diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2023-01-28 17:40:31 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2023-01-28 17:40:31 +0100 |
commit | 9aa186eaf43d3c86a99fd08c310cefbc5dfe0612 (patch) | |
tree | 426d4465189c610686cf5d077d4f46a9966d852b /docs/dev/articles | |
parent | 24eb77216700cf8b2f2bde3abad84c1f83f9e32a (diff) |
Build online HTML versions of prebuilt vignettes
Also, give some structure to the menu for selecting articles
Diffstat (limited to 'docs/dev/articles')
32 files changed, 9880 insertions, 10 deletions
diff --git a/docs/dev/articles/index.html b/docs/dev/articles/index.html index cd0e315f..b9571a60 100644 --- a/docs/dev/articles/index.html +++ b/docs/dev/articles/index.html @@ -23,7 +23,7 @@ <div id="navbar" class="navbar-collapse collapse"> <ul class="nav navbar-nav"><li> - <a href="../reference/index.html">Functions and data</a> + <a href="../reference/index.html">Reference</a> </li> <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> @@ -34,6 +34,8 @@ <ul class="dropdown-menu" role="menu"><li> <a href="../articles/mkin.html">Introduction to mkin</a> </li> + <li class="divider"> + <li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li> <li> <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> </li> @@ -41,22 +43,29 @@ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> - <a href="../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> + <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> </li> + <li class="divider"> + <li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li> <li> - <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> + <a href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a> </li> <li> - <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> + <a href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a> </li> <li> - <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + <a href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a> </li> <li> - <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> + <a href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a> </li> <li> - <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> + <a href="../articles/web_only/multistart.html">Short demo of the multistart method</a> + </li> + <li class="divider"> + <li class="dropdown-header">Performance</li> + <li> + <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> <a href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> @@ -64,6 +73,14 @@ <li> <a href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a> </li> + <li class="divider"> + <li class="dropdown-header">Miscellaneous</li> + <li> + <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> + </li> + <li> + <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> + </li> </ul></li> <li> <a href="../news/index.html">News</a> @@ -90,14 +107,18 @@ <h3>All vignettes</h3> <p class="section-desc"></p> - <dl><dt><a href="2022_wp_1.1_dmta_parent.html">Work package 1.1: Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a></dt> - <dd> - </dd><dt><a href="FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a></dt> + <dl><dt><a href="FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a></dt> <dd> </dd><dt><a href="FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a></dt> <dd> </dd><dt><a href="mkin.html">Introduction to mkin</a></dt> <dd> + </dd><dt><a href="prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a></dt> + <dd> + </dd><dt><a href="prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a></dt> + <dd> + </dd><dt><a href="prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a></dt> + <dd> </dd><dt><a href="twa.html">Calculation of time weighted average concentrations with mkin</a></dt> <dd> </dd><dt><a href="web_only/FOCUS_Z.html">Example evaluation of FOCUS dataset Z</a></dt> diff --git a/docs/dev/articles/prebuilt/2022_cyan_pathway.html b/docs/dev/articles/prebuilt/2022_cyan_pathway.html new file mode 100644 index 00000000..87d4ca4a --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_cyan_pathway.html @@ -0,0 +1,5623 @@ +<!DOCTYPE html> +<!-- Generated by pkgdown: do not edit by hand --><html lang="en"> +<head> +<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> +<meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> +<title>Testing hierarchical pathway kinetics with residue data on cyantraniliprole • mkin</title> +<!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"> +<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../../bootstrap-toc.css"> +<script src="../../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"> +<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../../pkgdown.css" rel="stylesheet"> +<script src="../../pkgdown.js"></script><meta property="og:title" content="Testing hierarchical pathway kinetics with residue data on cyantraniliprole"> +<meta property="og:description" content="mkin"> +<meta name="robots" content="noindex"> +<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> +</head> +<body data-spy="scroll" data-target="#toc"> + + + <div class="container template-article"> + <header><div class="navbar navbar-default navbar-fixed-top" role="navigation"> + <div class="container"> + <div class="navbar-header"> + <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> + <span class="sr-only">Toggle navigation</span> + <span class="icon-bar"></span> + <span class="icon-bar"></span> + <span class="icon-bar"></span> + </button> + <span class="navbar-brand"> + <a class="navbar-link" href="../../index.html">mkin</a> + <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.2.2</span> + </span> + </div> + + <div id="navbar" class="navbar-collapse collapse"> + <ul class="nav navbar-nav"> +<li> + <a href="../../reference/index.html">Functions and data</a> +</li> +<li class="dropdown"> + <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> + Articles + + <span class="caret"></span> + </a> + <ul class="dropdown-menu" role="menu"> +<li> + <a href="../../articles/mkin.html">Introduction to mkin</a> + </li> + <li> + <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> + </li> + <li> + <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> + </li> + <li> + <a href="../../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> + </li> + <li> + <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> + </li> + <li> + <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> + </li> + <li> + <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> + <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> + </li> + <li> + <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> + </li> + <li> + <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> + </li> + <li> + <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a> + </li> + </ul> +</li> +<li> + <a href="../../news/index.html">News</a> +</li> + </ul> +<ul class="nav navbar-nav navbar-right"> +<li> + <a href="https://github.com/jranke/mkin/" class="external-link"> + <span class="fab fa-github fa-lg"></span> + + </a> +</li> + </ul> +</div> +<!--/.nav-collapse --> + </div> +<!--/.container --> +</div> +<!--/.navbar --> + + + + </header><div class="row"> + <div class="col-md-9 contents"> + <div class="page-header toc-ignore"> + <h1 data-toc-skip>Testing hierarchical pathway kinetics with +residue data on cyantraniliprole</h1> + <h4 data-toc-skip class="author">Johannes +Ranke</h4> + + <h4 data-toc-skip class="date">Last change on 6 January +2023, last compiled on 28 Januar 2023</h4> + + <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/prebuilt/2022_cyan_pathway.rmd" class="external-link"><code>vignettes/prebuilt/2022_cyan_pathway.rmd</code></a></small> + <div class="hidden name"><code>2022_cyan_pathway.rmd</code></div> + + </div> + + + +<div class="section level2"> +<h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a> +</h2> +<p>The purpose of this document is to test demonstrate how nonlinear +hierarchical models (NLHM) based on the parent degradation models SFO, +FOMC, DFOP and HS, with serial formation of two or more metabolites can +be fitted with the mkin package.</p> +<p>It was assembled in the course of work package 1.2 of Project Number +173340 (Application of nonlinear hierarchical models to the kinetic +evaluation of chemical degradation data) of the German Environment +Agency carried out in 2022 and 2023.</p> +<p>The mkin package is used in version 1.2.2 which is currently under +development. The newly introduced functionality that is used here is a +simplification of excluding random effects for a set of fits based on a +related set of fits with a reduced model, and the documentation of the +starting parameters of the fit, so that all starting parameters of +<code>saem</code> fits are now listed in the summary. The +<code>saemix</code> package is used as a backend for fitting the NLHM, +but is also loaded to make the convergence plot function available.</p> +<p>This document is processed with the <code>knitr</code> package, which +also provides the <code>kable</code> function that is used to improve +the display of tabular data in R markdown documents. For parallel +processing, the <code>parallel</code> package is used.</p> +<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://pkgdown.jrwb.de/mkin/">mkin</a></span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://yihui.org/knitr/" class="external-link">knitr</a></span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">saemix</span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">parallel</span><span class="op">)</span></span> +<span><span class="va">n_cores</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/detectCores.html" class="external-link">detectCores</a></span><span class="op">(</span><span class="op">)</span></span> +<span><span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/Sys.info.html" class="external-link">Sys.info</a></span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="st">"sysname"</span><span class="op">]</span> <span class="op">==</span> <span class="st">"Windows"</span><span class="op">)</span> <span class="op">{</span></span> +<span> <span class="va">cl</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makePSOCKcluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span><span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span> +<span> <span class="va">cl</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makeForkCluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span><span class="op">}</span></span></code></pre></div> +<div class="section level3"> +<h3 id="test-data">Test data<a class="anchor" aria-label="anchor" href="#test-data"></a> +</h3> +<p>The example data are taken from the final addendum to the DAR from +2014 and are distributed with the mkin package. Residue data and time +step normalisation factors are read in using the function +<code>read_spreadsheet</code> from the mkin package. This function also +performs the time step normalisation.</p> +<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">data_file</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/system.file.html" class="external-link">system.file</a></span><span class="op">(</span></span> +<span> <span class="st">"testdata"</span>, <span class="st">"cyantraniliprole_soil_efsa_2014.xlsx"</span>,</span> +<span> package <span class="op">=</span> <span class="st">"mkin"</span><span class="op">)</span></span> +<span><span class="va">cyan_ds</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/read_spreadsheet.html">read_spreadsheet</a></span><span class="op">(</span><span class="va">data_file</span>, parent_only <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div> +<p>The following tables show the covariate data and the 5 datasets that +were read in from the spreadsheet file.</p> +<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">pH</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/attr.html" class="external-link">attr</a></span><span class="op">(</span><span class="va">cyan_ds</span>, <span class="st">"covariates"</span><span class="op">)</span></span> +<span><span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="va">pH</span>, caption <span class="op">=</span> <span class="st">"Covariate data"</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<caption>Covariate data</caption> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">pH</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">Nambsheim</td> +<td align="right">7.90</td> +</tr> +<tr class="even"> +<td align="left">Tama</td> +<td align="right">6.20</td> +</tr> +<tr class="odd"> +<td align="left">Gross-Umstadt</td> +<td align="right">7.04</td> +</tr> +<tr class="even"> +<td align="left">Sassafras</td> +<td align="right">4.62</td> +</tr> +<tr class="odd"> +<td align="left">Lleida</td> +<td align="right">8.05</td> +</tr> +</tbody> +</table> +<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw">for</span> <span class="op">(</span><span class="va">ds_name</span> <span class="kw">in</span> <span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">cyan_ds</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span> +<span> <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span></span> +<span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mkin_long_to_wide.html">mkin_long_to_wide</a></span><span class="op">(</span><span class="va">cyan_ds</span><span class="op">[[</span><span class="va">ds_name</span><span class="op">]</span><span class="op">]</span><span class="op">)</span>,</span> +<span> caption <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste</a></span><span class="op">(</span><span class="st">"Dataset"</span>, <span class="va">ds_name</span><span class="op">)</span>,</span> +<span> booktabs <span class="op">=</span> <span class="cn">TRUE</span>, row.names <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">)</span></span> +<span> <span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="st">"\n\\clearpage\n"</span><span class="op">)</span></span> +<span><span class="op">}</span></span></code></pre></div> +<table class="table"> +<caption>Dataset Nambsheim</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">cyan</th> +<th align="right">JCZ38</th> +<th align="right">J9C38</th> +<th align="right">JSE76</th> +<th align="right">J9Z38</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">105.79</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">3.210424</td> +<td align="right">77.26</td> +<td align="right">7.92</td> +<td align="right">11.94</td> +<td align="right">5.58</td> +<td align="right">9.12</td> +</tr> +<tr class="odd"> +<td align="right">7.490988</td> +<td align="right">57.13</td> +<td align="right">15.46</td> +<td align="right">16.58</td> +<td align="right">12.59</td> +<td align="right">11.74</td> +</tr> +<tr class="even"> +<td align="right">17.122259</td> +<td align="right">37.74</td> +<td align="right">15.98</td> +<td align="right">13.36</td> +<td align="right">26.05</td> +<td align="right">10.77</td> +</tr> +<tr class="odd"> +<td align="right">23.543105</td> +<td align="right">31.47</td> +<td align="right">6.05</td> +<td align="right">14.49</td> +<td align="right">34.71</td> +<td align="right">4.96</td> +</tr> +<tr class="even"> +<td align="right">43.875788</td> +<td align="right">16.74</td> +<td align="right">6.07</td> +<td align="right">7.57</td> +<td align="right">40.38</td> +<td align="right">6.52</td> +</tr> +<tr class="odd"> +<td align="right">67.418893</td> +<td align="right">8.85</td> +<td align="right">10.34</td> +<td align="right">6.39</td> +<td align="right">30.71</td> +<td align="right">8.90</td> +</tr> +<tr class="even"> +<td align="right">107.014116</td> +<td align="right">5.19</td> +<td align="right">9.61</td> +<td align="right">1.95</td> +<td align="right">20.41</td> +<td align="right">12.93</td> +</tr> +<tr class="odd"> +<td align="right">129.487080</td> +<td align="right">3.45</td> +<td align="right">6.18</td> +<td align="right">1.36</td> +<td align="right">21.78</td> +<td align="right">6.99</td> +</tr> +<tr class="even"> +<td align="right">195.835832</td> +<td align="right">2.15</td> +<td align="right">9.13</td> +<td align="right">0.95</td> +<td align="right">16.29</td> +<td align="right">7.69</td> +</tr> +<tr class="odd"> +<td align="right">254.693596</td> +<td align="right">1.92</td> +<td align="right">6.92</td> +<td align="right">0.20</td> +<td align="right">13.57</td> +<td align="right">7.16</td> +</tr> +<tr class="even"> +<td align="right">321.042348</td> +<td align="right">2.26</td> +<td align="right">7.02</td> +<td align="right">NA</td> +<td align="right">11.12</td> +<td align="right">8.66</td> +</tr> +<tr class="odd"> +<td align="right">383.110535</td> +<td align="right">NA</td> +<td align="right">5.05</td> +<td align="right">NA</td> +<td align="right">10.64</td> +<td align="right">5.56</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">105.57</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">3.210424</td> +<td align="right">78.88</td> +<td align="right">12.77</td> +<td align="right">11.94</td> +<td align="right">5.47</td> +<td align="right">9.12</td> +</tr> +<tr class="even"> +<td align="right">7.490988</td> +<td align="right">59.94</td> +<td align="right">15.27</td> +<td align="right">16.58</td> +<td align="right">13.60</td> +<td align="right">11.74</td> +</tr> +<tr class="odd"> +<td align="right">17.122259</td> +<td align="right">39.67</td> +<td align="right">14.26</td> +<td align="right">13.36</td> +<td align="right">29.44</td> +<td align="right">10.77</td> +</tr> +<tr class="even"> +<td align="right">23.543105</td> +<td align="right">30.21</td> +<td align="right">16.07</td> +<td align="right">14.49</td> +<td align="right">35.90</td> +<td align="right">4.96</td> +</tr> +<tr class="odd"> +<td align="right">43.875788</td> +<td align="right">18.06</td> +<td align="right">9.44</td> +<td align="right">7.57</td> +<td align="right">42.30</td> +<td align="right">6.52</td> +</tr> +<tr class="even"> +<td align="right">67.418893</td> +<td align="right">8.54</td> +<td align="right">5.78</td> +<td align="right">6.39</td> +<td align="right">34.70</td> +<td align="right">8.90</td> +</tr> +<tr class="odd"> +<td align="right">107.014116</td> +<td align="right">7.26</td> +<td align="right">4.54</td> +<td align="right">1.95</td> +<td align="right">23.33</td> +<td align="right">12.93</td> +</tr> +<tr class="even"> +<td align="right">129.487080</td> +<td align="right">3.60</td> +<td align="right">4.22</td> +<td align="right">1.36</td> +<td align="right">23.56</td> +<td align="right">6.99</td> +</tr> +<tr class="odd"> +<td align="right">195.835832</td> +<td align="right">2.84</td> +<td align="right">3.05</td> +<td align="right">0.95</td> +<td align="right">16.21</td> +<td align="right">7.69</td> +</tr> +<tr class="even"> +<td align="right">254.693596</td> +<td align="right">2.00</td> +<td align="right">2.90</td> +<td align="right">0.20</td> +<td align="right">15.53</td> +<td align="right">7.16</td> +</tr> +<tr class="odd"> +<td align="right">321.042348</td> +<td align="right">1.79</td> +<td align="right">0.94</td> +<td align="right">NA</td> +<td align="right">9.80</td> +<td align="right">8.66</td> +</tr> +<tr class="even"> +<td align="right">383.110535</td> +<td align="right">NA</td> +<td align="right">1.82</td> +<td align="right">NA</td> +<td align="right">9.49</td> +<td align="right">5.56</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Tama</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">cyan</th> +<th align="right">JCZ38</th> +<th align="right">J9Z38</th> +<th align="right">JSE76</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">106.14</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">2.400833</td> +<td align="right">93.47</td> +<td align="right">6.46</td> +<td align="right">2.85</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">5.601943</td> +<td align="right">88.39</td> +<td align="right">10.86</td> +<td align="right">4.65</td> +<td align="right">3.85</td> +</tr> +<tr class="even"> +<td align="right">12.804442</td> +<td align="right">72.29</td> +<td align="right">11.97</td> +<td align="right">4.91</td> +<td align="right">11.24</td> +</tr> +<tr class="odd"> +<td align="right">17.606108</td> +<td align="right">65.79</td> +<td align="right">13.11</td> +<td align="right">6.63</td> +<td align="right">13.79</td> +</tr> +<tr class="even"> +<td align="right">32.811382</td> +<td align="right">53.16</td> +<td align="right">11.24</td> +<td align="right">8.90</td> +<td align="right">23.40</td> +</tr> +<tr class="odd"> +<td align="right">50.417490</td> +<td align="right">44.01</td> +<td align="right">11.34</td> +<td align="right">9.98</td> +<td align="right">29.56</td> +</tr> +<tr class="even"> +<td align="right">80.027761</td> +<td align="right">33.23</td> +<td align="right">8.82</td> +<td align="right">11.31</td> +<td align="right">35.63</td> +</tr> +<tr class="odd"> +<td align="right">96.833591</td> +<td align="right">40.68</td> +<td align="right">5.94</td> +<td align="right">8.32</td> +<td align="right">29.09</td> +</tr> +<tr class="even"> +<td align="right">146.450803</td> +<td align="right">20.65</td> +<td align="right">4.49</td> +<td align="right">8.72</td> +<td align="right">36.88</td> +</tr> +<tr class="odd"> +<td align="right">190.466072</td> +<td align="right">17.71</td> +<td align="right">4.66</td> +<td align="right">11.10</td> +<td align="right">40.97</td> +</tr> +<tr class="even"> +<td align="right">240.083284</td> +<td align="right">14.86</td> +<td align="right">2.27</td> +<td align="right">11.62</td> +<td align="right">40.11</td> +</tr> +<tr class="odd"> +<td align="right">286.499386</td> +<td align="right">12.02</td> +<td align="right">NA</td> +<td align="right">10.73</td> +<td align="right">42.58</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">109.11</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">2.400833</td> +<td align="right">96.84</td> +<td align="right">5.52</td> +<td align="right">2.04</td> +<td align="right">2.02</td> +</tr> +<tr class="even"> +<td align="right">5.601943</td> +<td align="right">85.29</td> +<td align="right">9.65</td> +<td align="right">2.99</td> +<td align="right">4.39</td> +</tr> +<tr class="odd"> +<td align="right">12.804442</td> +<td align="right">73.68</td> +<td align="right">12.48</td> +<td align="right">5.05</td> +<td align="right">11.47</td> +</tr> +<tr class="even"> +<td align="right">17.606108</td> +<td align="right">64.89</td> +<td align="right">12.44</td> +<td align="right">6.29</td> +<td align="right">15.00</td> +</tr> +<tr class="odd"> +<td align="right">32.811382</td> +<td align="right">52.27</td> +<td align="right">10.86</td> +<td align="right">7.65</td> +<td align="right">23.30</td> +</tr> +<tr class="even"> +<td align="right">50.417490</td> +<td align="right">42.61</td> +<td align="right">10.54</td> +<td align="right">9.37</td> +<td align="right">31.06</td> +</tr> +<tr class="odd"> +<td align="right">80.027761</td> +<td align="right">34.29</td> +<td align="right">10.02</td> +<td align="right">9.04</td> +<td align="right">37.87</td> +</tr> +<tr class="even"> +<td align="right">96.833591</td> +<td align="right">30.50</td> +<td align="right">6.34</td> +<td align="right">8.14</td> +<td align="right">33.97</td> +</tr> +<tr class="odd"> +<td align="right">146.450803</td> +<td align="right">19.21</td> +<td align="right">6.29</td> +<td align="right">8.52</td> +<td align="right">26.15</td> +</tr> +<tr class="even"> +<td align="right">190.466072</td> +<td align="right">17.55</td> +<td align="right">5.81</td> +<td align="right">9.89</td> +<td align="right">32.08</td> +</tr> +<tr class="odd"> +<td align="right">240.083284</td> +<td align="right">13.22</td> +<td align="right">5.99</td> +<td align="right">10.79</td> +<td align="right">40.66</td> +</tr> +<tr class="even"> +<td align="right">286.499386</td> +<td align="right">11.09</td> +<td align="right">6.05</td> +<td align="right">8.82</td> +<td align="right">42.90</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Gross-Umstadt</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">cyan</th> +<th align="right">JCZ38</th> +<th align="right">J9Z38</th> +<th align="right">JSE76</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">103.03</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">2.1014681</td> +<td align="right">87.85</td> +<td align="right">4.79</td> +<td align="right">3.26</td> +<td align="right">0.62</td> +</tr> +<tr class="odd"> +<td align="right">4.9034255</td> +<td align="right">77.35</td> +<td align="right">8.05</td> +<td align="right">9.89</td> +<td align="right">1.32</td> +</tr> +<tr class="even"> +<td align="right">10.5073404</td> +<td align="right">69.33</td> +<td align="right">9.74</td> +<td align="right">12.32</td> +<td align="right">4.74</td> +</tr> +<tr class="odd"> +<td align="right">21.0146807</td> +<td align="right">55.65</td> +<td align="right">14.57</td> +<td align="right">13.59</td> +<td align="right">9.84</td> +</tr> +<tr class="even"> +<td align="right">31.5220211</td> +<td align="right">49.03</td> +<td align="right">14.66</td> +<td align="right">16.71</td> +<td align="right">12.32</td> +</tr> +<tr class="odd"> +<td align="right">42.0293615</td> +<td align="right">41.86</td> +<td align="right">15.97</td> +<td align="right">13.64</td> +<td align="right">15.53</td> +</tr> +<tr class="even"> +<td align="right">63.0440422</td> +<td align="right">34.88</td> +<td align="right">18.20</td> +<td align="right">14.12</td> +<td align="right">22.02</td> +</tr> +<tr class="odd"> +<td align="right">84.0587230</td> +<td align="right">28.26</td> +<td align="right">15.64</td> +<td align="right">14.06</td> +<td align="right">25.60</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">104.05</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">2.1014681</td> +<td align="right">85.25</td> +<td align="right">2.68</td> +<td align="right">7.32</td> +<td align="right">0.69</td> +</tr> +<tr class="even"> +<td align="right">4.9034255</td> +<td align="right">77.22</td> +<td align="right">7.28</td> +<td align="right">8.37</td> +<td align="right">1.45</td> +</tr> +<tr class="odd"> +<td align="right">10.5073404</td> +<td align="right">65.23</td> +<td align="right">10.73</td> +<td align="right">10.93</td> +<td align="right">4.74</td> +</tr> +<tr class="even"> +<td align="right">21.0146807</td> +<td align="right">57.78</td> +<td align="right">12.29</td> +<td align="right">14.80</td> +<td align="right">9.05</td> +</tr> +<tr class="odd"> +<td align="right">31.5220211</td> +<td align="right">54.83</td> +<td align="right">14.05</td> +<td align="right">12.01</td> +<td align="right">11.05</td> +</tr> +<tr class="even"> +<td align="right">42.0293615</td> +<td align="right">45.17</td> +<td align="right">12.12</td> +<td align="right">17.89</td> +<td align="right">15.71</td> +</tr> +<tr class="odd"> +<td align="right">63.0440422</td> +<td align="right">34.83</td> +<td align="right">12.90</td> +<td align="right">15.86</td> +<td align="right">22.52</td> +</tr> +<tr class="even"> +<td align="right">84.0587230</td> +<td align="right">26.59</td> +<td align="right">14.28</td> +<td align="right">14.91</td> +<td align="right">28.48</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">104.62</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.8145225</td> +<td align="right">97.21</td> +<td align="right">NA</td> +<td align="right">4.00</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">1.9005525</td> +<td align="right">89.64</td> +<td align="right">3.59</td> +<td align="right">5.24</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">4.0726125</td> +<td align="right">87.90</td> +<td align="right">4.10</td> +<td align="right">9.58</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">8.1452251</td> +<td align="right">86.90</td> +<td align="right">5.96</td> +<td align="right">9.45</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">12.2178376</td> +<td align="right">74.74</td> +<td align="right">7.83</td> +<td align="right">15.03</td> +<td align="right">5.33</td> +</tr> +<tr class="odd"> +<td align="right">16.2904502</td> +<td align="right">74.13</td> +<td align="right">8.84</td> +<td align="right">14.41</td> +<td align="right">5.10</td> +</tr> +<tr class="even"> +<td align="right">24.4356753</td> +<td align="right">65.26</td> +<td align="right">11.84</td> +<td align="right">18.33</td> +<td align="right">6.71</td> +</tr> +<tr class="odd"> +<td align="right">32.5809004</td> +<td align="right">57.70</td> +<td align="right">12.74</td> +<td align="right">19.93</td> +<td align="right">9.74</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">101.94</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">0.8145225</td> +<td align="right">99.94</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">1.9005525</td> +<td align="right">94.87</td> +<td align="right">NA</td> +<td align="right">4.56</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">4.0726125</td> +<td align="right">86.96</td> +<td align="right">6.75</td> +<td align="right">6.90</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">8.1452251</td> +<td align="right">80.51</td> +<td align="right">10.68</td> +<td align="right">7.43</td> +<td align="right">2.58</td> +</tr> +<tr class="odd"> +<td align="right">12.2178376</td> +<td align="right">78.38</td> +<td align="right">10.35</td> +<td align="right">9.46</td> +<td align="right">3.69</td> +</tr> +<tr class="even"> +<td align="right">16.2904502</td> +<td align="right">70.05</td> +<td align="right">13.73</td> +<td align="right">9.27</td> +<td align="right">7.18</td> +</tr> +<tr class="odd"> +<td align="right">24.4356753</td> +<td align="right">61.28</td> +<td align="right">12.57</td> +<td align="right">13.28</td> +<td align="right">13.19</td> +</tr> +<tr class="even"> +<td align="right">32.5809004</td> +<td align="right">52.85</td> +<td align="right">12.67</td> +<td align="right">12.95</td> +<td align="right">13.69</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Sassafras</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">cyan</th> +<th align="right">JCZ38</th> +<th align="right">J9Z38</th> +<th align="right">JSE76</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">102.17</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">2.216719</td> +<td align="right">95.49</td> +<td align="right">1.11</td> +<td align="right">0.10</td> +<td align="right">0.83</td> +</tr> +<tr class="odd"> +<td align="right">5.172343</td> +<td align="right">83.35</td> +<td align="right">6.43</td> +<td align="right">2.89</td> +<td align="right">3.30</td> +</tr> +<tr class="even"> +<td align="right">11.083593</td> +<td align="right">78.18</td> +<td align="right">10.00</td> +<td align="right">5.59</td> +<td align="right">0.81</td> +</tr> +<tr class="odd"> +<td align="right">22.167186</td> +<td align="right">70.44</td> +<td align="right">17.21</td> +<td align="right">4.23</td> +<td align="right">1.09</td> +</tr> +<tr class="even"> +<td align="right">33.250779</td> +<td align="right">68.00</td> +<td align="right">20.45</td> +<td align="right">5.86</td> +<td align="right">1.17</td> +</tr> +<tr class="odd"> +<td align="right">44.334371</td> +<td align="right">59.64</td> +<td align="right">24.64</td> +<td align="right">3.17</td> +<td align="right">2.72</td> +</tr> +<tr class="even"> +<td align="right">66.501557</td> +<td align="right">50.73</td> +<td align="right">27.50</td> +<td align="right">6.19</td> +<td align="right">1.27</td> +</tr> +<tr class="odd"> +<td align="right">88.668742</td> +<td align="right">45.65</td> +<td align="right">32.77</td> +<td align="right">5.69</td> +<td align="right">4.54</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">100.43</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">2.216719</td> +<td align="right">95.34</td> +<td align="right">3.21</td> +<td align="right">0.14</td> +<td align="right">0.46</td> +</tr> +<tr class="even"> +<td align="right">5.172343</td> +<td align="right">84.38</td> +<td align="right">5.73</td> +<td align="right">4.75</td> +<td align="right">0.62</td> +</tr> +<tr class="odd"> +<td align="right">11.083593</td> +<td align="right">78.50</td> +<td align="right">11.89</td> +<td align="right">3.99</td> +<td align="right">0.73</td> +</tr> +<tr class="even"> +<td align="right">22.167186</td> +<td align="right">71.17</td> +<td align="right">17.28</td> +<td align="right">4.39</td> +<td align="right">0.66</td> +</tr> +<tr class="odd"> +<td align="right">33.250779</td> +<td align="right">59.41</td> +<td align="right">18.73</td> +<td align="right">11.85</td> +<td align="right">2.65</td> +</tr> +<tr class="even"> +<td align="right">44.334371</td> +<td align="right">64.57</td> +<td align="right">22.93</td> +<td align="right">5.13</td> +<td align="right">2.01</td> +</tr> +<tr class="odd"> +<td align="right">66.501557</td> +<td align="right">49.08</td> +<td align="right">33.39</td> +<td align="right">5.67</td> +<td align="right">3.63</td> +</tr> +<tr class="even"> +<td align="right">88.668742</td> +<td align="right">40.41</td> +<td align="right">39.60</td> +<td align="right">5.93</td> +<td align="right">6.17</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Lleida</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">cyan</th> +<th align="right">JCZ38</th> +<th align="right">J9Z38</th> +<th align="right">JSE76</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">102.71</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">2.821051</td> +<td align="right">79.11</td> +<td align="right">5.70</td> +<td align="right">8.07</td> +<td align="right">0.97</td> +</tr> +<tr class="odd"> +<td align="right">6.582451</td> +<td align="right">70.03</td> +<td align="right">7.17</td> +<td align="right">11.31</td> +<td align="right">4.72</td> +</tr> +<tr class="even"> +<td align="right">14.105253</td> +<td align="right">50.93</td> +<td align="right">10.25</td> +<td align="right">14.84</td> +<td align="right">9.95</td> +</tr> +<tr class="odd"> +<td align="right">28.210505</td> +<td align="right">33.43</td> +<td align="right">10.40</td> +<td align="right">14.82</td> +<td align="right">24.06</td> +</tr> +<tr class="even"> +<td align="right">42.315758</td> +<td align="right">24.69</td> +<td align="right">9.75</td> +<td align="right">16.38</td> +<td align="right">29.38</td> +</tr> +<tr class="odd"> +<td align="right">56.421010</td> +<td align="right">22.99</td> +<td align="right">10.06</td> +<td align="right">15.51</td> +<td align="right">29.25</td> +</tr> +<tr class="even"> +<td align="right">84.631516</td> +<td align="right">14.63</td> +<td align="right">5.63</td> +<td align="right">14.74</td> +<td align="right">31.04</td> +</tr> +<tr class="odd"> +<td align="right">112.842021</td> +<td align="right">12.43</td> +<td align="right">4.17</td> +<td align="right">13.53</td> +<td align="right">33.28</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">99.31</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">2.821051</td> +<td align="right">82.07</td> +<td align="right">6.55</td> +<td align="right">5.60</td> +<td align="right">1.12</td> +</tr> +<tr class="even"> +<td align="right">6.582451</td> +<td align="right">70.65</td> +<td align="right">7.61</td> +<td align="right">8.01</td> +<td align="right">3.21</td> +</tr> +<tr class="odd"> +<td align="right">14.105253</td> +<td align="right">53.52</td> +<td align="right">11.48</td> +<td align="right">10.82</td> +<td align="right">12.24</td> +</tr> +<tr class="even"> +<td align="right">28.210505</td> +<td align="right">35.60</td> +<td align="right">11.19</td> +<td align="right">15.43</td> +<td align="right">23.53</td> +</tr> +<tr class="odd"> +<td align="right">42.315758</td> +<td align="right">34.26</td> +<td align="right">11.09</td> +<td align="right">13.26</td> +<td align="right">27.42</td> +</tr> +<tr class="even"> +<td align="right">56.421010</td> +<td align="right">21.79</td> +<td align="right">4.80</td> +<td align="right">18.30</td> +<td align="right">30.20</td> +</tr> +<tr class="odd"> +<td align="right">84.631516</td> +<td align="right">14.06</td> +<td align="right">6.30</td> +<td align="right">16.35</td> +<td align="right">32.32</td> +</tr> +<tr class="even"> +<td align="right">112.842021</td> +<td align="right">11.51</td> +<td align="right">5.57</td> +<td align="right">12.64</td> +<td align="right">32.51</td> +</tr> +</tbody> +</table> +</div> +</div> +<div class="section level2"> +<h2 id="parent-only-evaluations">Parent only evaluations<a class="anchor" aria-label="anchor" href="#parent-only-evaluations"></a> +</h2> +<p>As the pathway fits have very long run times, evaluations of the +parent data are performed first, in order to determine for each +hierarchical parent degradation model which random effects on the +degradation model parameters are ill-defined.</p> +<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">cyan_sep_const</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span>, <span class="st">"DFOP"</span>, <span class="st">"SFORB"</span>, <span class="st">"HS"</span><span class="op">)</span>,</span> +<span> <span class="va">cyan_ds</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>, cores <span class="op">=</span> <span class="va">n_cores</span><span class="op">)</span></span> +<span><span class="va">cyan_sep_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">cyan_sep_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span> +<span><span class="va">cyan_saem_full</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">cyan_sep_const</span>, <span class="va">cyan_sep_tc</span><span class="op">)</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">FOMC</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">DFOP</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">SFORB</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">HS</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>All fits converged successfully.</p> +<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO</td> +<td align="left">sd(cyan_0)</td> +<td align="left">sd(cyan_0)</td> +</tr> +<tr class="even"> +<td align="left">FOMC</td> +<td align="left">sd(log_beta)</td> +<td align="left">sd(cyan_0)</td> +</tr> +<tr class="odd"> +<td align="left">DFOP</td> +<td align="left">sd(cyan_0)</td> +<td align="left">sd(cyan_0), sd(log_k1)</td> +</tr> +<tr class="even"> +<td align="left">SFORB</td> +<td align="left">sd(cyan_free_0)</td> +<td align="left">sd(cyan_free_0), sd(log_k_cyan_free_bound)</td> +</tr> +<tr class="odd"> +<td align="left">HS</td> +<td align="left">sd(cyan_0)</td> +<td align="left">sd(cyan_0)</td> +</tr> +</tbody> +</table> +<p>In almost all models, the random effect for the initial concentration +of the parent compound is ill-defined. For the biexponential models DFOP +and SFORB, the random effect of one additional parameter is ill-defined +when the two-component error model is used.</p> +<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO const</td> +<td align="right">5</td> +<td align="right">833.9</td> +<td align="right">832.0</td> +<td align="right">-412.0</td> +</tr> +<tr class="even"> +<td align="left">SFO tc</td> +<td align="right">6</td> +<td align="right">831.6</td> +<td align="right">829.3</td> +<td align="right">-409.8</td> +</tr> +<tr class="odd"> +<td align="left">FOMC const</td> +<td align="right">7</td> +<td align="right">709.1</td> +<td align="right">706.4</td> +<td align="right">-347.6</td> +</tr> +<tr class="even"> +<td align="left">FOMC tc</td> +<td align="right">8</td> +<td align="right">689.2</td> +<td align="right">686.1</td> +<td align="right">-336.6</td> +</tr> +<tr class="odd"> +<td align="left">DFOP const</td> +<td align="right">9</td> +<td align="right">703.0</td> +<td align="right">699.5</td> +<td align="right">-342.5</td> +</tr> +<tr class="even"> +<td align="left">SFORB const</td> +<td align="right">9</td> +<td align="right">701.3</td> +<td align="right">697.8</td> +<td align="right">-341.7</td> +</tr> +<tr class="odd"> +<td align="left">HS const</td> +<td align="right">9</td> +<td align="right">718.6</td> +<td align="right">715.1</td> +<td align="right">-350.3</td> +</tr> +<tr class="even"> +<td align="left">DFOP tc</td> +<td align="right">10</td> +<td align="right">703.1</td> +<td align="right">699.2</td> +<td align="right">-341.6</td> +</tr> +<tr class="odd"> +<td align="left">SFORB tc</td> +<td align="right">10</td> +<td align="right">700.1</td> +<td align="right">696.2</td> +<td align="right">-340.1</td> +</tr> +<tr class="even"> +<td align="left">HS tc</td> +<td align="right">10</td> +<td align="right">716.7</td> +<td align="right">712.8</td> +<td align="right">-348.3</td> +</tr> +</tbody> +</table> +<p>Model comparison based on AIC and BIC indicates that the +two-component error model is preferable for all parent models with the +exception of DFOP. The lowest AIC and BIC values are are obtained with +the FOMC model, followed by SFORB and DFOP.</p> +</div> +<div class="section level2"> +<h2 id="pathway-fits">Pathway fits<a class="anchor" aria-label="anchor" href="#pathway-fits"></a> +</h2> +<div class="section level3"> +<h3 id="evaluations-with-pathway-established-previously">Evaluations with pathway established previously<a class="anchor" aria-label="anchor" href="#evaluations-with-pathway-established-previously"></a> +</h3> +<p>To test the technical feasibility of coupling the relevant parent +degradation models with different transformation pathway models, a list +of <code>mkinmod</code> models is set up below. As in the EU evaluation, +parallel formation of metabolites JCZ38 and J9Z38 and secondary +formation of metabolite JSE76 from JCZ38 is used.</p> +<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw">if</span> <span class="op">(</span><span class="op">!</span><span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.exists</a></span><span class="op">(</span><span class="st">"cyan_dlls"</span><span class="op">)</span><span class="op">)</span> <span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.create</a></span><span class="op">(</span><span class="st">"cyan_dlls"</span><span class="op">)</span></span> +<span><span class="va">cyan_path_1</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span></span> +<span> sfo_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span> cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span> JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span> J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span> name <span class="op">=</span> <span class="st">"sfo_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>,</span> +<span> fomc_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span> cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span> JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span> J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span> name <span class="op">=</span> <span class="st">"fomc_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>,</span> +<span> dfop_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span> cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span> JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span> J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span> name <span class="op">=</span> <span class="st">"dfop_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>,</span> +<span> sforb_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span> cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFORB"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span> JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span> J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span> name <span class="op">=</span> <span class="st">"sforb_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>,</span> +<span> hs_path_1 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span> cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"HS"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span> JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span> J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span> name <span class="op">=</span> <span class="st">"hs_path_1"</span>, dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span> +<span><span class="op">)</span></span></code></pre></div> +<p>To obtain suitable starting values for the NLHM fits, separate +pathway fits are performed for all datasets.</p> +<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_sep_1_const</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span></span> +<span> <span class="va">cyan_path_1</span>,</span> +<span> <span class="va">cyan_ds</span>,</span> +<span> error_model <span class="op">=</span> <span class="st">"const"</span>,</span> +<span> cluster <span class="op">=</span> <span class="va">cl</span>,</span> +<span> quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_1_const</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Nambsheim</th> +<th align="left">Tama</th> +<th align="left">Gross-Umstadt</th> +<th align="left">Sassafras</th> +<th align="left">Lleida</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +</tr> +</tbody> +</table> +<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_sep_1_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_sep_1_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_1_tc</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Nambsheim</th> +<th align="left">Tama</th> +<th align="left">Gross-Umstadt</th> +<th align="left">Sassafras</th> +<th align="left">Lleida</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>Most separate fits converged successfully. The biggest convergence +problems are seen when using the HS model with constant variance.</p> +<p>For the hierarchical pathway fits, those random effects that could +not be quantified in the corresponding parent data analyses are +excluded.</p> +<p>In the code below, the output of the <code>illparms</code> function +for the parent only fits is used as an argument +<code>no_random_effect</code> to the <code>mhmkin</code> function. The +possibility to do so was introduced in mkin version <code>1.2.2</code> +which is currently under development.</p> +<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_saem_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">f_sep_1_const</span>, <span class="va">f_sep_1_tc</span><span class="op">)</span>,</span> +<span> no_random_effect <span class="op">=</span> <span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">)</span>,</span> +<span> cluster <span class="op">=</span> <span class="va">cl</span><span class="op">)</span></span></code></pre></div> +<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">Fth, FO</td> +<td align="left">Fth, FO</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">OK</td> +<td align="left">Fth, FO</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">Fth, FO</td> +<td align="left">Fth, FO</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">Fth, FO</td> +<td align="left">Fth, FO</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">Fth, FO</td> +<td align="left">Fth, FO</td> +</tr> +</tbody> +</table> +<p>The status information from the individual fits shows that all fits +completed successfully. The matrix entries Fth and FO indicate that the +Fisher Information Matrix could not be inverted for the fixed effects +(theta) and the random effects (Omega), respectively. For the affected +fits, ill-defined parameters cannot be determined using the +<code>illparms</code> function, because it relies on the Fisher +Information Matrix.</p> +<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<colgroup> +<col width="18%"> +<col width="77%"> +<col width="4%"> +</colgroup> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">NA</td> +<td align="left">NA</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">sd(log_k_J9Z38), sd(f_cyan_ilr_2), +sd(f_JCZ38_qlogis)</td> +<td align="left">NA</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">NA</td> +<td align="left">NA</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">NA</td> +<td align="left">NA</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">NA</td> +<td align="left">NA</td> +</tr> +</tbody> +</table> +<p>The model comparison below suggests that the pathway fits using DFOP +or SFORB for the parent compound provide the best fit.</p> +<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1 const</td> +<td align="right">16</td> +<td align="right">2692.8</td> +<td align="right">2686.6</td> +<td align="right">-1330.4</td> +</tr> +<tr class="even"> +<td align="left">sfo_path_1 tc</td> +<td align="right">17</td> +<td align="right">2657.7</td> +<td align="right">2651.1</td> +<td align="right">-1311.9</td> +</tr> +<tr class="odd"> +<td align="left">fomc_path_1 const</td> +<td align="right">18</td> +<td align="right">2427.8</td> +<td align="right">2420.8</td> +<td align="right">-1195.9</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1 tc</td> +<td align="right">19</td> +<td align="right">2423.4</td> +<td align="right">2416.0</td> +<td align="right">-1192.7</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1 const</td> +<td align="right">20</td> +<td align="right">2403.2</td> +<td align="right">2395.4</td> +<td align="right">-1181.6</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1 const</td> +<td align="right">20</td> +<td align="right">2401.4</td> +<td align="right">2393.6</td> +<td align="right">-1180.7</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1 const</td> +<td align="right">20</td> +<td align="right">2427.3</td> +<td align="right">2419.5</td> +<td align="right">-1193.7</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_1 tc</td> +<td align="right">20</td> +<td align="right">2398.0</td> +<td align="right">2390.2</td> +<td align="right">-1179.0</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_1 tc</td> +<td align="right">20</td> +<td align="right">2399.8</td> +<td align="right">2392.0</td> +<td align="right">-1179.9</td> +</tr> +<tr class="even"> +<td align="left">hs_path_1 tc</td> +<td align="right">21</td> +<td align="right">2422.3</td> +<td align="right">2414.1</td> +<td align="right">-1190.2</td> +</tr> +</tbody> +</table> +<p>For these two parent model, successful fits are shown below. Plots of +the fits with the other parent models are shown in the Appendix.</p> +<div class="sourceCode" id="cb15"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"dfop_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-6-1.png" alt="DFOP pathway fit with two-component error" width="700"><p class="caption"> +DFOP pathway fit with two-component error +</p> +</div> +<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-7-1.png" alt="SFORB pathway fit with two-component error" width="700"><p class="caption"> +SFORB pathway fit with two-component error +</p> +</div> +<p>A closer graphical analysis of these Figures shows that the residues +of transformation product JCZ38 in the soils Tama and Nambsheim observed +at later time points are strongly and systematically underestimated.</p> +</div> +<div class="section level3"> +<h3 id="alternative-pathway-fits">Alternative pathway fits<a class="anchor" aria-label="anchor" href="#alternative-pathway-fits"></a> +</h3> +<p>To improve the fit for JCZ38, a back-reaction from JSE76 to JCZ38 was +introduced in an alternative version of the transformation pathway, in +analogy to the back-reaction from K5A78 to K5A77. Both pairs of +transformation products are pairs of an organic acid with its +corresponding amide (Addendum 2014, p. 109). As FOMC provided the best +fit for the parent, and the biexponential models DFOP and SFORB provided +the best initial pathway fits, these three parent models are used in the +alternative pathway fits.</p> +<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">cyan_path_2</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span></span> +<span> fomc_path_2 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span> cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span> JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span> J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JCZ38"</span><span class="op">)</span>,</span> +<span> name <span class="op">=</span> <span class="st">"fomc_path_2"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span> dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>,</span> +<span> overwrite <span class="op">=</span> <span class="cn">TRUE</span></span> +<span> <span class="op">)</span>,</span> +<span> dfop_path_2 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span> cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span> JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span> J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JCZ38"</span><span class="op">)</span>,</span> +<span> name <span class="op">=</span> <span class="st">"dfop_path_2"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span> dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>,</span> +<span> overwrite <span class="op">=</span> <span class="cn">TRUE</span></span> +<span> <span class="op">)</span>,</span> +<span> sforb_path_2 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span> cyan <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFORB"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"JCZ38"</span>, <span class="st">"J9Z38"</span><span class="op">)</span><span class="op">)</span>,</span> +<span> JCZ38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JSE76"</span><span class="op">)</span>,</span> +<span> J9Z38 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> JSE76 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"JCZ38"</span><span class="op">)</span>,</span> +<span> name <span class="op">=</span> <span class="st">"sforb_path_2"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span> dll_dir <span class="op">=</span> <span class="st">"cyan_dlls"</span>,</span> +<span> overwrite <span class="op">=</span> <span class="cn">TRUE</span></span> +<span> <span class="op">)</span></span> +<span><span class="op">)</span></span> +<span><span class="va">f_sep_2_const</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span></span> +<span> <span class="va">cyan_path_2</span>,</span> +<span> <span class="va">cyan_ds</span>,</span> +<span> error_model <span class="op">=</span> <span class="st">"const"</span>,</span> +<span> cluster <span class="op">=</span> <span class="va">cl</span>,</span> +<span> quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span> +<span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_2_const</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Nambsheim</th> +<th align="left">Tama</th> +<th align="left">Gross-Umstadt</th> +<th align="left">Sassafras</th> +<th align="left">Lleida</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>Using constant variance, separate fits converge with the exception of +the fits to the Sassafras soil data.</p> +<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_sep_2_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_sep_2_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_2_tc</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Nambsheim</th> +<th align="left">Tama</th> +<th align="left">Gross-Umstadt</th> +<th align="left">Sassafras</th> +<th align="left">Lleida</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>Using the two-component error model, all separate fits converge with +the exception of the alternative pathway fit with DFOP used for the +parent and the Sassafras dataset.</p> +<div class="sourceCode" id="cb19"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_saem_2</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">f_sep_2_const</span>, <span class="va">f_sep_2_tc</span><span class="op">)</span>,</span> +<span> no_random_effect <span class="op">=</span> <span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">cyan_saem_full</span><span class="op">[</span><span class="fl">2</span><span class="op">:</span><span class="fl">4</span>, <span class="op">]</span><span class="op">)</span>,</span> +<span> cluster <span class="op">=</span> <span class="va">cl</span><span class="op">)</span></span></code></pre></div> +<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2</td> +<td align="left">OK</td> +<td align="left">FO</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>The hierarchical fits for the alternative pathway completed +successfully.</p> +<div class="sourceCode" id="cb21"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<colgroup> +<col width="14%"> +<col width="42%"> +<col width="42%"> +</colgroup> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2</td> +<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td> +<td align="left">NA</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2</td> +<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td> +<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2</td> +<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td> +<td align="left">sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis)</td> +</tr> +</tbody> +</table> +<p>In both fits, the random effects for the formation fractions for the +pathways from JCZ38 to JSE76, and for the reverse pathway from JSE76 to +JCZ38 are ill-defined.</p> +<div class="sourceCode" id="cb22"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2 const</td> +<td align="right">20</td> +<td align="right">2308.3</td> +<td align="right">2300.5</td> +<td align="right">-1134.2</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_2 tc</td> +<td align="right">21</td> +<td align="right">2248.3</td> +<td align="right">2240.1</td> +<td align="right">-1103.2</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_2 const</td> +<td align="right">22</td> +<td align="right">2289.6</td> +<td align="right">2281.0</td> +<td align="right">-1122.8</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_2 const</td> +<td align="right">22</td> +<td align="right">2284.1</td> +<td align="right">2275.5</td> +<td align="right">-1120.0</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_2 tc</td> +<td align="right">22</td> +<td align="right">2234.4</td> +<td align="right">2225.8</td> +<td align="right">-1095.2</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_2 tc</td> +<td align="right">22</td> +<td align="right">2240.4</td> +<td align="right">2231.8</td> +<td align="right">-1098.2</td> +</tr> +</tbody> +</table> +<p>The variants using the biexponential models DFOP and SFORB for the +parent compound and the two-component error model give the lowest AIC +and BIC values and are plotted below. Compared with the original +pathway, the AIC and BIC values indicate a large improvement. This is +confirmed by the plots, which show that the metabolite JCZ38 is fitted +much better with this model.</p> +<div class="sourceCode" id="cb23"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">[[</span><span class="st">"fomc_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-11-1.png" alt="FOMC pathway fit with two-component error, alternative pathway" width="700"><p class="caption"> +FOMC pathway fit with two-component error, alternative pathway +</p> +</div> +<div class="sourceCode" id="cb24"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">[[</span><span class="st">"dfop_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-12-1.png" alt="DFOP pathway fit with two-component error, alternative pathway" width="700"><p class="caption"> +DFOP pathway fit with two-component error, alternative pathway +</p> +</div> +<div class="sourceCode" id="cb25"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">[[</span><span class="st">"sforb_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-13-1.png" alt="SFORB pathway fit with two-component error, alternative pathway" width="700"><p class="caption"> +SFORB pathway fit with two-component error, alternative pathway +</p> +</div> +</div> +<div class="section level3"> +<h3 id="refinement-of-alternative-pathway-fits">Refinement of alternative pathway fits<a class="anchor" aria-label="anchor" href="#refinement-of-alternative-pathway-fits"></a> +</h3> +<p>All ill-defined random effects that were identified in the parent +only fits and in the above pathway fits, are excluded for the final +evaluations below. For this purpose, a list of character vectors is +created below that can be indexed by row and column indices, and which +contains the degradation parameter names for which random effects should +be excluded for each of the hierarchical fits contained in +<code>f_saem_2</code>.</p> +<div class="sourceCode" id="cb26"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">no_ranef</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/matrix.html" class="external-link">matrix</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="op">)</span>, nrow <span class="op">=</span> <span class="fl">3</span>, ncol <span class="op">=</span> <span class="fl">2</span>, dimnames <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/dimnames.html" class="external-link">dimnames</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span><span class="op">)</span></span> +<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"fomc_path_2"</span>, <span class="st">"const"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"log_beta"</span>, <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span> +<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"fomc_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_0"</span>, <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span> +<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"dfop_path_2"</span>, <span class="st">"const"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_0"</span>, <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span> +<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"dfop_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_0"</span>, <span class="st">"log_k1"</span>, <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span> +<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"sforb_path_2"</span>, <span class="st">"const"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_free_0"</span>,</span> +<span> <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span> +<span><span class="va">no_ranef</span><span class="op">[[</span><span class="st">"sforb_path_2"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"cyan_free_0"</span>, <span class="st">"log_k_cyan_free_bound"</span>,</span> +<span> <span class="st">"f_JCZ38_qlogis"</span>, <span class="st">"f_JSE76_qlogis"</span><span class="op">)</span></span> +<span><span class="fu"><a href="https://rdrr.io/r/parallel/clusterApply.html" class="external-link">clusterExport</a></span><span class="op">(</span><span class="va">cl</span>, <span class="st">"no_ranef"</span><span class="op">)</span></span> +<span></span> +<span><span class="va">f_saem_3</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_saem_2</span>,</span> +<span> no_random_effect <span class="op">=</span> <span class="va">no_ranef</span>,</span> +<span> cluster <span class="op">=</span> <span class="va">cl</span><span class="op">)</span></span></code></pre></div> +<div class="sourceCode" id="cb27"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_saem_3</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2</td> +<td align="left">E</td> +<td align="left">Fth</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2</td> +<td align="left">Fth</td> +<td align="left">Fth</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2</td> +<td align="left">Fth</td> +<td align="left">Fth</td> +</tr> +</tbody> +</table> +<p>With the exception of the FOMC pathway fit with constant variance, +all updated fits completed successfully. However, the Fisher Information +Matrix for the fixed effects (Fth) could not be inverted, so no +confidence intervals for the optimised parameters are available.</p> +<div class="sourceCode" id="cb28"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_3</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2</td> +<td align="left">E</td> +<td align="left"></td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2</td> +<td align="left"></td> +<td align="left"></td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2</td> +<td align="left"></td> +<td align="left"></td> +</tr> +</tbody> +</table> +<div class="sourceCode" id="cb29"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_3</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">fomc_path_2 tc</td> +<td align="right">19</td> +<td align="right">2250.9</td> +<td align="right">2243.5</td> +<td align="right">-1106.5</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2 const</td> +<td align="right">20</td> +<td align="right">2281.7</td> +<td align="right">2273.9</td> +<td align="right">-1120.8</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2 const</td> +<td align="right">20</td> +<td align="right">2279.5</td> +<td align="right">2271.7</td> +<td align="right">-1119.7</td> +</tr> +<tr class="even"> +<td align="left">dfop_path_2 tc</td> +<td align="right">20</td> +<td align="right">2231.5</td> +<td align="right">2223.7</td> +<td align="right">-1095.8</td> +</tr> +<tr class="odd"> +<td align="left">sforb_path_2 tc</td> +<td align="right">20</td> +<td align="right">2235.7</td> +<td align="right">2227.9</td> +<td align="right">-1097.9</td> +</tr> +</tbody> +</table> +<p>While the AIC and BIC values of the best fit (DFOP pathway fit with +two-component error) are lower than in the previous fits with the +alternative pathway, the practical value of these refined evaluations is +limited as no confidence intervals are obtained.</p> +</div> +</div> +<div class="section level2"> +<h2 id="conclusion">Conclusion<a class="anchor" aria-label="anchor" href="#conclusion"></a> +</h2> +<p>It was demonstrated that a relatively complex transformation pathway +with parallel formation of two primary metabolites and one secondary +metabolite can be fitted even if the data in the individual datasets are +quite different and partly only cover the formation phase.</p> +<p>The run times of the pathway fits were several hours, limiting the +practical feasibility of iterative refinements based on ill-defined +parameters and of alternative checks of parameter identifiability based +on multistart runs.</p> +</div> +<div class="section level2"> +<h2 id="acknowledgements">Acknowledgements<a class="anchor" aria-label="anchor" href="#acknowledgements"></a> +</h2> +<p>The helpful comments by Janina Wöltjen of the German Environment +Agency are gratefully acknowledged.</p> +</div> +<div class="section level2"> +<h2 id="appendix">Appendix<a class="anchor" aria-label="anchor" href="#appendix"></a> +</h2> +<div class="section level3"> +<h3 id="plots-of-fits-that-were-not-refined-further">Plots of fits that were not refined further<a class="anchor" aria-label="anchor" href="#plots-of-fits-that-were-not-refined-further"></a> +</h3> +<div class="sourceCode" id="cb30"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"sfo_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-17-1.png" alt="SFO pathway fit with two-component error" width="700"><p class="caption"> +SFO pathway fit with two-component error +</p> +</div> +<div class="sourceCode" id="cb31"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"fomc_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-18-1.png" alt="FOMC pathway fit with two-component error" width="700"><p class="caption"> +FOMC pathway fit with two-component error +</p> +</div> +<div class="sourceCode" id="cb32"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_cyan_pathway_files/figure-html/unnamed-chunk-19-1.png" alt="HS pathway fit with two-component error" width="700"><p class="caption"> +HS pathway fit with two-component error +</p> +</div> +</div> +<div class="section level3"> +<h3 id="hierarchical-fit-listings">Hierarchical fit listings<a class="anchor" aria-label="anchor" href="#hierarchical-fit-listings"></a> +</h3> +<div class="section level4"> +<h4 id="pathway-1">Pathway 1<a class="anchor" aria-label="anchor" href="#pathway-1"></a> +</h4> +<caption> +Hierarchical SFO path 1 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:07:38 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - k_cyan * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * k_cyan * cyan - k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * k_cyan * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1088.473 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76 + 95.3304 -3.8459 -3.1305 -5.0678 -5.3196 + f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis + 0.8158 22.5404 10.4289 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_0 4.797 0.0000 0.000 0.000 0.0000 +log_k_cyan 0.000 0.9619 0.000 0.000 0.0000 +log_k_JCZ38 0.000 0.0000 2.139 0.000 0.0000 +log_k_J9Z38 0.000 0.0000 0.000 1.639 0.0000 +log_k_JSE76 0.000 0.0000 0.000 0.000 0.7894 +f_cyan_ilr_1 0.000 0.0000 0.000 0.000 0.0000 +f_cyan_ilr_2 0.000 0.0000 0.000 0.000 0.0000 +f_JCZ38_qlogis 0.000 0.0000 0.000 0.000 0.0000 + f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis +cyan_0 0.0000 0.000 0.00 +log_k_cyan 0.0000 0.000 0.00 +log_k_JCZ38 0.0000 0.000 0.00 +log_k_J9Z38 0.0000 0.000 0.00 +log_k_JSE76 0.0000 0.000 0.00 +f_cyan_ilr_1 0.7714 0.000 0.00 +f_cyan_ilr_2 0.0000 8.684 0.00 +f_JCZ38_qlogis 0.0000 0.000 13.48 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2693 2687 -1330 + +Optimised parameters: + est. lower upper +cyan_0 95.0946 NA NA +log_k_cyan -3.8544 NA NA +log_k_JCZ38 -3.0402 NA NA +log_k_J9Z38 -5.0109 NA NA +log_k_JSE76 -5.2857 NA NA +f_cyan_ilr_1 0.8069 NA NA +f_cyan_ilr_2 16.6623 NA NA +f_JCZ38_qlogis 1.3602 NA NA +a.1 4.8326 NA NA +SD.log_k_cyan 0.5842 NA NA +SD.log_k_JCZ38 1.2680 NA NA +SD.log_k_J9Z38 0.3626 NA NA +SD.log_k_JSE76 0.5244 NA NA +SD.f_cyan_ilr_1 0.2752 NA NA +SD.f_cyan_ilr_2 2.3556 NA NA +SD.f_JCZ38_qlogis 0.2400 NA NA + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_cyan 0.5842 NA NA +SD.log_k_JCZ38 1.2680 NA NA +SD.log_k_J9Z38 0.3626 NA NA +SD.log_k_JSE76 0.5244 NA NA +SD.f_cyan_ilr_1 0.2752 NA NA +SD.f_cyan_ilr_2 2.3556 NA NA +SD.f_JCZ38_qlogis 0.2400 NA NA + +Variance model: + est. lower upper +a.1 4.833 NA NA + +Backtransformed parameters: + est. lower upper +cyan_0 95.094581 NA NA +k_cyan 0.021186 NA NA +k_JCZ38 0.047825 NA NA +k_J9Z38 0.006665 NA NA +k_JSE76 0.005063 NA NA +f_cyan_to_JCZ38 0.757885 NA NA +f_cyan_to_J9Z38 0.242115 NA NA +f_JCZ38_to_JSE76 0.795792 NA NA + +Resulting formation fractions: + ff +cyan_JCZ38 7.579e-01 +cyan_J9Z38 2.421e-01 +cyan_sink 5.877e-10 +JCZ38_JSE76 7.958e-01 +JCZ38_sink 2.042e-01 + +Estimated disappearance times: + DT50 DT90 +cyan 32.72 108.68 +JCZ38 14.49 48.15 +J9Z38 103.99 345.46 +JSE76 136.90 454.76 + +</code></pre> +<p></p> +<caption> +Hierarchical SFO path 1 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:08:17 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - k_cyan * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * k_cyan * cyan - k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * k_cyan * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1127.552 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76 + 96.0039 -3.8907 -3.1276 -5.0069 -4.9367 + f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis + 0.7937 20.0030 15.1336 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_0 4.859 0.000 0.00 0.00 0.0000 +log_k_cyan 0.000 0.962 0.00 0.00 0.0000 +log_k_JCZ38 0.000 0.000 2.04 0.00 0.0000 +log_k_J9Z38 0.000 0.000 0.00 1.72 0.0000 +log_k_JSE76 0.000 0.000 0.00 0.00 0.9076 +f_cyan_ilr_1 0.000 0.000 0.00 0.00 0.0000 +f_cyan_ilr_2 0.000 0.000 0.00 0.00 0.0000 +f_JCZ38_qlogis 0.000 0.000 0.00 0.00 0.0000 + f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis +cyan_0 0.0000 0.000 0.00 +log_k_cyan 0.0000 0.000 0.00 +log_k_JCZ38 0.0000 0.000 0.00 +log_k_J9Z38 0.0000 0.000 0.00 +log_k_JSE76 0.0000 0.000 0.00 +f_cyan_ilr_1 0.7598 0.000 0.00 +f_cyan_ilr_2 0.0000 7.334 0.00 +f_JCZ38_qlogis 0.0000 0.000 11.78 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2658 2651 -1312 + +Optimised parameters: + est. lower upper +cyan_0 94.72923 NA NA +log_k_cyan -3.91670 NA NA +log_k_JCZ38 -3.12917 NA NA +log_k_J9Z38 -5.06070 NA NA +log_k_JSE76 -5.09254 NA NA +f_cyan_ilr_1 0.81116 NA NA +f_cyan_ilr_2 39.97850 NA NA +f_JCZ38_qlogis 3.09728 NA NA +a.1 3.95044 NA NA +b.1 0.07998 NA NA +SD.log_k_cyan 0.58855 NA NA +SD.log_k_JCZ38 1.29753 NA NA +SD.log_k_J9Z38 0.62851 NA NA +SD.log_k_JSE76 0.37235 NA NA +SD.f_cyan_ilr_1 0.37346 NA NA +SD.f_cyan_ilr_2 1.41667 NA NA +SD.f_JCZ38_qlogis 1.81467 NA NA + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_cyan 0.5886 NA NA +SD.log_k_JCZ38 1.2975 NA NA +SD.log_k_J9Z38 0.6285 NA NA +SD.log_k_JSE76 0.3724 NA NA +SD.f_cyan_ilr_1 0.3735 NA NA +SD.f_cyan_ilr_2 1.4167 NA NA +SD.f_JCZ38_qlogis 1.8147 NA NA + +Variance model: + est. lower upper +a.1 3.95044 NA NA +b.1 0.07998 NA NA + +Backtransformed parameters: + est. lower upper +cyan_0 94.729229 NA NA +k_cyan 0.019907 NA NA +k_JCZ38 0.043754 NA NA +k_J9Z38 0.006341 NA NA +k_JSE76 0.006142 NA NA +f_cyan_to_JCZ38 0.758991 NA NA +f_cyan_to_J9Z38 0.241009 NA NA +f_JCZ38_to_JSE76 0.956781 NA NA + +Resulting formation fractions: + ff +cyan_JCZ38 0.75899 +cyan_J9Z38 0.24101 +cyan_sink 0.00000 +JCZ38_JSE76 0.95678 +JCZ38_sink 0.04322 + +Estimated disappearance times: + DT50 DT90 +cyan 34.82 115.67 +JCZ38 15.84 52.63 +J9Z38 109.31 363.12 +JSE76 112.85 374.87 + +</code></pre> +<p></p> +<caption> +Hierarchical FOMC path 1 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:09:12 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) * + cyan - k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) * + cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1182.258 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 + 101.2314 -3.3680 -5.1108 -5.9416 0.7144 + f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta + 7.3870 15.7604 -0.1791 2.9811 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0 5.416 0.000 0.0 0.000 0.0000 +log_k_JCZ38 0.000 2.439 0.0 0.000 0.0000 +log_k_J9Z38 0.000 0.000 1.7 0.000 0.0000 +log_k_JSE76 0.000 0.000 0.0 1.856 0.0000 +f_cyan_ilr_1 0.000 0.000 0.0 0.000 0.7164 +f_cyan_ilr_2 0.000 0.000 0.0 0.000 0.0000 +f_JCZ38_qlogis 0.000 0.000 0.0 0.000 0.0000 +log_alpha 0.000 0.000 0.0 0.000 0.0000 +log_beta 0.000 0.000 0.0 0.000 0.0000 + f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta +cyan_0 0.00 0.00 0.0000 0.0000 +log_k_JCZ38 0.00 0.00 0.0000 0.0000 +log_k_J9Z38 0.00 0.00 0.0000 0.0000 +log_k_JSE76 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_1 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_2 12.33 0.00 0.0000 0.0000 +f_JCZ38_qlogis 0.00 20.42 0.0000 0.0000 +log_alpha 0.00 0.00 0.4144 0.0000 +log_beta 0.00 0.00 0.0000 0.5077 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2428 2421 -1196 + +Optimised parameters: + est. lower upper +cyan_0 101.0225 98.306270 103.7387 +log_k_JCZ38 -3.3786 -4.770657 -1.9866 +log_k_J9Z38 -5.2603 -5.902085 -4.6186 +log_k_JSE76 -6.1427 -7.318336 -4.9671 +f_cyan_ilr_1 0.7437 0.421215 1.0663 +f_cyan_ilr_2 0.9108 0.267977 1.5537 +f_JCZ38_qlogis 2.0487 0.524897 3.5724 +log_alpha -0.2268 -0.618049 0.1644 +log_beta 2.8986 2.700701 3.0964 +a.1 3.4058 3.169913 3.6416 +SD.cyan_0 2.5279 0.454190 4.6016 +SD.log_k_JCZ38 1.5636 0.572824 2.5543 +SD.log_k_J9Z38 0.5316 -0.004405 1.0677 +SD.log_k_JSE76 0.9903 0.106325 1.8742 +SD.f_cyan_ilr_1 0.3464 0.112066 0.5807 +SD.f_cyan_ilr_2 0.2804 -0.393900 0.9546 +SD.f_JCZ38_qlogis 0.9416 -0.152986 2.0362 +SD.log_alpha 0.4273 0.161044 0.6936 + +Correlation: + cyan_0 l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 log_lph +log_k_JCZ38 -0.0156 +log_k_J9Z38 -0.0493 0.0073 +log_k_JSE76 -0.0329 0.0018 0.0069 +f_cyan_ilr_1 -0.0086 0.0180 -0.1406 0.0012 +f_cyan_ilr_2 -0.2629 0.0779 0.2826 0.0274 0.0099 +f_JCZ38_qlogis 0.0713 -0.0747 -0.0505 0.1169 -0.1022 -0.4893 +log_alpha -0.0556 0.0120 0.0336 0.0193 0.0036 0.0840 -0.0489 +log_beta -0.2898 0.0460 0.1305 0.0768 0.0190 0.4071 -0.1981 0.2772 + +Random effects: + est. lower upper +SD.cyan_0 2.5279 0.454190 4.6016 +SD.log_k_JCZ38 1.5636 0.572824 2.5543 +SD.log_k_J9Z38 0.5316 -0.004405 1.0677 +SD.log_k_JSE76 0.9903 0.106325 1.8742 +SD.f_cyan_ilr_1 0.3464 0.112066 0.5807 +SD.f_cyan_ilr_2 0.2804 -0.393900 0.9546 +SD.f_JCZ38_qlogis 0.9416 -0.152986 2.0362 +SD.log_alpha 0.4273 0.161044 0.6936 + +Variance model: + est. lower upper +a.1 3.406 3.17 3.642 + +Backtransformed parameters: + est. lower upper +cyan_0 1.010e+02 9.831e+01 1.037e+02 +k_JCZ38 3.409e-02 8.475e-03 1.372e-01 +k_J9Z38 5.194e-03 2.734e-03 9.867e-03 +k_JSE76 2.149e-03 6.633e-04 6.963e-03 +f_cyan_to_JCZ38 6.481e-01 NA NA +f_cyan_to_J9Z38 2.264e-01 NA NA +f_JCZ38_to_JSE76 8.858e-01 6.283e-01 9.727e-01 +alpha 7.971e-01 5.390e-01 1.179e+00 +beta 1.815e+01 1.489e+01 2.212e+01 + +Resulting formation fractions: + ff +cyan_JCZ38 0.6481 +cyan_J9Z38 0.2264 +cyan_sink 0.1255 +JCZ38_JSE76 0.8858 +JCZ38_sink 0.1142 + +Estimated disappearance times: + DT50 DT90 DT50back +cyan 25.15 308.01 92.72 +JCZ38 20.33 67.54 NA +J9Z38 133.46 443.35 NA +JSE76 322.53 1071.42 NA + +</code></pre> +<p></p> +<caption> +Hierarchical FOMC path 1 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:09:18 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) * + cyan - k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) * + cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1188.041 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 + 101.13827 -3.32493 -5.08921 -5.93478 0.71330 + f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta + 10.05989 12.79248 -0.09621 3.10646 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0 5.643 0.000 0.000 0.00 0.0000 +log_k_JCZ38 0.000 2.319 0.000 0.00 0.0000 +log_k_J9Z38 0.000 0.000 1.731 0.00 0.0000 +log_k_JSE76 0.000 0.000 0.000 1.86 0.0000 +f_cyan_ilr_1 0.000 0.000 0.000 0.00 0.7186 +f_cyan_ilr_2 0.000 0.000 0.000 0.00 0.0000 +f_JCZ38_qlogis 0.000 0.000 0.000 0.00 0.0000 +log_alpha 0.000 0.000 0.000 0.00 0.0000 +log_beta 0.000 0.000 0.000 0.00 0.0000 + f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta +cyan_0 0.00 0.00 0.0000 0.0000 +log_k_JCZ38 0.00 0.00 0.0000 0.0000 +log_k_J9Z38 0.00 0.00 0.0000 0.0000 +log_k_JSE76 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_1 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_2 12.49 0.00 0.0000 0.0000 +f_JCZ38_qlogis 0.00 20.19 0.0000 0.0000 +log_alpha 0.00 0.00 0.3142 0.0000 +log_beta 0.00 0.00 0.0000 0.7331 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2423 2416 -1193 + +Optimised parameters: + est. lower upper +cyan_0 100.57649 NA NA +log_k_JCZ38 -3.46250 NA NA +log_k_J9Z38 -5.24442 NA NA +log_k_JSE76 -5.75229 NA NA +f_cyan_ilr_1 0.68480 NA NA +f_cyan_ilr_2 0.61670 NA NA +f_JCZ38_qlogis 87.97407 NA NA +log_alpha -0.15699 NA NA +log_beta 3.01540 NA NA +a.1 3.11518 NA NA +b.1 0.04445 NA NA +SD.log_k_JCZ38 1.40732 NA NA +SD.log_k_J9Z38 0.56510 NA NA +SD.log_k_JSE76 0.72067 NA NA +SD.f_cyan_ilr_1 0.31199 NA NA +SD.f_cyan_ilr_2 0.36894 NA NA +SD.f_JCZ38_qlogis 6.92892 NA NA +SD.log_alpha 0.25662 NA NA +SD.log_beta 0.35845 NA NA + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_JCZ38 1.4073 NA NA +SD.log_k_J9Z38 0.5651 NA NA +SD.log_k_JSE76 0.7207 NA NA +SD.f_cyan_ilr_1 0.3120 NA NA +SD.f_cyan_ilr_2 0.3689 NA NA +SD.f_JCZ38_qlogis 6.9289 NA NA +SD.log_alpha 0.2566 NA NA +SD.log_beta 0.3585 NA NA + +Variance model: + est. lower upper +a.1 3.11518 NA NA +b.1 0.04445 NA NA + +Backtransformed parameters: + est. lower upper +cyan_0 1.006e+02 NA NA +k_JCZ38 3.135e-02 NA NA +k_J9Z38 5.277e-03 NA NA +k_JSE76 3.175e-03 NA NA +f_cyan_to_JCZ38 5.991e-01 NA NA +f_cyan_to_J9Z38 2.275e-01 NA NA +f_JCZ38_to_JSE76 1.000e+00 NA NA +alpha 8.547e-01 NA NA +beta 2.040e+01 NA NA + +Resulting formation fractions: + ff +cyan_JCZ38 0.5991 +cyan_J9Z38 0.2275 +cyan_sink 0.1734 +JCZ38_JSE76 1.0000 +JCZ38_sink 0.0000 + +Estimated disappearance times: + DT50 DT90 DT50back +cyan 25.50 281.29 84.68 +JCZ38 22.11 73.44 NA +J9Z38 131.36 436.35 NA +JSE76 218.28 725.11 NA + +</code></pre> +<p></p> +<caption> +Hierarchical DFOP path 1 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:10:30 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * + time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) + * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - + g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * + exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - + g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * + exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1260.905 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 + 102.0644 -3.4008 -5.0024 -5.8613 0.6855 + f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis + 1.2365 13.7245 -1.8641 -4.5063 -0.6468 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0 4.466 0.000 0.000 0.000 0.0000 +log_k_JCZ38 0.000 2.382 0.000 0.000 0.0000 +log_k_J9Z38 0.000 0.000 1.595 0.000 0.0000 +log_k_JSE76 0.000 0.000 0.000 1.245 0.0000 +f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6852 +f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000 +f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000 +log_k1 0.000 0.000 0.000 0.000 0.0000 +log_k2 0.000 0.000 0.000 0.000 0.0000 +g_qlogis 0.000 0.000 0.000 0.000 0.0000 + f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis +cyan_0 0.00 0.00 0.0000 0.0000 0.000 +log_k_JCZ38 0.00 0.00 0.0000 0.0000 0.000 +log_k_J9Z38 0.00 0.00 0.0000 0.0000 0.000 +log_k_JSE76 0.00 0.00 0.0000 0.0000 0.000 +f_cyan_ilr_1 0.00 0.00 0.0000 0.0000 0.000 +f_cyan_ilr_2 1.28 0.00 0.0000 0.0000 0.000 +f_JCZ38_qlogis 0.00 16.11 0.0000 0.0000 0.000 +log_k1 0.00 0.00 0.9866 0.0000 0.000 +log_k2 0.00 0.00 0.0000 0.5953 0.000 +g_qlogis 0.00 0.00 0.0000 0.0000 1.583 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2403 2395 -1182 + +Optimised parameters: + est. lower upper +cyan_0 102.6079 NA NA +log_k_JCZ38 -3.4855 NA NA +log_k_J9Z38 -5.1686 NA NA +log_k_JSE76 -5.6697 NA NA +f_cyan_ilr_1 0.6714 NA NA +f_cyan_ilr_2 0.4986 NA NA +f_JCZ38_qlogis 55.4760 NA NA +log_k1 -1.8409 NA NA +log_k2 -4.4915 NA NA +g_qlogis -0.6403 NA NA +a.1 3.2387 NA NA +SD.log_k_JCZ38 1.4524 NA NA +SD.log_k_J9Z38 0.5151 NA NA +SD.log_k_JSE76 0.6514 NA NA +SD.f_cyan_ilr_1 0.3023 NA NA +SD.f_cyan_ilr_2 0.2959 NA NA +SD.f_JCZ38_qlogis 1.9984 NA NA +SD.log_k1 0.5188 NA NA +SD.log_k2 0.3894 NA NA +SD.g_qlogis 0.8579 NA NA + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_JCZ38 1.4524 NA NA +SD.log_k_J9Z38 0.5151 NA NA +SD.log_k_JSE76 0.6514 NA NA +SD.f_cyan_ilr_1 0.3023 NA NA +SD.f_cyan_ilr_2 0.2959 NA NA +SD.f_JCZ38_qlogis 1.9984 NA NA +SD.log_k1 0.5188 NA NA +SD.log_k2 0.3894 NA NA +SD.g_qlogis 0.8579 NA NA + +Variance model: + est. lower upper +a.1 3.239 NA NA + +Backtransformed parameters: + est. lower upper +cyan_0 1.026e+02 NA NA +k_JCZ38 3.064e-02 NA NA +k_J9Z38 5.692e-03 NA NA +k_JSE76 3.449e-03 NA NA +f_cyan_to_JCZ38 5.798e-01 NA NA +f_cyan_to_J9Z38 2.243e-01 NA NA +f_JCZ38_to_JSE76 1.000e+00 NA NA +k1 1.587e-01 NA NA +k2 1.120e-02 NA NA +g 3.452e-01 NA NA + +Resulting formation fractions: + ff +cyan_JCZ38 0.5798 +cyan_J9Z38 0.2243 +cyan_sink 0.1958 +JCZ38_JSE76 1.0000 +JCZ38_sink 0.0000 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_k1 DT50_k2 +cyan 25.21 167.73 50.49 4.368 61.87 +JCZ38 22.62 75.15 NA NA NA +J9Z38 121.77 404.50 NA NA NA +JSE76 200.98 667.64 NA NA NA + +</code></pre> +<p></p> +<caption> +Hierarchical DFOP path 1 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:16:28 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * + time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) + * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - + g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * + exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - + g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * + exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1617.774 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 + 101.3964 -3.3626 -4.9792 -5.8727 0.6814 + f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis + 6.7799 13.7245 -1.9222 -4.5035 -0.7172 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0 5.317 0.000 0.000 0.000 0.0000 +log_k_JCZ38 0.000 2.272 0.000 0.000 0.0000 +log_k_J9Z38 0.000 0.000 1.633 0.000 0.0000 +log_k_JSE76 0.000 0.000 0.000 1.271 0.0000 +f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6838 +f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000 +f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000 +log_k1 0.000 0.000 0.000 0.000 0.0000 +log_k2 0.000 0.000 0.000 0.000 0.0000 +g_qlogis 0.000 0.000 0.000 0.000 0.0000 + f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis +cyan_0 0.00 0.00 0.0000 0.0000 0.000 +log_k_JCZ38 0.00 0.00 0.0000 0.0000 0.000 +log_k_J9Z38 0.00 0.00 0.0000 0.0000 0.000 +log_k_JSE76 0.00 0.00 0.0000 0.0000 0.000 +f_cyan_ilr_1 0.00 0.00 0.0000 0.0000 0.000 +f_cyan_ilr_2 11.77 0.00 0.0000 0.0000 0.000 +f_JCZ38_qlogis 0.00 16.11 0.0000 0.0000 0.000 +log_k1 0.00 0.00 0.9496 0.0000 0.000 +log_k2 0.00 0.00 0.0000 0.5846 0.000 +g_qlogis 0.00 0.00 0.0000 0.0000 1.719 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2398 2390 -1179 + +Optimised parameters: + est. lower upper +cyan_0 100.8076 NA NA +log_k_JCZ38 -3.4684 NA NA +log_k_J9Z38 -5.0844 NA NA +log_k_JSE76 -5.5743 NA NA +f_cyan_ilr_1 0.6669 NA NA +f_cyan_ilr_2 0.7912 NA NA +f_JCZ38_qlogis 84.1825 NA NA +log_k1 -2.1671 NA NA +log_k2 -4.5447 NA NA +g_qlogis -0.5631 NA NA +a.1 2.9627 NA NA +b.1 0.0444 NA NA +SD.log_k_JCZ38 1.4044 NA NA +SD.log_k_J9Z38 0.6410 NA NA +SD.log_k_JSE76 0.5391 NA NA +SD.f_cyan_ilr_1 0.3203 NA NA +SD.f_cyan_ilr_2 0.5038 NA NA +SD.f_JCZ38_qlogis 3.5865 NA NA +SD.log_k2 0.3119 NA NA +SD.g_qlogis 0.8276 NA NA + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_JCZ38 1.4044 NA NA +SD.log_k_J9Z38 0.6410 NA NA +SD.log_k_JSE76 0.5391 NA NA +SD.f_cyan_ilr_1 0.3203 NA NA +SD.f_cyan_ilr_2 0.5038 NA NA +SD.f_JCZ38_qlogis 3.5865 NA NA +SD.log_k2 0.3119 NA NA +SD.g_qlogis 0.8276 NA NA + +Variance model: + est. lower upper +a.1 2.9627 NA NA +b.1 0.0444 NA NA + +Backtransformed parameters: + est. lower upper +cyan_0 1.008e+02 NA NA +k_JCZ38 3.117e-02 NA NA +k_J9Z38 6.193e-03 NA NA +k_JSE76 3.794e-03 NA NA +f_cyan_to_JCZ38 6.149e-01 NA NA +f_cyan_to_J9Z38 2.395e-01 NA NA +f_JCZ38_to_JSE76 1.000e+00 NA NA +k1 1.145e-01 NA NA +k2 1.062e-02 NA NA +g 3.628e-01 NA NA + +Resulting formation fractions: + ff +cyan_JCZ38 0.6149 +cyan_J9Z38 0.2395 +cyan_sink 0.1456 +JCZ38_JSE76 1.0000 +JCZ38_sink 0.0000 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_k1 DT50_k2 +cyan 26.26 174.32 52.47 6.053 65.25 +JCZ38 22.24 73.88 NA NA NA +J9Z38 111.93 371.82 NA NA NA +JSE76 182.69 606.88 NA NA NA + +</code></pre> +<p></p> +<caption> +Hierarchical SFORB path 1 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:10:49 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound * + cyan_free + k_cyan_bound_free * cyan_bound +d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free * + cyan_bound +d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38 + * JCZ38 +d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38 + * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1279.472 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + cyan_free_0 log_k_cyan_free log_k_cyan_free_bound + 102.0643 -2.8987 -2.7077 +log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 + -3.4717 -3.4008 -5.0024 + log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2 + -5.8613 0.6855 1.2366 + f_JCZ38_qlogis + 13.7418 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_free_0 log_k_cyan_free log_k_cyan_free_bound +cyan_free_0 4.466 0.0000 0.000 +log_k_cyan_free 0.000 0.6158 0.000 +log_k_cyan_free_bound 0.000 0.0000 1.463 +log_k_cyan_bound_free 0.000 0.0000 0.000 +log_k_JCZ38 0.000 0.0000 0.000 +log_k_J9Z38 0.000 0.0000 0.000 +log_k_JSE76 0.000 0.0000 0.000 +f_cyan_ilr_1 0.000 0.0000 0.000 +f_cyan_ilr_2 0.000 0.0000 0.000 +f_JCZ38_qlogis 0.000 0.0000 0.000 + log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_free_0 0.000 0.000 0.000 0.000 +log_k_cyan_free 0.000 0.000 0.000 0.000 +log_k_cyan_free_bound 0.000 0.000 0.000 0.000 +log_k_cyan_bound_free 1.058 0.000 0.000 0.000 +log_k_JCZ38 0.000 2.382 0.000 0.000 +log_k_J9Z38 0.000 0.000 1.595 0.000 +log_k_JSE76 0.000 0.000 0.000 1.245 +f_cyan_ilr_1 0.000 0.000 0.000 0.000 +f_cyan_ilr_2 0.000 0.000 0.000 0.000 +f_JCZ38_qlogis 0.000 0.000 0.000 0.000 + f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis +cyan_free_0 0.0000 0.00 0.00 +log_k_cyan_free 0.0000 0.00 0.00 +log_k_cyan_free_bound 0.0000 0.00 0.00 +log_k_cyan_bound_free 0.0000 0.00 0.00 +log_k_JCZ38 0.0000 0.00 0.00 +log_k_J9Z38 0.0000 0.00 0.00 +log_k_JSE76 0.0000 0.00 0.00 +f_cyan_ilr_1 0.6852 0.00 0.00 +f_cyan_ilr_2 0.0000 1.28 0.00 +f_JCZ38_qlogis 0.0000 0.00 16.14 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2401 2394 -1181 + +Optimised parameters: + est. lower upper +cyan_free_0 102.7803 NA NA +log_k_cyan_free -2.8068 NA NA +log_k_cyan_free_bound -2.5714 NA NA +log_k_cyan_bound_free -3.4426 NA NA +log_k_JCZ38 -3.4994 NA NA +log_k_J9Z38 -5.1148 NA NA +log_k_JSE76 -5.6335 NA NA +f_cyan_ilr_1 0.6597 NA NA +f_cyan_ilr_2 0.5132 NA NA +f_JCZ38_qlogis 37.2090 NA NA +a.1 3.2367 NA NA +SD.log_k_cyan_free 0.3161 NA NA +SD.log_k_cyan_free_bound 0.8103 NA NA +SD.log_k_cyan_bound_free 0.5554 NA NA +SD.log_k_JCZ38 1.4858 NA NA +SD.log_k_J9Z38 0.5859 NA NA +SD.log_k_JSE76 0.6195 NA NA +SD.f_cyan_ilr_1 0.3118 NA NA +SD.f_cyan_ilr_2 0.3344 NA NA +SD.f_JCZ38_qlogis 0.5518 NA NA + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_cyan_free 0.3161 NA NA +SD.log_k_cyan_free_bound 0.8103 NA NA +SD.log_k_cyan_bound_free 0.5554 NA NA +SD.log_k_JCZ38 1.4858 NA NA +SD.log_k_J9Z38 0.5859 NA NA +SD.log_k_JSE76 0.6195 NA NA +SD.f_cyan_ilr_1 0.3118 NA NA +SD.f_cyan_ilr_2 0.3344 NA NA +SD.f_JCZ38_qlogis 0.5518 NA NA + +Variance model: + est. lower upper +a.1 3.237 NA NA + +Backtransformed parameters: + est. lower upper +cyan_free_0 1.028e+02 NA NA +k_cyan_free 6.040e-02 NA NA +k_cyan_free_bound 7.643e-02 NA NA +k_cyan_bound_free 3.198e-02 NA NA +k_JCZ38 3.022e-02 NA NA +k_J9Z38 6.007e-03 NA NA +k_JSE76 3.576e-03 NA NA +f_cyan_free_to_JCZ38 5.787e-01 NA NA +f_cyan_free_to_J9Z38 2.277e-01 NA NA +f_JCZ38_to_JSE76 1.000e+00 NA NA + +Estimated Eigenvalues of SFORB model(s): +cyan_b1 cyan_b2 cyan_g +0.15646 0.01235 0.33341 + +Resulting formation fractions: + ff +cyan_free_JCZ38 0.5787 +cyan_free_J9Z38 0.2277 +cyan_free_sink 0.1936 +cyan_free 1.0000 +JCZ38_JSE76 1.0000 +JCZ38_sink 0.0000 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2 +cyan 24.48 153.7 46.26 4.43 56.15 +JCZ38 22.94 76.2 NA NA NA +J9Z38 115.39 383.3 NA NA NA +JSE76 193.84 643.9 NA NA NA + +</code></pre> +<p></p> +<caption> +Hierarchical SFORB path 1 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:17:00 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound * + cyan_free + k_cyan_bound_free * cyan_bound +d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free * + cyan_bound +d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38 + * JCZ38 +d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38 + * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1649.941 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + cyan_free_0 log_k_cyan_free log_k_cyan_free_bound + 101.3964 -2.9881 -2.7949 +log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 + -3.4376 -3.3626 -4.9792 + log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2 + -5.8727 0.6814 6.8139 + f_JCZ38_qlogis + 13.7419 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_free_0 log_k_cyan_free log_k_cyan_free_bound +cyan_free_0 5.317 0.0000 0.000 +log_k_cyan_free 0.000 0.7301 0.000 +log_k_cyan_free_bound 0.000 0.0000 1.384 +log_k_cyan_bound_free 0.000 0.0000 0.000 +log_k_JCZ38 0.000 0.0000 0.000 +log_k_J9Z38 0.000 0.0000 0.000 +log_k_JSE76 0.000 0.0000 0.000 +f_cyan_ilr_1 0.000 0.0000 0.000 +f_cyan_ilr_2 0.000 0.0000 0.000 +f_JCZ38_qlogis 0.000 0.0000 0.000 + log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_free_0 0.000 0.000 0.000 0.000 +log_k_cyan_free 0.000 0.000 0.000 0.000 +log_k_cyan_free_bound 0.000 0.000 0.000 0.000 +log_k_cyan_bound_free 1.109 0.000 0.000 0.000 +log_k_JCZ38 0.000 2.272 0.000 0.000 +log_k_J9Z38 0.000 0.000 1.633 0.000 +log_k_JSE76 0.000 0.000 0.000 1.271 +f_cyan_ilr_1 0.000 0.000 0.000 0.000 +f_cyan_ilr_2 0.000 0.000 0.000 0.000 +f_JCZ38_qlogis 0.000 0.000 0.000 0.000 + f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis +cyan_free_0 0.0000 0.00 0.00 +log_k_cyan_free 0.0000 0.00 0.00 +log_k_cyan_free_bound 0.0000 0.00 0.00 +log_k_cyan_bound_free 0.0000 0.00 0.00 +log_k_JCZ38 0.0000 0.00 0.00 +log_k_J9Z38 0.0000 0.00 0.00 +log_k_JSE76 0.0000 0.00 0.00 +f_cyan_ilr_1 0.6838 0.00 0.00 +f_cyan_ilr_2 0.0000 11.84 0.00 +f_JCZ38_qlogis 0.0000 0.00 16.14 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2400 2392 -1180 + +Optimised parameters: + est. lower upper +cyan_free_0 100.69983 NA NA +log_k_cyan_free -3.11584 NA NA +log_k_cyan_free_bound -3.15216 NA NA +log_k_cyan_bound_free -3.65986 NA NA +log_k_JCZ38 -3.47811 NA NA +log_k_J9Z38 -5.08835 NA NA +log_k_JSE76 -5.55514 NA NA +f_cyan_ilr_1 0.66764 NA NA +f_cyan_ilr_2 0.78329 NA NA +f_JCZ38_qlogis 25.35245 NA NA +a.1 2.99088 NA NA +b.1 0.04346 NA NA +SD.log_k_cyan_free 0.48797 NA NA +SD.log_k_cyan_bound_free 0.27243 NA NA +SD.log_k_JCZ38 1.42450 NA NA +SD.log_k_J9Z38 0.63496 NA NA +SD.log_k_JSE76 0.55951 NA NA +SD.f_cyan_ilr_1 0.32687 NA NA +SD.f_cyan_ilr_2 0.48056 NA NA +SD.f_JCZ38_qlogis 0.43818 NA NA + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_cyan_free 0.4880 NA NA +SD.log_k_cyan_bound_free 0.2724 NA NA +SD.log_k_JCZ38 1.4245 NA NA +SD.log_k_J9Z38 0.6350 NA NA +SD.log_k_JSE76 0.5595 NA NA +SD.f_cyan_ilr_1 0.3269 NA NA +SD.f_cyan_ilr_2 0.4806 NA NA +SD.f_JCZ38_qlogis 0.4382 NA NA + +Variance model: + est. lower upper +a.1 2.99088 NA NA +b.1 0.04346 NA NA + +Backtransformed parameters: + est. lower upper +cyan_free_0 1.007e+02 NA NA +k_cyan_free 4.434e-02 NA NA +k_cyan_free_bound 4.276e-02 NA NA +k_cyan_bound_free 2.574e-02 NA NA +k_JCZ38 3.087e-02 NA NA +k_J9Z38 6.168e-03 NA NA +k_JSE76 3.868e-03 NA NA +f_cyan_free_to_JCZ38 6.143e-01 NA NA +f_cyan_free_to_J9Z38 2.389e-01 NA NA +f_JCZ38_to_JSE76 1.000e+00 NA NA + +Estimated Eigenvalues of SFORB model(s): +cyan_b1 cyan_b2 cyan_g +0.10161 0.01123 0.36636 + +Resulting formation fractions: + ff +cyan_free_JCZ38 6.143e-01 +cyan_free_J9Z38 2.389e-01 +cyan_free_sink 1.468e-01 +cyan_free 1.000e+00 +JCZ38_JSE76 1.000e+00 +JCZ38_sink 9.763e-12 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2 +cyan 25.91 164.4 49.49 6.822 61.72 +JCZ38 22.46 74.6 NA NA NA +J9Z38 112.37 373.3 NA NA NA +JSE76 179.22 595.4 NA NA NA + +</code></pre> +<p></p> +<caption> +Hierarchical HS path 1 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:11:04 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - ifelse(time <= tb, k1, k2) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ifelse(time <= tb, k1, k2) * cyan - + k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ifelse(time <= tb, k1, k2) * cyan - + k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1294.259 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 + 102.8738 -3.4490 -4.9348 -5.5989 0.6469 + f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb + 1.2854 9.7193 -2.9084 -4.1810 1.7813 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0 5.409 0.00 0.00 0.000 0.0000 +log_k_JCZ38 0.000 2.33 0.00 0.000 0.0000 +log_k_J9Z38 0.000 0.00 1.59 0.000 0.0000 +log_k_JSE76 0.000 0.00 0.00 1.006 0.0000 +f_cyan_ilr_1 0.000 0.00 0.00 0.000 0.6371 +f_cyan_ilr_2 0.000 0.00 0.00 0.000 0.0000 +f_JCZ38_qlogis 0.000 0.00 0.00 0.000 0.0000 +log_k1 0.000 0.00 0.00 0.000 0.0000 +log_k2 0.000 0.00 0.00 0.000 0.0000 +log_tb 0.000 0.00 0.00 0.000 0.0000 + f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb +cyan_0 0.000 0.00 0.0000 0.0000 0.0000 +log_k_JCZ38 0.000 0.00 0.0000 0.0000 0.0000 +log_k_J9Z38 0.000 0.00 0.0000 0.0000 0.0000 +log_k_JSE76 0.000 0.00 0.0000 0.0000 0.0000 +f_cyan_ilr_1 0.000 0.00 0.0000 0.0000 0.0000 +f_cyan_ilr_2 2.167 0.00 0.0000 0.0000 0.0000 +f_JCZ38_qlogis 0.000 10.22 0.0000 0.0000 0.0000 +log_k1 0.000 0.00 0.7003 0.0000 0.0000 +log_k2 0.000 0.00 0.0000 0.8928 0.0000 +log_tb 0.000 0.00 0.0000 0.0000 0.6774 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2427 2420 -1194 + +Optimised parameters: + est. lower upper +cyan_0 101.84849 NA NA +log_k_JCZ38 -3.47365 NA NA +log_k_J9Z38 -5.10562 NA NA +log_k_JSE76 -5.60318 NA NA +f_cyan_ilr_1 0.66127 NA NA +f_cyan_ilr_2 0.60283 NA NA +f_JCZ38_qlogis 45.06408 NA NA +log_k1 -3.10124 NA NA +log_k2 -4.39028 NA NA +log_tb 2.32256 NA NA +a.1 3.32683 NA NA +SD.log_k_JCZ38 1.41427 NA NA +SD.log_k_J9Z38 0.54767 NA NA +SD.log_k_JSE76 0.62147 NA NA +SD.f_cyan_ilr_1 0.30189 NA NA +SD.f_cyan_ilr_2 0.34960 NA NA +SD.f_JCZ38_qlogis 0.04644 NA NA +SD.log_k1 0.39534 NA NA +SD.log_k2 0.43468 NA NA +SD.log_tb 0.60781 NA NA + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_JCZ38 1.41427 NA NA +SD.log_k_J9Z38 0.54767 NA NA +SD.log_k_JSE76 0.62147 NA NA +SD.f_cyan_ilr_1 0.30189 NA NA +SD.f_cyan_ilr_2 0.34960 NA NA +SD.f_JCZ38_qlogis 0.04644 NA NA +SD.log_k1 0.39534 NA NA +SD.log_k2 0.43468 NA NA +SD.log_tb 0.60781 NA NA + +Variance model: + est. lower upper +a.1 3.327 NA NA + +Backtransformed parameters: + est. lower upper +cyan_0 1.018e+02 NA NA +k_JCZ38 3.100e-02 NA NA +k_J9Z38 6.063e-03 NA NA +k_JSE76 3.686e-03 NA NA +f_cyan_to_JCZ38 5.910e-01 NA NA +f_cyan_to_J9Z38 2.320e-01 NA NA +f_JCZ38_to_JSE76 1.000e+00 NA NA +k1 4.499e-02 NA NA +k2 1.240e-02 NA NA +tb 1.020e+01 NA NA + +Resulting formation fractions: + ff +cyan_JCZ38 0.591 +cyan_J9Z38 0.232 +cyan_sink 0.177 +JCZ38_JSE76 1.000 +JCZ38_sink 0.000 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_k1 DT50_k2 +cyan 29.09 158.91 47.84 15.41 55.91 +JCZ38 22.36 74.27 NA NA NA +J9Z38 114.33 379.80 NA NA NA +JSE76 188.04 624.66 NA NA NA + +</code></pre> +<p></p> +<caption> +Hierarchical HS path 1 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:11:24 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - ifelse(time <= tb, k1, k2) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ifelse(time <= tb, k1, k2) * cyan - + k_JCZ38 * JCZ38 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ifelse(time <= tb, k1, k2) * cyan - + k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1313.805 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 + 101.168 -3.358 -4.941 -5.794 0.676 + f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb + 5.740 13.863 -3.147 -4.262 2.173 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0 5.79 0.000 0.000 0.000 0.0000 +log_k_JCZ38 0.00 2.271 0.000 0.000 0.0000 +log_k_J9Z38 0.00 0.000 1.614 0.000 0.0000 +log_k_JSE76 0.00 0.000 0.000 1.264 0.0000 +f_cyan_ilr_1 0.00 0.000 0.000 0.000 0.6761 +f_cyan_ilr_2 0.00 0.000 0.000 0.000 0.0000 +f_JCZ38_qlogis 0.00 0.000 0.000 0.000 0.0000 +log_k1 0.00 0.000 0.000 0.000 0.0000 +log_k2 0.00 0.000 0.000 0.000 0.0000 +log_tb 0.00 0.000 0.000 0.000 0.0000 + f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb +cyan_0 0.000 0.00 0.0000 0.0000 0.000 +log_k_JCZ38 0.000 0.00 0.0000 0.0000 0.000 +log_k_J9Z38 0.000 0.00 0.0000 0.0000 0.000 +log_k_JSE76 0.000 0.00 0.0000 0.0000 0.000 +f_cyan_ilr_1 0.000 0.00 0.0000 0.0000 0.000 +f_cyan_ilr_2 9.572 0.00 0.0000 0.0000 0.000 +f_JCZ38_qlogis 0.000 19.19 0.0000 0.0000 0.000 +log_k1 0.000 0.00 0.8705 0.0000 0.000 +log_k2 0.000 0.00 0.0000 0.9288 0.000 +log_tb 0.000 0.00 0.0000 0.0000 1.065 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2422 2414 -1190 + +Optimised parameters: + est. lower upper +cyan_0 100.9521 NA NA +log_k_JCZ38 -3.4629 NA NA +log_k_J9Z38 -5.0346 NA NA +log_k_JSE76 -5.5722 NA NA +f_cyan_ilr_1 0.6560 NA NA +f_cyan_ilr_2 0.7983 NA NA +f_JCZ38_qlogis 42.7949 NA NA +log_k1 -3.1721 NA NA +log_k2 -4.4039 NA NA +log_tb 2.3994 NA NA +a.1 3.0586 NA NA +b.1 0.0380 NA NA +SD.log_k_JCZ38 1.3754 NA NA +SD.log_k_J9Z38 0.6703 NA NA +SD.log_k_JSE76 0.5876 NA NA +SD.f_cyan_ilr_1 0.3272 NA NA +SD.f_cyan_ilr_2 0.5300 NA NA +SD.f_JCZ38_qlogis 6.4465 NA NA +SD.log_k1 0.4135 NA NA +SD.log_k2 0.4182 NA NA +SD.log_tb 0.6035 NA NA + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_JCZ38 1.3754 NA NA +SD.log_k_J9Z38 0.6703 NA NA +SD.log_k_JSE76 0.5876 NA NA +SD.f_cyan_ilr_1 0.3272 NA NA +SD.f_cyan_ilr_2 0.5300 NA NA +SD.f_JCZ38_qlogis 6.4465 NA NA +SD.log_k1 0.4135 NA NA +SD.log_k2 0.4182 NA NA +SD.log_tb 0.6035 NA NA + +Variance model: + est. lower upper +a.1 3.059 NA NA +b.1 0.038 NA NA + +Backtransformed parameters: + est. lower upper +cyan_0 1.010e+02 NA NA +k_JCZ38 3.134e-02 NA NA +k_J9Z38 6.509e-03 NA NA +k_JSE76 3.802e-03 NA NA +f_cyan_to_JCZ38 6.127e-01 NA NA +f_cyan_to_J9Z38 2.423e-01 NA NA +f_JCZ38_to_JSE76 1.000e+00 NA NA +k1 4.191e-02 NA NA +k2 1.223e-02 NA NA +tb 1.102e+01 NA NA + +Resulting formation fractions: + ff +cyan_JCZ38 0.6127 +cyan_J9Z38 0.2423 +cyan_sink 0.1449 +JCZ38_JSE76 1.0000 +JCZ38_sink 0.0000 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_k1 DT50_k2 +cyan 29.94 161.54 48.63 16.54 56.68 +JCZ38 22.12 73.47 NA NA NA +J9Z38 106.50 353.77 NA NA NA +JSE76 182.30 605.60 NA NA NA + +</code></pre> +<p></p> +</div> +<div class="section level4"> +<h4 id="pathway-2">Pathway 2<a class="anchor" aria-label="anchor" href="#pathway-2"></a> +</h4> +<caption> +Hierarchical FOMC path 2 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:34:28 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) * + cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) * + cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1030.246 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 + 101.8173 -1.8998 -5.1449 -2.5415 0.6705 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta + 4.4669 16.1281 13.3327 -0.2314 2.8738 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0 5.742 0.000 0.000 0.00 0.0000 +log_k_JCZ38 0.000 1.402 0.000 0.00 0.0000 +log_k_J9Z38 0.000 0.000 1.718 0.00 0.0000 +log_k_JSE76 0.000 0.000 0.000 3.57 0.0000 +f_cyan_ilr_1 0.000 0.000 0.000 0.00 0.5926 +f_cyan_ilr_2 0.000 0.000 0.000 0.00 0.0000 +f_JCZ38_qlogis 0.000 0.000 0.000 0.00 0.0000 +f_JSE76_qlogis 0.000 0.000 0.000 0.00 0.0000 +log_alpha 0.000 0.000 0.000 0.00 0.0000 +log_beta 0.000 0.000 0.000 0.00 0.0000 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta +cyan_0 0.00 0.00 0.00 0.0000 0.0000 +log_k_JCZ38 0.00 0.00 0.00 0.0000 0.0000 +log_k_J9Z38 0.00 0.00 0.00 0.0000 0.0000 +log_k_JSE76 0.00 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_1 0.00 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_2 10.56 0.00 0.00 0.0000 0.0000 +f_JCZ38_qlogis 0.00 12.04 0.00 0.0000 0.0000 +f_JSE76_qlogis 0.00 0.00 15.26 0.0000 0.0000 +log_alpha 0.00 0.00 0.00 0.4708 0.0000 +log_beta 0.00 0.00 0.00 0.0000 0.4432 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2308 2301 -1134 + +Optimised parameters: + est. lower upper +cyan_0 101.9586 99.22024 104.69700 +log_k_JCZ38 -2.4861 -3.17661 -1.79560 +log_k_J9Z38 -5.3926 -6.08842 -4.69684 +log_k_JSE76 -3.1193 -4.12904 -2.10962 +f_cyan_ilr_1 0.7368 0.42085 1.05276 +f_cyan_ilr_2 0.6196 0.06052 1.17861 +f_JCZ38_qlogis 4.8970 -4.68003 14.47398 +f_JSE76_qlogis 4.4066 -1.02087 9.83398 +log_alpha -0.3021 -0.68264 0.07838 +log_beta 2.7438 2.57970 2.90786 +a.1 2.9008 2.69920 3.10245 +SD.cyan_0 2.7081 0.64216 4.77401 +SD.log_k_JCZ38 0.7043 0.19951 1.20907 +SD.log_k_J9Z38 0.6248 0.05790 1.19180 +SD.log_k_JSE76 1.0750 0.33157 1.81839 +SD.f_cyan_ilr_1 0.3429 0.11688 0.56892 +SD.f_cyan_ilr_2 0.4774 0.09381 0.86097 +SD.f_JCZ38_qlogis 1.5565 -7.83970 10.95279 +SD.f_JSE76_qlogis 1.6871 -1.25577 4.63000 +SD.log_alpha 0.4216 0.15913 0.68405 + +Correlation: + cyan_0 l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76 +log_k_JCZ38 -0.0167 +log_k_J9Z38 -0.0307 0.0057 +log_k_JSE76 -0.0032 0.1358 0.0009 +f_cyan_ilr_1 -0.0087 0.0206 -0.1158 -0.0009 +f_cyan_ilr_2 -0.1598 0.0690 0.1770 0.0002 -0.0007 +f_JCZ38_qlogis 0.0966 -0.1132 -0.0440 0.0182 -0.1385 -0.4583 +f_JSE76_qlogis -0.0647 0.1157 0.0333 -0.0026 0.1110 0.3620 -0.8586 +log_alpha -0.0389 0.0113 0.0209 0.0021 0.0041 0.0451 -0.0605 0.0412 +log_beta -0.2508 0.0533 0.0977 0.0098 0.0220 0.2741 -0.2934 0.1999 + log_lph +log_k_JCZ38 +log_k_J9Z38 +log_k_JSE76 +f_cyan_ilr_1 +f_cyan_ilr_2 +f_JCZ38_qlogis +f_JSE76_qlogis +log_alpha +log_beta 0.2281 + +Random effects: + est. lower upper +SD.cyan_0 2.7081 0.64216 4.7740 +SD.log_k_JCZ38 0.7043 0.19951 1.2091 +SD.log_k_J9Z38 0.6248 0.05790 1.1918 +SD.log_k_JSE76 1.0750 0.33157 1.8184 +SD.f_cyan_ilr_1 0.3429 0.11688 0.5689 +SD.f_cyan_ilr_2 0.4774 0.09381 0.8610 +SD.f_JCZ38_qlogis 1.5565 -7.83970 10.9528 +SD.f_JSE76_qlogis 1.6871 -1.25577 4.6300 +SD.log_alpha 0.4216 0.15913 0.6840 + +Variance model: + est. lower upper +a.1 2.901 2.699 3.102 + +Backtransformed parameters: + est. lower upper +cyan_0 101.95862 99.220240 1.047e+02 +k_JCZ38 0.08323 0.041727 1.660e-01 +k_J9Z38 0.00455 0.002269 9.124e-03 +k_JSE76 0.04419 0.016098 1.213e-01 +f_cyan_to_JCZ38 0.61318 NA NA +f_cyan_to_J9Z38 0.21630 NA NA +f_JCZ38_to_JSE76 0.99259 0.009193 1.000e+00 +f_JSE76_to_JCZ38 0.98795 0.264857 9.999e-01 +alpha 0.73924 0.505281 1.082e+00 +beta 15.54568 13.193194 1.832e+01 + +Resulting formation fractions: + ff +cyan_JCZ38 0.613182 +cyan_J9Z38 0.216298 +cyan_sink 0.170519 +JCZ38_JSE76 0.992586 +JCZ38_sink 0.007414 +JSE76_JCZ38 0.987950 +JSE76_sink 0.012050 + +Estimated disappearance times: + DT50 DT90 DT50back +cyan 24.157 334.68 100.7 +JCZ38 8.328 27.66 NA +J9Z38 152.341 506.06 NA +JSE76 15.687 52.11 NA + +</code></pre> +<p></p> +<caption> +Hierarchical FOMC path 2 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:37:36 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) * + cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) * + cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1217.619 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 + 101.9028 -1.9055 -5.0249 -2.5646 0.6807 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta + 4.8883 16.0676 9.3923 -0.1346 3.0364 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0 6.321 0.000 0.000 0.000 0.0000 +log_k_JCZ38 0.000 1.392 0.000 0.000 0.0000 +log_k_J9Z38 0.000 0.000 1.561 0.000 0.0000 +log_k_JSE76 0.000 0.000 0.000 3.614 0.0000 +f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6339 +f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000 +f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000 +f_JSE76_qlogis 0.000 0.000 0.000 0.000 0.0000 +log_alpha 0.000 0.000 0.000 0.000 0.0000 +log_beta 0.000 0.000 0.000 0.000 0.0000 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta +cyan_0 0.00 0.00 0.00 0.0000 0.0000 +log_k_JCZ38 0.00 0.00 0.00 0.0000 0.0000 +log_k_J9Z38 0.00 0.00 0.00 0.0000 0.0000 +log_k_JSE76 0.00 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_1 0.00 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_2 10.41 0.00 0.00 0.0000 0.0000 +f_JCZ38_qlogis 0.00 12.24 0.00 0.0000 0.0000 +f_JSE76_qlogis 0.00 0.00 15.13 0.0000 0.0000 +log_alpha 0.00 0.00 0.00 0.3701 0.0000 +log_beta 0.00 0.00 0.00 0.0000 0.5662 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2248 2240 -1103 + +Optimised parameters: + est. lower upper +cyan_0 101.55545 9.920e+01 1.039e+02 +log_k_JCZ38 -2.37354 -2.928e+00 -1.819e+00 +log_k_J9Z38 -5.14736 -5.960e+00 -4.335e+00 +log_k_JSE76 -3.07802 -4.243e+00 -1.913e+00 +f_cyan_ilr_1 0.71263 3.655e-01 1.060e+00 +f_cyan_ilr_2 0.95202 2.701e-01 1.634e+00 +f_JCZ38_qlogis 3.58473 1.251e+00 5.919e+00 +f_JSE76_qlogis 19.03623 -1.037e+07 1.037e+07 +log_alpha -0.15297 -4.490e-01 1.431e-01 +log_beta 2.99230 2.706e+00 3.278e+00 +a.1 2.04816 NA NA +b.1 0.06886 NA NA +SD.log_k_JCZ38 0.56174 NA NA +SD.log_k_J9Z38 0.86509 NA NA +SD.log_k_JSE76 1.28450 NA NA +SD.f_cyan_ilr_1 0.38705 NA NA +SD.f_cyan_ilr_2 0.54153 NA NA +SD.f_JCZ38_qlogis 1.65311 NA NA +SD.f_JSE76_qlogis 7.51468 NA NA +SD.log_alpha 0.31586 NA NA +SD.log_beta 0.24696 NA NA + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_JCZ38 0.5617 NA NA +SD.log_k_J9Z38 0.8651 NA NA +SD.log_k_JSE76 1.2845 NA NA +SD.f_cyan_ilr_1 0.3870 NA NA +SD.f_cyan_ilr_2 0.5415 NA NA +SD.f_JCZ38_qlogis 1.6531 NA NA +SD.f_JSE76_qlogis 7.5147 NA NA +SD.log_alpha 0.3159 NA NA +SD.log_beta 0.2470 NA NA + +Variance model: + est. lower upper +a.1 2.04816 NA NA +b.1 0.06886 NA NA + +Backtransformed parameters: + est. lower upper +cyan_0 1.016e+02 99.20301 103.9079 +k_JCZ38 9.315e-02 0.05349 0.1622 +k_J9Z38 5.815e-03 0.00258 0.0131 +k_JSE76 4.605e-02 0.01436 0.1477 +f_cyan_to_JCZ38 6.438e-01 NA NA +f_cyan_to_J9Z38 2.350e-01 NA NA +f_JCZ38_to_JSE76 9.730e-01 0.77745 0.9973 +f_JSE76_to_JCZ38 1.000e+00 0.00000 1.0000 +alpha 8.582e-01 0.63824 1.1538 +beta 1.993e+01 14.97621 26.5262 + +Resulting formation fractions: + ff +cyan_JCZ38 6.438e-01 +cyan_J9Z38 2.350e-01 +cyan_sink 1.212e-01 +JCZ38_JSE76 9.730e-01 +JCZ38_sink 2.700e-02 +JSE76_JCZ38 1.000e+00 +JSE76_sink 5.403e-09 + +Estimated disappearance times: + DT50 DT90 DT50back +cyan 24.771 271.70 81.79 +JCZ38 7.441 24.72 NA +J9Z38 119.205 395.99 NA +JSE76 15.052 50.00 NA + +</code></pre> +<p></p> +<caption> +Hierarchical DFOP path 2 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:38:34 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * + time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) + * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - + g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * + exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 + + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - + g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * + exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1276.128 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 + 102.4358 -2.3107 -5.3123 -3.7120 0.6753 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2 + 1.1462 12.4095 12.3630 -1.9317 -4.4557 + g_qlogis + -0.5648 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0 4.594 0.0000 0.000 0.0 0.0000 +log_k_JCZ38 0.000 0.7966 0.000 0.0 0.0000 +log_k_J9Z38 0.000 0.0000 1.561 0.0 0.0000 +log_k_JSE76 0.000 0.0000 0.000 0.8 0.0000 +f_cyan_ilr_1 0.000 0.0000 0.000 0.0 0.6349 +f_cyan_ilr_2 0.000 0.0000 0.000 0.0 0.0000 +f_JCZ38_qlogis 0.000 0.0000 0.000 0.0 0.0000 +f_JSE76_qlogis 0.000 0.0000 0.000 0.0 0.0000 +log_k1 0.000 0.0000 0.000 0.0 0.0000 +log_k2 0.000 0.0000 0.000 0.0 0.0000 +g_qlogis 0.000 0.0000 0.000 0.0 0.0000 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2 +cyan_0 0.000 0.00 0.0 0.000 0.0000 +log_k_JCZ38 0.000 0.00 0.0 0.000 0.0000 +log_k_J9Z38 0.000 0.00 0.0 0.000 0.0000 +log_k_JSE76 0.000 0.00 0.0 0.000 0.0000 +f_cyan_ilr_1 0.000 0.00 0.0 0.000 0.0000 +f_cyan_ilr_2 1.797 0.00 0.0 0.000 0.0000 +f_JCZ38_qlogis 0.000 13.85 0.0 0.000 0.0000 +f_JSE76_qlogis 0.000 0.00 14.1 0.000 0.0000 +log_k1 0.000 0.00 0.0 1.106 0.0000 +log_k2 0.000 0.00 0.0 0.000 0.6141 +g_qlogis 0.000 0.00 0.0 0.000 0.0000 + g_qlogis +cyan_0 0.000 +log_k_JCZ38 0.000 +log_k_J9Z38 0.000 +log_k_JSE76 0.000 +f_cyan_ilr_1 0.000 +f_cyan_ilr_2 0.000 +f_JCZ38_qlogis 0.000 +f_JSE76_qlogis 0.000 +log_k1 0.000 +log_k2 0.000 +g_qlogis 1.595 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2290 2281 -1123 + +Optimised parameters: + est. lower upper +cyan_0 102.6903 101.44420 103.9365 +log_k_JCZ38 -2.4018 -2.98058 -1.8230 +log_k_J9Z38 -5.1865 -5.92931 -4.4437 +log_k_JSE76 -3.0784 -4.25226 -1.9045 +f_cyan_ilr_1 0.7157 0.37625 1.0551 +f_cyan_ilr_2 0.7073 0.20136 1.2132 +f_JCZ38_qlogis 4.6797 0.43240 8.9269 +f_JSE76_qlogis 5.0080 -1.01380 11.0299 +log_k1 -1.9620 -2.62909 -1.2949 +log_k2 -4.4894 -4.94958 -4.0292 +g_qlogis -0.4658 -1.34443 0.4129 +a.1 2.7158 2.52576 2.9059 +SD.log_k_JCZ38 0.5818 0.15679 1.0067 +SD.log_k_J9Z38 0.7421 0.16751 1.3167 +SD.log_k_JSE76 1.2841 0.43247 2.1356 +SD.f_cyan_ilr_1 0.3748 0.13040 0.6192 +SD.f_cyan_ilr_2 0.4550 0.08396 0.8261 +SD.f_JCZ38_qlogis 2.0862 -0.73390 4.9062 +SD.f_JSE76_qlogis 1.9585 -3.14773 7.0647 +SD.log_k1 0.7389 0.25761 1.2201 +SD.log_k2 0.5132 0.18143 0.8450 +SD.g_qlogis 0.9870 0.35773 1.6164 + +Correlation: + cyan_0 l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76 +log_k_JCZ38 -0.0170 +log_k_J9Z38 -0.0457 0.0016 +log_k_JSE76 -0.0046 0.1183 0.0005 +f_cyan_ilr_1 0.0079 0.0072 -0.0909 0.0003 +f_cyan_ilr_2 -0.3114 0.0343 0.1542 0.0023 -0.0519 +f_JCZ38_qlogis 0.0777 -0.0601 -0.0152 0.0080 -0.0520 -0.2524 +f_JSE76_qlogis -0.0356 0.0817 0.0073 0.0051 0.0388 0.1959 -0.6236 +log_k1 0.0848 -0.0028 0.0010 -0.0010 -0.0014 -0.0245 0.0121 -0.0177 +log_k2 0.0274 -0.0001 0.0075 0.0000 -0.0023 -0.0060 0.0000 -0.0130 +g_qlogis 0.0159 0.0002 -0.0095 0.0002 0.0029 -0.0140 -0.0001 0.0149 + log_k1 log_k2 +log_k_JCZ38 +log_k_J9Z38 +log_k_JSE76 +f_cyan_ilr_1 +f_cyan_ilr_2 +f_JCZ38_qlogis +f_JSE76_qlogis +log_k1 +log_k2 0.0280 +g_qlogis -0.0278 -0.0310 + +Random effects: + est. lower upper +SD.log_k_JCZ38 0.5818 0.15679 1.0067 +SD.log_k_J9Z38 0.7421 0.16751 1.3167 +SD.log_k_JSE76 1.2841 0.43247 2.1356 +SD.f_cyan_ilr_1 0.3748 0.13040 0.6192 +SD.f_cyan_ilr_2 0.4550 0.08396 0.8261 +SD.f_JCZ38_qlogis 2.0862 -0.73390 4.9062 +SD.f_JSE76_qlogis 1.9585 -3.14773 7.0647 +SD.log_k1 0.7389 0.25761 1.2201 +SD.log_k2 0.5132 0.18143 0.8450 +SD.g_qlogis 0.9870 0.35773 1.6164 + +Variance model: + est. lower upper +a.1 2.716 2.526 2.906 + +Backtransformed parameters: + est. lower upper +cyan_0 1.027e+02 1.014e+02 103.93649 +k_JCZ38 9.056e-02 5.076e-02 0.16154 +k_J9Z38 5.591e-03 2.660e-03 0.01175 +k_JSE76 4.603e-02 1.423e-02 0.14890 +f_cyan_to_JCZ38 6.184e-01 NA NA +f_cyan_to_J9Z38 2.248e-01 NA NA +f_JCZ38_to_JSE76 9.908e-01 6.064e-01 0.99987 +f_JSE76_to_JCZ38 9.934e-01 2.662e-01 0.99998 +k1 1.406e-01 7.214e-02 0.27393 +k2 1.123e-02 7.086e-03 0.01779 +g 3.856e-01 2.068e-01 0.60177 + +Resulting formation fractions: + ff +cyan_JCZ38 0.618443 +cyan_J9Z38 0.224770 +cyan_sink 0.156787 +JCZ38_JSE76 0.990803 +JCZ38_sink 0.009197 +JSE76_JCZ38 0.993360 +JSE76_sink 0.006640 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_k1 DT50_k2 +cyan 21.674 161.70 48.68 4.931 61.74 +JCZ38 7.654 25.43 NA NA NA +J9Z38 123.966 411.81 NA NA NA +JSE76 15.057 50.02 NA NA NA + +</code></pre> +<p></p> +<caption> +Hierarchical DFOP path 2 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:45:32 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * + time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) + * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - + g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * + exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 + + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - + g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * + exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1693.767 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 + 101.7523 -1.5948 -5.0119 -2.2723 0.6719 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2 + 5.1681 12.8238 12.4130 -2.0057 -4.5526 + g_qlogis + -0.5805 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0 5.627 0.000 0.000 0.000 0.0000 +log_k_JCZ38 0.000 2.327 0.000 0.000 0.0000 +log_k_J9Z38 0.000 0.000 1.664 0.000 0.0000 +log_k_JSE76 0.000 0.000 0.000 4.566 0.0000 +f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6519 +f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000 +f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000 +f_JSE76_qlogis 0.000 0.000 0.000 0.000 0.0000 +log_k1 0.000 0.000 0.000 0.000 0.0000 +log_k2 0.000 0.000 0.000 0.000 0.0000 +g_qlogis 0.000 0.000 0.000 0.000 0.0000 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2 +cyan_0 0.0 0.00 0.00 0.0000 0.0000 +log_k_JCZ38 0.0 0.00 0.00 0.0000 0.0000 +log_k_J9Z38 0.0 0.00 0.00 0.0000 0.0000 +log_k_JSE76 0.0 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_1 0.0 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_2 10.1 0.00 0.00 0.0000 0.0000 +f_JCZ38_qlogis 0.0 13.99 0.00 0.0000 0.0000 +f_JSE76_qlogis 0.0 0.00 14.15 0.0000 0.0000 +log_k1 0.0 0.00 0.00 0.8452 0.0000 +log_k2 0.0 0.00 0.00 0.0000 0.5968 +g_qlogis 0.0 0.00 0.00 0.0000 0.0000 + g_qlogis +cyan_0 0.000 +log_k_JCZ38 0.000 +log_k_J9Z38 0.000 +log_k_JSE76 0.000 +f_cyan_ilr_1 0.000 +f_cyan_ilr_2 0.000 +f_JCZ38_qlogis 0.000 +f_JSE76_qlogis 0.000 +log_k1 0.000 +log_k2 0.000 +g_qlogis 1.691 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2234 2226 -1095 + +Optimised parameters: + est. lower upper +cyan_0 101.10667 9.903e+01 103.18265 +log_k_JCZ38 -2.49437 -3.297e+00 -1.69221 +log_k_J9Z38 -5.08171 -5.875e+00 -4.28846 +log_k_JSE76 -3.20072 -4.180e+00 -2.22163 +f_cyan_ilr_1 0.71059 3.639e-01 1.05727 +f_cyan_ilr_2 1.15398 2.981e-01 2.00984 +f_JCZ38_qlogis 3.18027 1.056e+00 5.30452 +f_JSE76_qlogis 5.61578 -2.505e+01 36.28077 +log_k1 -2.38875 -2.517e+00 -2.26045 +log_k2 -4.67246 -4.928e+00 -4.41715 +g_qlogis -0.28231 -1.135e+00 0.57058 +a.1 2.08190 1.856e+00 2.30785 +b.1 0.06114 5.015e-02 0.07214 +SD.log_k_JCZ38 0.84622 2.637e-01 1.42873 +SD.log_k_J9Z38 0.84564 2.566e-01 1.43464 +SD.log_k_JSE76 1.04385 3.242e-01 1.76351 +SD.f_cyan_ilr_1 0.38568 1.362e-01 0.63514 +SD.f_cyan_ilr_2 0.68046 7.166e-02 1.28925 +SD.f_JCZ38_qlogis 1.25244 -4.213e-02 2.54700 +SD.f_JSE76_qlogis 0.28202 -1.515e+03 1515.87968 +SD.log_k2 0.25749 7.655e-02 0.43843 +SD.g_qlogis 0.94535 3.490e-01 1.54174 + +Correlation: + cyan_0 l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76 +log_k_JCZ38 -0.0086 +log_k_J9Z38 -0.0363 -0.0007 +log_k_JSE76 0.0015 0.1210 -0.0017 +f_cyan_ilr_1 -0.0048 0.0095 -0.0572 0.0030 +f_cyan_ilr_2 -0.4788 0.0328 0.1143 0.0027 -0.0316 +f_JCZ38_qlogis 0.0736 -0.0664 -0.0137 0.0145 -0.0444 -0.2175 +f_JSE76_qlogis -0.0137 0.0971 0.0035 0.0009 0.0293 0.1333 -0.6767 +log_k1 0.2345 -0.0350 -0.0099 -0.0113 -0.0126 -0.1652 0.1756 -0.2161 +log_k2 0.0440 -0.0133 0.0199 -0.0040 -0.0097 -0.0119 0.0604 -0.1306 +g_qlogis 0.0438 0.0078 -0.0123 0.0029 0.0046 -0.0363 -0.0318 0.0736 + log_k1 log_k2 +log_k_JCZ38 +log_k_J9Z38 +log_k_JSE76 +f_cyan_ilr_1 +f_cyan_ilr_2 +f_JCZ38_qlogis +f_JSE76_qlogis +log_k1 +log_k2 0.3198 +g_qlogis -0.1666 -0.0954 + +Random effects: + est. lower upper +SD.log_k_JCZ38 0.8462 2.637e-01 1.4287 +SD.log_k_J9Z38 0.8456 2.566e-01 1.4346 +SD.log_k_JSE76 1.0439 3.242e-01 1.7635 +SD.f_cyan_ilr_1 0.3857 1.362e-01 0.6351 +SD.f_cyan_ilr_2 0.6805 7.166e-02 1.2893 +SD.f_JCZ38_qlogis 1.2524 -4.213e-02 2.5470 +SD.f_JSE76_qlogis 0.2820 -1.515e+03 1515.8797 +SD.log_k2 0.2575 7.655e-02 0.4384 +SD.g_qlogis 0.9453 3.490e-01 1.5417 + +Variance model: + est. lower upper +a.1 2.08190 1.85595 2.30785 +b.1 0.06114 0.05015 0.07214 + +Backtransformed parameters: + est. lower upper +cyan_0 1.011e+02 9.903e+01 103.18265 +k_JCZ38 8.255e-02 3.701e-02 0.18411 +k_J9Z38 6.209e-03 2.809e-03 0.01373 +k_JSE76 4.073e-02 1.530e-02 0.10843 +f_cyan_to_JCZ38 6.608e-01 NA NA +f_cyan_to_J9Z38 2.419e-01 NA NA +f_JCZ38_to_JSE76 9.601e-01 7.419e-01 0.99506 +f_JSE76_to_JCZ38 9.964e-01 1.322e-11 1.00000 +k1 9.174e-02 8.070e-02 0.10430 +k2 9.349e-03 7.243e-03 0.01207 +g 4.299e-01 2.432e-01 0.63890 + +Resulting formation fractions: + ff +cyan_JCZ38 0.660808 +cyan_J9Z38 0.241904 +cyan_sink 0.097288 +JCZ38_JSE76 0.960085 +JCZ38_sink 0.039915 +JSE76_JCZ38 0.996373 +JSE76_sink 0.003627 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_k1 DT50_k2 +cyan 24.359 186.18 56.05 7.555 74.14 +JCZ38 8.397 27.89 NA NA NA +J9Z38 111.631 370.83 NA NA NA +JSE76 17.017 56.53 NA NA NA + +</code></pre> +<p></p> +<caption> +Hierarchical SFORB path 2 fit with constant variance +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:38:37 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound * + cyan_free + k_cyan_bound_free * cyan_bound +d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free * + cyan_bound +d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38 + * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38 + * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1279.102 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + cyan_free_0 log_k_cyan_free log_k_cyan_free_bound + 102.4394 -2.7673 -2.8942 +log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 + -3.6201 -2.3107 -5.3123 + log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2 + -3.7120 0.6754 1.1448 + f_JCZ38_qlogis f_JSE76_qlogis + 13.2672 13.3538 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_free_0 log_k_cyan_free log_k_cyan_free_bound +cyan_free_0 4.589 0.0000 0.00 +log_k_cyan_free 0.000 0.4849 0.00 +log_k_cyan_free_bound 0.000 0.0000 1.62 +log_k_cyan_bound_free 0.000 0.0000 0.00 +log_k_JCZ38 0.000 0.0000 0.00 +log_k_J9Z38 0.000 0.0000 0.00 +log_k_JSE76 0.000 0.0000 0.00 +f_cyan_ilr_1 0.000 0.0000 0.00 +f_cyan_ilr_2 0.000 0.0000 0.00 +f_JCZ38_qlogis 0.000 0.0000 0.00 +f_JSE76_qlogis 0.000 0.0000 0.00 + log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_free_0 0.000 0.0000 0.000 0.0 +log_k_cyan_free 0.000 0.0000 0.000 0.0 +log_k_cyan_free_bound 0.000 0.0000 0.000 0.0 +log_k_cyan_bound_free 1.197 0.0000 0.000 0.0 +log_k_JCZ38 0.000 0.7966 0.000 0.0 +log_k_J9Z38 0.000 0.0000 1.561 0.0 +log_k_JSE76 0.000 0.0000 0.000 0.8 +f_cyan_ilr_1 0.000 0.0000 0.000 0.0 +f_cyan_ilr_2 0.000 0.0000 0.000 0.0 +f_JCZ38_qlogis 0.000 0.0000 0.000 0.0 +f_JSE76_qlogis 0.000 0.0000 0.000 0.0 + f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis +cyan_free_0 0.0000 0.000 0.00 0.00 +log_k_cyan_free 0.0000 0.000 0.00 0.00 +log_k_cyan_free_bound 0.0000 0.000 0.00 0.00 +log_k_cyan_bound_free 0.0000 0.000 0.00 0.00 +log_k_JCZ38 0.0000 0.000 0.00 0.00 +log_k_J9Z38 0.0000 0.000 0.00 0.00 +log_k_JSE76 0.0000 0.000 0.00 0.00 +f_cyan_ilr_1 0.6349 0.000 0.00 0.00 +f_cyan_ilr_2 0.0000 1.797 0.00 0.00 +f_JCZ38_qlogis 0.0000 0.000 13.84 0.00 +f_JSE76_qlogis 0.0000 0.000 0.00 14.66 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2284 2275 -1120 + +Optimised parameters: + est. lower upper +cyan_free_0 102.7730 1.015e+02 1.041e+02 +log_k_cyan_free -2.8530 -3.167e+00 -2.539e+00 +log_k_cyan_free_bound -2.7326 -3.543e+00 -1.922e+00 +log_k_cyan_bound_free -3.5582 -4.126e+00 -2.990e+00 +log_k_JCZ38 -2.3810 -2.921e+00 -1.841e+00 +log_k_J9Z38 -5.2301 -5.963e+00 -4.497e+00 +log_k_JSE76 -3.0286 -4.286e+00 -1.771e+00 +f_cyan_ilr_1 0.7081 3.733e-01 1.043e+00 +f_cyan_ilr_2 0.5847 7.846e-03 1.162e+00 +f_JCZ38_qlogis 9.5676 -1.323e+03 1.342e+03 +f_JSE76_qlogis 3.7042 7.254e-02 7.336e+00 +a.1 2.7222 2.532e+00 2.913e+00 +SD.log_k_cyan_free 0.3338 1.086e-01 5.589e-01 +SD.log_k_cyan_free_bound 0.8888 3.023e-01 1.475e+00 +SD.log_k_cyan_bound_free 0.6220 2.063e-01 1.038e+00 +SD.log_k_JCZ38 0.5221 1.334e-01 9.108e-01 +SD.log_k_J9Z38 0.7104 1.371e-01 1.284e+00 +SD.log_k_JSE76 1.3837 4.753e-01 2.292e+00 +SD.f_cyan_ilr_1 0.3620 1.248e-01 5.992e-01 +SD.f_cyan_ilr_2 0.4259 8.145e-02 7.704e-01 +SD.f_JCZ38_qlogis 3.5332 -1.037e+05 1.037e+05 +SD.f_JSE76_qlogis 1.6990 -2.771e-01 3.675e+00 + +Correlation: + cyn_f_0 lg_k_c_ lg_k_cyn_f_ lg_k_cyn_b_ l__JCZ3 l__J9Z3 +log_k_cyan_free 0.2126 +log_k_cyan_free_bound 0.0894 0.0871 +log_k_cyan_bound_free 0.0033 0.0410 0.0583 +log_k_JCZ38 -0.0708 -0.0280 -0.0147 0.0019 +log_k_J9Z38 -0.0535 -0.0138 0.0012 0.0148 0.0085 +log_k_JSE76 -0.0066 -0.0030 -0.0021 -0.0005 0.1090 0.0010 +f_cyan_ilr_1 -0.0364 -0.0157 -0.0095 -0.0015 0.0458 -0.0960 +f_cyan_ilr_2 -0.3814 -0.1104 -0.0423 0.0146 0.1540 0.1526 +f_JCZ38_qlogis 0.2507 0.0969 0.0482 -0.0097 -0.2282 -0.0363 +f_JSE76_qlogis -0.1648 -0.0710 -0.0443 -0.0087 0.2002 0.0226 + l__JSE7 f_cy__1 f_cy__2 f_JCZ38 +log_k_cyan_free +log_k_cyan_free_bound +log_k_cyan_bound_free +log_k_JCZ38 +log_k_J9Z38 +log_k_JSE76 +f_cyan_ilr_1 0.0001 +f_cyan_ilr_2 0.0031 0.0586 +f_JCZ38_qlogis 0.0023 -0.1867 -0.6255 +f_JSE76_qlogis 0.0082 0.1356 0.4519 -0.7951 + +Random effects: + est. lower upper +SD.log_k_cyan_free 0.3338 1.086e-01 5.589e-01 +SD.log_k_cyan_free_bound 0.8888 3.023e-01 1.475e+00 +SD.log_k_cyan_bound_free 0.6220 2.063e-01 1.038e+00 +SD.log_k_JCZ38 0.5221 1.334e-01 9.108e-01 +SD.log_k_J9Z38 0.7104 1.371e-01 1.284e+00 +SD.log_k_JSE76 1.3837 4.753e-01 2.292e+00 +SD.f_cyan_ilr_1 0.3620 1.248e-01 5.992e-01 +SD.f_cyan_ilr_2 0.4259 8.145e-02 7.704e-01 +SD.f_JCZ38_qlogis 3.5332 -1.037e+05 1.037e+05 +SD.f_JSE76_qlogis 1.6990 -2.771e-01 3.675e+00 + +Variance model: + est. lower upper +a.1 2.722 2.532 2.913 + +Backtransformed parameters: + est. lower upper +cyan_free_0 1.028e+02 1.015e+02 104.06475 +k_cyan_free 5.767e-02 4.213e-02 0.07894 +k_cyan_free_bound 6.505e-02 2.892e-02 0.14633 +k_cyan_bound_free 2.849e-02 1.614e-02 0.05028 +k_JCZ38 9.246e-02 5.390e-02 0.15859 +k_J9Z38 5.353e-03 2.572e-03 0.01114 +k_JSE76 4.838e-02 1.376e-02 0.17009 +f_cyan_free_to_JCZ38 6.011e-01 5.028e-01 0.83792 +f_cyan_free_to_J9Z38 2.208e-01 5.028e-01 0.83792 +f_JCZ38_to_JSE76 9.999e-01 0.000e+00 1.00000 +f_JSE76_to_JCZ38 9.760e-01 5.181e-01 0.99935 + +Estimated Eigenvalues of SFORB model(s): +cyan_b1 cyan_b2 cyan_g +0.13942 0.01178 0.35948 + +Resulting formation fractions: + ff +cyan_free_JCZ38 6.011e-01 +cyan_free_J9Z38 2.208e-01 +cyan_free_sink 1.780e-01 +cyan_free 1.000e+00 +JCZ38_JSE76 9.999e-01 +JCZ38_sink 6.996e-05 +JSE76_JCZ38 9.760e-01 +JSE76_sink 2.403e-02 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2 +cyan 23.390 157.60 47.44 4.971 58.82 +JCZ38 7.497 24.90 NA NA NA +J9Z38 129.482 430.13 NA NA NA +JSE76 14.326 47.59 NA NA NA + +</code></pre> +<p></p> +<caption> +Hierarchical SFORB path 2 fit with two-component error +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 10:46:02 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound * + cyan_free + k_cyan_bound_free * cyan_bound +d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free * + cyan_bound +d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38 + * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38 + * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1723.343 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + cyan_free_0 log_k_cyan_free log_k_cyan_free_bound + 101.751 -2.837 -3.016 +log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 + -3.660 -2.299 -5.313 + log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2 + -3.699 0.672 5.873 + f_JCZ38_qlogis f_JSE76_qlogis + 13.216 13.338 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_free_0 log_k_cyan_free log_k_cyan_free_bound +cyan_free_0 5.629 0.000 0.000 +log_k_cyan_free 0.000 0.446 0.000 +log_k_cyan_free_bound 0.000 0.000 1.449 +log_k_cyan_bound_free 0.000 0.000 0.000 +log_k_JCZ38 0.000 0.000 0.000 +log_k_J9Z38 0.000 0.000 0.000 +log_k_JSE76 0.000 0.000 0.000 +f_cyan_ilr_1 0.000 0.000 0.000 +f_cyan_ilr_2 0.000 0.000 0.000 +f_JCZ38_qlogis 0.000 0.000 0.000 +f_JSE76_qlogis 0.000 0.000 0.000 + log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_free_0 0.000 0.0000 0.000 0.0000 +log_k_cyan_free 0.000 0.0000 0.000 0.0000 +log_k_cyan_free_bound 0.000 0.0000 0.000 0.0000 +log_k_cyan_bound_free 1.213 0.0000 0.000 0.0000 +log_k_JCZ38 0.000 0.7801 0.000 0.0000 +log_k_J9Z38 0.000 0.0000 1.575 0.0000 +log_k_JSE76 0.000 0.0000 0.000 0.8078 +f_cyan_ilr_1 0.000 0.0000 0.000 0.0000 +f_cyan_ilr_2 0.000 0.0000 0.000 0.0000 +f_JCZ38_qlogis 0.000 0.0000 0.000 0.0000 +f_JSE76_qlogis 0.000 0.0000 0.000 0.0000 + f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis +cyan_free_0 0.0000 0.00 0.00 0.00 +log_k_cyan_free 0.0000 0.00 0.00 0.00 +log_k_cyan_free_bound 0.0000 0.00 0.00 0.00 +log_k_cyan_bound_free 0.0000 0.00 0.00 0.00 +log_k_JCZ38 0.0000 0.00 0.00 0.00 +log_k_J9Z38 0.0000 0.00 0.00 0.00 +log_k_JSE76 0.0000 0.00 0.00 0.00 +f_cyan_ilr_1 0.6519 0.00 0.00 0.00 +f_cyan_ilr_2 0.0000 10.78 0.00 0.00 +f_JCZ38_qlogis 0.0000 0.00 13.96 0.00 +f_JSE76_qlogis 0.0000 0.00 0.00 14.69 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2240 2232 -1098 + +Optimised parameters: + est. lower upper +cyan_free_0 101.10205 98.99221 103.2119 +log_k_cyan_free -3.16929 -3.61395 -2.7246 +log_k_cyan_free_bound -3.38259 -3.63022 -3.1350 +log_k_cyan_bound_free -3.81075 -4.13888 -3.4826 +log_k_JCZ38 -2.42057 -3.00756 -1.8336 +log_k_J9Z38 -5.07501 -5.85138 -4.2986 +log_k_JSE76 -3.12442 -4.21277 -2.0361 +f_cyan_ilr_1 0.70577 0.35788 1.0537 +f_cyan_ilr_2 1.14824 0.15810 2.1384 +f_JCZ38_qlogis 3.52245 0.43257 6.6123 +f_JSE76_qlogis 5.65140 -21.22295 32.5257 +a.1 2.07062 1.84329 2.2980 +b.1 0.06227 0.05124 0.0733 +SD.log_k_cyan_free 0.49468 0.18566 0.8037 +SD.log_k_cyan_bound_free 0.28972 0.07188 0.5076 +SD.log_k_JCZ38 0.58852 0.16800 1.0090 +SD.log_k_J9Z38 0.82500 0.24730 1.4027 +SD.log_k_JSE76 1.19201 0.40313 1.9809 +SD.f_cyan_ilr_1 0.38534 0.13640 0.6343 +SD.f_cyan_ilr_2 0.72463 0.10076 1.3485 +SD.f_JCZ38_qlogis 1.38223 -0.20997 2.9744 +SD.f_JSE76_qlogis 2.07989 -72.53027 76.6901 + +Correlation: + cyn_f_0 lg_k_c_ lg_k_cyn_f_ lg_k_cyn_b_ l__JCZ3 l__J9Z3 +log_k_cyan_free 0.1117 +log_k_cyan_free_bound 0.1763 0.1828 +log_k_cyan_bound_free 0.0120 0.0593 0.5030 +log_k_JCZ38 -0.0459 -0.0230 -0.0931 -0.0337 +log_k_J9Z38 -0.0381 -0.0123 -0.0139 0.0237 0.0063 +log_k_JSE76 -0.0044 -0.0038 -0.0175 -0.0072 0.1120 0.0003 +f_cyan_ilr_1 -0.0199 -0.0087 -0.0407 -0.0233 0.0268 -0.0552 +f_cyan_ilr_2 -0.4806 -0.1015 -0.2291 -0.0269 0.1156 0.1113 +f_JCZ38_qlogis 0.1805 0.0825 0.3085 0.0963 -0.1674 -0.0314 +f_JSE76_qlogis -0.1586 -0.0810 -0.3560 -0.1563 0.2025 0.0278 + l__JSE7 f_cy__1 f_cy__2 f_JCZ38 +log_k_cyan_free +log_k_cyan_free_bound +log_k_cyan_bound_free +log_k_JCZ38 +log_k_J9Z38 +log_k_JSE76 +f_cyan_ilr_1 0.0024 +f_cyan_ilr_2 0.0087 0.0172 +f_JCZ38_qlogis -0.0016 -0.1047 -0.4656 +f_JSE76_qlogis 0.0119 0.1034 0.4584 -0.8137 + +Random effects: + est. lower upper +SD.log_k_cyan_free 0.4947 0.18566 0.8037 +SD.log_k_cyan_bound_free 0.2897 0.07188 0.5076 +SD.log_k_JCZ38 0.5885 0.16800 1.0090 +SD.log_k_J9Z38 0.8250 0.24730 1.4027 +SD.log_k_JSE76 1.1920 0.40313 1.9809 +SD.f_cyan_ilr_1 0.3853 0.13640 0.6343 +SD.f_cyan_ilr_2 0.7246 0.10076 1.3485 +SD.f_JCZ38_qlogis 1.3822 -0.20997 2.9744 +SD.f_JSE76_qlogis 2.0799 -72.53027 76.6901 + +Variance model: + est. lower upper +a.1 2.07062 1.84329 2.2980 +b.1 0.06227 0.05124 0.0733 + +Backtransformed parameters: + est. lower upper +cyan_free_0 1.011e+02 9.899e+01 103.21190 +k_cyan_free 4.203e-02 2.695e-02 0.06557 +k_cyan_free_bound 3.396e-02 2.651e-02 0.04350 +k_cyan_bound_free 2.213e-02 1.594e-02 0.03073 +k_JCZ38 8.887e-02 4.941e-02 0.15984 +k_J9Z38 6.251e-03 2.876e-03 0.01359 +k_JSE76 4.396e-02 1.481e-02 0.13054 +f_cyan_free_to_JCZ38 6.590e-01 5.557e-01 0.95365 +f_cyan_free_to_J9Z38 2.429e-01 5.557e-01 0.95365 +f_JCZ38_to_JSE76 9.713e-01 6.065e-01 0.99866 +f_JSE76_to_JCZ38 9.965e-01 6.067e-10 1.00000 + +Estimated Eigenvalues of SFORB model(s): +cyan_b1 cyan_b2 cyan_g +0.08749 0.01063 0.40855 + +Resulting formation fractions: + ff +cyan_free_JCZ38 0.65905 +cyan_free_J9Z38 0.24291 +cyan_free_sink 0.09805 +cyan_free 1.00000 +JCZ38_JSE76 0.97132 +JCZ38_sink 0.02868 +JSE76_JCZ38 0.99650 +JSE76_sink 0.00350 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2 +cyan 24.91 167.16 50.32 7.922 65.19 +JCZ38 7.80 25.91 NA NA NA +J9Z38 110.89 368.36 NA NA NA +JSE76 15.77 52.38 NA NA NA + +</code></pre> +<p></p> +</div> +<div class="section level4"> +<h4 id="pathway-2-refined-fits">Pathway 2, refined fits<a class="anchor" aria-label="anchor" href="#pathway-2-refined-fits"></a> +</h4> +<caption> +Hierarchical FOMC path 2 fit with reduced random effects, two-component +error +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:18:41 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) * + cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) * + cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1957.271 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 + 101.9028 -1.9055 -5.0249 -2.5646 0.6807 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta + 4.8883 16.0676 9.3923 -0.1346 3.0364 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0 6.321 0.000 0.000 0.000 0.0000 +log_k_JCZ38 0.000 1.392 0.000 0.000 0.0000 +log_k_J9Z38 0.000 0.000 1.561 0.000 0.0000 +log_k_JSE76 0.000 0.000 0.000 3.614 0.0000 +f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6339 +f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000 +f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000 +f_JSE76_qlogis 0.000 0.000 0.000 0.000 0.0000 +log_alpha 0.000 0.000 0.000 0.000 0.0000 +log_beta 0.000 0.000 0.000 0.000 0.0000 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta +cyan_0 0.00 0.00 0.00 0.0000 0.0000 +log_k_JCZ38 0.00 0.00 0.00 0.0000 0.0000 +log_k_J9Z38 0.00 0.00 0.00 0.0000 0.0000 +log_k_JSE76 0.00 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_1 0.00 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_2 10.41 0.00 0.00 0.0000 0.0000 +f_JCZ38_qlogis 0.00 12.24 0.00 0.0000 0.0000 +f_JSE76_qlogis 0.00 0.00 15.13 0.0000 0.0000 +log_alpha 0.00 0.00 0.00 0.3701 0.0000 +log_beta 0.00 0.00 0.00 0.0000 0.5662 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2251 2244 -1106 + +Optimised parameters: + est. lower upper +cyan_0 101.05768 NA NA +log_k_JCZ38 -2.73252 NA NA +log_k_J9Z38 -5.07399 NA NA +log_k_JSE76 -3.52863 NA NA +f_cyan_ilr_1 0.72176 NA NA +f_cyan_ilr_2 1.34610 NA NA +f_JCZ38_qlogis 2.08337 NA NA +f_JSE76_qlogis 1590.31880 NA NA +log_alpha -0.09336 NA NA +log_beta 3.10191 NA NA +a.1 2.08557 1.85439 2.31675 +b.1 0.06998 0.05800 0.08197 +SD.log_k_JCZ38 1.20053 0.43329 1.96777 +SD.log_k_J9Z38 0.85854 0.26708 1.45000 +SD.log_k_JSE76 0.62528 0.16061 1.08995 +SD.f_cyan_ilr_1 0.35190 0.12340 0.58039 +SD.f_cyan_ilr_2 0.85385 0.15391 1.55378 +SD.log_alpha 0.28971 0.08718 0.49225 +SD.log_beta 0.31614 0.05938 0.57290 + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_JCZ38 1.2005 0.43329 1.9678 +SD.log_k_J9Z38 0.8585 0.26708 1.4500 +SD.log_k_JSE76 0.6253 0.16061 1.0900 +SD.f_cyan_ilr_1 0.3519 0.12340 0.5804 +SD.f_cyan_ilr_2 0.8538 0.15391 1.5538 +SD.log_alpha 0.2897 0.08718 0.4923 +SD.log_beta 0.3161 0.05938 0.5729 + +Variance model: + est. lower upper +a.1 2.08557 1.854 2.31675 +b.1 0.06998 0.058 0.08197 + +Backtransformed parameters: + est. lower upper +cyan_0 1.011e+02 NA NA +k_JCZ38 6.506e-02 NA NA +k_J9Z38 6.257e-03 NA NA +k_JSE76 2.935e-02 NA NA +f_cyan_to_JCZ38 6.776e-01 NA NA +f_cyan_to_J9Z38 2.442e-01 NA NA +f_JCZ38_to_JSE76 8.893e-01 NA NA +f_JSE76_to_JCZ38 1.000e+00 NA NA +alpha 9.109e-01 NA NA +beta 2.224e+01 NA NA + +Resulting formation fractions: + ff +cyan_JCZ38 0.67761 +cyan_J9Z38 0.24417 +cyan_sink 0.07822 +JCZ38_JSE76 0.88928 +JCZ38_sink 0.11072 +JSE76_JCZ38 1.00000 +JSE76_sink 0.00000 + +Estimated disappearance times: + DT50 DT90 DT50back +cyan 25.36 256.37 77.18 +JCZ38 10.65 35.39 NA +J9Z38 110.77 367.98 NA +JSE76 23.62 78.47 NA + +</code></pre> +<p></p> +<caption> +Hierarchical DFOP path 2 fit with reduced random effects, constant +variance +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:16:32 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * + time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) + * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - + g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * + exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 + + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - + g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * + exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1828.403 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 + 102.4358 -2.3107 -5.3123 -3.7120 0.6753 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2 + 1.1462 12.4095 12.3630 -1.9317 -4.4557 + g_qlogis + -0.5648 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0 4.594 0.0000 0.000 0.0 0.0000 +log_k_JCZ38 0.000 0.7966 0.000 0.0 0.0000 +log_k_J9Z38 0.000 0.0000 1.561 0.0 0.0000 +log_k_JSE76 0.000 0.0000 0.000 0.8 0.0000 +f_cyan_ilr_1 0.000 0.0000 0.000 0.0 0.6349 +f_cyan_ilr_2 0.000 0.0000 0.000 0.0 0.0000 +f_JCZ38_qlogis 0.000 0.0000 0.000 0.0 0.0000 +f_JSE76_qlogis 0.000 0.0000 0.000 0.0 0.0000 +log_k1 0.000 0.0000 0.000 0.0 0.0000 +log_k2 0.000 0.0000 0.000 0.0 0.0000 +g_qlogis 0.000 0.0000 0.000 0.0 0.0000 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2 +cyan_0 0.000 0.00 0.0 0.000 0.0000 +log_k_JCZ38 0.000 0.00 0.0 0.000 0.0000 +log_k_J9Z38 0.000 0.00 0.0 0.000 0.0000 +log_k_JSE76 0.000 0.00 0.0 0.000 0.0000 +f_cyan_ilr_1 0.000 0.00 0.0 0.000 0.0000 +f_cyan_ilr_2 1.797 0.00 0.0 0.000 0.0000 +f_JCZ38_qlogis 0.000 13.85 0.0 0.000 0.0000 +f_JSE76_qlogis 0.000 0.00 14.1 0.000 0.0000 +log_k1 0.000 0.00 0.0 1.106 0.0000 +log_k2 0.000 0.00 0.0 0.000 0.6141 +g_qlogis 0.000 0.00 0.0 0.000 0.0000 + g_qlogis +cyan_0 0.000 +log_k_JCZ38 0.000 +log_k_J9Z38 0.000 +log_k_JSE76 0.000 +f_cyan_ilr_1 0.000 +f_cyan_ilr_2 0.000 +f_JCZ38_qlogis 0.000 +f_JSE76_qlogis 0.000 +log_k1 0.000 +log_k2 0.000 +g_qlogis 1.595 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2282 2274 -1121 + +Optimised parameters: + est. lower upper +cyan_0 102.5254 NA NA +log_k_JCZ38 -2.9358 NA NA +log_k_J9Z38 -5.1424 NA NA +log_k_JSE76 -3.6458 NA NA +f_cyan_ilr_1 0.6957 NA NA +f_cyan_ilr_2 0.6635 NA NA +f_JCZ38_qlogis 4984.8163 NA NA +f_JSE76_qlogis 1.9415 NA NA +log_k1 -1.9456 NA NA +log_k2 -4.4705 NA NA +g_qlogis -0.5117 NA NA +a.1 2.7455 2.55392 2.9370 +SD.log_k_JCZ38 1.3163 0.47635 2.1563 +SD.log_k_J9Z38 0.7162 0.16133 1.2711 +SD.log_k_JSE76 0.6457 0.15249 1.1390 +SD.f_cyan_ilr_1 0.3424 0.11714 0.5677 +SD.f_cyan_ilr_2 0.4524 0.09709 0.8077 +SD.log_k1 0.7353 0.25445 1.2161 +SD.log_k2 0.5137 0.18206 0.8453 +SD.g_qlogis 0.9857 0.35651 1.6148 + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_JCZ38 1.3163 0.47635 2.1563 +SD.log_k_J9Z38 0.7162 0.16133 1.2711 +SD.log_k_JSE76 0.6457 0.15249 1.1390 +SD.f_cyan_ilr_1 0.3424 0.11714 0.5677 +SD.f_cyan_ilr_2 0.4524 0.09709 0.8077 +SD.log_k1 0.7353 0.25445 1.2161 +SD.log_k2 0.5137 0.18206 0.8453 +SD.g_qlogis 0.9857 0.35651 1.6148 + +Variance model: + est. lower upper +a.1 2.745 2.554 2.937 + +Backtransformed parameters: + est. lower upper +cyan_0 1.025e+02 NA NA +k_JCZ38 5.309e-02 NA NA +k_J9Z38 5.844e-03 NA NA +k_JSE76 2.610e-02 NA NA +f_cyan_to_JCZ38 6.079e-01 NA NA +f_cyan_to_J9Z38 2.272e-01 NA NA +f_JCZ38_to_JSE76 1.000e+00 NA NA +f_JSE76_to_JCZ38 8.745e-01 NA NA +k1 1.429e-01 NA NA +k2 1.144e-02 NA NA +g 3.748e-01 NA NA + +Resulting formation fractions: + ff +cyan_JCZ38 0.6079 +cyan_J9Z38 0.2272 +cyan_sink 0.1649 +JCZ38_JSE76 1.0000 +JCZ38_sink 0.0000 +JSE76_JCZ38 0.8745 +JSE76_sink 0.1255 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_k1 DT50_k2 +cyan 22.29 160.20 48.22 4.85 60.58 +JCZ38 13.06 43.37 NA NA NA +J9Z38 118.61 394.02 NA NA NA +JSE76 26.56 88.22 NA NA NA + +</code></pre> +<p></p> +<caption> +Hierarchical DFOP path 2 fit with reduced random effects, two-component +error +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:22:28 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * + time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) + * cyan +d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - + g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * + exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 + + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 - + g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * + exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 2183.989 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 + 101.7523 -1.5948 -5.0119 -2.2723 0.6719 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2 + 5.1681 12.8238 12.4130 -2.0057 -4.5526 + g_qlogis + -0.5805 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1 +cyan_0 5.627 0.000 0.000 0.000 0.0000 +log_k_JCZ38 0.000 2.327 0.000 0.000 0.0000 +log_k_J9Z38 0.000 0.000 1.664 0.000 0.0000 +log_k_JSE76 0.000 0.000 0.000 4.566 0.0000 +f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6519 +f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000 +f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000 +f_JSE76_qlogis 0.000 0.000 0.000 0.000 0.0000 +log_k1 0.000 0.000 0.000 0.000 0.0000 +log_k2 0.000 0.000 0.000 0.000 0.0000 +g_qlogis 0.000 0.000 0.000 0.000 0.0000 + f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2 +cyan_0 0.0 0.00 0.00 0.0000 0.0000 +log_k_JCZ38 0.0 0.00 0.00 0.0000 0.0000 +log_k_J9Z38 0.0 0.00 0.00 0.0000 0.0000 +log_k_JSE76 0.0 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_1 0.0 0.00 0.00 0.0000 0.0000 +f_cyan_ilr_2 10.1 0.00 0.00 0.0000 0.0000 +f_JCZ38_qlogis 0.0 13.99 0.00 0.0000 0.0000 +f_JSE76_qlogis 0.0 0.00 14.15 0.0000 0.0000 +log_k1 0.0 0.00 0.00 0.8452 0.0000 +log_k2 0.0 0.00 0.00 0.0000 0.5968 +g_qlogis 0.0 0.00 0.00 0.0000 0.0000 + g_qlogis +cyan_0 0.000 +log_k_JCZ38 0.000 +log_k_J9Z38 0.000 +log_k_JSE76 0.000 +f_cyan_ilr_1 0.000 +f_cyan_ilr_2 0.000 +f_JCZ38_qlogis 0.000 +f_JSE76_qlogis 0.000 +log_k1 0.000 +log_k2 0.000 +g_qlogis 1.691 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2232 2224 -1096 + +Optimised parameters: + est. lower upper +cyan_0 101.20051 NA NA +log_k_JCZ38 -2.93542 NA NA +log_k_J9Z38 -5.03151 NA NA +log_k_JSE76 -3.67679 NA NA +f_cyan_ilr_1 0.67290 NA NA +f_cyan_ilr_2 0.99787 NA NA +f_JCZ38_qlogis 348.32484 NA NA +f_JSE76_qlogis 1.87846 NA NA +log_k1 -2.32738 NA NA +log_k2 -4.61295 NA NA +g_qlogis -0.38342 NA NA +a.1 2.06184 1.83746 2.28622 +b.1 0.06329 0.05211 0.07447 +SD.log_k_JCZ38 1.29042 0.47468 2.10617 +SD.log_k_J9Z38 0.84235 0.25903 1.42566 +SD.log_k_JSE76 0.56930 0.13934 0.99926 +SD.f_cyan_ilr_1 0.35183 0.12298 0.58068 +SD.f_cyan_ilr_2 0.77269 0.17908 1.36631 +SD.log_k2 0.28549 0.09210 0.47888 +SD.g_qlogis 0.93830 0.34568 1.53093 + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_JCZ38 1.2904 0.4747 2.1062 +SD.log_k_J9Z38 0.8423 0.2590 1.4257 +SD.log_k_JSE76 0.5693 0.1393 0.9993 +SD.f_cyan_ilr_1 0.3518 0.1230 0.5807 +SD.f_cyan_ilr_2 0.7727 0.1791 1.3663 +SD.log_k2 0.2855 0.0921 0.4789 +SD.g_qlogis 0.9383 0.3457 1.5309 + +Variance model: + est. lower upper +a.1 2.06184 1.83746 2.28622 +b.1 0.06329 0.05211 0.07447 + +Backtransformed parameters: + est. lower upper +cyan_0 1.012e+02 NA NA +k_JCZ38 5.311e-02 NA NA +k_J9Z38 6.529e-03 NA NA +k_JSE76 2.530e-02 NA NA +f_cyan_to_JCZ38 6.373e-01 NA NA +f_cyan_to_J9Z38 2.461e-01 NA NA +f_JCZ38_to_JSE76 1.000e+00 NA NA +f_JSE76_to_JCZ38 8.674e-01 NA NA +k1 9.755e-02 NA NA +k2 9.922e-03 NA NA +g 4.053e-01 NA NA + +Resulting formation fractions: + ff +cyan_JCZ38 0.6373 +cyan_J9Z38 0.2461 +cyan_sink 0.1167 +JCZ38_JSE76 1.0000 +JCZ38_sink 0.0000 +JSE76_JCZ38 0.8674 +JSE76_sink 0.1326 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_k1 DT50_k2 +cyan 24.93 179.68 54.09 7.105 69.86 +JCZ38 13.05 43.36 NA NA NA +J9Z38 106.16 352.67 NA NA NA +JSE76 27.39 91.00 NA NA NA + +</code></pre> +<p></p> +<caption> +Hierarchical SFORB path 2 fit with reduced random effects, constant +variance +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:17:37 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound * + cyan_free + k_cyan_bound_free * cyan_bound +d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free * + cyan_bound +d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38 + * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38 + * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 1893.29 s +Using 300, 100 iterations and 10 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + cyan_free_0 log_k_cyan_free log_k_cyan_free_bound + 102.4394 -2.7673 -2.8942 +log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 + -3.6201 -2.3107 -5.3123 + log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2 + -3.7120 0.6754 1.1448 + f_JCZ38_qlogis f_JSE76_qlogis + 13.2672 13.3538 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_free_0 log_k_cyan_free log_k_cyan_free_bound +cyan_free_0 4.589 0.0000 0.00 +log_k_cyan_free 0.000 0.4849 0.00 +log_k_cyan_free_bound 0.000 0.0000 1.62 +log_k_cyan_bound_free 0.000 0.0000 0.00 +log_k_JCZ38 0.000 0.0000 0.00 +log_k_J9Z38 0.000 0.0000 0.00 +log_k_JSE76 0.000 0.0000 0.00 +f_cyan_ilr_1 0.000 0.0000 0.00 +f_cyan_ilr_2 0.000 0.0000 0.00 +f_JCZ38_qlogis 0.000 0.0000 0.00 +f_JSE76_qlogis 0.000 0.0000 0.00 + log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_free_0 0.000 0.0000 0.000 0.0 +log_k_cyan_free 0.000 0.0000 0.000 0.0 +log_k_cyan_free_bound 0.000 0.0000 0.000 0.0 +log_k_cyan_bound_free 1.197 0.0000 0.000 0.0 +log_k_JCZ38 0.000 0.7966 0.000 0.0 +log_k_J9Z38 0.000 0.0000 1.561 0.0 +log_k_JSE76 0.000 0.0000 0.000 0.8 +f_cyan_ilr_1 0.000 0.0000 0.000 0.0 +f_cyan_ilr_2 0.000 0.0000 0.000 0.0 +f_JCZ38_qlogis 0.000 0.0000 0.000 0.0 +f_JSE76_qlogis 0.000 0.0000 0.000 0.0 + f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis +cyan_free_0 0.0000 0.000 0.00 0.00 +log_k_cyan_free 0.0000 0.000 0.00 0.00 +log_k_cyan_free_bound 0.0000 0.000 0.00 0.00 +log_k_cyan_bound_free 0.0000 0.000 0.00 0.00 +log_k_JCZ38 0.0000 0.000 0.00 0.00 +log_k_J9Z38 0.0000 0.000 0.00 0.00 +log_k_JSE76 0.0000 0.000 0.00 0.00 +f_cyan_ilr_1 0.6349 0.000 0.00 0.00 +f_cyan_ilr_2 0.0000 1.797 0.00 0.00 +f_JCZ38_qlogis 0.0000 0.000 13.84 0.00 +f_JSE76_qlogis 0.0000 0.000 0.00 14.66 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2279 2272 -1120 + +Optimised parameters: + est. lower upper +cyan_free_0 102.5621 NA NA +log_k_cyan_free -2.8531 NA NA +log_k_cyan_free_bound -2.6916 NA NA +log_k_cyan_bound_free -3.5032 NA NA +log_k_JCZ38 -2.9436 NA NA +log_k_J9Z38 -5.1140 NA NA +log_k_JSE76 -3.6472 NA NA +f_cyan_ilr_1 0.6887 NA NA +f_cyan_ilr_2 0.6874 NA NA +f_JCZ38_qlogis 4063.6389 NA NA +f_JSE76_qlogis 1.9556 NA NA +a.1 2.7460 2.55451 2.9376 +SD.log_k_cyan_free 0.3131 0.09841 0.5277 +SD.log_k_cyan_free_bound 0.8850 0.29909 1.4710 +SD.log_k_cyan_bound_free 0.6167 0.20391 1.0295 +SD.log_k_JCZ38 1.3555 0.49101 2.2200 +SD.log_k_J9Z38 0.7200 0.16166 1.2783 +SD.log_k_JSE76 0.6252 0.14619 1.1042 +SD.f_cyan_ilr_1 0.3386 0.11447 0.5627 +SD.f_cyan_ilr_2 0.4699 0.09810 0.8417 + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_cyan_free 0.3131 0.09841 0.5277 +SD.log_k_cyan_free_bound 0.8850 0.29909 1.4710 +SD.log_k_cyan_bound_free 0.6167 0.20391 1.0295 +SD.log_k_JCZ38 1.3555 0.49101 2.2200 +SD.log_k_J9Z38 0.7200 0.16166 1.2783 +SD.log_k_JSE76 0.6252 0.14619 1.1042 +SD.f_cyan_ilr_1 0.3386 0.11447 0.5627 +SD.f_cyan_ilr_2 0.4699 0.09810 0.8417 + +Variance model: + est. lower upper +a.1 2.746 2.555 2.938 + +Backtransformed parameters: + est. lower upper +cyan_free_0 1.026e+02 NA NA +k_cyan_free 5.767e-02 NA NA +k_cyan_free_bound 6.777e-02 NA NA +k_cyan_bound_free 3.010e-02 NA NA +k_JCZ38 5.267e-02 NA NA +k_J9Z38 6.012e-03 NA NA +k_JSE76 2.606e-02 NA NA +f_cyan_free_to_JCZ38 6.089e-01 NA NA +f_cyan_free_to_J9Z38 2.299e-01 NA NA +f_JCZ38_to_JSE76 1.000e+00 NA NA +f_JSE76_to_JCZ38 8.761e-01 NA NA + +Estimated Eigenvalues of SFORB model(s): +cyan_b1 cyan_b2 cyan_g + 0.1434 0.0121 0.3469 + +Resulting formation fractions: + ff +cyan_free_JCZ38 0.6089 +cyan_free_J9Z38 0.2299 +cyan_free_sink 0.1612 +cyan_free 1.0000 +JCZ38_JSE76 1.0000 +JCZ38_sink 0.0000 +JSE76_JCZ38 0.8761 +JSE76_sink 0.1239 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2 +cyan 23.94 155.06 46.68 4.832 57.28 +JCZ38 13.16 43.71 NA NA NA +J9Z38 115.30 383.02 NA NA NA +JSE76 26.59 88.35 NA NA NA + +</code></pre> +<p></p> +<caption> +Hierarchical SFORB path 2 fit with reduced random effects, two-component +error +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:21:01 2023 +Date of summary: Sat Jan 28 11:22:29 2023 + +Equations: +d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound * + cyan_free + k_cyan_bound_free * cyan_bound +d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free * + cyan_bound +d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38 + * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76 +d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38 + * J9Z38 +d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76 + +Data: +433 observations of 4 variable(s) grouped in 5 datasets + +Model predictions using solution type deSolve + +Fitted in 2097.842 s +Using 300, 100 iterations and 10 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + cyan_free_0 log_k_cyan_free log_k_cyan_free_bound + 101.751 -2.837 -3.016 +log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 + -3.660 -2.299 -5.313 + log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2 + -3.699 0.672 5.873 + f_JCZ38_qlogis f_JSE76_qlogis + 13.216 13.338 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + cyan_free_0 log_k_cyan_free log_k_cyan_free_bound +cyan_free_0 5.629 0.000 0.000 +log_k_cyan_free 0.000 0.446 0.000 +log_k_cyan_free_bound 0.000 0.000 1.449 +log_k_cyan_bound_free 0.000 0.000 0.000 +log_k_JCZ38 0.000 0.000 0.000 +log_k_J9Z38 0.000 0.000 0.000 +log_k_JSE76 0.000 0.000 0.000 +f_cyan_ilr_1 0.000 0.000 0.000 +f_cyan_ilr_2 0.000 0.000 0.000 +f_JCZ38_qlogis 0.000 0.000 0.000 +f_JSE76_qlogis 0.000 0.000 0.000 + log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76 +cyan_free_0 0.000 0.0000 0.000 0.0000 +log_k_cyan_free 0.000 0.0000 0.000 0.0000 +log_k_cyan_free_bound 0.000 0.0000 0.000 0.0000 +log_k_cyan_bound_free 1.213 0.0000 0.000 0.0000 +log_k_JCZ38 0.000 0.7801 0.000 0.0000 +log_k_J9Z38 0.000 0.0000 1.575 0.0000 +log_k_JSE76 0.000 0.0000 0.000 0.8078 +f_cyan_ilr_1 0.000 0.0000 0.000 0.0000 +f_cyan_ilr_2 0.000 0.0000 0.000 0.0000 +f_JCZ38_qlogis 0.000 0.0000 0.000 0.0000 +f_JSE76_qlogis 0.000 0.0000 0.000 0.0000 + f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis +cyan_free_0 0.0000 0.00 0.00 0.00 +log_k_cyan_free 0.0000 0.00 0.00 0.00 +log_k_cyan_free_bound 0.0000 0.00 0.00 0.00 +log_k_cyan_bound_free 0.0000 0.00 0.00 0.00 +log_k_JCZ38 0.0000 0.00 0.00 0.00 +log_k_J9Z38 0.0000 0.00 0.00 0.00 +log_k_JSE76 0.0000 0.00 0.00 0.00 +f_cyan_ilr_1 0.6519 0.00 0.00 0.00 +f_cyan_ilr_2 0.0000 10.78 0.00 0.00 +f_JCZ38_qlogis 0.0000 0.00 13.96 0.00 +f_JSE76_qlogis 0.0000 0.00 0.00 14.69 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 2236 2228 -1098 + +Optimised parameters: + est. lower upper +cyan_free_0 100.72760 NA NA +log_k_cyan_free -3.18281 NA NA +log_k_cyan_free_bound -3.37924 NA NA +log_k_cyan_bound_free -3.77107 NA NA +log_k_JCZ38 -2.92811 NA NA +log_k_J9Z38 -5.02759 NA NA +log_k_JSE76 -3.65835 NA NA +f_cyan_ilr_1 0.67390 NA NA +f_cyan_ilr_2 1.15106 NA NA +f_JCZ38_qlogis 827.82299 NA NA +f_JSE76_qlogis 1.83064 NA NA +a.1 2.06921 1.84443 2.29399 +b.1 0.06391 0.05267 0.07515 +SD.log_k_cyan_free 0.50518 0.18962 0.82075 +SD.log_k_cyan_bound_free 0.30991 0.08170 0.53813 +SD.log_k_JCZ38 1.26661 0.46578 2.06744 +SD.log_k_J9Z38 0.88272 0.27813 1.48730 +SD.log_k_JSE76 0.53050 0.12561 0.93538 +SD.f_cyan_ilr_1 0.35547 0.12461 0.58633 +SD.f_cyan_ilr_2 0.91446 0.20131 1.62761 + +Correlation is not available + +Random effects: + est. lower upper +SD.log_k_cyan_free 0.5052 0.1896 0.8207 +SD.log_k_cyan_bound_free 0.3099 0.0817 0.5381 +SD.log_k_JCZ38 1.2666 0.4658 2.0674 +SD.log_k_J9Z38 0.8827 0.2781 1.4873 +SD.log_k_JSE76 0.5305 0.1256 0.9354 +SD.f_cyan_ilr_1 0.3555 0.1246 0.5863 +SD.f_cyan_ilr_2 0.9145 0.2013 1.6276 + +Variance model: + est. lower upper +a.1 2.06921 1.84443 2.29399 +b.1 0.06391 0.05267 0.07515 + +Backtransformed parameters: + est. lower upper +cyan_free_0 1.007e+02 NA NA +k_cyan_free 4.147e-02 NA NA +k_cyan_free_bound 3.407e-02 NA NA +k_cyan_bound_free 2.303e-02 NA NA +k_JCZ38 5.350e-02 NA NA +k_J9Z38 6.555e-03 NA NA +k_JSE76 2.578e-02 NA NA +f_cyan_free_to_JCZ38 6.505e-01 NA NA +f_cyan_free_to_J9Z38 2.508e-01 NA NA +f_JCZ38_to_JSE76 1.000e+00 NA NA +f_JSE76_to_JCZ38 8.618e-01 NA NA + +Estimated Eigenvalues of SFORB model(s): +cyan_b1 cyan_b2 cyan_g +0.08768 0.01089 0.39821 + +Resulting formation fractions: + ff +cyan_free_JCZ38 0.65053 +cyan_free_J9Z38 0.25082 +cyan_free_sink 0.09864 +cyan_free 1.00000 +JCZ38_JSE76 1.00000 +JCZ38_sink 0.00000 +JSE76_JCZ38 0.86184 +JSE76_sink 0.13816 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2 +cyan 25.32 164.79 49.61 7.906 63.64 +JCZ38 12.96 43.04 NA NA NA +J9Z38 105.75 351.29 NA NA NA +JSE76 26.89 89.33 NA NA NA + +</code></pre> +<p></p> +</div> +</div> +<div class="section level3"> +<h3 id="session-info">Session info<a class="anchor" aria-label="anchor" href="#session-info"></a> +</h3> +<pre><code>R version 4.2.2 Patched (2022-11-10 r83330) +Platform: x86_64-pc-linux-gnu (64-bit) +Running under: Debian GNU/Linux bookworm/sid + +Matrix products: default +BLAS: /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3 +LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so + +locale: + [1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C + [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=de_DE.UTF-8 + [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8 + [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C + [9] LC_ADDRESS=C LC_TELEPHONE=C +[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C + +attached base packages: +[1] parallel stats graphics grDevices utils datasets methods +[8] base + +other attached packages: +[1] saemix_3.2 npde_3.3 knitr_1.41 mkin_1.2.2 + +loaded via a namespace (and not attached): + [1] mclust_6.0.0 lattice_0.20-45 prettyunits_1.1.1 ps_1.7.2 + [5] zoo_1.8-11 assertthat_0.2.1 rprojroot_2.0.3 digest_0.6.31 + [9] lmtest_0.9-40 utf8_1.2.2 R6_2.5.1 cellranger_1.1.0 +[13] evaluate_0.19 ggplot2_3.4.0 highr_0.9 pillar_1.8.1 +[17] rlang_1.0.6 readxl_1.4.1 callr_3.7.3 jquerylib_0.1.4 +[21] rmarkdown_2.19 pkgdown_2.0.7 textshaping_0.3.6 desc_1.4.2 +[25] stringr_1.5.0 munsell_0.5.0 compiler_4.2.2 xfun_0.35 +[29] pkgconfig_2.0.3 systemfonts_1.0.4 pkgbuild_1.4.0 htmltools_0.5.4 +[33] tidyselect_1.2.0 tibble_3.1.8 gridExtra_2.3 codetools_0.2-18 +[37] fansi_1.0.3 crayon_1.5.2 dplyr_1.0.10 grid_4.2.2 +[41] nlme_3.1-161 jsonlite_1.8.4 gtable_0.3.1 lifecycle_1.0.3 +[45] DBI_1.1.3 magrittr_2.0.3 scales_1.2.1 cli_3.5.0 +[49] stringi_1.7.8 cachem_1.0.6 fs_1.5.2 bslib_0.4.2 +[53] ragg_1.2.4 generics_0.1.3 vctrs_0.5.1 deSolve_1.34 +[57] tools_4.2.2 glue_1.6.2 purrr_1.0.0 processx_3.8.0 +[61] fastmap_1.1.0 yaml_2.3.6 inline_0.3.19 colorspace_2.0-3 +[65] memoise_2.0.1 sass_0.4.4 </code></pre> +</div> +<div class="section level3"> +<h3 id="hardware-info">Hardware info<a class="anchor" aria-label="anchor" href="#hardware-info"></a> +</h3> +<pre><code>CPU model: AMD Ryzen 9 7950X 16-Core Processor</code></pre> +<pre><code>MemTotal: 64940452 kB</code></pre> +</div> +</div> + </div> + + <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> + + <nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2> + </nav> +</div> + +</div> + + + + <footer><div class="copyright"> + <p></p> +<p>Developed by Johannes Ranke.</p> +</div> + +<div class="pkgdown"> + <p></p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p> +</div> + + </footer> +</div> + + + + + + + </body> +</html> diff --git a/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-11-1.png b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-11-1.png Binary files differnew file mode 100644 index 00000000..b969f2ff --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-11-1.png diff --git a/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-12-1.png b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-12-1.png Binary files differnew file mode 100644 index 00000000..60393da3 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-12-1.png diff --git a/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-13-1.png b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-13-1.png Binary files differnew file mode 100644 index 00000000..b9a410f7 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-13-1.png diff --git a/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-17-1.png b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-17-1.png Binary files differnew file mode 100644 index 00000000..cf921dab --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-17-1.png diff --git a/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-18-1.png b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-18-1.png Binary files differnew file mode 100644 index 00000000..ff732730 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-18-1.png diff --git a/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-19-1.png b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-19-1.png Binary files differnew file mode 100644 index 00000000..e30011bc --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-19-1.png diff --git a/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-6-1.png b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-6-1.png Binary files differnew file mode 100644 index 00000000..4aad76df --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-6-1.png diff --git a/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-7-1.png b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-7-1.png Binary files differnew file mode 100644 index 00000000..e30011bc --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_cyan_pathway_files/figure-html/unnamed-chunk-7-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent.html b/docs/dev/articles/prebuilt/2022_dmta_parent.html new file mode 100644 index 00000000..89c9bfd8 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent.html @@ -0,0 +1,2204 @@ +<!DOCTYPE html> +<!-- Generated by pkgdown: do not edit by hand --><html lang="en"> +<head> +<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> +<meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> +<title>Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P • mkin</title> +<!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"> +<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../../bootstrap-toc.css"> +<script src="../../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"> +<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../../pkgdown.css" rel="stylesheet"> +<script src="../../pkgdown.js"></script><meta property="og:title" content="Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P"> +<meta property="og:description" content="mkin"> +<meta name="robots" content="noindex"> +<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> +</head> +<body data-spy="scroll" data-target="#toc"> + + + <div class="container template-article"> + <header><div class="navbar navbar-default navbar-fixed-top" role="navigation"> + <div class="container"> + <div class="navbar-header"> + <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> + <span class="sr-only">Toggle navigation</span> + <span class="icon-bar"></span> + <span class="icon-bar"></span> + <span class="icon-bar"></span> + </button> + <span class="navbar-brand"> + <a class="navbar-link" href="../../index.html">mkin</a> + <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.2.2</span> + </span> + </div> + + <div id="navbar" class="navbar-collapse collapse"> + <ul class="nav navbar-nav"> +<li> + <a href="../../reference/index.html">Functions and data</a> +</li> +<li class="dropdown"> + <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> + Articles + + <span class="caret"></span> + </a> + <ul class="dropdown-menu" role="menu"> +<li> + <a href="../../articles/mkin.html">Introduction to mkin</a> + </li> + <li> + <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> + </li> + <li> + <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> + </li> + <li> + <a href="../../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> + </li> + <li> + <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> + </li> + <li> + <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> + </li> + <li> + <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> + <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> + </li> + <li> + <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> + </li> + <li> + <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> + </li> + <li> + <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a> + </li> + </ul> +</li> +<li> + <a href="../../news/index.html">News</a> +</li> + </ul> +<ul class="nav navbar-nav navbar-right"> +<li> + <a href="https://github.com/jranke/mkin/" class="external-link"> + <span class="fab fa-github fa-lg"></span> + + </a> +</li> + </ul> +</div> +<!--/.nav-collapse --> + </div> +<!--/.container --> +</div> +<!--/.navbar --> + + + + </header><div class="row"> + <div class="col-md-9 contents"> + <div class="page-header toc-ignore"> + <h1 data-toc-skip>Testing hierarchical parent degradation kinetics +with residue data on dimethenamid and dimethenamid-P</h1> + <h4 data-toc-skip class="author">Johannes +Ranke</h4> + + <h4 data-toc-skip class="date">Last change on 5 January +2023, last compiled on 28 Januar 2023</h4> + + <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/prebuilt/2022_dmta_parent.rmd" class="external-link"><code>vignettes/prebuilt/2022_dmta_parent.rmd</code></a></small> + <div class="hidden name"><code>2022_dmta_parent.rmd</code></div> + + </div> + + + +<div class="section level2"> +<h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a> +</h2> +<p>The purpose of this document is to demonstrate how nonlinear +hierarchical models (NLHM) based on the parent degradation models SFO, +FOMC, DFOP and HS can be fitted with the mkin package.</p> +<p>It was assembled in the course of work package 1.1 of Project Number +173340 (Application of nonlinear hierarchical models to the kinetic +evaluation of chemical degradation data) of the German Environment +Agency carried out in 2022 and 2023.</p> +<p>The mkin package is used in version 1.2.2. It contains the test data +and the functions used in the evaluations. The <code>saemix</code> +package is used as a backend for fitting the NLHM, but is also loaded to +make the convergence plot function available.</p> +<p>This document is processed with the <code>knitr</code> package, which +also provides the <code>kable</code> function that is used to improve +the display of tabular data in R markdown documents. For parallel +processing, the <code>parallel</code> package is used.</p> +<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://pkgdown.jrwb.de/mkin/">mkin</a></span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://yihui.org/knitr/" class="external-link">knitr</a></span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">saemix</span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">parallel</span><span class="op">)</span></span> +<span><span class="va">n_cores</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/detectCores.html" class="external-link">detectCores</a></span><span class="op">(</span><span class="op">)</span></span> +<span><span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/Sys.info.html" class="external-link">Sys.info</a></span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="st">"sysname"</span><span class="op">]</span> <span class="op">==</span> <span class="st">"Windows"</span><span class="op">)</span> <span class="op">{</span></span> +<span> <span class="va">cl</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makePSOCKcluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span><span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span> +<span> <span class="va">cl</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makeForkCluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span><span class="op">}</span></span></code></pre></div> +</div> +<div class="section level2"> +<h2 id="data">Data<a class="anchor" aria-label="anchor" href="#data"></a> +</h2> +<p>The test data are available in the mkin package as an object of class +<code>mkindsg</code> (mkin dataset group) under the identifier +<code>dimethenamid_2018</code>. The following preprocessing steps are +still necessary:</p> +<ul> +<li>The data available for the enantiomer dimethenamid-P (DMTAP) are +renamed to have the same substance name as the data for the racemic +mixture dimethenamid (DMTA). The reason for this is that no difference +between their degradation behaviour was identified in the EU risk +assessment.</li> +<li>The data for transformation products and unnecessary columns are +discarded</li> +<li>The observation times of each dataset are multiplied with the +corresponding normalisation factor also available in the dataset, in +order to make it possible to describe all datasets with a single set of +parameters that are independent of temperature</li> +<li>Finally, datasets observed in the same soil (<code>Elliot 1</code> +and <code>Elliot 2</code>) are combined, resulting in dimethenamid +(DMTA) data from six soils.</li> +</ul> +<p>The following commented R code performs this preprocessing.</p> +<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="co"># Apply a function to each of the seven datasets in the mkindsg object to create a list</span></span> +<span><span class="va">dmta_ds</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="fl">1</span><span class="op">:</span><span class="fl">7</span>, <span class="kw">function</span><span class="op">(</span><span class="va">i</span><span class="op">)</span> <span class="op">{</span></span> +<span> <span class="va">ds_i</span> <span class="op"><-</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span><span class="op">[[</span><span class="va">i</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">data</span> <span class="co"># Get a dataset</span></span> +<span> <span class="va">ds_i</span><span class="op">[</span><span class="va">ds_i</span><span class="op">$</span><span class="va">name</span> <span class="op">==</span> <span class="st">"DMTAP"</span>, <span class="st">"name"</span><span class="op">]</span> <span class="op"><-</span> <span class="st">"DMTA"</span> <span class="co"># Rename DMTAP to DMTA</span></span> +<span> <span class="va">ds_i</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/subset.html" class="external-link">subset</a></span><span class="op">(</span><span class="va">ds_i</span>, <span class="va">name</span> <span class="op">==</span> <span class="st">"DMTA"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"name"</span>, <span class="st">"time"</span>, <span class="st">"value"</span><span class="op">)</span><span class="op">)</span> <span class="co"># Select data</span></span> +<span> <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op"><-</span> <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op">*</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">f_time_norm</span><span class="op">[</span><span class="va">i</span><span class="op">]</span> <span class="co"># Normalise time</span></span> +<span> <span class="va">ds_i</span> <span class="co"># Return the dataset</span></span> +<span><span class="op">}</span><span class="op">)</span></span> +<span></span> +<span><span class="co"># Use dataset titles as names for the list elements</span></span> +<span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">sapply</a></span><span class="op">(</span><span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span>, <span class="kw">function</span><span class="op">(</span><span class="va">ds</span><span class="op">)</span> <span class="va">ds</span><span class="op">$</span><span class="va">title</span><span class="op">)</span></span> +<span></span> +<span><span class="co"># Combine data for Elliot soil to obtain a named list with six elements</span></span> +<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/cbind.html" class="external-link">rbind</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span>, <span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span> <span class="co">#</span></span> +<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span> +<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span></code></pre></div> +<p>The following tables show the 6 datasets.</p> +<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw">for</span> <span class="op">(</span><span class="va">ds_name</span> <span class="kw">in</span> <span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span> +<span> <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mkin_long_to_wide.html">mkin_long_to_wide</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="va">ds_name</span><span class="op">]</span><span class="op">]</span><span class="op">)</span>,</span> +<span> caption <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste</a></span><span class="op">(</span><span class="st">"Dataset"</span>, <span class="va">ds_name</span><span class="op">)</span>,</span> +<span> label <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste0</a></span><span class="op">(</span><span class="st">"tab:"</span>, <span class="va">ds_name</span><span class="op">)</span>, booktabs <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span><span class="op">)</span></span> +<span> <span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="st">"\n\\clearpage\n"</span><span class="op">)</span></span> +<span><span class="op">}</span></span></code></pre></div> +<table class="table"> +<caption>Dataset Calke</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0</td> +<td align="right">95.8</td> +</tr> +<tr class="even"> +<td align="right">0</td> +<td align="right">98.7</td> +</tr> +<tr class="odd"> +<td align="right">14</td> +<td align="right">60.5</td> +</tr> +<tr class="even"> +<td align="right">30</td> +<td align="right">39.1</td> +</tr> +<tr class="odd"> +<td align="right">59</td> +<td align="right">15.2</td> +</tr> +<tr class="even"> +<td align="right">120</td> +<td align="right">4.8</td> +</tr> +<tr class="odd"> +<td align="right">120</td> +<td align="right">4.6</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Borstel</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">100.5</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">99.6</td> +</tr> +<tr class="odd"> +<td align="right">1.941295</td> +<td align="right">91.9</td> +</tr> +<tr class="even"> +<td align="right">1.941295</td> +<td align="right">91.3</td> +</tr> +<tr class="odd"> +<td align="right">6.794534</td> +<td align="right">81.8</td> +</tr> +<tr class="even"> +<td align="right">6.794534</td> +<td align="right">82.1</td> +</tr> +<tr class="odd"> +<td align="right">13.589067</td> +<td align="right">69.1</td> +</tr> +<tr class="even"> +<td align="right">13.589067</td> +<td align="right">68.0</td> +</tr> +<tr class="odd"> +<td align="right">27.178135</td> +<td align="right">51.4</td> +</tr> +<tr class="even"> +<td align="right">27.178135</td> +<td align="right">51.4</td> +</tr> +<tr class="odd"> +<td align="right">56.297565</td> +<td align="right">27.6</td> +</tr> +<tr class="even"> +<td align="right">56.297565</td> +<td align="right">26.8</td> +</tr> +<tr class="odd"> +<td align="right">86.387643</td> +<td align="right">15.7</td> +</tr> +<tr class="even"> +<td align="right">86.387643</td> +<td align="right">15.3</td> +</tr> +<tr class="odd"> +<td align="right">115.507073</td> +<td align="right">7.9</td> +</tr> +<tr class="even"> +<td align="right">115.507073</td> +<td align="right">8.1</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Flaach</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">96.5</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">96.8</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">97.0</td> +</tr> +<tr class="even"> +<td align="right">0.6233856</td> +<td align="right">82.9</td> +</tr> +<tr class="odd"> +<td align="right">0.6233856</td> +<td align="right">86.7</td> +</tr> +<tr class="even"> +<td align="right">0.6233856</td> +<td align="right">87.4</td> +</tr> +<tr class="odd"> +<td align="right">1.8701567</td> +<td align="right">72.8</td> +</tr> +<tr class="even"> +<td align="right">1.8701567</td> +<td align="right">69.9</td> +</tr> +<tr class="odd"> +<td align="right">1.8701567</td> +<td align="right">71.9</td> +</tr> +<tr class="even"> +<td align="right">4.3636989</td> +<td align="right">51.4</td> +</tr> +<tr class="odd"> +<td align="right">4.3636989</td> +<td align="right">52.9</td> +</tr> +<tr class="even"> +<td align="right">4.3636989</td> +<td align="right">48.6</td> +</tr> +<tr class="odd"> +<td align="right">8.7273979</td> +<td align="right">28.5</td> +</tr> +<tr class="even"> +<td align="right">8.7273979</td> +<td align="right">27.3</td> +</tr> +<tr class="odd"> +<td align="right">8.7273979</td> +<td align="right">27.5</td> +</tr> +<tr class="even"> +<td align="right">13.0910968</td> +<td align="right">14.8</td> +</tr> +<tr class="odd"> +<td align="right">13.0910968</td> +<td align="right">13.4</td> +</tr> +<tr class="even"> +<td align="right">13.0910968</td> +<td align="right">14.4</td> +</tr> +<tr class="odd"> +<td align="right">17.4547957</td> +<td align="right">7.7</td> +</tr> +<tr class="even"> +<td align="right">17.4547957</td> +<td align="right">7.3</td> +</tr> +<tr class="odd"> +<td align="right">17.4547957</td> +<td align="right">8.1</td> +</tr> +<tr class="even"> +<td align="right">26.1821936</td> +<td align="right">2.0</td> +</tr> +<tr class="odd"> +<td align="right">26.1821936</td> +<td align="right">1.5</td> +</tr> +<tr class="even"> +<td align="right">26.1821936</td> +<td align="right">1.9</td> +</tr> +<tr class="odd"> +<td align="right">34.9095915</td> +<td align="right">1.3</td> +</tr> +<tr class="even"> +<td align="right">34.9095915</td> +<td align="right">1.0</td> +</tr> +<tr class="odd"> +<td align="right">34.9095915</td> +<td align="right">1.1</td> +</tr> +<tr class="even"> +<td align="right">43.6369893</td> +<td align="right">0.9</td> +</tr> +<tr class="odd"> +<td align="right">43.6369893</td> +<td align="right">0.7</td> +</tr> +<tr class="even"> +<td align="right">43.6369893</td> +<td align="right">0.7</td> +</tr> +<tr class="odd"> +<td align="right">52.3643872</td> +<td align="right">0.6</td> +</tr> +<tr class="even"> +<td align="right">52.3643872</td> +<td align="right">0.4</td> +</tr> +<tr class="odd"> +<td align="right">52.3643872</td> +<td align="right">0.5</td> +</tr> +<tr class="even"> +<td align="right">74.8062674</td> +<td align="right">0.4</td> +</tr> +<tr class="odd"> +<td align="right">74.8062674</td> +<td align="right">0.3</td> +</tr> +<tr class="even"> +<td align="right">74.8062674</td> +<td align="right">0.3</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset BBA 2.2</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">98.09</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">98.77</td> +</tr> +<tr class="odd"> +<td align="right">0.7678922</td> +<td align="right">93.52</td> +</tr> +<tr class="even"> +<td align="right">0.7678922</td> +<td align="right">92.03</td> +</tr> +<tr class="odd"> +<td align="right">2.3036765</td> +<td align="right">88.39</td> +</tr> +<tr class="even"> +<td align="right">2.3036765</td> +<td align="right">87.18</td> +</tr> +<tr class="odd"> +<td align="right">5.3752452</td> +<td align="right">69.38</td> +</tr> +<tr class="even"> +<td align="right">5.3752452</td> +<td align="right">71.06</td> +</tr> +<tr class="odd"> +<td align="right">10.7504904</td> +<td align="right">45.21</td> +</tr> +<tr class="even"> +<td align="right">10.7504904</td> +<td align="right">46.81</td> +</tr> +<tr class="odd"> +<td align="right">16.1257355</td> +<td align="right">30.54</td> +</tr> +<tr class="even"> +<td align="right">16.1257355</td> +<td align="right">30.07</td> +</tr> +<tr class="odd"> +<td align="right">21.5009807</td> +<td align="right">21.60</td> +</tr> +<tr class="even"> +<td align="right">21.5009807</td> +<td align="right">20.41</td> +</tr> +<tr class="odd"> +<td align="right">32.2514711</td> +<td align="right">9.10</td> +</tr> +<tr class="even"> +<td align="right">32.2514711</td> +<td align="right">9.70</td> +</tr> +<tr class="odd"> +<td align="right">43.0019614</td> +<td align="right">6.58</td> +</tr> +<tr class="even"> +<td align="right">43.0019614</td> +<td align="right">6.31</td> +</tr> +<tr class="odd"> +<td align="right">53.7524518</td> +<td align="right">3.47</td> +</tr> +<tr class="even"> +<td align="right">53.7524518</td> +<td align="right">3.52</td> +</tr> +<tr class="odd"> +<td align="right">64.5029421</td> +<td align="right">3.40</td> +</tr> +<tr class="even"> +<td align="right">64.5029421</td> +<td align="right">3.67</td> +</tr> +<tr class="odd"> +<td align="right">91.3791680</td> +<td align="right">1.62</td> +</tr> +<tr class="even"> +<td align="right">91.3791680</td> +<td align="right">1.62</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset BBA 2.3</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">99.33</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">97.44</td> +</tr> +<tr class="odd"> +<td align="right">0.6733938</td> +<td align="right">93.73</td> +</tr> +<tr class="even"> +<td align="right">0.6733938</td> +<td align="right">93.77</td> +</tr> +<tr class="odd"> +<td align="right">2.0201814</td> +<td align="right">87.84</td> +</tr> +<tr class="even"> +<td align="right">2.0201814</td> +<td align="right">89.82</td> +</tr> +<tr class="odd"> +<td align="right">4.7137565</td> +<td align="right">71.61</td> +</tr> +<tr class="even"> +<td align="right">4.7137565</td> +<td align="right">71.42</td> +</tr> +<tr class="odd"> +<td align="right">9.4275131</td> +<td align="right">45.60</td> +</tr> +<tr class="even"> +<td align="right">9.4275131</td> +<td align="right">45.42</td> +</tr> +<tr class="odd"> +<td align="right">14.1412696</td> +<td align="right">31.12</td> +</tr> +<tr class="even"> +<td align="right">14.1412696</td> +<td align="right">31.68</td> +</tr> +<tr class="odd"> +<td align="right">18.8550262</td> +<td align="right">23.20</td> +</tr> +<tr class="even"> +<td align="right">18.8550262</td> +<td align="right">24.13</td> +</tr> +<tr class="odd"> +<td align="right">28.2825393</td> +<td align="right">9.43</td> +</tr> +<tr class="even"> +<td align="right">28.2825393</td> +<td align="right">9.82</td> +</tr> +<tr class="odd"> +<td align="right">37.7100523</td> +<td align="right">7.08</td> +</tr> +<tr class="even"> +<td align="right">37.7100523</td> +<td align="right">8.64</td> +</tr> +<tr class="odd"> +<td align="right">47.1375654</td> +<td align="right">4.41</td> +</tr> +<tr class="even"> +<td align="right">47.1375654</td> +<td align="right">4.78</td> +</tr> +<tr class="odd"> +<td align="right">56.5650785</td> +<td align="right">4.92</td> +</tr> +<tr class="even"> +<td align="right">56.5650785</td> +<td align="right">5.08</td> +</tr> +<tr class="odd"> +<td align="right">80.1338612</td> +<td align="right">2.13</td> +</tr> +<tr class="even"> +<td align="right">80.1338612</td> +<td align="right">2.23</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Elliot</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">97.5</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">100.7</td> +</tr> +<tr class="odd"> +<td align="right">1.228478</td> +<td align="right">86.4</td> +</tr> +<tr class="even"> +<td align="right">1.228478</td> +<td align="right">88.5</td> +</tr> +<tr class="odd"> +<td align="right">3.685435</td> +<td align="right">69.8</td> +</tr> +<tr class="even"> +<td align="right">3.685435</td> +<td align="right">77.1</td> +</tr> +<tr class="odd"> +<td align="right">8.599349</td> +<td align="right">59.0</td> +</tr> +<tr class="even"> +<td align="right">8.599349</td> +<td align="right">54.2</td> +</tr> +<tr class="odd"> +<td align="right">17.198697</td> +<td align="right">31.3</td> +</tr> +<tr class="even"> +<td align="right">17.198697</td> +<td align="right">33.5</td> +</tr> +<tr class="odd"> +<td align="right">25.798046</td> +<td align="right">19.6</td> +</tr> +<tr class="even"> +<td align="right">25.798046</td> +<td align="right">20.9</td> +</tr> +<tr class="odd"> +<td align="right">34.397395</td> +<td align="right">13.3</td> +</tr> +<tr class="even"> +<td align="right">34.397395</td> +<td align="right">15.8</td> +</tr> +<tr class="odd"> +<td align="right">51.596092</td> +<td align="right">6.7</td> +</tr> +<tr class="even"> +<td align="right">51.596092</td> +<td align="right">8.7</td> +</tr> +<tr class="odd"> +<td align="right">68.794789</td> +<td align="right">8.8</td> +</tr> +<tr class="even"> +<td align="right">68.794789</td> +<td align="right">8.7</td> +</tr> +<tr class="odd"> +<td align="right">103.192184</td> +<td align="right">6.0</td> +</tr> +<tr class="even"> +<td align="right">103.192184</td> +<td align="right">4.4</td> +</tr> +<tr class="odd"> +<td align="right">146.188928</td> +<td align="right">3.3</td> +</tr> +<tr class="even"> +<td align="right">146.188928</td> +<td align="right">2.8</td> +</tr> +<tr class="odd"> +<td align="right">223.583066</td> +<td align="right">1.4</td> +</tr> +<tr class="even"> +<td align="right">223.583066</td> +<td align="right">1.8</td> +</tr> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">93.4</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">103.2</td> +</tr> +<tr class="odd"> +<td align="right">1.228478</td> +<td align="right">89.2</td> +</tr> +<tr class="even"> +<td align="right">1.228478</td> +<td align="right">86.6</td> +</tr> +<tr class="odd"> +<td align="right">3.685435</td> +<td align="right">78.2</td> +</tr> +<tr class="even"> +<td align="right">3.685435</td> +<td align="right">78.1</td> +</tr> +<tr class="odd"> +<td align="right">8.599349</td> +<td align="right">55.6</td> +</tr> +<tr class="even"> +<td align="right">8.599349</td> +<td align="right">53.0</td> +</tr> +<tr class="odd"> +<td align="right">17.198697</td> +<td align="right">33.7</td> +</tr> +<tr class="even"> +<td align="right">17.198697</td> +<td align="right">33.2</td> +</tr> +<tr class="odd"> +<td align="right">25.798046</td> +<td align="right">20.9</td> +</tr> +<tr class="even"> +<td align="right">25.798046</td> +<td align="right">19.9</td> +</tr> +<tr class="odd"> +<td align="right">34.397395</td> +<td align="right">18.2</td> +</tr> +<tr class="even"> +<td align="right">34.397395</td> +<td align="right">12.7</td> +</tr> +<tr class="odd"> +<td align="right">51.596092</td> +<td align="right">7.8</td> +</tr> +<tr class="even"> +<td align="right">51.596092</td> +<td align="right">9.0</td> +</tr> +<tr class="odd"> +<td align="right">68.794789</td> +<td align="right">11.4</td> +</tr> +<tr class="even"> +<td align="right">68.794789</td> +<td align="right">9.0</td> +</tr> +<tr class="odd"> +<td align="right">103.192184</td> +<td align="right">3.9</td> +</tr> +<tr class="even"> +<td align="right">103.192184</td> +<td align="right">4.4</td> +</tr> +<tr class="odd"> +<td align="right">146.188928</td> +<td align="right">2.6</td> +</tr> +<tr class="even"> +<td align="right">146.188928</td> +<td align="right">3.4</td> +</tr> +<tr class="odd"> +<td align="right">223.583066</td> +<td align="right">2.0</td> +</tr> +<tr class="even"> +<td align="right">223.583066</td> +<td align="right">1.7</td> +</tr> +</tbody> +</table> +</div> +<div class="section level2"> +<h2 id="separate-evaluations">Separate evaluations<a class="anchor" aria-label="anchor" href="#separate-evaluations"></a> +</h2> +<p>In order to obtain suitable starting parameters for the NLHM fits, +separate fits of the four models to the data for each soil are generated +using the <code>mmkin</code> function from the <code>mkin</code> +package. In a first step, constant variance is assumed. Convergence is +checked with the <code>status</code> function.</p> +<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">deg_mods</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span>, <span class="st">"DFOP"</span>, <span class="st">"HS"</span><span class="op">)</span></span> +<span><span class="va">f_sep_const</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span></span> +<span> <span class="va">deg_mods</span>,</span> +<span> <span class="va">dmta_ds</span>,</span> +<span> error_model <span class="op">=</span> <span class="st">"const"</span>,</span> +<span> quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span> +<span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_const</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Calke</th> +<th align="left">Borstel</th> +<th align="left">Flaach</th> +<th align="left">BBA 2.2</th> +<th align="left">BBA 2.3</th> +<th align="left">Elliot</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">FOMC</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">DFOP</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">HS</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>In the table above, OK indicates convergence, and C indicates failure +to converge. All separate fits with constant variance converged, with +the sole exception of the HS fit to the BBA 2.2 data. To prepare for +fitting NLHM using the two-component error model, the separate fits are +updated assuming two-component error.</p> +<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_sep_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_sep_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_sep_tc</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Calke</th> +<th align="left">Borstel</th> +<th align="left">Flaach</th> +<th align="left">BBA 2.2</th> +<th align="left">BBA 2.3</th> +<th align="left">Elliot</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">FOMC</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">DFOP</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">HS</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>Using the two-component error model, the one fit that did not +converge with constant variance did converge, but other non-SFO fits +failed to converge.</p> +</div> +<div class="section level2"> +<h2 id="hierarchichal-model-fits">Hierarchichal model fits<a class="anchor" aria-label="anchor" href="#hierarchichal-model-fits"></a> +</h2> +<p>The following code fits eight versions of hierarchical models to the +data, using SFO, FOMC, DFOP and HS for the parent compound, and using +either constant variance or two-component error for the error model. The +default parameter distribution model in mkin allows for variation of all +degradation parameters across the assumed population of soils. In other +words, each degradation parameter is associated with a random effect as +a first step. The <code>mhmkin</code> function makes it possible to fit +all eight versions in parallel (given a sufficient number of computing +cores being available) to save execution time.</p> +<p>Convergence plots and summaries for these fits are shown in the +appendix.</p> +<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_saem</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">f_sep_const</span>, <span class="va">f_sep_tc</span><span class="op">)</span>, transformations <span class="op">=</span> <span class="st">"saemix"</span><span class="op">)</span></span></code></pre></div> +<p>The output of the <code>status</code> function shows that all fits +terminated successfully.</p> +<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">FOMC</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">DFOP</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">HS</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>The AIC and BIC values show that the biphasic models DFOP and HS give +the best fits.</p> +<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO const</td> +<td align="right">5</td> +<td align="right">796.3</td> +<td align="right">795.3</td> +<td align="right">-393.2</td> +</tr> +<tr class="even"> +<td align="left">SFO tc</td> +<td align="right">6</td> +<td align="right">798.3</td> +<td align="right">797.1</td> +<td align="right">-393.2</td> +</tr> +<tr class="odd"> +<td align="left">FOMC const</td> +<td align="right">7</td> +<td align="right">734.2</td> +<td align="right">732.7</td> +<td align="right">-360.1</td> +</tr> +<tr class="even"> +<td align="left">FOMC tc</td> +<td align="right">8</td> +<td align="right">720.4</td> +<td align="right">718.8</td> +<td align="right">-352.2</td> +</tr> +<tr class="odd"> +<td align="left">DFOP const</td> +<td align="right">9</td> +<td align="right">711.8</td> +<td align="right">710.0</td> +<td align="right">-346.9</td> +</tr> +<tr class="even"> +<td align="left">HS const</td> +<td align="right">9</td> +<td align="right">714.0</td> +<td align="right">712.1</td> +<td align="right">-348.0</td> +</tr> +<tr class="odd"> +<td align="left">DFOP tc</td> +<td align="right">10</td> +<td align="right">665.5</td> +<td align="right">663.4</td> +<td align="right">-322.8</td> +</tr> +<tr class="even"> +<td align="left">HS tc</td> +<td align="right">10</td> +<td align="right">667.1</td> +<td align="right">665.0</td> +<td align="right">-323.6</td> +</tr> +</tbody> +</table> +<p>The DFOP model is preferred here, as it has a better mechanistic +basis for batch experiments with constant incubation conditions. Also, +it shows the lowest AIC and BIC values in the first set of fits when +combined with the two-component error model. Therefore, the DFOP model +was selected for further refinements of the fits with the aim to make +the model fully identifiable.</p> +<div class="section level3"> +<h3 id="parameter-identifiability-based-on-the-fisher-information-matrix">Parameter identifiability based on the Fisher Information +Matrix<a class="anchor" aria-label="anchor" href="#parameter-identifiability-based-on-the-fisher-information-matrix"></a> +</h3> +<p>Using the <code>illparms</code> function, ill-defined statistical +model parameters such as standard deviations of the degradation +parameters in the population and error model parameters can be +found.</p> +<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">SFO</td> +<td align="left"></td> +<td align="left">b.1</td> +</tr> +<tr class="even"> +<td align="left">FOMC</td> +<td align="left"></td> +<td align="left">sd(DMTA_0)</td> +</tr> +<tr class="odd"> +<td align="left">DFOP</td> +<td align="left">sd(k2)</td> +<td align="left">sd(k2)</td> +</tr> +<tr class="even"> +<td align="left">HS</td> +<td align="left"></td> +<td align="left">sd(tb)</td> +</tr> +</tbody> +</table> +<p>According to the <code>illparms</code> function, the fitted standard +deviation of the second kinetic rate constant <code>k2</code> is +ill-defined in both DFOP fits. This suggests that different values would +be obtained for this standard deviation when using different starting +values.</p> +<p>The thus identified overparameterisation is addressed by removing the +random effect for <code>k2</code> from the parameter model.</p> +<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_saem_dfop_tc_no_ranef_k2</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span>,</span> +<span> no_random_effect <span class="op">=</span> <span class="st">"k2"</span><span class="op">)</span></span></code></pre></div> +<p>For the resulting fit, it is checked whether there are still +ill-defined parameters,</p> +<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2</span><span class="op">)</span></span></code></pre></div> +<p>which is not the case. Below, the refined model is compared with the +previous best model. The model without random effect for <code>k2</code> +is a reduced version of the previous model. Therefore, the models are +nested and can be compared using the likelihood ratio test. This is +achieved with the argument <code>test = TRUE</code> to the +<code>anova</code> function.</p> +<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span>, <span class="va">f_saem_dfop_tc_no_ranef_k2</span>, test <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span> <span class="op">|></span></span> +<span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>format.args <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">4</span><span class="op">)</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<colgroup> +<col width="37%"> +<col width="6%"> +<col width="8%"> +<col width="8%"> +<col width="9%"> +<col width="9%"> +<col width="4%"> +<col width="15%"> +</colgroup> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +<th align="right">Chisq</th> +<th align="right">Df</th> +<th align="right">Pr(>Chisq)</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">f_saem_dfop_tc_no_ranef_k2</td> +<td align="right">9</td> +<td align="right">663.8</td> +<td align="right">661.9</td> +<td align="right">-322.9</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="left">f_saem[[“DFOP”, “tc”]]</td> +<td align="right">10</td> +<td align="right">665.5</td> +<td align="right">663.4</td> +<td align="right">-322.8</td> +<td align="right">0.2809</td> +<td align="right">1</td> +<td align="right">0.5961</td> +</tr> +</tbody> +</table> +<p>The AIC and BIC criteria are lower after removal of the ill-defined +random effect for <code>k2</code>. The p value of the likelihood ratio +test is much greater than 0.05, indicating that the model with the +higher likelihood (here the model with random effects for all +degradation parameters <code>f_saem[["DFOP", "tc"]]</code>) does not fit +significantly better than the model with the lower likelihood (the +reduced model <code>f_saem_dfop_tc_no_ranef_k2</code>).</p> +<p>Therefore, AIC, BIC and likelihood ratio test suggest the use of the +reduced model.</p> +<p>The convergence of the fit is checked visually.</p> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-no-ranef-k2-1.png" alt="Convergence plot for the NLHM DFOP fit with two-component error and without a random effect on 'k2'" width="864"><p class="caption"> +Convergence plot for the NLHM DFOP fit with two-component error and +without a random effect on ‘k2’ +</p> +</div> +<p>All parameters appear to have converged to a satisfactory degree. The +final fit is plotted using the plot method from the mkin package.</p> +<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/plot-saem-dfop-tc-no-ranef-k2-1.png" alt="Plot of the final NLHM DFOP fit" width="864"><p class="caption"> +Plot of the final NLHM DFOP fit +</p> +</div> +<p>Finally, a summary report of the fit is produced.</p> +<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2</span><span class="op">)</span></span></code></pre></div> +<pre><code>saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:22:51 2023 +Date of summary: Sat Jan 28 11:22:52 2023 + +Equations: +d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * + time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) + * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical + +Fitted in 3.74 s +Using 300, 100 iterations and 9 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + DMTA_0 k1 k2 g +98.759266 0.087034 0.009933 0.930827 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + DMTA_0 k1 k2 g +DMTA_0 98.76 0 0 0 +k1 0.00 1 0 0 +k2 0.00 0 1 0 +g 0.00 0 0 1 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 663.8 661.9 -322.9 + +Optimised parameters: + est. lower upper +DMTA_0 98.228939 96.285869 100.17201 +k1 0.064063 0.033477 0.09465 +k2 0.008297 0.005824 0.01077 +g 0.953821 0.914328 0.99331 +a.1 1.068479 0.869538 1.26742 +b.1 0.029424 0.022406 0.03644 +SD.DMTA_0 2.030437 0.404824 3.65605 +SD.k1 0.594692 0.256660 0.93272 +SD.g 1.006754 0.361327 1.65218 + +Correlation: + DMTA_0 k1 k2 +k1 0.0218 +k2 0.0556 0.0355 +g -0.0516 -0.0284 -0.2800 + +Random effects: + est. lower upper +SD.DMTA_0 2.0304 0.4048 3.6560 +SD.k1 0.5947 0.2567 0.9327 +SD.g 1.0068 0.3613 1.6522 + +Variance model: + est. lower upper +a.1 1.06848 0.86954 1.26742 +b.1 0.02942 0.02241 0.03644 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_k1 DT50_k2 +DMTA 11.45 41.4 12.46 10.82 83.54</code></pre> +</div> +<div class="section level3"> +<h3 id="alternative-check-of-parameter-identifiability">Alternative check of parameter identifiability<a class="anchor" aria-label="anchor" href="#alternative-check-of-parameter-identifiability"></a> +</h3> +<p>The parameter check used in the <code>illparms</code> function is +based on a quadratic approximation of the likelihood surface near its +optimum, which is calculated using the Fisher Information Matrix (FIM). +An alternative way to check parameter identifiability <span class="citation">(Duchesne et al. 2021)</span> based on a multistart +approach has recently been implemented in mkin.</p> +<p>The graph below shows boxplots of the parameters obtained in 50 runs +of the saem algorithm with different parameter combinations, sampled +from the range of the parameters obtained for the individual datasets +fitted separately using nonlinear regression.</p> +<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_saem_dfop_tc_multi</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/multistart.html">multistart</a></span><span class="op">(</span><span class="va">f_saem</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span>, n <span class="op">=</span> <span class="fl">50</span>, cores <span class="op">=</span> <span class="fl">15</span><span class="op">)</span></span></code></pre></div> +<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/par.html" class="external-link">par</a></span><span class="op">(</span>mar <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">6.1</span>, <span class="fl">4.1</span>, <span class="fl">2.1</span>, <span class="fl">2.1</span><span class="op">)</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_multi</span>, lpos <span class="op">=</span> <span class="st">"bottomright"</span>, ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.3</span>, <span class="fl">10</span><span class="op">)</span>, las <span class="op">=</span> <span class="fl">2</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/multistart-full-par-1.png" alt="Scaled parameters from the multistart runs, full model" width="960"><p class="caption"> +Scaled parameters from the multistart runs, full model +</p> +</div> +<p>The graph clearly confirms the lack of identifiability of the +variance of <code>k2</code> in the full model. The overparameterisation +of the model also indicates a lack of identifiability of the variance of +parameter <code>g</code>.</p> +<p>The parameter boxplots of the multistart runs with the reduced model +shown below indicate that all runs give similar results, regardless of +the starting parameters.</p> +<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">f_saem_dfop_tc_no_ranef_k2_multi</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/multistart.html">multistart</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2</span>,</span> +<span> n <span class="op">=</span> <span class="fl">50</span>, cores <span class="op">=</span> <span class="fl">15</span><span class="op">)</span></span></code></pre></div> +<div class="sourceCode" id="cb19"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/par.html" class="external-link">par</a></span><span class="op">(</span>mar <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">6.1</span>, <span class="fl">4.1</span>, <span class="fl">2.1</span>, <span class="fl">2.1</span><span class="op">)</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2_multi</span>, ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.5</span>, <span class="fl">2</span><span class="op">)</span>, las <span class="op">=</span> <span class="fl">2</span>,</span> +<span> lpos <span class="op">=</span> <span class="st">"bottomright"</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/multistart-reduced-par-1.png" alt="Scaled parameters from the multistart runs, reduced model" width="960"><p class="caption"> +Scaled parameters from the multistart runs, reduced model +</p> +</div> +<p>When only the parameters of the top 25% of the fits are shown (based +on a feature introduced in mkin 1.2.2 currently under development), the +scatter is even less as shown below.</p> +<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/par.html" class="external-link">par</a></span><span class="op">(</span>mar <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">6.1</span>, <span class="fl">4.1</span>, <span class="fl">2.1</span>, <span class="fl">2.1</span><span class="op">)</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">f_saem_dfop_tc_no_ranef_k2_multi</span>, ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.5</span>, <span class="fl">2</span><span class="op">)</span>, las <span class="op">=</span> <span class="fl">2</span>, llquant <span class="op">=</span> <span class="fl">0.25</span>,</span> +<span> lpos <span class="op">=</span> <span class="st">"bottomright"</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/multistart-reduced-par-llquant-1.png" alt="Scaled parameters from the multistart runs, reduced model, fits with the top 25\% likelihood values" width="960"><p class="caption"> +Scaled parameters from the multistart runs, reduced model, fits with the +top 25% likelihood values +</p> +</div> +</div> +</div> +<div class="section level2"> +<h2 id="conclusions">Conclusions<a class="anchor" aria-label="anchor" href="#conclusions"></a> +</h2> +<p>Fitting the four parent degradation models SFO, FOMC, DFOP and HS as +part of hierarchical model fits with two different error models and +normal distributions of the transformed degradation parameters works +without technical problems. The biphasic models DFOP and HS gave the +best fit to the data, but the default parameter distribution model was +not fully identifiable. Removing the random effect for the second +kinetic rate constant of the DFOP model resulted in a reduced model that +was fully identifiable and showed the lowest values for the model +selection criteria AIC and BIC. The reliability of the identification of +all model parameters was confirmed using multiple starting values.</p> +</div> +<div class="section level2"> +<h2 id="acknowledgements">Acknowledgements<a class="anchor" aria-label="anchor" href="#acknowledgements"></a> +</h2> +<p>The helpful comments by Janina Wöltjen of the German Environment +Agency are gratefully acknowledged.</p> +</div> +<div class="section level2"> +<h2 id="references">References<a class="anchor" aria-label="anchor" href="#references"></a> +</h2> +<div id="refs" class="references csl-bib-body hanging-indent"> +<div id="ref-duchesne_2021" class="csl-entry"> +Duchesne, Ronan, Anissa Guillemin, Olivier Gandrillon, and Fabien +Crauste. 2021. <span>“Practical Identifiability in the Frame of +Nonlinear Mixed Effects Models: The Example of the in Vitro +Erythropoiesis.”</span> <em>BMC Bioinformatics</em> 22 (478). <a href="https://doi.org/10.1186/s12859-021-04373-4" class="external-link">https://doi.org/10.1186/s12859-021-04373-4</a>. +</div> +</div> +</div> +<div class="section level2"> +<h2 id="appendix">Appendix<a class="anchor" aria-label="anchor" href="#appendix"></a> +</h2> +<div class="section level3"> +<h3 id="hierarchical-model-fit-listings">Hierarchical model fit listings<a class="anchor" aria-label="anchor" href="#hierarchical-model-fit-listings"></a> +</h3> +<caption> +Hierarchical mkin fit of the SFO model with error model const +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:22:44 2023 +Date of summary: Sat Jan 28 11:23:57 2023 + +Equations: +d_DMTA/dt = - k_DMTA * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical + +Fitted in 0.982 s +Using 300, 100 iterations and 9 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + DMTA_0 k_DMTA +97.2953 0.0566 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + DMTA_0 k_DMTA +DMTA_0 97.3 0 +k_DMTA 0.0 1 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 796.3 795.3 -393.2 + +Optimised parameters: + est. lower upper +DMTA_0 97.28130 95.71113 98.8515 +k_DMTA 0.05665 0.02909 0.0842 +a.1 2.66442 2.35579 2.9731 +SD.DMTA_0 1.54776 0.15447 2.9411 +SD.k_DMTA 0.60690 0.26248 0.9513 + +Correlation: + DMTA_0 +k_DMTA 0.0168 + +Random effects: + est. lower upper +SD.DMTA_0 1.5478 0.1545 2.9411 +SD.k_DMTA 0.6069 0.2625 0.9513 + +Variance model: + est. lower upper +a.1 2.664 2.356 2.973 + +Estimated disappearance times: + DT50 DT90 +DMTA 12.24 40.65 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the SFO model with error model tc +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:22:46 2023 +Date of summary: Sat Jan 28 11:23:57 2023 + +Equations: +d_DMTA/dt = - k_DMTA * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical + +Fitted in 2.39 s +Using 300, 100 iterations and 9 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + DMTA_0 k_DMTA +96.99175 0.05603 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + DMTA_0 k_DMTA +DMTA_0 96.99 0 +k_DMTA 0.00 1 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 798.3 797.1 -393.2 + +Optimised parameters: + est. lower upper +DMTA_0 97.271822 95.703157 98.84049 +k_DMTA 0.056638 0.029110 0.08417 +a.1 2.660081 2.230398 3.08976 +b.1 0.001665 -0.006911 0.01024 +SD.DMTA_0 1.545520 0.145035 2.94601 +SD.k_DMTA 0.606422 0.262274 0.95057 + +Correlation: + DMTA_0 +k_DMTA 0.0169 + +Random effects: + est. lower upper +SD.DMTA_0 1.5455 0.1450 2.9460 +SD.k_DMTA 0.6064 0.2623 0.9506 + +Variance model: + est. lower upper +a.1 2.660081 2.230398 3.08976 +b.1 0.001665 -0.006911 0.01024 + +Estimated disappearance times: + DT50 DT90 +DMTA 12.24 40.65 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the FOMC model with error model const +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:22:45 2023 +Date of summary: Sat Jan 28 11:23:57 2023 + +Equations: +d_DMTA/dt = - (alpha/beta) * 1/((time/beta) + 1) * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical + +Fitted in 1.552 s +Using 300, 100 iterations and 9 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + DMTA_0 alpha beta + 98.292 9.909 156.341 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + DMTA_0 alpha beta +DMTA_0 98.29 0 0 +alpha 0.00 1 0 +beta 0.00 0 1 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 734.2 732.7 -360.1 + +Optimised parameters: + est. lower upper +DMTA_0 98.3435 96.9033 99.784 +alpha 7.2007 2.5889 11.812 +beta 112.8746 34.8816 190.868 +a.1 2.0459 1.8054 2.286 +SD.DMTA_0 1.4795 0.2717 2.687 +SD.alpha 0.6396 0.1509 1.128 +SD.beta 0.6874 0.1587 1.216 + +Correlation: + DMTA_0 alpha +alpha -0.1125 +beta -0.1227 0.3632 + +Random effects: + est. lower upper +SD.DMTA_0 1.4795 0.2717 2.687 +SD.alpha 0.6396 0.1509 1.128 +SD.beta 0.6874 0.1587 1.216 + +Variance model: + est. lower upper +a.1 2.046 1.805 2.286 + +Estimated disappearance times: + DT50 DT90 DT50back +DMTA 11.41 42.53 12.8 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the FOMC model with error model tc +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:22:46 2023 +Date of summary: Sat Jan 28 11:23:57 2023 + +Equations: +d_DMTA/dt = - (alpha/beta) * 1/((time/beta) + 1) * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical + +Fitted in 2.764 s +Using 300, 100 iterations and 9 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: +DMTA_0 alpha beta +98.772 4.663 92.597 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + DMTA_0 alpha beta +DMTA_0 98.77 0 0 +alpha 0.00 1 0 +beta 0.00 0 1 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 720.4 718.8 -352.2 + +Optimised parameters: + est. lower upper +DMTA_0 98.99136 97.26011 100.72261 +alpha 5.86312 2.57485 9.15138 +beta 88.55571 29.20889 147.90254 +a.1 1.51063 1.24384 1.77741 +b.1 0.02824 0.02040 0.03609 +SD.DMTA_0 1.57436 -0.04867 3.19739 +SD.alpha 0.59871 0.17132 1.02611 +SD.beta 0.72994 0.22849 1.23139 + +Correlation: + DMTA_0 alpha +alpha -0.1363 +beta -0.1414 0.2542 + +Random effects: + est. lower upper +SD.DMTA_0 1.5744 -0.04867 3.197 +SD.alpha 0.5987 0.17132 1.026 +SD.beta 0.7299 0.22849 1.231 + +Variance model: + est. lower upper +a.1 1.51063 1.2438 1.77741 +b.1 0.02824 0.0204 0.03609 + +Estimated disappearance times: + DT50 DT90 DT50back +DMTA 11.11 42.6 12.82 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the DFOP model with error model const +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:22:45 2023 +Date of summary: Sat Jan 28 11:23:57 2023 + +Equations: +d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * + time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) + * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical + +Fitted in 1.649 s +Using 300, 100 iterations and 9 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + DMTA_0 k1 k2 g +98.64383 0.09211 0.02999 0.76814 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + DMTA_0 k1 k2 g +DMTA_0 98.64 0 0 0 +k1 0.00 1 0 0 +k2 0.00 0 1 0 +g 0.00 0 0 1 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 711.8 710 -346.9 + +Optimised parameters: + est. lower upper +DMTA_0 98.092481 96.573898 99.61106 +k1 0.062499 0.030336 0.09466 +k2 0.009065 -0.005133 0.02326 +g 0.948967 0.862079 1.03586 +a.1 1.821671 1.604774 2.03857 +SD.DMTA_0 1.677785 0.472066 2.88350 +SD.k1 0.634962 0.270788 0.99914 +SD.k2 1.033498 -0.205994 2.27299 +SD.g 1.710046 0.428642 2.99145 + +Correlation: + DMTA_0 k1 k2 +k1 0.0246 +k2 0.0491 0.0953 +g -0.0552 -0.0889 -0.4795 + +Random effects: + est. lower upper +SD.DMTA_0 1.678 0.4721 2.8835 +SD.k1 0.635 0.2708 0.9991 +SD.k2 1.033 -0.2060 2.2730 +SD.g 1.710 0.4286 2.9914 + +Variance model: + est. lower upper +a.1 1.822 1.605 2.039 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_k1 DT50_k2 +DMTA 11.79 42.8 12.88 11.09 76.46 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the DFOP model with error model tc +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:22:46 2023 +Date of summary: Sat Jan 28 11:23:57 2023 + +Equations: +d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * + time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) + * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical + +Fitted in 3.288 s +Using 300, 100 iterations and 9 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + DMTA_0 k1 k2 g +98.759266 0.087034 0.009933 0.930827 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + DMTA_0 k1 k2 g +DMTA_0 98.76 0 0 0 +k1 0.00 1 0 0 +k2 0.00 0 1 0 +g 0.00 0 0 1 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 665.5 663.4 -322.8 + +Optimised parameters: + est. lower upper +DMTA_0 98.377019 96.447952 100.30609 +k1 0.064843 0.034607 0.09508 +k2 0.008895 0.006368 0.01142 +g 0.949696 0.903815 0.99558 +a.1 1.065241 0.865754 1.26473 +b.1 0.029340 0.022336 0.03634 +SD.DMTA_0 2.007754 0.387982 3.62753 +SD.k1 0.580473 0.250286 0.91066 +SD.k2 0.006105 -4.920337 4.93255 +SD.g 1.097149 0.412779 1.78152 + +Correlation: + DMTA_0 k1 k2 +k1 0.0235 +k2 0.0595 0.0424 +g -0.0470 -0.0278 -0.2731 + +Random effects: + est. lower upper +SD.DMTA_0 2.007754 0.3880 3.6275 +SD.k1 0.580473 0.2503 0.9107 +SD.k2 0.006105 -4.9203 4.9325 +SD.g 1.097149 0.4128 1.7815 + +Variance model: + est. lower upper +a.1 1.06524 0.86575 1.26473 +b.1 0.02934 0.02234 0.03634 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_k1 DT50_k2 +DMTA 11.36 41.32 12.44 10.69 77.92 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the HS model with error model const +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:22:45 2023 +Date of summary: Sat Jan 28 11:23:57 2023 + +Equations: +d_DMTA/dt = - ifelse(time <= tb, k1, k2) * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical + +Fitted in 2.006 s +Using 300, 100 iterations and 9 chains + +Variance model: Constant variance + +Starting values for degradation parameters: + DMTA_0 k1 k2 tb +97.82176 0.06931 0.02997 11.13945 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + DMTA_0 k1 k2 tb +DMTA_0 97.82 0 0 0 +k1 0.00 1 0 0 +k2 0.00 0 1 0 +tb 0.00 0 0 1 + +Starting values for error model parameters: +a.1 + 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 714 712.1 -348 + +Optimised parameters: + est. lower upper +DMTA_0 98.16102 96.47747 99.84456 +k1 0.07876 0.05261 0.10491 +k2 0.02227 0.01706 0.02747 +tb 13.99089 -7.40049 35.38228 +a.1 1.82305 1.60700 2.03910 +SD.DMTA_0 1.88413 0.56204 3.20622 +SD.k1 0.34292 0.10482 0.58102 +SD.k2 0.19851 0.01718 0.37985 +SD.tb 1.68168 0.58064 2.78272 + +Correlation: + DMTA_0 k1 k2 +k1 0.0142 +k2 0.0001 -0.0025 +tb 0.0165 -0.1256 -0.0301 + +Random effects: + est. lower upper +SD.DMTA_0 1.8841 0.56204 3.2062 +SD.k1 0.3429 0.10482 0.5810 +SD.k2 0.1985 0.01718 0.3798 +SD.tb 1.6817 0.58064 2.7827 + +Variance model: + est. lower upper +a.1 1.823 1.607 2.039 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_k1 DT50_k2 +DMTA 8.801 67.91 20.44 8.801 31.13 + +</code></pre> +<p></p> +<caption> +Hierarchical mkin fit of the HS model with error model tc +</caption> +<pre><code> +saemix version used for fitting: 3.2 +mkin version used for pre-fitting: 1.2.2 +R version used for fitting: 4.2.2 +Date of fit: Sat Jan 28 11:22:46 2023 +Date of summary: Sat Jan 28 11:23:57 2023 + +Equations: +d_DMTA/dt = - ifelse(time <= tb, k1, k2) * DMTA + +Data: +155 observations of 1 variable(s) grouped in 6 datasets + +Model predictions using solution type analytical + +Fitted in 3.267 s +Using 300, 100 iterations and 9 chains + +Variance model: Two-component variance function + +Starting values for degradation parameters: + DMTA_0 k1 k2 tb +98.45190 0.07525 0.02576 19.19375 + +Fixed degradation parameter values: +None + +Starting values for random effects (square root of initial entries in omega): + DMTA_0 k1 k2 tb +DMTA_0 98.45 0 0 0 +k1 0.00 1 0 0 +k2 0.00 0 1 0 +tb 0.00 0 0 1 + +Starting values for error model parameters: +a.1 b.1 + 1 1 + +Results: + +Likelihood computed by importance sampling + AIC BIC logLik + 667.1 665 -323.6 + +Optimised parameters: + est. lower upper +DMTA_0 97.76570 95.81350 99.71791 +k1 0.05855 0.03080 0.08630 +k2 0.02337 0.01664 0.03010 +tb 31.09638 29.38289 32.80987 +a.1 1.08835 0.88590 1.29080 +b.1 0.02964 0.02257 0.03671 +SD.DMTA_0 2.04877 0.42607 3.67147 +SD.k1 0.59166 0.25621 0.92711 +SD.k2 0.30698 0.09561 0.51835 +SD.tb 0.01274 -0.10914 0.13462 + +Correlation: + DMTA_0 k1 k2 +k1 0.0160 +k2 -0.0070 -0.0024 +tb -0.0668 -0.0103 -0.2013 + +Random effects: + est. lower upper +SD.DMTA_0 2.04877 0.42607 3.6715 +SD.k1 0.59166 0.25621 0.9271 +SD.k2 0.30698 0.09561 0.5183 +SD.tb 0.01274 -0.10914 0.1346 + +Variance model: + est. lower upper +a.1 1.08835 0.88590 1.29080 +b.1 0.02964 0.02257 0.03671 + +Estimated disappearance times: + DT50 DT90 DT50back DT50_k1 DT50_k2 +DMTA 11.84 51.71 15.57 11.84 29.66 + +</code></pre> +<p></p> +</div> +<div class="section level3"> +<h3 id="hierarchical-model-convergence-plots">Hierarchical model convergence plots<a class="anchor" aria-label="anchor" href="#hierarchical-model-convergence-plots"></a> +</h3> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-sfo-const-1.png" alt="Convergence plot for the NLHM SFO fit with constant variance" width="864"><p class="caption"> +Convergence plot for the NLHM SFO fit with constant variance +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-sfo-tc-1.png" alt="Convergence plot for the NLHM SFO fit with two-component error" width="864"><p class="caption"> +Convergence plot for the NLHM SFO fit with two-component error +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-fomc-const-1.png" alt="Convergence plot for the NLHM FOMC fit with constant variance" width="864"><p class="caption"> +Convergence plot for the NLHM FOMC fit with constant variance +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-fomc-tc-1.png" alt="Convergence plot for the NLHM FOMC fit with two-component error" width="864"><p class="caption"> +Convergence plot for the NLHM FOMC fit with two-component error +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-dfop-const-1.png" alt="Convergence plot for the NLHM DFOP fit with constant variance" width="864"><p class="caption"> +Convergence plot for the NLHM DFOP fit with constant variance +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-1.png" alt="Convergence plot for the NLHM DFOP fit with two-component error" width="864"><p class="caption"> +Convergence plot for the NLHM DFOP fit with two-component error +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-hs-const-1.png" alt="Convergence plot for the NLHM HS fit with constant variance" width="864"><p class="caption"> +Convergence plot for the NLHM HS fit with constant variance +</p> +</div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_parent_files/figure-html/convergence-saem-hs-tc-1.png" alt="Convergence plot for the NLHM HS fit with two-component error" width="864"><p class="caption"> +Convergence plot for the NLHM HS fit with two-component error +</p> +</div> +</div> +<div class="section level3"> +<h3 id="session-info">Session info<a class="anchor" aria-label="anchor" href="#session-info"></a> +</h3> +<pre><code>R version 4.2.2 Patched (2022-11-10 r83330) +Platform: x86_64-pc-linux-gnu (64-bit) +Running under: Debian GNU/Linux bookworm/sid + +Matrix products: default +BLAS: /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3 +LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so + +locale: + [1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C + [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=de_DE.UTF-8 + [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8 + [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C + [9] LC_ADDRESS=C LC_TELEPHONE=C +[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C + +attached base packages: +[1] parallel stats graphics grDevices utils datasets methods +[8] base + +other attached packages: +[1] saemix_3.2 npde_3.3 knitr_1.41 mkin_1.2.2 + +loaded via a namespace (and not attached): + [1] deSolve_1.34 zoo_1.8-11 tidyselect_1.2.0 xfun_0.35 + [5] bslib_0.4.2 purrr_1.0.0 lattice_0.20-45 colorspace_2.0-3 + [9] vctrs_0.5.1 generics_0.1.3 htmltools_0.5.4 yaml_2.3.6 +[13] utf8_1.2.2 rlang_1.0.6 pkgdown_2.0.7 jquerylib_0.1.4 +[17] pillar_1.8.1 glue_1.6.2 DBI_1.1.3 lifecycle_1.0.3 +[21] stringr_1.5.0 munsell_0.5.0 gtable_0.3.1 ragg_1.2.4 +[25] codetools_0.2-18 memoise_2.0.1 evaluate_0.19 fastmap_1.1.0 +[29] lmtest_0.9-40 fansi_1.0.3 highr_0.9 scales_1.2.1 +[33] cachem_1.0.6 desc_1.4.2 jsonlite_1.8.4 systemfonts_1.0.4 +[37] fs_1.5.2 textshaping_0.3.6 gridExtra_2.3 ggplot2_3.4.0 +[41] digest_0.6.31 stringi_1.7.8 dplyr_1.0.10 grid_4.2.2 +[45] rprojroot_2.0.3 cli_3.5.0 tools_4.2.2 magrittr_2.0.3 +[49] sass_0.4.4 tibble_3.1.8 pkgconfig_2.0.3 assertthat_0.2.1 +[53] rmarkdown_2.19 R6_2.5.1 mclust_6.0.0 nlme_3.1-161 +[57] compiler_4.2.2 </code></pre> +</div> +<div class="section level3"> +<h3 id="hardware-info">Hardware info<a class="anchor" aria-label="anchor" href="#hardware-info"></a> +</h3> +<pre><code>CPU model: AMD Ryzen 9 7950X 16-Core Processor</code></pre> +<pre><code>MemTotal: 64940452 kB</code></pre> +</div> +</div> + </div> + + <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> + + <nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2> + </nav> +</div> + +</div> + + + + <footer><div class="copyright"> + <p></p> +<p>Developed by Johannes Ranke.</p> +</div> + +<div class="pkgdown"> + <p></p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p> +</div> + + </footer> +</div> + + + + + + + </body> +</html> diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-const-1.png b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-const-1.png Binary files differnew file mode 100644 index 00000000..3f145074 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-const-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-1.png b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-1.png Binary files differnew file mode 100644 index 00000000..e5457fc9 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-no-ranef-k2-1.png b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-no-ranef-k2-1.png Binary files differnew file mode 100644 index 00000000..14707641 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-dfop-tc-no-ranef-k2-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-fomc-const-1.png b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-fomc-const-1.png Binary files differnew file mode 100644 index 00000000..c7ed69a3 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-fomc-const-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-fomc-tc-1.png b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-fomc-tc-1.png Binary files differnew file mode 100644 index 00000000..1a48524c --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-fomc-tc-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-hs-const-1.png b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-hs-const-1.png Binary files differnew file mode 100644 index 00000000..0f3b1184 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-hs-const-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-hs-tc-1.png b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-hs-tc-1.png Binary files differnew file mode 100644 index 00000000..901a1579 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-hs-tc-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-sfo-const-1.png b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-sfo-const-1.png Binary files differnew file mode 100644 index 00000000..a3e3a51f --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-sfo-const-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-sfo-tc-1.png b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-sfo-tc-1.png Binary files differnew file mode 100644 index 00000000..b85691eb --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/convergence-saem-sfo-tc-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-full-par-1.png b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-full-par-1.png Binary files differnew file mode 100644 index 00000000..a42950f0 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-full-par-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-reduced-par-1.png b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-reduced-par-1.png Binary files differnew file mode 100644 index 00000000..caebc768 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-reduced-par-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-reduced-par-llquant-1.png b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-reduced-par-llquant-1.png Binary files differnew file mode 100644 index 00000000..45ae57f1 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/multistart-reduced-par-llquant-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/plot-saem-dfop-tc-no-ranef-k2-1.png b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/plot-saem-dfop-tc-no-ranef-k2-1.png Binary files differnew file mode 100644 index 00000000..1f8eb9f0 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_parent_files/figure-html/plot-saem-dfop-tc-no-ranef-k2-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_pathway.html b/docs/dev/articles/prebuilt/2022_dmta_pathway.html new file mode 100644 index 00000000..2e89fb9d --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_pathway.html @@ -0,0 +1,2022 @@ +<!DOCTYPE html> +<!-- Generated by pkgdown: do not edit by hand --><html lang="en"> +<head> +<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> +<meta charset="utf-8"> +<meta http-equiv="X-UA-Compatible" content="IE=edge"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> +<title>Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P • mkin</title> +<!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"> +<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../../bootstrap-toc.css"> +<script src="../../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"> +<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../../pkgdown.css" rel="stylesheet"> +<script src="../../pkgdown.js"></script><meta property="og:title" content="Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P"> +<meta property="og:description" content="mkin"> +<meta name="robots" content="noindex"> +<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> +<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> +<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> +<![endif]--> +</head> +<body data-spy="scroll" data-target="#toc"> + + + <div class="container template-article"> + <header><div class="navbar navbar-default navbar-fixed-top" role="navigation"> + <div class="container"> + <div class="navbar-header"> + <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> + <span class="sr-only">Toggle navigation</span> + <span class="icon-bar"></span> + <span class="icon-bar"></span> + <span class="icon-bar"></span> + </button> + <span class="navbar-brand"> + <a class="navbar-link" href="../../index.html">mkin</a> + <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.2.2</span> + </span> + </div> + + <div id="navbar" class="navbar-collapse collapse"> + <ul class="nav navbar-nav"> +<li> + <a href="../../reference/index.html">Functions and data</a> +</li> +<li class="dropdown"> + <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> + Articles + + <span class="caret"></span> + </a> + <ul class="dropdown-menu" role="menu"> +<li> + <a href="../../articles/mkin.html">Introduction to mkin</a> + </li> + <li> + <a href="../../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> + </li> + <li> + <a href="../../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> + </li> + <li> + <a href="../../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a> + </li> + <li> + <a href="../../articles/web_only/multistart.html">Short demo of the multistart method</a> + </li> + <li> + <a href="../../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> + </li> + <li> + <a href="../../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> + </li> + <li> + <a href="../../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> + </li> + <li> + <a href="../../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> + </li> + <li> + <a href="../../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> + </li> + <li> + <a href="../../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a> + </li> + </ul> +</li> +<li> + <a href="../../news/index.html">News</a> +</li> + </ul> +<ul class="nav navbar-nav navbar-right"> +<li> + <a href="https://github.com/jranke/mkin/" class="external-link"> + <span class="fab fa-github fa-lg"></span> + + </a> +</li> + </ul> +</div> +<!--/.nav-collapse --> + </div> +<!--/.container --> +</div> +<!--/.navbar --> + + + + </header><div class="row"> + <div class="col-md-9 contents"> + <div class="page-header toc-ignore"> + <h1 data-toc-skip>Testing hierarchical pathway kinetics with +residue data on dimethenamid and dimethenamid-P</h1> + <h4 data-toc-skip class="author">Johannes +Ranke</h4> + + <h4 data-toc-skip class="date">Last change on 8 January +2023, last compiled on 28 Januar 2023</h4> + + <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/prebuilt/2022_dmta_pathway.rmd" class="external-link"><code>vignettes/prebuilt/2022_dmta_pathway.rmd</code></a></small> + <div class="hidden name"><code>2022_dmta_pathway.rmd</code></div> + + </div> + + + +<div class="section level2"> +<h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a> +</h2> +<p>The purpose of this document is to test demonstrate how nonlinear +hierarchical models (NLHM) based on the parent degradation models SFO, +FOMC, DFOP and HS, with parallel formation of two or more metabolites +can be fitted with the mkin package.</p> +<p>It was assembled in the course of work package 1.2 of Project Number +173340 (Application of nonlinear hierarchical models to the kinetic +evaluation of chemical degradation data) of the German Environment +Agency carried out in 2022 and 2023.</p> +<p>The mkin package is used in version 1.2.2, which is currently under +development. It contains the test data, and the functions used in the +evaluations. The <code>saemix</code> package is used as a backend for +fitting the NLHM, but is also loaded to make the convergence plot +function available.</p> +<p>This document is processed with the <code>knitr</code> package, which +also provides the <code>kable</code> function that is used to improve +the display of tabular data in R markdown documents. For parallel +processing, the <code>parallel</code> package is used.</p> +<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://pkgdown.jrwb.de/mkin/">mkin</a></span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://yihui.org/knitr/" class="external-link">knitr</a></span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">saemix</span><span class="op">)</span></span> +<span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">parallel</span><span class="op">)</span></span> +<span><span class="va">n_cores</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/detectCores.html" class="external-link">detectCores</a></span><span class="op">(</span><span class="op">)</span></span> +<span><span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/Sys.info.html" class="external-link">Sys.info</a></span><span class="op">(</span><span class="op">)</span><span class="op">[</span><span class="st">"sysname"</span><span class="op">]</span> <span class="op">==</span> <span class="st">"Windows"</span><span class="op">)</span> <span class="op">{</span></span> +<span> <span class="va">cl</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makePSOCKcluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span><span class="op">}</span> <span class="kw">else</span> <span class="op">{</span></span> +<span> <span class="va">cl</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/parallel/makeCluster.html" class="external-link">makeForkCluster</a></span><span class="op">(</span><span class="va">n_cores</span><span class="op">)</span></span> +<span><span class="op">}</span></span></code></pre></div> +</div> +<div class="section level2"> +<h2 id="data">Data<a class="anchor" aria-label="anchor" href="#data"></a> +</h2> +<p>The test data are available in the mkin package as an object of class +<code>mkindsg</code> (mkin dataset group) under the identifier +<code>dimethenamid_2018</code>. The following preprocessing steps are +done in this document.</p> +<ul> +<li>The data available for the enantiomer dimethenamid-P (DMTAP) are +renamed to have the same substance name as the data for the racemic +mixture dimethenamid (DMTA). The reason for this is that no difference +between their degradation behaviour was identified in the EU risk +assessment.</li> +<li>Unnecessary columns are discarded</li> +<li>The observation times of each dataset are multiplied with the +corresponding normalisation factor also available in the dataset, in +order to make it possible to describe all datasets with a single set of +parameters that are independent of temperature</li> +<li>Finally, datasets observed in the same soil (<code>Elliot 1</code> +and <code>Elliot 2</code>) are combined, resulting in dimethenamid +(DMTA) data from six soils.</li> +</ul> +<p>The following commented R code performs this preprocessing.</p> +<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="co"># Apply a function to each of the seven datasets in the mkindsg object to create a list</span></span> +<span><span class="va">dmta_ds</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="fl">1</span><span class="op">:</span><span class="fl">7</span>, <span class="kw">function</span><span class="op">(</span><span class="va">i</span><span class="op">)</span> <span class="op">{</span></span> +<span> <span class="va">ds_i</span> <span class="op"><-</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span><span class="op">[[</span><span class="va">i</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">data</span> <span class="co"># Get a dataset</span></span> +<span> <span class="va">ds_i</span><span class="op">[</span><span class="va">ds_i</span><span class="op">$</span><span class="va">name</span> <span class="op">==</span> <span class="st">"DMTAP"</span>, <span class="st">"name"</span><span class="op">]</span> <span class="op"><-</span> <span class="st">"DMTA"</span> <span class="co"># Rename DMTAP to DMTA</span></span> +<span> <span class="va">ds_i</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/subset.html" class="external-link">subset</a></span><span class="op">(</span><span class="va">ds_i</span>, select <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"name"</span>, <span class="st">"time"</span>, <span class="st">"value"</span><span class="op">)</span><span class="op">)</span> <span class="co"># Select data</span></span> +<span> <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op"><-</span> <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op">*</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">f_time_norm</span><span class="op">[</span><span class="va">i</span><span class="op">]</span> <span class="co"># Normalise time</span></span> +<span> <span class="va">ds_i</span> <span class="co"># Return the dataset</span></span> +<span><span class="op">}</span><span class="op">)</span></span> +<span></span> +<span><span class="co"># Use dataset titles as names for the list elements</span></span> +<span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">sapply</a></span><span class="op">(</span><span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span>, <span class="kw">function</span><span class="op">(</span><span class="va">ds</span><span class="op">)</span> <span class="va">ds</span><span class="op">$</span><span class="va">title</span><span class="op">)</span></span> +<span></span> +<span><span class="co"># Combine data for Elliot soil to obtain a named list with six elements</span></span> +<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/cbind.html" class="external-link">rbind</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span>, <span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span> <span class="co">#</span></span> +<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span> +<span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span></code></pre></div> +<p>The following tables show the 6 datasets.</p> +<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw">for</span> <span class="op">(</span><span class="va">ds_name</span> <span class="kw">in</span> <span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span></span> +<span> <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span></span> +<span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="fu"><a href="../../reference/mkin_long_to_wide.html">mkin_long_to_wide</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="va">ds_name</span><span class="op">]</span><span class="op">]</span><span class="op">)</span>,</span> +<span> caption <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste</a></span><span class="op">(</span><span class="st">"Dataset"</span>, <span class="va">ds_name</span><span class="op">)</span>,</span> +<span> booktabs <span class="op">=</span> <span class="cn">TRUE</span>, row.names <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span><span class="op">)</span></span> +<span> <span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="st">"\n\\clearpage\n"</span><span class="op">)</span></span> +<span><span class="op">}</span></span></code></pre></div> +<table class="table"> +<caption>Dataset Calke</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +<th align="right">M23</th> +<th align="right">M27</th> +<th align="right">M31</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0</td> +<td align="right">95.8</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0</td> +<td align="right">98.7</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">14</td> +<td align="right">60.5</td> +<td align="right">4.1</td> +<td align="right">1.5</td> +<td align="right">2.0</td> +</tr> +<tr class="even"> +<td align="right">30</td> +<td align="right">39.1</td> +<td align="right">5.3</td> +<td align="right">2.4</td> +<td align="right">2.1</td> +</tr> +<tr class="odd"> +<td align="right">59</td> +<td align="right">15.2</td> +<td align="right">6.0</td> +<td align="right">3.2</td> +<td align="right">2.2</td> +</tr> +<tr class="even"> +<td align="right">120</td> +<td align="right">4.8</td> +<td align="right">4.3</td> +<td align="right">3.8</td> +<td align="right">1.8</td> +</tr> +<tr class="odd"> +<td align="right">120</td> +<td align="right">4.6</td> +<td align="right">4.1</td> +<td align="right">3.7</td> +<td align="right">2.1</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Borstel</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +<th align="right">M23</th> +<th align="right">M27</th> +<th align="right">M31</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">100.5</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">99.6</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">1.941295</td> +<td align="right">91.9</td> +<td align="right">0.4</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">1.941295</td> +<td align="right">91.3</td> +<td align="right">0.5</td> +<td align="right">0.3</td> +<td align="right">0.1</td> +</tr> +<tr class="odd"> +<td align="right">6.794534</td> +<td align="right">81.8</td> +<td align="right">1.2</td> +<td align="right">0.8</td> +<td align="right">1.0</td> +</tr> +<tr class="even"> +<td align="right">6.794534</td> +<td align="right">82.1</td> +<td align="right">1.3</td> +<td align="right">0.9</td> +<td align="right">0.9</td> +</tr> +<tr class="odd"> +<td align="right">13.589067</td> +<td align="right">69.1</td> +<td align="right">2.8</td> +<td align="right">1.4</td> +<td align="right">2.0</td> +</tr> +<tr class="even"> +<td align="right">13.589067</td> +<td align="right">68.0</td> +<td align="right">2.0</td> +<td align="right">1.4</td> +<td align="right">2.5</td> +</tr> +<tr class="odd"> +<td align="right">27.178135</td> +<td align="right">51.4</td> +<td align="right">2.9</td> +<td align="right">2.7</td> +<td align="right">4.3</td> +</tr> +<tr class="even"> +<td align="right">27.178135</td> +<td align="right">51.4</td> +<td align="right">4.9</td> +<td align="right">2.6</td> +<td align="right">3.2</td> +</tr> +<tr class="odd"> +<td align="right">56.297565</td> +<td align="right">27.6</td> +<td align="right">12.2</td> +<td align="right">4.4</td> +<td align="right">4.3</td> +</tr> +<tr class="even"> +<td align="right">56.297565</td> +<td align="right">26.8</td> +<td align="right">12.2</td> +<td align="right">4.7</td> +<td align="right">4.8</td> +</tr> +<tr class="odd"> +<td align="right">86.387643</td> +<td align="right">15.7</td> +<td align="right">12.2</td> +<td align="right">5.4</td> +<td align="right">5.0</td> +</tr> +<tr class="even"> +<td align="right">86.387643</td> +<td align="right">15.3</td> +<td align="right">12.0</td> +<td align="right">5.2</td> +<td align="right">5.1</td> +</tr> +<tr class="odd"> +<td align="right">115.507073</td> +<td align="right">7.9</td> +<td align="right">10.4</td> +<td align="right">5.4</td> +<td align="right">4.3</td> +</tr> +<tr class="even"> +<td align="right">115.507073</td> +<td align="right">8.1</td> +<td align="right">11.6</td> +<td align="right">5.4</td> +<td align="right">4.4</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Flaach</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +<th align="right">M23</th> +<th align="right">M27</th> +<th align="right">M31</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">96.5</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">96.8</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">97.0</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.6233856</td> +<td align="right">82.9</td> +<td align="right">0.7</td> +<td align="right">1.1</td> +<td align="right">0.3</td> +</tr> +<tr class="odd"> +<td align="right">0.6233856</td> +<td align="right">86.7</td> +<td align="right">0.7</td> +<td align="right">1.1</td> +<td align="right">0.3</td> +</tr> +<tr class="even"> +<td align="right">0.6233856</td> +<td align="right">87.4</td> +<td align="right">0.2</td> +<td align="right">0.3</td> +<td align="right">0.1</td> +</tr> +<tr class="odd"> +<td align="right">1.8701567</td> +<td align="right">72.8</td> +<td align="right">2.2</td> +<td align="right">2.6</td> +<td align="right">0.7</td> +</tr> +<tr class="even"> +<td align="right">1.8701567</td> +<td align="right">69.9</td> +<td align="right">1.8</td> +<td align="right">2.4</td> +<td align="right">0.6</td> +</tr> +<tr class="odd"> +<td align="right">1.8701567</td> +<td align="right">71.9</td> +<td align="right">1.6</td> +<td align="right">2.3</td> +<td align="right">0.7</td> +</tr> +<tr class="even"> +<td align="right">4.3636989</td> +<td align="right">51.4</td> +<td align="right">4.1</td> +<td align="right">5.0</td> +<td align="right">1.3</td> +</tr> +<tr class="odd"> +<td align="right">4.3636989</td> +<td align="right">52.9</td> +<td align="right">4.2</td> +<td align="right">5.9</td> +<td align="right">1.2</td> +</tr> +<tr class="even"> +<td align="right">4.3636989</td> +<td align="right">48.6</td> +<td align="right">4.2</td> +<td align="right">4.8</td> +<td align="right">1.4</td> +</tr> +<tr class="odd"> +<td align="right">8.7273979</td> +<td align="right">28.5</td> +<td align="right">7.5</td> +<td align="right">8.5</td> +<td align="right">2.4</td> +</tr> +<tr class="even"> +<td align="right">8.7273979</td> +<td align="right">27.3</td> +<td align="right">7.1</td> +<td align="right">8.5</td> +<td align="right">2.1</td> +</tr> +<tr class="odd"> +<td align="right">8.7273979</td> +<td align="right">27.5</td> +<td align="right">7.5</td> +<td align="right">8.3</td> +<td align="right">2.3</td> +</tr> +<tr class="even"> +<td align="right">13.0910968</td> +<td align="right">14.8</td> +<td align="right">8.4</td> +<td align="right">9.3</td> +<td align="right">3.3</td> +</tr> +<tr class="odd"> +<td align="right">13.0910968</td> +<td align="right">13.4</td> +<td align="right">6.8</td> +<td align="right">8.7</td> +<td align="right">2.4</td> +</tr> +<tr class="even"> +<td align="right">13.0910968</td> +<td align="right">14.4</td> +<td align="right">8.0</td> +<td align="right">9.1</td> +<td align="right">2.6</td> +</tr> +<tr class="odd"> +<td align="right">17.4547957</td> +<td align="right">7.7</td> +<td align="right">7.2</td> +<td align="right">8.6</td> +<td align="right">4.0</td> +</tr> +<tr class="even"> +<td align="right">17.4547957</td> +<td align="right">7.3</td> +<td align="right">7.2</td> +<td align="right">8.5</td> +<td align="right">3.6</td> +</tr> +<tr class="odd"> +<td align="right">17.4547957</td> +<td align="right">8.1</td> +<td align="right">6.9</td> +<td align="right">8.9</td> +<td align="right">3.3</td> +</tr> +<tr class="even"> +<td align="right">26.1821936</td> +<td align="right">2.0</td> +<td align="right">4.9</td> +<td align="right">8.1</td> +<td align="right">2.1</td> +</tr> +<tr class="odd"> +<td align="right">26.1821936</td> +<td align="right">1.5</td> +<td align="right">4.3</td> +<td align="right">7.7</td> +<td align="right">1.7</td> +</tr> +<tr class="even"> +<td align="right">26.1821936</td> +<td align="right">1.9</td> +<td align="right">4.5</td> +<td align="right">7.4</td> +<td align="right">1.8</td> +</tr> +<tr class="odd"> +<td align="right">34.9095915</td> +<td align="right">1.3</td> +<td align="right">3.8</td> +<td align="right">5.9</td> +<td align="right">1.6</td> +</tr> +<tr class="even"> +<td align="right">34.9095915</td> +<td align="right">1.0</td> +<td align="right">3.1</td> +<td align="right">6.0</td> +<td align="right">1.6</td> +</tr> +<tr class="odd"> +<td align="right">34.9095915</td> +<td align="right">1.1</td> +<td align="right">3.1</td> +<td align="right">5.9</td> +<td align="right">1.4</td> +</tr> +<tr class="even"> +<td align="right">43.6369893</td> +<td align="right">0.9</td> +<td align="right">2.7</td> +<td align="right">5.6</td> +<td align="right">1.8</td> +</tr> +<tr class="odd"> +<td align="right">43.6369893</td> +<td align="right">0.7</td> +<td align="right">2.3</td> +<td align="right">5.2</td> +<td align="right">1.5</td> +</tr> +<tr class="even"> +<td align="right">43.6369893</td> +<td align="right">0.7</td> +<td align="right">2.1</td> +<td align="right">5.6</td> +<td align="right">1.3</td> +</tr> +<tr class="odd"> +<td align="right">52.3643872</td> +<td align="right">0.6</td> +<td align="right">1.6</td> +<td align="right">4.3</td> +<td align="right">1.2</td> +</tr> +<tr class="even"> +<td align="right">52.3643872</td> +<td align="right">0.4</td> +<td align="right">1.1</td> +<td align="right">3.7</td> +<td align="right">0.9</td> +</tr> +<tr class="odd"> +<td align="right">52.3643872</td> +<td align="right">0.5</td> +<td align="right">1.3</td> +<td align="right">3.9</td> +<td align="right">1.1</td> +</tr> +<tr class="even"> +<td align="right">74.8062674</td> +<td align="right">0.4</td> +<td align="right">0.4</td> +<td align="right">2.5</td> +<td align="right">0.5</td> +</tr> +<tr class="odd"> +<td align="right">74.8062674</td> +<td align="right">0.3</td> +<td align="right">0.4</td> +<td align="right">2.4</td> +<td align="right">0.5</td> +</tr> +<tr class="even"> +<td align="right">74.8062674</td> +<td align="right">0.3</td> +<td align="right">0.3</td> +<td align="right">2.2</td> +<td align="right">0.3</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset BBA 2.2</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +<th align="right">M23</th> +<th align="right">M27</th> +<th align="right">M31</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">98.09</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">98.77</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">0.7678922</td> +<td align="right">93.52</td> +<td align="right">0.36</td> +<td align="right">0.42</td> +<td align="right">0.36</td> +</tr> +<tr class="even"> +<td align="right">0.7678922</td> +<td align="right">92.03</td> +<td align="right">0.40</td> +<td align="right">0.47</td> +<td align="right">0.33</td> +</tr> +<tr class="odd"> +<td align="right">2.3036765</td> +<td align="right">88.39</td> +<td align="right">1.03</td> +<td align="right">0.71</td> +<td align="right">0.55</td> +</tr> +<tr class="even"> +<td align="right">2.3036765</td> +<td align="right">87.18</td> +<td align="right">1.07</td> +<td align="right">0.82</td> +<td align="right">0.64</td> +</tr> +<tr class="odd"> +<td align="right">5.3752452</td> +<td align="right">69.38</td> +<td align="right">3.60</td> +<td align="right">2.19</td> +<td align="right">1.94</td> +</tr> +<tr class="even"> +<td align="right">5.3752452</td> +<td align="right">71.06</td> +<td align="right">3.66</td> +<td align="right">2.28</td> +<td align="right">1.62</td> +</tr> +<tr class="odd"> +<td align="right">10.7504904</td> +<td align="right">45.21</td> +<td align="right">6.97</td> +<td align="right">5.45</td> +<td align="right">4.22</td> +</tr> +<tr class="even"> +<td align="right">10.7504904</td> +<td align="right">46.81</td> +<td align="right">7.22</td> +<td align="right">5.19</td> +<td align="right">4.37</td> +</tr> +<tr class="odd"> +<td align="right">16.1257355</td> +<td align="right">30.54</td> +<td align="right">8.65</td> +<td align="right">8.81</td> +<td align="right">6.31</td> +</tr> +<tr class="even"> +<td align="right">16.1257355</td> +<td align="right">30.07</td> +<td align="right">8.38</td> +<td align="right">7.93</td> +<td align="right">6.85</td> +</tr> +<tr class="odd"> +<td align="right">21.5009807</td> +<td align="right">21.60</td> +<td align="right">9.10</td> +<td align="right">10.25</td> +<td align="right">7.05</td> +</tr> +<tr class="even"> +<td align="right">21.5009807</td> +<td align="right">20.41</td> +<td align="right">8.63</td> +<td align="right">10.77</td> +<td align="right">6.84</td> +</tr> +<tr class="odd"> +<td align="right">32.2514711</td> +<td align="right">9.10</td> +<td align="right">7.63</td> +<td align="right">10.89</td> +<td align="right">6.53</td> +</tr> +<tr class="even"> +<td align="right">32.2514711</td> +<td align="right">9.70</td> +<td align="right">8.01</td> +<td align="right">10.85</td> +<td align="right">7.11</td> +</tr> +<tr class="odd"> +<td align="right">43.0019614</td> +<td align="right">6.58</td> +<td align="right">6.40</td> +<td align="right">10.41</td> +<td align="right">6.06</td> +</tr> +<tr class="even"> +<td align="right">43.0019614</td> +<td align="right">6.31</td> +<td align="right">6.35</td> +<td align="right">10.35</td> +<td align="right">6.05</td> +</tr> +<tr class="odd"> +<td align="right">53.7524518</td> +<td align="right">3.47</td> +<td align="right">5.35</td> +<td align="right">9.92</td> +<td align="right">5.50</td> +</tr> +<tr class="even"> +<td align="right">53.7524518</td> +<td align="right">3.52</td> +<td align="right">5.06</td> +<td align="right">9.42</td> +<td align="right">5.07</td> +</tr> +<tr class="odd"> +<td align="right">64.5029421</td> +<td align="right">3.40</td> +<td align="right">5.14</td> +<td align="right">9.15</td> +<td align="right">4.94</td> +</tr> +<tr class="even"> +<td align="right">64.5029421</td> +<td align="right">3.67</td> +<td align="right">5.91</td> +<td align="right">9.25</td> +<td align="right">4.39</td> +</tr> +<tr class="odd"> +<td align="right">91.3791680</td> +<td align="right">1.62</td> +<td align="right">3.35</td> +<td align="right">7.14</td> +<td align="right">3.64</td> +</tr> +<tr class="even"> +<td align="right">91.3791680</td> +<td align="right">1.62</td> +<td align="right">2.87</td> +<td align="right">7.13</td> +<td align="right">3.55</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset BBA 2.3</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +<th align="right">M23</th> +<th align="right">M27</th> +<th align="right">M31</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.0000000</td> +<td align="right">99.33</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.0000000</td> +<td align="right">97.44</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">0.6733938</td> +<td align="right">93.73</td> +<td align="right">0.18</td> +<td align="right">0.50</td> +<td align="right">0.47</td> +</tr> +<tr class="even"> +<td align="right">0.6733938</td> +<td align="right">93.77</td> +<td align="right">0.18</td> +<td align="right">0.83</td> +<td align="right">0.34</td> +</tr> +<tr class="odd"> +<td align="right">2.0201814</td> +<td align="right">87.84</td> +<td align="right">0.52</td> +<td align="right">1.25</td> +<td align="right">1.00</td> +</tr> +<tr class="even"> +<td align="right">2.0201814</td> +<td align="right">89.82</td> +<td align="right">0.43</td> +<td align="right">1.09</td> +<td align="right">0.89</td> +</tr> +<tr class="odd"> +<td align="right">4.7137565</td> +<td align="right">71.61</td> +<td align="right">1.19</td> +<td align="right">3.28</td> +<td align="right">3.58</td> +</tr> +<tr class="even"> +<td align="right">4.7137565</td> +<td align="right">71.42</td> +<td align="right">1.11</td> +<td align="right">3.24</td> +<td align="right">3.41</td> +</tr> +<tr class="odd"> +<td align="right">9.4275131</td> +<td align="right">45.60</td> +<td align="right">2.26</td> +<td align="right">7.17</td> +<td align="right">8.74</td> +</tr> +<tr class="even"> +<td align="right">9.4275131</td> +<td align="right">45.42</td> +<td align="right">1.99</td> +<td align="right">7.91</td> +<td align="right">8.28</td> +</tr> +<tr class="odd"> +<td align="right">14.1412696</td> +<td align="right">31.12</td> +<td align="right">2.81</td> +<td align="right">10.15</td> +<td align="right">9.67</td> +</tr> +<tr class="even"> +<td align="right">14.1412696</td> +<td align="right">31.68</td> +<td align="right">2.83</td> +<td align="right">9.55</td> +<td align="right">8.95</td> +</tr> +<tr class="odd"> +<td align="right">18.8550262</td> +<td align="right">23.20</td> +<td align="right">3.39</td> +<td align="right">12.09</td> +<td align="right">10.34</td> +</tr> +<tr class="even"> +<td align="right">18.8550262</td> +<td align="right">24.13</td> +<td align="right">3.56</td> +<td align="right">11.89</td> +<td align="right">10.00</td> +</tr> +<tr class="odd"> +<td align="right">28.2825393</td> +<td align="right">9.43</td> +<td align="right">3.49</td> +<td align="right">13.32</td> +<td align="right">7.89</td> +</tr> +<tr class="even"> +<td align="right">28.2825393</td> +<td align="right">9.82</td> +<td align="right">3.28</td> +<td align="right">12.05</td> +<td align="right">8.13</td> +</tr> +<tr class="odd"> +<td align="right">37.7100523</td> +<td align="right">7.08</td> +<td align="right">2.80</td> +<td align="right">10.04</td> +<td align="right">5.06</td> +</tr> +<tr class="even"> +<td align="right">37.7100523</td> +<td align="right">8.64</td> +<td align="right">2.97</td> +<td align="right">10.78</td> +<td align="right">5.54</td> +</tr> +<tr class="odd"> +<td align="right">47.1375654</td> +<td align="right">4.41</td> +<td align="right">2.42</td> +<td align="right">9.32</td> +<td align="right">3.79</td> +</tr> +<tr class="even"> +<td align="right">47.1375654</td> +<td align="right">4.78</td> +<td align="right">2.51</td> +<td align="right">9.62</td> +<td align="right">4.11</td> +</tr> +<tr class="odd"> +<td align="right">56.5650785</td> +<td align="right">4.92</td> +<td align="right">2.22</td> +<td align="right">8.00</td> +<td align="right">3.11</td> +</tr> +<tr class="even"> +<td align="right">56.5650785</td> +<td align="right">5.08</td> +<td align="right">1.95</td> +<td align="right">8.45</td> +<td align="right">2.98</td> +</tr> +<tr class="odd"> +<td align="right">80.1338612</td> +<td align="right">2.13</td> +<td align="right">1.28</td> +<td align="right">5.71</td> +<td align="right">1.78</td> +</tr> +<tr class="even"> +<td align="right">80.1338612</td> +<td align="right">2.23</td> +<td align="right">0.99</td> +<td align="right">3.33</td> +<td align="right">1.55</td> +</tr> +</tbody> +</table> +<table class="table"> +<caption>Dataset Elliot</caption> +<thead><tr class="header"> +<th align="right">time</th> +<th align="right">DMTA</th> +<th align="right">M23</th> +<th align="right">M27</th> +<th align="right">M31</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">97.5</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">100.7</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">1.228478</td> +<td align="right">86.4</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">1.228478</td> +<td align="right">88.5</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">1.5</td> +</tr> +<tr class="odd"> +<td align="right">3.685435</td> +<td align="right">69.8</td> +<td align="right">2.8</td> +<td align="right">2.3</td> +<td align="right">5.0</td> +</tr> +<tr class="even"> +<td align="right">3.685435</td> +<td align="right">77.1</td> +<td align="right">1.7</td> +<td align="right">2.1</td> +<td align="right">2.4</td> +</tr> +<tr class="odd"> +<td align="right">8.599349</td> +<td align="right">59.0</td> +<td align="right">4.3</td> +<td align="right">4.0</td> +<td align="right">4.3</td> +</tr> +<tr class="even"> +<td align="right">8.599349</td> +<td align="right">54.2</td> +<td align="right">5.8</td> +<td align="right">3.4</td> +<td align="right">5.0</td> +</tr> +<tr class="odd"> +<td align="right">17.198697</td> +<td align="right">31.3</td> +<td align="right">8.2</td> +<td align="right">6.6</td> +<td align="right">8.0</td> +</tr> +<tr class="even"> +<td align="right">17.198697</td> +<td align="right">33.5</td> +<td align="right">5.2</td> +<td align="right">6.9</td> +<td align="right">7.7</td> +</tr> +<tr class="odd"> +<td align="right">25.798046</td> +<td align="right">19.6</td> +<td align="right">5.1</td> +<td align="right">8.2</td> +<td align="right">7.8</td> +</tr> +<tr class="even"> +<td align="right">25.798046</td> +<td align="right">20.9</td> +<td align="right">6.1</td> +<td align="right">8.8</td> +<td align="right">6.5</td> +</tr> +<tr class="odd"> +<td align="right">34.397395</td> +<td align="right">13.3</td> +<td align="right">6.0</td> +<td align="right">9.7</td> +<td align="right">8.0</td> +</tr> +<tr class="even"> +<td align="right">34.397395</td> +<td align="right">15.8</td> +<td align="right">6.0</td> +<td align="right">8.8</td> +<td align="right">7.4</td> +</tr> +<tr class="odd"> +<td align="right">51.596092</td> +<td align="right">6.7</td> +<td align="right">5.0</td> +<td align="right">8.3</td> +<td align="right">6.9</td> +</tr> +<tr class="even"> +<td align="right">51.596092</td> +<td align="right">8.7</td> +<td align="right">4.2</td> +<td align="right">9.2</td> +<td align="right">9.0</td> +</tr> +<tr class="odd"> +<td align="right">68.794789</td> +<td align="right">8.8</td> +<td align="right">3.9</td> +<td align="right">9.3</td> +<td align="right">5.5</td> +</tr> +<tr class="even"> +<td align="right">68.794789</td> +<td align="right">8.7</td> +<td align="right">2.9</td> +<td align="right">8.5</td> +<td align="right">6.1</td> +</tr> +<tr class="odd"> +<td align="right">103.192184</td> +<td align="right">6.0</td> +<td align="right">1.9</td> +<td align="right">8.6</td> +<td align="right">6.1</td> +</tr> +<tr class="even"> +<td align="right">103.192184</td> +<td align="right">4.4</td> +<td align="right">1.5</td> +<td align="right">6.0</td> +<td align="right">4.0</td> +</tr> +<tr class="odd"> +<td align="right">146.188928</td> +<td align="right">3.3</td> +<td align="right">2.0</td> +<td align="right">5.6</td> +<td align="right">3.1</td> +</tr> +<tr class="even"> +<td align="right">146.188928</td> +<td align="right">2.8</td> +<td align="right">2.3</td> +<td align="right">4.5</td> +<td align="right">2.9</td> +</tr> +<tr class="odd"> +<td align="right">223.583066</td> +<td align="right">1.4</td> +<td align="right">1.2</td> +<td align="right">4.1</td> +<td align="right">1.8</td> +</tr> +<tr class="even"> +<td align="right">223.583066</td> +<td align="right">1.8</td> +<td align="right">1.9</td> +<td align="right">3.9</td> +<td align="right">2.6</td> +</tr> +<tr class="odd"> +<td align="right">0.000000</td> +<td align="right">93.4</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="even"> +<td align="right">0.000000</td> +<td align="right">103.2</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">1.228478</td> +<td align="right">89.2</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">1.3</td> +</tr> +<tr class="even"> +<td align="right">1.228478</td> +<td align="right">86.6</td> +<td align="right">NA</td> +<td align="right">NA</td> +<td align="right">NA</td> +</tr> +<tr class="odd"> +<td align="right">3.685435</td> +<td align="right">78.2</td> +<td align="right">2.6</td> +<td align="right">1.0</td> +<td align="right">3.1</td> +</tr> +<tr class="even"> +<td align="right">3.685435</td> +<td align="right">78.1</td> +<td align="right">2.4</td> +<td align="right">2.6</td> +<td align="right">2.3</td> +</tr> +<tr class="odd"> +<td align="right">8.599349</td> +<td align="right">55.6</td> +<td align="right">5.5</td> +<td align="right">4.5</td> +<td align="right">3.4</td> +</tr> +<tr class="even"> +<td align="right">8.599349</td> +<td align="right">53.0</td> +<td align="right">5.6</td> +<td align="right">4.6</td> +<td align="right">4.3</td> +</tr> +<tr class="odd"> +<td align="right">17.198697</td> +<td align="right">33.7</td> +<td align="right">7.3</td> +<td align="right">7.6</td> +<td align="right">7.8</td> +</tr> +<tr class="even"> +<td align="right">17.198697</td> +<td align="right">33.2</td> +<td align="right">6.5</td> +<td align="right">6.7</td> +<td align="right">8.7</td> +</tr> +<tr class="odd"> +<td align="right">25.798046</td> +<td align="right">20.9</td> +<td align="right">5.8</td> +<td align="right">8.7</td> +<td align="right">7.7</td> +</tr> +<tr class="even"> +<td align="right">25.798046</td> +<td align="right">19.9</td> +<td align="right">7.7</td> +<td align="right">7.6</td> +<td align="right">6.5</td> +</tr> +<tr class="odd"> +<td align="right">34.397395</td> +<td align="right">18.2</td> +<td align="right">7.8</td> +<td align="right">8.0</td> +<td align="right">6.3</td> +</tr> +<tr class="even"> +<td align="right">34.397395</td> +<td align="right">12.7</td> +<td align="right">7.3</td> +<td align="right">8.6</td> +<td align="right">8.7</td> +</tr> +<tr class="odd"> +<td align="right">51.596092</td> +<td align="right">7.8</td> +<td align="right">7.0</td> +<td align="right">7.4</td> +<td align="right">5.7</td> +</tr> +<tr class="even"> +<td align="right">51.596092</td> +<td align="right">9.0</td> +<td align="right">6.3</td> +<td align="right">7.2</td> +<td align="right">4.2</td> +</tr> +<tr class="odd"> +<td align="right">68.794789</td> +<td align="right">11.4</td> +<td align="right">4.3</td> +<td align="right">10.3</td> +<td align="right">3.2</td> +</tr> +<tr class="even"> +<td align="right">68.794789</td> +<td align="right">9.0</td> +<td align="right">3.8</td> +<td align="right">9.4</td> +<td align="right">4.2</td> +</tr> +<tr class="odd"> +<td align="right">103.192184</td> +<td align="right">3.9</td> +<td align="right">2.6</td> +<td align="right">6.5</td> +<td align="right">3.8</td> +</tr> +<tr class="even"> +<td align="right">103.192184</td> +<td align="right">4.4</td> +<td align="right">2.8</td> +<td align="right">6.9</td> +<td align="right">4.0</td> +</tr> +<tr class="odd"> +<td align="right">146.188928</td> +<td align="right">2.6</td> +<td align="right">1.6</td> +<td align="right">4.6</td> +<td align="right">4.5</td> +</tr> +<tr class="even"> +<td align="right">146.188928</td> +<td align="right">3.4</td> +<td align="right">1.1</td> +<td align="right">4.5</td> +<td align="right">4.5</td> +</tr> +<tr class="odd"> +<td align="right">223.583066</td> +<td align="right">2.0</td> +<td align="right">1.4</td> +<td align="right">4.3</td> +<td align="right">3.8</td> +</tr> +<tr class="even"> +<td align="right">223.583066</td> +<td align="right">1.7</td> +<td align="right">1.3</td> +<td align="right">4.2</td> +<td align="right">2.3</td> +</tr> +</tbody> +</table> +</div> +<div class="section level2"> +<h2 id="separate-evaluations">Separate evaluations<a class="anchor" aria-label="anchor" href="#separate-evaluations"></a> +</h2> +<p>As a first step to obtain suitable starting parameters for the NLHM +fits, we do separate fits of several variants of the pathway model used +previously <span class="citation">(Ranke et al. 2021)</span>, varying +the kinetic model for the parent compound. Because the SFORB model often +provides faster convergence than the DFOP model, and can sometimes be +fitted where the DFOP model results in errors, it is included in the set +of parent models tested here.</p> +<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="kw">if</span> <span class="op">(</span><span class="op">!</span><span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.exists</a></span><span class="op">(</span><span class="st">"dmta_dlls"</span><span class="op">)</span><span class="op">)</span> <span class="fu"><a href="https://rdrr.io/r/base/files2.html" class="external-link">dir.create</a></span><span class="op">(</span><span class="st">"dmta_dlls"</span><span class="op">)</span></span> +<span><span class="va">m_sfo_path_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span> DMTA <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M23"</span>, <span class="st">"M27"</span>, <span class="st">"M31"</span><span class="op">)</span><span class="op">)</span>,</span> +<span> M23 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> M27 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> M31 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"M27"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> +<span> name <span class="op">=</span> <span class="st">"m_sfo_path"</span>, dll_dir <span class="op">=</span> <span class="st">"dmta_dlls"</span>,</span> +<span> unload <span class="op">=</span> <span class="cn">TRUE</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span> quiet <span class="op">=</span> <span class="cn">TRUE</span></span> +<span><span class="op">)</span></span> +<span><span class="va">m_fomc_path_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span> DMTA <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M23"</span>, <span class="st">"M27"</span>, <span class="st">"M31"</span><span class="op">)</span><span class="op">)</span>,</span> +<span> M23 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> M27 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> M31 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"M27"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> +<span> name <span class="op">=</span> <span class="st">"m_fomc_path"</span>, dll_dir <span class="op">=</span> <span class="st">"dmta_dlls"</span>,</span> +<span> unload <span class="op">=</span> <span class="cn">TRUE</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span> quiet <span class="op">=</span> <span class="cn">TRUE</span></span> +<span><span class="op">)</span></span> +<span><span class="va">m_dfop_path_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span> DMTA <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M23"</span>, <span class="st">"M27"</span>, <span class="st">"M31"</span><span class="op">)</span><span class="op">)</span>,</span> +<span> M23 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> M27 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> M31 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"M27"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> +<span> name <span class="op">=</span> <span class="st">"m_dfop_path"</span>, dll_dir <span class="op">=</span> <span class="st">"dmta_dlls"</span>,</span> +<span> unload <span class="op">=</span> <span class="cn">TRUE</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span> quiet <span class="op">=</span> <span class="cn">TRUE</span></span> +<span><span class="op">)</span></span> +<span><span class="va">m_sforb_path_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span> DMTA <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFORB"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M23"</span>, <span class="st">"M27"</span>, <span class="st">"M31"</span><span class="op">)</span><span class="op">)</span>,</span> +<span> M23 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> M27 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> M31 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"M27"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> +<span> name <span class="op">=</span> <span class="st">"m_sforb_path"</span>, dll_dir <span class="op">=</span> <span class="st">"dmta_dlls"</span>,</span> +<span> unload <span class="op">=</span> <span class="cn">TRUE</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span> quiet <span class="op">=</span> <span class="cn">TRUE</span></span> +<span><span class="op">)</span></span> +<span><span class="va">m_hs_path_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinmod</a></span><span class="op">(</span></span> +<span> DMTA <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"HS"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M23"</span>, <span class="st">"M27"</span>, <span class="st">"M31"</span><span class="op">)</span><span class="op">)</span>,</span> +<span> M23 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> M27 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span> +<span> M31 <span class="op">=</span> <span class="fu"><a href="../../reference/mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"M27"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span> +<span> name <span class="op">=</span> <span class="st">"m_hs_path"</span>, dll_dir <span class="op">=</span> <span class="st">"dmta_dlls"</span>,</span> +<span> unload <span class="op">=</span> <span class="cn">TRUE</span>, overwrite <span class="op">=</span> <span class="cn">TRUE</span>,</span> +<span> quiet <span class="op">=</span> <span class="cn">TRUE</span></span> +<span><span class="op">)</span></span> +<span><span class="va">deg_mods_1</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span></span> +<span> sfo_path_1 <span class="op">=</span> <span class="va">m_sfo_path_1</span>,</span> +<span> fomc_path_1 <span class="op">=</span> <span class="va">m_fomc_path_1</span>,</span> +<span> dfop_path_1 <span class="op">=</span> <span class="va">m_dfop_path_1</span>,</span> +<span> sforb_path_1 <span class="op">=</span> <span class="va">m_sforb_path_1</span>,</span> +<span> hs_path_1 <span class="op">=</span> <span class="va">m_hs_path_1</span><span class="op">)</span></span> +<span></span> +<span><span class="va">sep_1_const</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mmkin.html">mmkin</a></span><span class="op">(</span></span> +<span> <span class="va">deg_mods_1</span>,</span> +<span> <span class="va">dmta_ds</span>,</span> +<span> error_model <span class="op">=</span> <span class="st">"const"</span>,</span> +<span> quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span> +<span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">sep_1_const</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Calke</th> +<th align="left">Borstel</th> +<th align="left">Flaach</th> +<th align="left">BBA 2.2</th> +<th align="left">BBA 2.3</th> +<th align="left">Elliot</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +</tr> +</tbody> +</table> +<p>All separate pathway fits with SFO or FOMC for the parent and +constant variance converged (status OK). Most fits with DFOP or SFORB +for the parent converged as well. The fits with HS for the parent did +not converge with default settings.</p> +<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">sep_1_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">sep_1_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">sep_1_tc</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">Calke</th> +<th align="left">Borstel</th> +<th align="left">Flaach</th> +<th align="left">BBA 2.2</th> +<th align="left">BBA 2.3</th> +<th align="left">Elliot</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">C</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">OK</td> +<td align="left">C</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">C</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>With the two-component error model, the set of fits with convergence +problems is slightly different, with convergence problems appearing for +different data sets when applying the DFOP and SFORB model and some +additional convergence problems when using the FOMC model for the +parent.</p> +</div> +<div class="section level2"> +<h2 id="hierarchichal-model-fits">Hierarchichal model fits<a class="anchor" aria-label="anchor" href="#hierarchichal-model-fits"></a> +</h2> +<p>The following code fits two sets of the corresponding hierarchical +models to the data, one assuming constant variance, and one assuming +two-component error.</p> +<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">saem_1</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/mhmkin.html">mhmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">sep_1_const</span>, <span class="va">sep_1_tc</span><span class="op">)</span><span class="op">)</span></span></code></pre></div> +<p>The run time for these fits was around two hours on five year old +hardware. After a recent hardware upgrade these fits complete in less +than twenty minutes.</p> +<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/status.html">status</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left">OK</td> +<td align="left">OK</td> +</tr> +</tbody> +</table> +<p>According to the <code>status</code> function, all fits terminated +successfully.</p> +<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<pre><code>Warning in FUN(X[[i]], ...): Could not obtain log likelihood with 'is' method +for sforb_path_1 const</code></pre> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1 const</td> +<td align="right">17</td> +<td align="right">2291.8</td> +<td align="right">2288.3</td> +<td align="right">-1128.9</td> +</tr> +<tr class="even"> +<td align="left">sfo_path_1 tc</td> +<td align="right">18</td> +<td align="right">2276.3</td> +<td align="right">2272.5</td> +<td align="right">-1120.1</td> +</tr> +<tr class="odd"> +<td align="left">fomc_path_1 const</td> +<td align="right">19</td> +<td align="right">2099.0</td> +<td align="right">2095.0</td> +<td align="right">-1030.5</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1 tc</td> +<td align="right">20</td> +<td align="right">1939.6</td> +<td align="right">1935.5</td> +<td align="right">-949.8</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1 const</td> +<td align="right">21</td> +<td align="right">2038.8</td> +<td align="right">2034.4</td> +<td align="right">-998.4</td> +</tr> +<tr class="even"> +<td align="left">hs_path_1 const</td> +<td align="right">21</td> +<td align="right">2024.2</td> +<td align="right">2019.8</td> +<td align="right">-991.1</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1 tc</td> +<td align="right">22</td> +<td align="right">1879.8</td> +<td align="right">1875.2</td> +<td align="right">-917.9</td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1 tc</td> +<td align="right">22</td> +<td align="right">1832.9</td> +<td align="right">1828.3</td> +<td align="right">-894.4</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1 tc</td> +<td align="right">22</td> +<td align="right">1831.4</td> +<td align="right">1826.8</td> +<td align="right">-893.7</td> +</tr> +</tbody> +</table> +<p>When the goodness-of-fit of the models is compared, a warning is +obtained, indicating that the likelihood of the pathway fit with SFORB +for the parent compound and constant variance could not be calculated +with importance sampling (method ‘is’). As this is the default method on +which all AIC and BIC comparisons are based, this variant is not +included in the model comparison table. Comparing the goodness-of-fit of +the remaining models, HS model model with two-component error provides +the best fit. However, for batch experiments performed with constant +conditions such as the experiments evaluated here, there is no reason to +assume a discontinuity, so the SFORB model is preferable from a +mechanistic viewpoint. In addition, the information criteria AIC and BIC +are very similar for HS and SFORB. Therefore, the SFORB model is +selected here for further refinements.</p> +<div class="section level3"> +<h3 id="parameter-identifiability-based-on-the-fisher-information-matrix">Parameter identifiability based on the Fisher Information +Matrix<a class="anchor" aria-label="anchor" href="#parameter-identifiability-based-on-the-fisher-information-matrix"></a> +</h3> +<p>Using the <code>illparms</code> function, ill-defined statistical +model parameters such as standard deviations of the degradation +parameters in the population and error model parameters can be +found.</p> +<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="left">const</th> +<th align="left">tc</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">sfo_path_1</td> +<td align="left"></td> +<td align="left">sd(DMTA_0)</td> +</tr> +<tr class="even"> +<td align="left">fomc_path_1</td> +<td align="left"></td> +<td align="left">sd(DMTA_0)</td> +</tr> +<tr class="odd"> +<td align="left">dfop_path_1</td> +<td align="left"></td> +<td align="left"></td> +</tr> +<tr class="even"> +<td align="left">sforb_path_1</td> +<td align="left"></td> +<td align="left">sd(log_k_DMTA_bound_free)</td> +</tr> +<tr class="odd"> +<td align="left">hs_path_1</td> +<td align="left"></td> +<td align="left">sd(log_tb)</td> +</tr> +</tbody> +</table> +<p>When using constant variance, no ill-defined variance parameters are +identified with the <code>illparms</code> function in any of the +degradation models. When using the two-component error model, there is +one ill-defined variance parameter in all variants except for the +variant using DFOP for the parent compound.</p> +<p>For the selected combination of the SFORB pathway model with +two-component error, the random effect for the rate constant from +reversibly bound DMTA to the free DMTA (<code>k_DMTA_bound_free</code>) +is not well-defined. Therefore, the fit is updated without assuming a +random effect for this parameter.</p> +<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">saem_sforb_path_1_tc_reduced</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span>,</span> +<span> no_random_effect <span class="op">=</span> <span class="st">"log_k_DMTA_bound_free"</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/illparms.html">illparms</a></span><span class="op">(</span><span class="va">saem_sforb_path_1_tc_reduced</span><span class="op">)</span></span></code></pre></div> +<p>As expected, no ill-defined parameters remain. The model comparison +below shows that the reduced model is preferable.</p> +<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span>, <span class="va">saem_sforb_path_1_tc_reduced</span><span class="op">)</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/pkg/knitr/man/kable.html" class="external-link">kable</a></span><span class="op">(</span>digits <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div> +<table class="table"> +<thead><tr class="header"> +<th align="left"></th> +<th align="right">npar</th> +<th align="right">AIC</th> +<th align="right">BIC</th> +<th align="right">Lik</th> +</tr></thead> +<tbody> +<tr class="odd"> +<td align="left">saem_sforb_path_1_tc_reduced</td> +<td align="right">21</td> +<td align="right">1830.3</td> +<td align="right">1825.9</td> +<td align="right">-894.2</td> +</tr> +<tr class="even"> +<td align="left">saem_1[[“sforb_path_1”, “tc”]]</td> +<td align="right">22</td> +<td align="right">1832.9</td> +<td align="right">1828.3</td> +<td align="right">-894.4</td> +</tr> +</tbody> +</table> +<p>The convergence plot of the refined fit is shown below.</p> +<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">saem_sforb_path_1_tc_reduced</span><span class="op">$</span><span class="va">so</span>, plot.type <span class="op">=</span> <span class="st">"convergence"</span><span class="op">)</span></span></code></pre></div> +<p><img src="2022_dmta_pathway_files/figure-html/saem-sforb-path-1-tc-reduced-convergence-1.png" width="700" style="display: block; margin: auto;"></p> +<p>For some parameters, for example for <code>f_DMTA_ilr_1</code> and +<code>f_DMTA_ilr_2</code>, i.e. for two of the parameters determining +the formation fractions of the parallel formation of the three +metabolites, some movement of the parameters is still visible in the +second phase of the algorithm. However, the amplitude of this movement +is in the range of the amplitude towards the end of the first phase. +Therefore, it is likely that an increase in iterations would not improve +the parameter estimates very much, and it is proposed that the fit is +acceptable. No numeric convergence criterion is implemented in +saemix.</p> +</div> +<div class="section level3"> +<h3 id="alternative-check-of-parameter-identifiability">Alternative check of parameter identifiability<a class="anchor" aria-label="anchor" href="#alternative-check-of-parameter-identifiability"></a> +</h3> +<p>As an alternative check of parameter identifiability <span class="citation">(Duchesne et al. 2021)</span>, multistart runs were +performed on the basis of the refined fit shown above.</p> +<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="va">saem_sforb_path_1_tc_reduced_multi</span> <span class="op"><-</span> <span class="fu"><a href="../../reference/multistart.html">multistart</a></span><span class="op">(</span><span class="va">saem_sforb_path_1_tc_reduced</span>,</span> +<span> n <span class="op">=</span> <span class="fl">32</span>, cores <span class="op">=</span> <span class="fl">10</span><span class="op">)</span></span></code></pre></div> +<div class="sourceCode" id="cb15"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">saem_sforb_path_1_tc_reduced_multi</span><span class="op">)</span></span></code></pre></div> +<pre><code><multistart> object with 32 fits: + E OK +15 17 +OK: Fit terminated successfully +E: Error</code></pre> +<p>Out of the 32 fits that were initiated, only 17 terminated without an +error. The reason for this is that the wide variation of starting +parameters in combination with the parameter variation that is used in +the SAEM algorithm leads to parameter combinations for the degradation +model that the numerical integration routine cannot cope with. Because +of this variation of initial parameters, some of the model fits take up +to two times more time than the original fit.</p> +<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/graphics/par.html" class="external-link">par</a></span><span class="op">(</span>mar <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">12.1</span>, <span class="fl">4.1</span>, <span class="fl">2.1</span>, <span class="fl">2.1</span><span class="op">)</span><span class="op">)</span></span> +<span><span class="fu"><a href="../../reference/parplot.html">parplot</a></span><span class="op">(</span><span class="va">saem_sforb_path_1_tc_reduced_multi</span>, ylim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0.5</span>, <span class="fl">2</span><span class="op">)</span>, las <span class="op">=</span> <span class="fl">2</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_pathway_files/figure-html/unnamed-chunk-2-1.png" alt="Parameter boxplots for the multistart runs that succeeded" width="960"><p class="caption"> +Parameter boxplots for the multistart runs that succeeded +</p> +</div> +<p>However, visual analysis of the boxplot of the parameters obtained in +the successful fits confirms that the results are sufficiently +independent of the starting parameters, and there are no remaining +ill-defined parameters.</p> +</div> +</div> +<div class="section level2"> +<h2 id="plots-of-selected-fits">Plots of selected fits<a class="anchor" aria-label="anchor" href="#plots-of-selected-fits"></a> +</h2> +<p>The SFORB pathway fits with full and reduced parameter distribution +model are shown below.</p> +<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_pathway_files/figure-html/unnamed-chunk-3-1.png" alt="SFORB pathway fit with two-component error" width="700"><p class="caption"> +SFORB pathway fit with two-component error +</p> +</div> +<div class="sourceCode" id="cb19"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">saem_sforb_path_1_tc_reduced</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_pathway_files/figure-html/unnamed-chunk-4-1.png" alt="SFORB pathway fit with two-component error, reduced parameter model" width="700"><p class="caption"> +SFORB pathway fit with two-component error, reduced parameter model +</p> +</div> +<p>Plots of the remaining fits and listings for all successful fits are +shown in the Appendix.</p> +</div> +<div class="section level2"> +<h2 id="conclusions">Conclusions<a class="anchor" aria-label="anchor" href="#conclusions"></a> +</h2> +<p>Pathway fits with SFO, FOMC, DFOP, SFORB and HS models for the parent +compound could be successfully performed.</p> +</div> +<div class="section level2"> +<h2 id="acknowledgements">Acknowledgements<a class="anchor" aria-label="anchor" href="#acknowledgements"></a> +</h2> +<p>The helpful comments by Janina Wöltjen of the German Environment +Agency on earlier versions of this document are gratefully +acknowledged.</p> +</div> +<div class="section level2"> +<h2 id="references">References<a class="anchor" aria-label="anchor" href="#references"></a> +</h2> +<div id="refs" class="references csl-bib-body hanging-indent"> +<div id="ref-duchesne_2021" class="csl-entry"> +Duchesne, Ronan, Anissa Guillemin, Olivier Gandrillon, and Fabien +Crauste. 2021. <span>“Practical Identifiability in the Frame of +Nonlinear Mixed Effects Models: The Example of the in Vitro +Erythropoiesis.”</span> <em>BMC Bioinformatics</em> 22 (478). <a href="https://doi.org/10.1186/s12859-021-04373-4" class="external-link">https://doi.org/10.1186/s12859-021-04373-4</a>. +</div> +<div id="ref-ranke2021" class="csl-entry"> +Ranke, Johannes, Janina Wöltjen, Jana Schmidt, and Emmanuelle Comets. +2021. <span>“Taking Kinetic Evaluations of Degradation Data to the Next +Level with Nonlinear Mixed-Effects Models.”</span> <em>Environments</em> +8 (8). <a href="https://doi.org/10.3390/environments8080071" class="external-link">https://doi.org/10.3390/environments8080071</a>. +</div> +</div> +</div> +<div class="section level2"> +<h2 id="appendix">Appendix<a class="anchor" aria-label="anchor" href="#appendix"></a> +</h2> +<div class="section level3"> +<h3 id="plots-of-hierarchical-fits-not-selected-for-refinement">Plots of hierarchical fits not selected for refinement<a class="anchor" aria-label="anchor" href="#plots-of-hierarchical-fits-not-selected-for-refinement"></a> +</h3> +<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">[[</span><span class="st">"sfo_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_pathway_files/figure-html/unnamed-chunk-5-1.png" alt="SFO pathway fit with two-component error" width="700"><p class="caption"> +SFO pathway fit with two-component error +</p> +</div> +<div class="sourceCode" id="cb21"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">[[</span><span class="st">"fomc_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_pathway_files/figure-html/unnamed-chunk-6-1.png" alt="FOMC pathway fit with two-component error" width="700"><p class="caption"> +FOMC pathway fit with two-component error +</p> +</div> +<div class="sourceCode" id="cb22"><pre class="downlit sourceCode r"> +<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">saem_1</span><span class="op">[[</span><span class="st">"sforb_path_1"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div> +<div class="figure" style="text-align: center"> +<img src="2022_dmta_pathway_files/figure-html/unnamed-chunk-7-1.png" alt="HS pathway fit with two-component error" width="700"><p class="caption"> +HS pathway fit with two-component error +</p> +</div> +</div> +<div class="section level3"> +<h3 id="hierarchical-model-fit-listings">Hierarchical model fit listings<a class="anchor" aria-label="anchor" href="#hierarchical-model-fit-listings"></a> +</h3> +<div class="section level4"> +<h4 id="fits-with-random-effects-for-all-degradation-parameters">Fits with random effects for all degradation parameters<a class="anchor" aria-label="anchor" href="#fits-with-random-effects-for-all-degradation-parameters"></a> +</h4> + +</div> +<div class="section level4"> +<h4 id="improved-fit-of-the-sforb-pathway-model-with-two-component-error">Improved fit of the SFORB pathway model with two-component +error<a class="anchor" aria-label="anchor" href="#improved-fit-of-the-sforb-pathway-model-with-two-component-error"></a> +</h4> + +</div> +</div> +<div class="section level3"> +<h3 id="session-info">Session info<a class="anchor" aria-label="anchor" href="#session-info"></a> +</h3> +<pre><code>R version 4.2.2 Patched (2022-11-10 r83330) +Platform: x86_64-pc-linux-gnu (64-bit) +Running under: Debian GNU/Linux bookworm/sid + +Matrix products: default +BLAS: /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3 +LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so + +locale: + [1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C + [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=de_DE.UTF-8 + [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8 + [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C + [9] LC_ADDRESS=C LC_TELEPHONE=C +[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C + +attached base packages: +[1] parallel stats graphics grDevices utils datasets methods +[8] base + +other attached packages: +[1] saemix_3.2 npde_3.3 knitr_1.41 mkin_1.2.2 + +loaded via a namespace (and not attached): + [1] deSolve_1.34 zoo_1.8-11 tidyselect_1.2.0 xfun_0.35 + [5] bslib_0.4.2 purrr_1.0.0 lattice_0.20-45 colorspace_2.0-3 + [9] vctrs_0.5.1 generics_0.1.3 htmltools_0.5.4 yaml_2.3.6 +[13] pkgbuild_1.4.0 utf8_1.2.2 rlang_1.0.6 pkgdown_2.0.7 +[17] jquerylib_0.1.4 pillar_1.8.1 glue_1.6.2 DBI_1.1.3 +[21] lifecycle_1.0.3 stringr_1.5.0 munsell_0.5.0 gtable_0.3.1 +[25] ragg_1.2.4 codetools_0.2-18 memoise_2.0.1 evaluate_0.19 +[29] inline_0.3.19 callr_3.7.3 fastmap_1.1.0 ps_1.7.2 +[33] lmtest_0.9-40 fansi_1.0.3 highr_0.9 scales_1.2.1 +[37] cachem_1.0.6 desc_1.4.2 jsonlite_1.8.4 systemfonts_1.0.4 +[41] fs_1.5.2 textshaping_0.3.6 gridExtra_2.3 ggplot2_3.4.0 +[45] digest_0.6.31 stringi_1.7.8 processx_3.8.0 dplyr_1.0.10 +[49] grid_4.2.2 rprojroot_2.0.3 cli_3.5.0 tools_4.2.2 +[53] magrittr_2.0.3 sass_0.4.4 tibble_3.1.8 crayon_1.5.2 +[57] pkgconfig_2.0.3 prettyunits_1.1.1 assertthat_0.2.1 rmarkdown_2.19 +[61] R6_2.5.1 mclust_6.0.0 nlme_3.1-161 compiler_4.2.2 </code></pre> +</div> +<div class="section level3"> +<h3 id="hardware-info">Hardware info<a class="anchor" aria-label="anchor" href="#hardware-info"></a> +</h3> +<pre><code>CPU model: AMD Ryzen 9 7950X 16-Core Processor</code></pre> +<pre><code>MemTotal: 64940452 kB</code></pre> +</div> +</div> + </div> + + <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> + + <nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2> + </nav> +</div> + +</div> + + + + <footer><div class="copyright"> + <p></p> +<p>Developed by Johannes Ranke.</p> +</div> + +<div class="pkgdown"> + <p></p> +<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p> +</div> + + </footer> +</div> + + + + + + + </body> +</html> diff --git a/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/saem-sforb-path-1-tc-reduced-convergence-1.png b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/saem-sforb-path-1-tc-reduced-convergence-1.png Binary files differnew file mode 100644 index 00000000..206c424d --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/saem-sforb-path-1-tc-reduced-convergence-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-2-1.png b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-2-1.png Binary files differnew file mode 100644 index 00000000..0fe084d3 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-2-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-3-1.png b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-3-1.png Binary files differnew file mode 100644 index 00000000..1c81601e --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-3-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-4-1.png b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-4-1.png Binary files differnew file mode 100644 index 00000000..e0961dce --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-4-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-5-1.png b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-5-1.png Binary files differnew file mode 100644 index 00000000..00db0c76 --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-5-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-6-1.png b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-6-1.png Binary files differnew file mode 100644 index 00000000..ac5271ec --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-6-1.png diff --git a/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-7-1.png b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-7-1.png Binary files differnew file mode 100644 index 00000000..1c81601e --- /dev/null +++ b/docs/dev/articles/prebuilt/2022_dmta_pathway_files/figure-html/unnamed-chunk-7-1.png |