot for the NLHM HS fit with two-component error -</p> -</div> -</div> -<div class="section level3"> -<h3 id="session-info">Session info<a class="anchor" aria-label="anchor" href="#session-info"></a> -</h3> -<pre><code>R version 4.2.2 Patched (2022-11-10 r83330) -Platform: x86_64-pc-linux-gnu (64-bit) -Running under: Debian GNU/Linux bookworm/sid - -Matrix products: default -BLAS:   /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3 -LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so - -locale: - [1] LC_CTYPE=de_DE.UTF-8       LC_NUMERIC=C               - [3] LC_TIME=de_DE.UTF-8        LC_COLLATE=de_DE.UTF-8     - [5] LC_MONETARY=de_DE.UTF-8    LC_MESSAGES=de_DE.UTF-8    - [7] LC_PAPER=de_DE.UTF-8       LC_NAME=C                  - [9] LC_ADDRESS=C               LC_TELEPHONE=C             -[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C        - -attached base packages: -[1] parallel  stats     graphics  grDevices utils     datasets  methods   -[8] base      - -other attached packages: -[1] saemix_3.2 npde_3.3   knitr_1.41 mkin_1.2.2 - -loaded via a namespace (and not attached): - [1] deSolve_1.34      zoo_1.8-11        tidyselect_1.2.0  xfun_0.35         - [5] bslib_0.4.2       purrr_1.0.0       lattice_0.20-45   colorspace_2.0-3  - [9] vctrs_0.5.1       generics_0.1.3    htmltools_0.5.4   yaml_2.3.6        -[13] utf8_1.2.2        rlang_1.0.6       pkgdown_2.0.7     jquerylib_0.1.4   -[17] pillar_1.8.1      glue_1.6.2        DBI_1.1.3         lifecycle_1.0.3   -[21] stringr_1.5.0     munsell_0.5.0     gtable_0.3.1      ragg_1.2.4        -[25] codetools_0.2-18  memoise_2.0.1     evaluate_0.19     fastmap_1.1.0     -[29] lmtest_0.9-40     fansi_1.0.3       highr_0.9         scales_1.2.1      -[33] cachem_1.0.6      desc_1.4.2        jsonlite_1.8.4    systemfonts_1.0.4 -[37] fs_1.5.2          textshaping_0.3.6 gridExtra_2.3     ggplot2_3.4.0     -[41] digest_0.6.31     stringi_1.7.8     dplyr_1.0.10      grid_4.2.2        -[45] rprojroot_2.0.3   cli_3.5.0         tools_4.2.2       magrittr_2.0.3    -[49] sass_0.4.4        tibble_3.1.8      pkgconfig_2.0.3   assertthat_0.2.1  -[53] rmarkdown_2.19    R6_2.5.1          mclust_6.0.0      nlme_3.1-161      -[57] compiler_4.2.2   </code></pre> -</div> -</div> -  </div> - -  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> - -        <nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2> -    </nav> -</div> - -</div> - - - -      <footer><div class="copyright"> -  <p></p> -<p>Developed by Johannes Ranke.</p> -</div> - -<div class="pkgdown"> -  <p></p> -<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p> -</div> - -      </footer> -</div> - -   - - -   - -  </body> -</html> | 
