diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2023-02-13 05:19:08 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2023-02-13 05:19:08 +0100 |
commit | 8d1a84ac2190538ed3bac53a303064e281595868 (patch) | |
tree | acb894d85ab7ec87c4911c355a5264a77e08e34b /docs/dev/reference/mhmkin.html | |
parent | 51d63256a7b3020ee11931d61b4db97b9ded02c0 (diff) | |
parent | 4200e566ad2600f56bc3987669aeab88582139eb (diff) |
Merge branch 'main' into custom_lsoda_call
Diffstat (limited to 'docs/dev/reference/mhmkin.html')
-rw-r--r-- | docs/dev/reference/mhmkin.html | 110 |
1 files changed, 96 insertions, 14 deletions
diff --git a/docs/dev/reference/mhmkin.html b/docs/dev/reference/mhmkin.html index e87e20a1..1328aa48 100644 --- a/docs/dev/reference/mhmkin.html +++ b/docs/dev/reference/mhmkin.html @@ -22,7 +22,7 @@ mixed-effects model fitting functions."><meta name="robots" content="noindex"><! </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> - <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.2.0</span> + <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.2.2</span> </span> </div> @@ -64,7 +64,10 @@ mixed-effects model fitting functions."><meta name="robots" content="noindex"><! <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> </li> <li> - <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a> + <a href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a> + </li> + <li> + <a href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a> </li> </ul></li> <li> @@ -110,7 +113,6 @@ mhmkin( backend = "saemix", algorithm = "saem", no_random_effect = NULL, - auto_ranef_threshold = 3, ..., cores = if (Sys.info()["sysname"] == "Windows") 1 else parallel::detectCores(), cluster = NULL @@ -147,16 +149,14 @@ supported</p></dd> <dt>no_random_effect</dt> -<dd><p>Default is NULL and will be passed to <a href="saem.html">saem</a>. If -you specify "auto", random effects are only included if the number -of datasets in which the parameter passed the t-test is at least 'auto_ranef_threshold'. -Beware that while this may make for convenient model reduction or even -numerical stability of the algorithm, it will likely lead to -underparameterised models.</p></dd> - - -<dt>auto_ranef_threshold</dt> -<dd><p>See 'no_random_effect.</p></dd> +<dd><p>Default is NULL and will be passed to <a href="saem.html">saem</a>. If a +character vector is supplied, it will be passed to all calls to <a href="saem.html">saem</a>, +which will exclude random effects for all matching parameters. Alternatively, +a list of character vectors or an object of class <a href="illparms.html">illparms.mhmkin</a> can be +specified. They have to have the same dimensions that the return object of +the current call will have, i.e. the number of rows must match the number +of degradation models in the mmkin object(s), and the number of columns must +match the number of error models used in the mmkin object(s).</p></dd> <dt>cores</dt> @@ -200,7 +200,7 @@ and the error model names for the second index (column index), with class attribute 'mhmkin'.</p> -<p>An object of class <code>mhmkin</code>.</p> +<p>An object inheriting from <code>mhmkin</code>.</p> </div> <div id="see-also"> <h2>See also</h2> @@ -211,6 +211,88 @@ attribute 'mhmkin'.</p> <p>Johannes Ranke</p> </div> + <div id="ref-examples"> + <h2>Examples</h2> + <div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="co"># \dontrun{</span></span></span> +<span class="r-in"><span><span class="co"># We start with separate evaluations of all the first six datasets with two</span></span></span> +<span class="r-in"><span><span class="co"># degradation models and two error models</span></span></span> +<span class="r-in"><span><span class="va">f_sep_const</span> <span class="op"><-</span> <span class="fu"><a href="mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span><span class="op">)</span>, <span class="va">ds_fomc</span><span class="op">[</span><span class="fl">1</span><span class="op">:</span><span class="fl">6</span><span class="op">]</span>, cores <span class="op">=</span> <span class="fl">2</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="va">f_sep_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_sep_const</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="co"># The mhmkin function sets up hierarchical degradation models aka</span></span></span> +<span class="r-in"><span><span class="co"># nonlinear mixed-effects models for all four combinations, specifying</span></span></span> +<span class="r-in"><span><span class="co"># uncorrelated random effects for all degradation parameters</span></span></span> +<span class="r-in"><span><span class="va">f_saem_1</span> <span class="op"><-</span> <span class="fu">mhmkin</span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="va">f_sep_const</span>, <span class="va">f_sep_tc</span><span class="op">)</span>, cores <span class="op">=</span> <span class="fl">2</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="fu"><a href="status.html">status</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">)</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> error</span> +<span class="r-out co"><span class="r-pr">#></span> degradation const tc</span> +<span class="r-out co"><span class="r-pr">#></span> SFO OK OK</span> +<span class="r-out co"><span class="r-pr">#></span> FOMC OK OK</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> OK: Fit terminated successfully</span> +<span class="r-in"><span><span class="co"># The 'illparms' function shows that in all hierarchical fits, at least</span></span></span> +<span class="r-in"><span><span class="co"># one random effect is ill-defined (the confidence interval for the</span></span></span> +<span class="r-in"><span><span class="co"># random effect expressed as standard deviation includes zero)</span></span></span> +<span class="r-in"><span><span class="fu"><a href="illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">)</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> error</span> +<span class="r-out co"><span class="r-pr">#></span> degradation const tc </span> +<span class="r-out co"><span class="r-pr">#></span> SFO sd(parent_0) sd(parent_0) </span> +<span class="r-out co"><span class="r-pr">#></span> FOMC sd(log_beta) sd(parent_0), sd(log_beta)</span> +<span class="r-in"><span><span class="co"># Therefore we repeat the fits, excluding the ill-defined random effects</span></span></span> +<span class="r-in"><span><span class="va">f_saem_2</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_saem_1</span>, no_random_effect <span class="op">=</span> <span class="fu"><a href="illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">)</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="fu"><a href="status.html">status</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> error</span> +<span class="r-out co"><span class="r-pr">#></span> degradation const tc</span> +<span class="r-out co"><span class="r-pr">#></span> SFO OK OK</span> +<span class="r-out co"><span class="r-pr">#></span> FOMC OK OK</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> OK: Fit terminated successfully</span> +<span class="r-in"><span><span class="fu"><a href="illparms.html">illparms</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> error</span> +<span class="r-out co"><span class="r-pr">#></span> degradation const tc</span> +<span class="r-out co"><span class="r-pr">#></span> SFO </span> +<span class="r-out co"><span class="r-pr">#></span> FOMC </span> +<span class="r-in"><span><span class="co"># Model comparisons show that FOMC with two-component error is preferable,</span></span></span> +<span class="r-in"><span><span class="co"># and confirms our reduction of the default parameter model</span></span></span> +<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_1</span><span class="op">)</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> Data: 95 observations of 1 variable(s) grouped in 6 datasets</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> npar AIC BIC Lik</span> +<span class="r-out co"><span class="r-pr">#></span> SFO const 5 574.40 573.35 -282.20</span> +<span class="r-out co"><span class="r-pr">#></span> SFO tc 6 543.72 542.47 -265.86</span> +<span class="r-out co"><span class="r-pr">#></span> FOMC const 7 489.67 488.22 -237.84</span> +<span class="r-out co"><span class="r-pr">#></span> FOMC tc 8 406.11 404.44 -195.05</span> +<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">)</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> Data: 95 observations of 1 variable(s) grouped in 6 datasets</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> npar AIC BIC Lik</span> +<span class="r-out co"><span class="r-pr">#></span> SFO const 4 572.22 571.39 -282.11</span> +<span class="r-out co"><span class="r-pr">#></span> SFO tc 5 541.63 540.59 -265.81</span> +<span class="r-out co"><span class="r-pr">#></span> FOMC const 6 487.38 486.13 -237.69</span> +<span class="r-out co"><span class="r-pr">#></span> FOMC tc 6 402.12 400.88 -195.06</span> +<span class="r-in"><span><span class="co"># The convergence plot for the selected model looks fine</span></span></span> +<span class="r-in"><span><span class="fu">saemix</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">[[</span><span class="st">"FOMC"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">so</span>, plot.type <span class="op">=</span> <span class="st">"convergence"</span><span class="op">)</span></span></span> +<span class="r-plt img"><img src="mhmkin-1.png" alt="" width="700" height="433"></span> +<span class="r-in"><span><span class="co"># The plot of predictions versus data shows that we have a pretty data-rich</span></span></span> +<span class="r-in"><span><span class="co"># situation with homogeneous distribution of residuals, because we used the</span></span></span> +<span class="r-in"><span><span class="co"># same degradation model, error model and parameter distribution model that</span></span></span> +<span class="r-in"><span><span class="co"># was used in the data generation.</span></span></span> +<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_saem_2</span><span class="op">[[</span><span class="st">"FOMC"</span>, <span class="st">"tc"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></span> +<span class="r-plt img"><img src="mhmkin-2.png" alt="" width="700" height="433"></span> +<span class="r-in"><span><span class="co"># We can specify the same parameter model reductions manually</span></span></span> +<span class="r-in"><span><span class="va">no_ranef</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="st">"parent_0"</span>, <span class="st">"log_beta"</span>, <span class="st">"parent_0"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"parent_0"</span>, <span class="st">"log_beta"</span><span class="op">)</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/dim.html" class="external-link">dim</a></span><span class="op">(</span><span class="va">no_ranef</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">2</span>, <span class="fl">2</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="va">f_saem_2m</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_saem_1</span>, no_random_effect <span class="op">=</span> <span class="va">no_ranef</span><span class="op">)</span></span></span> +<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_saem_2m</span><span class="op">)</span></span></span> +<span class="r-out co"><span class="r-pr">#></span> Data: 95 observations of 1 variable(s) grouped in 6 datasets</span> +<span class="r-out co"><span class="r-pr">#></span> </span> +<span class="r-out co"><span class="r-pr">#></span> npar AIC BIC Lik</span> +<span class="r-out co"><span class="r-pr">#></span> SFO const 4 572.22 571.39 -282.11</span> +<span class="r-out co"><span class="r-pr">#></span> SFO tc 5 541.63 540.59 -265.81</span> +<span class="r-out co"><span class="r-pr">#></span> FOMC const 6 487.38 486.13 -237.69</span> +<span class="r-out co"><span class="r-pr">#></span> FOMC tc 6 402.12 400.88 -195.06</span> +<span class="r-in"><span><span class="co"># }</span></span></span> +</code></pre></div> + </div> </div> <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> <nav id="toc" data-toggle="toc" class="sticky-top"><h2 data-toc-skip>Contents</h2> |