aboutsummaryrefslogtreecommitdiff
path: root/docs/dev/reference
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2022-02-08 17:17:29 +0100
committerJohannes Ranke <jranke@uni-bremen.de>2022-02-08 17:17:29 +0100
commit0fa8a770812775d697717ad723f7f61fb04b7fef (patch)
tree17473ddf787541745d47dab063bc643ec59a9557 /docs/dev/reference
parentd081384ddcb75a9f92fad33e4e3f6d6796f98e67 (diff)
parentc0638c84568d475b3b059e2c6e593e6f03b846bc (diff)
Merge branch 'nlmixr'
Diffstat (limited to 'docs/dev/reference')
-rw-r--r--docs/dev/reference/AIC.mmkin.html13
-rw-r--r--docs/dev/reference/CAKE_export.html4
-rw-r--r--docs/dev/reference/D24_2014.html2
-rw-r--r--docs/dev/reference/DFOP.solution.html4
-rw-r--r--docs/dev/reference/Extract.mmkin.html6
-rw-r--r--docs/dev/reference/FOCUS_2006_DFOP_ref_A_to_B.html4
-rw-r--r--docs/dev/reference/FOCUS_2006_FOMC_ref_A_to_F.html4
-rw-r--r--docs/dev/reference/FOCUS_2006_HS_ref_A_to_F.html4
-rw-r--r--docs/dev/reference/FOCUS_2006_SFO_ref_A_to_F.html4
-rw-r--r--docs/dev/reference/FOCUS_2006_datasets.html4
-rw-r--r--docs/dev/reference/FOMC.solution.html4
-rw-r--r--docs/dev/reference/HS.solution.html4
-rw-r--r--docs/dev/reference/IORE.solution.html4
-rw-r--r--docs/dev/reference/NAFTA_SOP_2015-1.pngbin64838 -> 61980 bytes
-rw-r--r--docs/dev/reference/NAFTA_SOP_2015.html4
-rw-r--r--docs/dev/reference/NAFTA_SOP_Attachment-1.pngbin66148 -> 63822 bytes
-rw-r--r--docs/dev/reference/NAFTA_SOP_Attachment.html8
-rw-r--r--docs/dev/reference/Rplot001.pngbin19395 -> 43795 bytes
-rw-r--r--docs/dev/reference/Rplot002.pngbin16843 -> 60622 bytes
-rw-r--r--docs/dev/reference/Rplot003.pngbin28735 -> 59146 bytes
-rw-r--r--docs/dev/reference/Rplot004.pngbin49269 -> 49360 bytes
-rw-r--r--docs/dev/reference/Rplot005.pngbin57095 -> 59600 bytes
-rw-r--r--docs/dev/reference/Rplot006.pngbin24624 -> 22144 bytes
-rw-r--r--docs/dev/reference/Rplot007.pngbin25074 -> 24992 bytes
-rw-r--r--docs/dev/reference/SFO.solution.html4
-rw-r--r--docs/dev/reference/SFORB.solution.html4
-rw-r--r--docs/dev/reference/add_err-1.pngbin111360 -> 108676 bytes
-rw-r--r--docs/dev/reference/add_err-2.pngbin64003 -> 63336 bytes
-rw-r--r--docs/dev/reference/add_err-3.pngbin60019 -> 58909 bytes
-rw-r--r--docs/dev/reference/add_err.html4
-rw-r--r--docs/dev/reference/aw.html4
-rw-r--r--docs/dev/reference/confint.mkinfit.html127
-rw-r--r--docs/dev/reference/create_deg_func.html12
-rw-r--r--docs/dev/reference/dimethenamid_2018-1.pngbin0 -> 263830 bytes
-rw-r--r--docs/dev/reference/dimethenamid_2018-2.pngbin0 -> 246327 bytes
-rw-r--r--docs/dev/reference/dimethenamid_2018.html266
-rw-r--r--docs/dev/reference/endpoints.html8
-rw-r--r--docs/dev/reference/experimental_data_for_UBA-1.pngbin103559 -> 102212 bytes
-rw-r--r--docs/dev/reference/experimental_data_for_UBA.html4
-rw-r--r--docs/dev/reference/f_time_norm_focus.html2
-rw-r--r--docs/dev/reference/focus_soil_moisture.html4
-rw-r--r--docs/dev/reference/get_deg_func.html4
-rw-r--r--docs/dev/reference/ilr.html4
-rw-r--r--docs/dev/reference/index.html54
-rw-r--r--docs/dev/reference/intervals.nlmixr.mmkin.html203
-rw-r--r--docs/dev/reference/intervals.saem.mmkin.html205
-rw-r--r--docs/dev/reference/loftest-1.pngbin41288 -> 40351 bytes
-rw-r--r--docs/dev/reference/loftest-2.pngbin40668 -> 39817 bytes
-rw-r--r--docs/dev/reference/loftest-3.pngbin78452 -> 76976 bytes
-rw-r--r--docs/dev/reference/loftest-4.pngbin76132 -> 74678 bytes
-rw-r--r--docs/dev/reference/loftest-5.pngbin74691 -> 73446 bytes
-rw-r--r--docs/dev/reference/loftest.html4
-rw-r--r--docs/dev/reference/logLik.mkinfit.html12
-rw-r--r--docs/dev/reference/logistic.solution-2.pngbin43807 -> 42118 bytes
-rw-r--r--docs/dev/reference/logistic.solution.html10
-rw-r--r--docs/dev/reference/lrtest.mkinfit.html4
-rw-r--r--docs/dev/reference/max_twa_parent.html4
-rw-r--r--docs/dev/reference/mccall81_245T-1.pngbin65341 -> 62537 bytes
-rw-r--r--docs/dev/reference/mccall81_245T.html44
-rw-r--r--docs/dev/reference/mean_degparms.html210
-rw-r--r--docs/dev/reference/mixed-1.pngbin206373 -> 220057 bytes
-rw-r--r--docs/dev/reference/mixed.html18
-rw-r--r--docs/dev/reference/mkin_long_to_wide.html4
-rw-r--r--docs/dev/reference/mkin_wide_to_long.html4
-rw-r--r--docs/dev/reference/mkinds.html4
-rw-r--r--docs/dev/reference/mkindsg.html10
-rw-r--r--docs/dev/reference/mkinerrmin.html4
-rw-r--r--docs/dev/reference/mkinerrplot.html4
-rw-r--r--docs/dev/reference/mkinfit-1.pngbin67810 -> 65835 bytes
-rw-r--r--docs/dev/reference/mkinfit.html132
-rw-r--r--docs/dev/reference/mkinmod.html14
-rw-r--r--docs/dev/reference/mkinparplot-1.pngbin25707 -> 25702 bytes
-rw-r--r--docs/dev/reference/mkinparplot.html7
-rw-r--r--docs/dev/reference/mkinplot.html4
-rw-r--r--docs/dev/reference/mkinpredict.html10
-rw-r--r--docs/dev/reference/mkinresplot.html6
-rw-r--r--docs/dev/reference/mmkin-1.pngbin114048 -> 111120 bytes
-rw-r--r--docs/dev/reference/mmkin-2.pngbin110392 -> 108016 bytes
-rw-r--r--docs/dev/reference/mmkin-3.pngbin97556 -> 96433 bytes
-rw-r--r--docs/dev/reference/mmkin-4.pngbin70005 -> 66723 bytes
-rw-r--r--docs/dev/reference/mmkin-5.pngbin66093 -> 65113 bytes
-rw-r--r--docs/dev/reference/mmkin.html36
-rw-r--r--docs/dev/reference/nafta-1.pngbin64838 -> 61980 bytes
-rw-r--r--docs/dev/reference/nafta.html4
-rw-r--r--docs/dev/reference/nlme-1.pngbin69449 -> 68943 bytes
-rw-r--r--docs/dev/reference/nlme-2.pngbin89493 -> 94409 bytes
-rw-r--r--docs/dev/reference/nlme.html42
-rw-r--r--docs/dev/reference/nlme.mmkin-1.pngbin119655 -> 124937 bytes
-rw-r--r--docs/dev/reference/nlme.mmkin-2.pngbin159253 -> 169884 bytes
-rw-r--r--docs/dev/reference/nlme.mmkin-3.pngbin161800 -> 172863 bytes
-rw-r--r--docs/dev/reference/nlme.mmkin.html89
-rw-r--r--docs/dev/reference/nlmixr.mmkin-1.pngbin0 -> 128415 bytes
-rw-r--r--docs/dev/reference/nlmixr.mmkin-2.pngbin0 -> 176482 bytes
-rw-r--r--docs/dev/reference/nlmixr.mmkin.html12556
-rw-r--r--docs/dev/reference/nobs.mkinfit.html4
-rw-r--r--docs/dev/reference/parms.html14
-rw-r--r--docs/dev/reference/plot.mixed.mmkin-1.pngbin86076 -> 85300 bytes
-rw-r--r--docs/dev/reference/plot.mixed.mmkin-2.pngbin164488 -> 174111 bytes
-rw-r--r--docs/dev/reference/plot.mixed.mmkin-3.pngbin163536 -> 173794 bytes
-rw-r--r--docs/dev/reference/plot.mixed.mmkin-4.pngbin166687 -> 176972 bytes
-rw-r--r--docs/dev/reference/plot.mixed.mmkin.html31
-rw-r--r--docs/dev/reference/plot.mkinfit-2.pngbin73247 -> 73254 bytes
-rw-r--r--docs/dev/reference/plot.mkinfit-5.pngbin66920 -> 66560 bytes
-rw-r--r--docs/dev/reference/plot.mkinfit-6.pngbin73078 -> 72717 bytes
-rw-r--r--docs/dev/reference/plot.mkinfit-7.pngbin73909 -> 73553 bytes
-rw-r--r--docs/dev/reference/plot.mkinfit.html2
-rw-r--r--docs/dev/reference/plot.mmkin-1.pngbin49402 -> 48997 bytes
-rw-r--r--docs/dev/reference/plot.mmkin-2.pngbin49753 -> 49376 bytes
-rw-r--r--docs/dev/reference/plot.mmkin-3.pngbin46090 -> 46202 bytes
-rw-r--r--docs/dev/reference/plot.mmkin-4.pngbin33266 -> 33057 bytes
-rw-r--r--docs/dev/reference/plot.mmkin-5.pngbin57777 -> 57372 bytes
-rw-r--r--docs/dev/reference/plot.mmkin.html2
-rw-r--r--docs/dev/reference/plot.nafta.html4
-rw-r--r--docs/dev/reference/reexports.html14
-rw-r--r--docs/dev/reference/residuals.mkinfit.html6
-rw-r--r--docs/dev/reference/saem-1.pngbin47315 -> 47337 bytes
-rw-r--r--docs/dev/reference/saem-2.pngbin48720 -> 48793 bytes
-rw-r--r--docs/dev/reference/saem-3.pngbin82102 -> 82192 bytes
-rw-r--r--docs/dev/reference/saem-4.pngbin128231 -> 128209 bytes
-rw-r--r--docs/dev/reference/saem-5.pngbin164443 -> 174405 bytes
-rw-r--r--docs/dev/reference/saem.html423
-rw-r--r--docs/dev/reference/schaefer07_complex_case-1.pngbin67659 -> 66965 bytes
-rw-r--r--docs/dev/reference/schaefer07_complex_case.html14
-rw-r--r--docs/dev/reference/sigma_twocomp-1.pngbin44554 -> 43910 bytes
-rw-r--r--docs/dev/reference/sigma_twocomp.html8
-rw-r--r--docs/dev/reference/summary.mkinfit.html12
-rw-r--r--docs/dev/reference/summary.nlme.mmkin.html226
-rw-r--r--docs/dev/reference/summary.nlmixr.mmkin.html1022
-rw-r--r--docs/dev/reference/summary.saem.mmkin.html270
-rw-r--r--docs/dev/reference/synthetic_data_for_UBA_2014-1.pngbin70005 -> 67191 bytes
-rw-r--r--docs/dev/reference/synthetic_data_for_UBA_2014.html32
-rw-r--r--docs/dev/reference/test_data_from_UBA_2014-1.pngbin59592 -> 57395 bytes
-rw-r--r--docs/dev/reference/test_data_from_UBA_2014-2.pngbin76645 -> 72786 bytes
-rw-r--r--docs/dev/reference/test_data_from_UBA_2014.html26
-rw-r--r--docs/dev/reference/tffm0.html226
-rw-r--r--docs/dev/reference/transform_odeparms.html80
-rw-r--r--docs/dev/reference/update.mkinfit-1.pngbin43366 -> 42360 bytes
-rw-r--r--docs/dev/reference/update.mkinfit-2.pngbin44304 -> 43389 bytes
-rw-r--r--docs/dev/reference/update.mkinfit.html4
139 files changed, 15382 insertions, 1256 deletions
diff --git a/docs/dev/reference/AIC.mmkin.html b/docs/dev/reference/AIC.mmkin.html
index b332257e..8c791755 100644
--- a/docs/dev/reference/AIC.mmkin.html
+++ b/docs/dev/reference/AIC.mmkin.html
@@ -73,7 +73,7 @@ same dataset." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ same dataset." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -187,8 +187,7 @@ dataframe if there are several fits in the column).</p>
<span class='va'>f</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span><span class='op'>)</span>,
<span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"FOCUS A"</span> <span class='op'>=</span> <span class='va'>FOCUS_2006_A</span>,
<span class='st'>"FOCUS C"</span> <span class='op'>=</span> <span class='va'>FOCUS_2006_C</span><span class='op'>)</span>, cores <span class='op'>=</span> <span class='fl'>1</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: Optimisation did not converge:</span>
-#&gt; <span class='warning'>false convergence (8)</span></div><div class='input'> <span class='co'># We get a warning because the FOMC model does not converge for the</span>
+ <span class='co'># We get a warning because the FOMC model does not converge for the</span>
<span class='co'># FOCUS A dataset, as it is well described by SFO</span>
<span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='st'>"FOCUS A"</span><span class='op'>]</span><span class='op'>)</span> <span class='co'># We get a single number for a single fit</span>
@@ -199,15 +198,15 @@ dataframe if there are several fits in the column).</p>
<span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span>, <span class='st'>"FOCUS A"</span><span class='op'>]</span><span class='op'>)</span>
</div><div class='output co'>#&gt; df AIC
#&gt; SFO 3 55.28197
-#&gt; FOMC 4 57.28211
+#&gt; FOMC 4 57.28222
#&gt; DFOP 5 59.28197</div><div class='input'> <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span>, <span class='st'>"FOCUS A"</span><span class='op'>]</span>, k <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span> <span class='co'># If we do not penalize additional parameters, we get nearly the same</span>
</div><div class='output co'>#&gt; df AIC
#&gt; SFO 3 49.28197
-#&gt; FOMC 4 49.28211
+#&gt; FOMC 4 49.28222
#&gt; DFOP 5 49.28197</div><div class='input'> <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>BIC</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span>, <span class='st'>"FOCUS A"</span><span class='op'>]</span><span class='op'>)</span> <span class='co'># Comparing the BIC gives a very similar picture</span>
</div><div class='output co'>#&gt; df BIC
#&gt; SFO 3 55.52030
-#&gt; FOMC 4 57.59987
+#&gt; FOMC 4 57.59999
#&gt; DFOP 5 59.67918</div><div class='input'>
<span class='co'># For FOCUS C, the more complex models fit better</span>
<span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span>, <span class='st'>"FOCUS C"</span><span class='op'>]</span><span class='op'>)</span>
diff --git a/docs/dev/reference/CAKE_export.html b/docs/dev/reference/CAKE_export.html
index d3f45bf0..e187772f 100644
--- a/docs/dev/reference/CAKE_export.html
+++ b/docs/dev/reference/CAKE_export.html
@@ -73,7 +73,7 @@ specified as well." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ specified as well." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/D24_2014.html b/docs/dev/reference/D24_2014.html
index 2498c58e..9ecb6330 100644
--- a/docs/dev/reference/D24_2014.html
+++ b/docs/dev/reference/D24_2014.html
@@ -77,7 +77,7 @@ constrained by data protection regulations." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
diff --git a/docs/dev/reference/DFOP.solution.html b/docs/dev/reference/DFOP.solution.html
index 22b28732..3ee660f2 100644
--- a/docs/dev/reference/DFOP.solution.html
+++ b/docs/dev/reference/DFOP.solution.html
@@ -73,7 +73,7 @@ two exponential decline functions." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ two exponential decline functions." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/Extract.mmkin.html b/docs/dev/reference/Extract.mmkin.html
index 0c02355f..8381337a 100644
--- a/docs/dev/reference/Extract.mmkin.html
+++ b/docs/dev/reference/Extract.mmkin.html
@@ -72,7 +72,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -121,7 +121,7 @@
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -220,7 +220,7 @@ either a list of mkinfit objects or a single mkinfit object.</p></td>
<span class='op'>)</span>
</div><div class='output co'>#&gt; $par
#&gt; parent_0 log_alpha log_beta sigma
-#&gt; 99.666193 2.549849 5.050586 1.890202
+#&gt; 99.666192 2.549850 5.050586 1.890202
#&gt;
#&gt; $objective
#&gt; [1] 28.58291
diff --git a/docs/dev/reference/FOCUS_2006_DFOP_ref_A_to_B.html b/docs/dev/reference/FOCUS_2006_DFOP_ref_A_to_B.html
index 16d12378..a188430d 100644
--- a/docs/dev/reference/FOCUS_2006_DFOP_ref_A_to_B.html
+++ b/docs/dev/reference/FOCUS_2006_DFOP_ref_A_to_B.html
@@ -76,7 +76,7 @@ in this fit." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -125,7 +125,7 @@ in this fit." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/FOCUS_2006_FOMC_ref_A_to_F.html b/docs/dev/reference/FOCUS_2006_FOMC_ref_A_to_F.html
index 6b8a6119..0bee1c16 100644
--- a/docs/dev/reference/FOCUS_2006_FOMC_ref_A_to_F.html
+++ b/docs/dev/reference/FOCUS_2006_FOMC_ref_A_to_F.html
@@ -76,7 +76,7 @@ in this fit." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -125,7 +125,7 @@ in this fit." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/FOCUS_2006_HS_ref_A_to_F.html b/docs/dev/reference/FOCUS_2006_HS_ref_A_to_F.html
index 076a66c6..460fdf0d 100644
--- a/docs/dev/reference/FOCUS_2006_HS_ref_A_to_F.html
+++ b/docs/dev/reference/FOCUS_2006_HS_ref_A_to_F.html
@@ -76,7 +76,7 @@ in this fit." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -125,7 +125,7 @@ in this fit." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/FOCUS_2006_SFO_ref_A_to_F.html b/docs/dev/reference/FOCUS_2006_SFO_ref_A_to_F.html
index 08f1d416..c1a5fdff 100644
--- a/docs/dev/reference/FOCUS_2006_SFO_ref_A_to_F.html
+++ b/docs/dev/reference/FOCUS_2006_SFO_ref_A_to_F.html
@@ -76,7 +76,7 @@ in this fit." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -125,7 +125,7 @@ in this fit." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/FOCUS_2006_datasets.html b/docs/dev/reference/FOCUS_2006_datasets.html
index df4651f8..fb3a8f17 100644
--- a/docs/dev/reference/FOCUS_2006_datasets.html
+++ b/docs/dev/reference/FOCUS_2006_datasets.html
@@ -72,7 +72,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -121,7 +121,7 @@
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/FOMC.solution.html b/docs/dev/reference/FOMC.solution.html
index ed5c4d21..1a5124e0 100644
--- a/docs/dev/reference/FOMC.solution.html
+++ b/docs/dev/reference/FOMC.solution.html
@@ -73,7 +73,7 @@ a decreasing rate constant." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ a decreasing rate constant." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/HS.solution.html b/docs/dev/reference/HS.solution.html
index 8cf5c7f9..1b79e8b6 100644
--- a/docs/dev/reference/HS.solution.html
+++ b/docs/dev/reference/HS.solution.html
@@ -73,7 +73,7 @@ between them." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ between them." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/IORE.solution.html b/docs/dev/reference/IORE.solution.html
index 29d615dc..bc17319e 100644
--- a/docs/dev/reference/IORE.solution.html
+++ b/docs/dev/reference/IORE.solution.html
@@ -73,7 +73,7 @@ a concentration dependent rate constant." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ a concentration dependent rate constant." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/NAFTA_SOP_2015-1.png b/docs/dev/reference/NAFTA_SOP_2015-1.png
index 4d823d77..4f0d7833 100644
--- a/docs/dev/reference/NAFTA_SOP_2015-1.png
+++ b/docs/dev/reference/NAFTA_SOP_2015-1.png
Binary files differ
diff --git a/docs/dev/reference/NAFTA_SOP_2015.html b/docs/dev/reference/NAFTA_SOP_2015.html
index 4243faba..fb65fec8 100644
--- a/docs/dev/reference/NAFTA_SOP_2015.html
+++ b/docs/dev/reference/NAFTA_SOP_2015.html
@@ -72,7 +72,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -121,7 +121,7 @@
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/NAFTA_SOP_Attachment-1.png b/docs/dev/reference/NAFTA_SOP_Attachment-1.png
index 6eb10cde..9417685e 100644
--- a/docs/dev/reference/NAFTA_SOP_Attachment-1.png
+++ b/docs/dev/reference/NAFTA_SOP_Attachment-1.png
Binary files differ
diff --git a/docs/dev/reference/NAFTA_SOP_Attachment.html b/docs/dev/reference/NAFTA_SOP_Attachment.html
index de984984..311a7c61 100644
--- a/docs/dev/reference/NAFTA_SOP_Attachment.html
+++ b/docs/dev/reference/NAFTA_SOP_Attachment.html
@@ -72,7 +72,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -121,7 +121,7 @@
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -193,7 +193,7 @@
#&gt; Estimate Pr(&gt;t) Lower Upper
#&gt; parent_0 9.99e+01 1.41e-26 98.8116 101.0810
#&gt; k1 2.67e-02 5.05e-06 0.0243 0.0295
-#&gt; k2 2.42e-12 5.00e-01 0.0000 Inf
+#&gt; k2 2.26e-12 5.00e-01 0.0000 Inf
#&gt; g 6.47e-01 3.67e-06 0.6248 0.6677
#&gt; sigma 1.27e+00 8.91e-06 0.8395 1.6929
#&gt;
@@ -202,7 +202,7 @@
#&gt; DT50 DT90 DT50_rep
#&gt; SFO 67.7 2.25e+02 6.77e+01
#&gt; IORE 58.2 1.07e+03 3.22e+02
-#&gt; DFOP 55.5 5.22e+11 2.86e+11
+#&gt; DFOP 55.5 5.59e+11 3.07e+11
#&gt;
#&gt; Representative half-life:
#&gt; [1] 321.51</div><div class='input'> <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>nafta_att_p5a</span><span class='op'>)</span>
diff --git a/docs/dev/reference/Rplot001.png b/docs/dev/reference/Rplot001.png
index bca41e2c..05495b6a 100644
--- a/docs/dev/reference/Rplot001.png
+++ b/docs/dev/reference/Rplot001.png
Binary files differ
diff --git a/docs/dev/reference/Rplot002.png b/docs/dev/reference/Rplot002.png
index 9b97a634..bb1f61b8 100644
--- a/docs/dev/reference/Rplot002.png
+++ b/docs/dev/reference/Rplot002.png
Binary files differ
diff --git a/docs/dev/reference/Rplot003.png b/docs/dev/reference/Rplot003.png
index ff6bc722..c90dd2e2 100644
--- a/docs/dev/reference/Rplot003.png
+++ b/docs/dev/reference/Rplot003.png
Binary files differ
diff --git a/docs/dev/reference/Rplot004.png b/docs/dev/reference/Rplot004.png
index 98dd019e..c279f831 100644
--- a/docs/dev/reference/Rplot004.png
+++ b/docs/dev/reference/Rplot004.png
Binary files differ
diff --git a/docs/dev/reference/Rplot005.png b/docs/dev/reference/Rplot005.png
index 5e675828..92c7cc2d 100644
--- a/docs/dev/reference/Rplot005.png
+++ b/docs/dev/reference/Rplot005.png
Binary files differ
diff --git a/docs/dev/reference/Rplot006.png b/docs/dev/reference/Rplot006.png
index da52f580..4c728f4e 100644
--- a/docs/dev/reference/Rplot006.png
+++ b/docs/dev/reference/Rplot006.png
Binary files differ
diff --git a/docs/dev/reference/Rplot007.png b/docs/dev/reference/Rplot007.png
index fce3b6ee..10b7455a 100644
--- a/docs/dev/reference/Rplot007.png
+++ b/docs/dev/reference/Rplot007.png
Binary files differ
diff --git a/docs/dev/reference/SFO.solution.html b/docs/dev/reference/SFO.solution.html
index b3e7ef9a..43c434c6 100644
--- a/docs/dev/reference/SFO.solution.html
+++ b/docs/dev/reference/SFO.solution.html
@@ -72,7 +72,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -121,7 +121,7 @@
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/SFORB.solution.html b/docs/dev/reference/SFORB.solution.html
index 9310212f..807fbe5c 100644
--- a/docs/dev/reference/SFORB.solution.html
+++ b/docs/dev/reference/SFORB.solution.html
@@ -76,7 +76,7 @@ and no substance in the bound fraction." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -125,7 +125,7 @@ and no substance in the bound fraction." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/add_err-1.png b/docs/dev/reference/add_err-1.png
index d2ce797f..9ba106db 100644
--- a/docs/dev/reference/add_err-1.png
+++ b/docs/dev/reference/add_err-1.png
Binary files differ
diff --git a/docs/dev/reference/add_err-2.png b/docs/dev/reference/add_err-2.png
index ac220c9e..3088c40e 100644
--- a/docs/dev/reference/add_err-2.png
+++ b/docs/dev/reference/add_err-2.png
Binary files differ
diff --git a/docs/dev/reference/add_err-3.png b/docs/dev/reference/add_err-3.png
index 40465b71..493a761a 100644
--- a/docs/dev/reference/add_err-3.png
+++ b/docs/dev/reference/add_err-3.png
Binary files differ
diff --git a/docs/dev/reference/add_err.html b/docs/dev/reference/add_err.html
index 6ea30515..b94cef29 100644
--- a/docs/dev/reference/add_err.html
+++ b/docs/dev/reference/add_err.html
@@ -74,7 +74,7 @@ may depend on the predicted value and is specified as a standard deviation." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -123,7 +123,7 @@ may depend on the predicted value and is specified as a standard deviation." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/aw.html b/docs/dev/reference/aw.html
index ef808dd8..3b06f2a6 100644
--- a/docs/dev/reference/aw.html
+++ b/docs/dev/reference/aw.html
@@ -74,7 +74,7 @@ by Burnham and Anderson (2004)." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -123,7 +123,7 @@ by Burnham and Anderson (2004)." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/confint.mkinfit.html b/docs/dev/reference/confint.mkinfit.html
index 515a7c9e..2237a539 100644
--- a/docs/dev/reference/confint.mkinfit.html
+++ b/docs/dev/reference/confint.mkinfit.html
@@ -79,7 +79,7 @@ method of Venzon and Moolgavkar (1988)." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -128,7 +128,7 @@ method of Venzon and Moolgavkar (1988)." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -273,68 +273,69 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37,
<span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/identical.html'>identical</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/Sys.getenv.html'>Sys.getenv</a></span><span class='op'>(</span><span class='st'>"NOT_CRAN"</span><span class='op'>)</span>, <span class='st'>"true"</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>{</span>
<span class='va'>n_cores</span> <span class='op'>&lt;-</span> <span class='fu'>parallel</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/r/parallel/detectCores.html'>detectCores</a></span><span class='op'>(</span><span class='op'>)</span> <span class='op'>-</span> <span class='fl'>1</span>
<span class='op'>}</span> <span class='kw'>else</span> <span class='op'>{</span>
- <span class='va'>n_cores</span> <span class='op'>&lt;-</span> <span class='fl'>1</span>
+ <span class='va'>n_cores</span> <span class='op'>&lt;-</span> <span class='fl'>1</span>
<span class='op'>}</span>
<span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/Sys.getenv.html'>Sys.getenv</a></span><span class='op'>(</span><span class='st'>"TRAVIS"</span><span class='op'>)</span> <span class='op'>!=</span> <span class='st'>""</span><span class='op'>)</span> <span class='va'>n_cores</span> <span class='op'>=</span> <span class='fl'>1</span>
<span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/Sys.info.html'>Sys.info</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>[</span><span class='st'>"sysname"</span><span class='op'>]</span> <span class='op'>==</span> <span class='st'>"Windows"</span><span class='op'>)</span> <span class='va'>n_cores</span> <span class='op'>=</span> <span class='fl'>1</span>
-<span class='va'>SFO_SFO</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"m1"</span><span class='op'>)</span>, m1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+<span class='va'>SFO_SFO</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"m1"</span><span class='op'>)</span>, m1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>,
+ use_of_ff <span class='op'>=</span> <span class='st'>"min"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='va'>SFO_SFO.ff</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"m1"</span><span class='op'>)</span>, m1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>,
use_of_ff <span class='op'>=</span> <span class='st'>"max"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='va'>f_d_1</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>FOCUS_2006_D</span>, <span class='va'>value</span> <span class='op'>!=</span> <span class='fl'>0</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span><span class='va'>ci_profile</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"profile"</span>, cores <span class='op'>=</span> <span class='fl'>1</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span><span class='op'>)</span>
</div><div class='output co'>#&gt; user system elapsed
-#&gt; 3.900 0.929 3.548 </div><div class='input'><span class='co'># Using more cores does not save much time here, as parent_0 takes up most of the time</span>
+#&gt; 4.295 1.008 3.959 </div><div class='input'><span class='co'># Using more cores does not save much time here, as parent_0 takes up most of the time</span>
<span class='co'># If we additionally exclude parent_0 (the confidence of which is often of</span>
-<span class='co'># minor interest), we get a nice performance improvement from about 50</span>
-<span class='co'># seconds to about 12 seconds if we use at least four cores</span>
+<span class='co'># minor interest), we get a nice performance improvement if we use at least 4 cores</span>
<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span><span class='va'>ci_profile_no_parent_0</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"profile"</span>,
<span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"k_parent_sink"</span>, <span class='st'>"k_parent_m1"</span>, <span class='st'>"k_m1_sink"</span>, <span class='st'>"sigma"</span><span class='op'>)</span>, cores <span class='op'>=</span> <span class='va'>n_cores</span><span class='op'>)</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'>Profiling the likelihood</span></div><div class='output co'>#&gt; <span class='warning'>Warning: scheduled cores 3, 2, 1 encountered errors in user code, all values of the jobs will be affected</span></div><div class='output co'>#&gt; <span class='error'>Error in dimnames(x) &lt;- dn: length of 'dimnames' [2] not equal to array extent</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 0.009 0.034 0.257</span></div><div class='input'><span class='va'>ci_profile</span>
-</div><div class='output co'>#&gt; 2.5% 97.5%
-#&gt; parent_0 96.456003640 1.027703e+02
-#&gt; k_parent 0.090911032 1.071578e-01
-#&gt; k_m1 0.003892606 6.702775e-03
-#&gt; f_parent_to_m1 0.471328495 5.611550e-01
-#&gt; sigma 2.535612399 3.985263e+00</div><div class='input'><span class='va'>ci_quadratic_transformed</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'>Profiling the likelihood</span></div><div class='output co'>#&gt; user system elapsed
+#&gt; 1.451 0.126 0.923 </div><div class='input'><span class='va'>ci_profile</span>
+</div><div class='output co'>#&gt; 2.5% 97.5%
+#&gt; parent_0 96.456003640 1.027703e+02
+#&gt; k_parent_sink 0.040762501 5.549764e-02
+#&gt; k_parent_m1 0.046786482 5.500879e-02
+#&gt; k_m1_sink 0.003892605 6.702778e-03
+#&gt; sigma 2.535612399 3.985263e+00</div><div class='input'><span class='va'>ci_quadratic_transformed</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span><span class='op'>)</span>
<span class='va'>ci_quadratic_transformed</span>
-</div><div class='output co'>#&gt; 2.5% 97.5%
-#&gt; parent_0 96.403833585 102.79311650
-#&gt; k_parent 0.090823771 0.10725430
-#&gt; k_m1 0.004012219 0.00689755
-#&gt; f_parent_to_m1 0.469118824 0.55959615
-#&gt; sigma 2.396089689 3.85491806</div><div class='input'><span class='va'>ci_quadratic_untransformed</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span>, transformed <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; 2.5% 97.5%
+#&gt; parent_0 96.403841640 1.027931e+02
+#&gt; k_parent_sink 0.041033378 5.596269e-02
+#&gt; k_parent_m1 0.046777902 5.511931e-02
+#&gt; k_m1_sink 0.004012217 6.897547e-03
+#&gt; sigma 2.396089689 3.854918e+00</div><div class='input'><span class='va'>ci_quadratic_untransformed</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_1</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span>, transformed <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>
<span class='va'>ci_quadratic_untransformed</span>
-</div><div class='output co'>#&gt; 2.5% 97.5%
-#&gt; parent_0 96.403833589 1.027931e+02
-#&gt; k_parent 0.090491913 1.069035e-01
-#&gt; k_m1 0.003835485 6.685823e-03
-#&gt; f_parent_to_m1 0.469113477 5.598387e-01
-#&gt; sigma 2.396089689 3.854918e+00</div><div class='input'><span class='co'># Against the expectation based on Bates and Watts (1988), the confidence</span>
+</div><div class='output co'>#&gt; 2.5% 97.5%
+#&gt; parent_0 96.403841645 102.79312449
+#&gt; k_parent_sink 0.040485331 0.05535491
+#&gt; k_parent_m1 0.046611582 0.05494364
+#&gt; k_m1_sink 0.003835483 0.00668582
+#&gt; sigma 2.396089689 3.85491806</div><div class='input'><span class='co'># Against the expectation based on Bates and Watts (1988), the confidence</span>
<span class='co'># intervals based on the internal parameter transformation are less</span>
<span class='co'># congruent with the likelihood based intervals. Note the superiority of the</span>
<span class='co'># interval based on the untransformed fit for k_m1_sink</span>
<span class='va'>rel_diffs_transformed</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/MathFun.html'>abs</a></span><span class='op'>(</span><span class='op'>(</span><span class='va'>ci_quadratic_transformed</span> <span class='op'>-</span> <span class='va'>ci_profile</span><span class='op'>)</span><span class='op'>/</span><span class='va'>ci_profile</span><span class='op'>)</span>
<span class='va'>rel_diffs_untransformed</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/MathFun.html'>abs</a></span><span class='op'>(</span><span class='op'>(</span><span class='va'>ci_quadratic_untransformed</span> <span class='op'>-</span> <span class='va'>ci_profile</span><span class='op'>)</span><span class='op'>/</span><span class='va'>ci_profile</span><span class='op'>)</span>
<span class='va'>rel_diffs_transformed</span> <span class='op'>&lt;</span> <span class='va'>rel_diffs_untransformed</span>
-</div><div class='output co'>#&gt; 2.5% 97.5%
-#&gt; parent_0 FALSE FALSE
-#&gt; k_parent TRUE TRUE
-#&gt; k_m1 FALSE FALSE
-#&gt; f_parent_to_m1 TRUE FALSE
-#&gt; sigma TRUE FALSE</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/Round.html'>signif</a></span><span class='op'>(</span><span class='va'>rel_diffs_transformed</span>, <span class='fl'>3</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; 2.5% 97.5%
-#&gt; parent_0 0.000541 0.000222
-#&gt; k_parent 0.000960 0.000900
-#&gt; k_m1 0.030700 0.029100
-#&gt; f_parent_to_m1 0.004690 0.002780
-#&gt; sigma 0.055000 0.032700</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/Round.html'>signif</a></span><span class='op'>(</span><span class='va'>rel_diffs_untransformed</span>, <span class='fl'>3</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; 2.5% 97.5%
-#&gt; parent_0 0.000541 0.000222
-#&gt; k_parent 0.004610 0.002370
-#&gt; k_m1 0.014700 0.002530
-#&gt; f_parent_to_m1 0.004700 0.002350
-#&gt; sigma 0.055000 0.032700</div><div class='input'>
+</div><div class='output co'>#&gt; 2.5% 97.5%
+#&gt; parent_0 FALSE FALSE
+#&gt; k_parent_sink TRUE FALSE
+#&gt; k_parent_m1 TRUE FALSE
+#&gt; k_m1_sink FALSE FALSE
+#&gt; sigma FALSE FALSE</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/Round.html'>signif</a></span><span class='op'>(</span><span class='va'>rel_diffs_transformed</span>, <span class='fl'>3</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; 2.5% 97.5%
+#&gt; parent_0 0.000541 0.000222
+#&gt; k_parent_sink 0.006650 0.008380
+#&gt; k_parent_m1 0.000183 0.002010
+#&gt; k_m1_sink 0.030700 0.029100
+#&gt; sigma 0.055000 0.032700</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/Round.html'>signif</a></span><span class='op'>(</span><span class='va'>rel_diffs_untransformed</span>, <span class='fl'>3</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; 2.5% 97.5%
+#&gt; parent_0 0.000541 0.000222
+#&gt; k_parent_sink 0.006800 0.002570
+#&gt; k_parent_m1 0.003740 0.001180
+#&gt; k_m1_sink 0.014700 0.002530
+#&gt; sigma 0.055000 0.032700</div><div class='input'>
<span class='co'># Investigate a case with formation fractions</span>
<span class='va'>f_d_2</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO.ff</span>, <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>FOCUS_2006_D</span>, <span class='va'>value</span> <span class='op'>!=</span> <span class='fl'>0</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
@@ -348,14 +349,14 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37,
#&gt; sigma 2.535612399 3.985263e+00</div><div class='input'><span class='va'>ci_quadratic_transformed_ff</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_2</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span><span class='op'>)</span>
<span class='va'>ci_quadratic_transformed_ff</span>
</div><div class='output co'>#&gt; 2.5% 97.5%
-#&gt; parent_0 96.403833585 102.79311650
+#&gt; parent_0 96.403833578 102.79311649
#&gt; k_parent 0.090823771 0.10725430
#&gt; k_m1 0.004012219 0.00689755
#&gt; f_parent_to_m1 0.469118824 0.55959615
#&gt; sigma 2.396089689 3.85491806</div><div class='input'><span class='va'>ci_quadratic_untransformed_ff</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_d_2</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span>, transformed <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>
<span class='va'>ci_quadratic_untransformed_ff</span>
</div><div class='output co'>#&gt; 2.5% 97.5%
-#&gt; parent_0 96.403833589 1.027931e+02
+#&gt; parent_0 96.403833583 1.027931e+02
#&gt; k_parent 0.090491913 1.069035e-01
#&gt; k_m1 0.003835485 6.685823e-03
#&gt; f_parent_to_m1 0.469113477 5.598387e-01
@@ -373,15 +374,15 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37,
#&gt; f_parent_to_m1 TRUE FALSE
#&gt; sigma TRUE FALSE</div><div class='input'><span class='va'>rel_diffs_transformed_ff</span>
</div><div class='output co'>#&gt; 2.5% 97.5%
-#&gt; parent_0 0.0005408689 0.0002217234
+#&gt; parent_0 0.0005408690 0.0002217233
#&gt; k_parent 0.0009598532 0.0009001864
-#&gt; k_m1 0.0307283044 0.0290588365
-#&gt; f_parent_to_m1 0.0046881768 0.0027780063
+#&gt; k_m1 0.0307283041 0.0290588361
+#&gt; f_parent_to_m1 0.0046881769 0.0027780063
#&gt; sigma 0.0550252516 0.0327066836</div><div class='input'><span class='va'>rel_diffs_untransformed_ff</span>
</div><div class='output co'>#&gt; 2.5% 97.5%
-#&gt; parent_0 0.0005408689 0.0002217233
-#&gt; k_parent 0.0046102155 0.0023732281
-#&gt; k_m1 0.0146740688 0.0025291817
+#&gt; parent_0 0.0005408689 0.0002217232
+#&gt; k_parent 0.0046102156 0.0023732281
+#&gt; k_m1 0.0146740690 0.0025291820
#&gt; f_parent_to_m1 0.0046995211 0.0023457712
#&gt; sigma 0.0550252516 0.0327066836</div><div class='input'>
<span class='co'># The profiling for the following fit does not finish in a reasonable time,</span>
@@ -395,18 +396,18 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37,
error_model_algorithm <span class='op'>=</span> <span class='st'>"direct"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_tc_2</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span><span class='op'>)</span>
</div><div class='output co'>#&gt; 2.5% 97.5%
-#&gt; parent_0 94.596126334 106.19944007
-#&gt; k_M1 0.037605408 0.04490759
-#&gt; k_M2 0.008568739 0.01087675
-#&gt; f_parent_to_M1 0.021463787 0.62023881
-#&gt; f_parent_to_M2 0.015166531 0.37975349
-#&gt; k1 0.273897467 0.33388084
-#&gt; k2 0.018614555 0.02250379
-#&gt; g 0.671943606 0.73583278
-#&gt; sigma_low 0.251283766 0.83992113
-#&gt; rsd_high 0.040411014 0.07662005</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_tc_2</span>, <span class='st'>"parent_0"</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span><span class='op'>)</span>
+#&gt; parent_0 94.596039609 106.19954892
+#&gt; k_M1 0.037605368 0.04490762
+#&gt; k_M2 0.008568731 0.01087676
+#&gt; f_parent_to_M1 0.021462489 0.62023882
+#&gt; f_parent_to_M2 0.015165617 0.37975348
+#&gt; k1 0.273897348 0.33388101
+#&gt; k2 0.018614554 0.02250378
+#&gt; g 0.671943411 0.73583305
+#&gt; sigma_low 0.251283495 0.83992077
+#&gt; rsd_high 0.040411024 0.07662008</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/confint.html'>confint</a></span><span class='op'>(</span><span class='va'>f_tc_2</span>, <span class='st'>"parent_0"</span>, method <span class='op'>=</span> <span class='st'>"quadratic"</span><span class='op'>)</span>
</div><div class='output co'>#&gt; 2.5% 97.5%
-#&gt; parent_0 94.59613 106.1994</div><div class='input'><span class='co'># }</span>
+#&gt; parent_0 94.59604 106.1995</div><div class='input'><span class='co'># }</span>
</div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
diff --git a/docs/dev/reference/create_deg_func.html b/docs/dev/reference/create_deg_func.html
index 4945d157..65a682bb 100644
--- a/docs/dev/reference/create_deg_func.html
+++ b/docs/dev/reference/create_deg_func.html
@@ -72,7 +72,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -121,7 +121,7 @@
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -181,8 +181,8 @@
deSolve <span class='op'>=</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_D</span>, solution_type <span class='op'>=</span> <span class='st'>"deSolve"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>,
replications <span class='op'>=</span> <span class='fl'>2</span><span class='op'>)</span>
</div><div class='output co'>#&gt; <span class='message'>Loading required package: rbenchmark</span></div><div class='output co'>#&gt; test replications elapsed relative user.self sys.self user.child
-#&gt; 1 analytical 2 0.396 1.000 0.395 0 0
-#&gt; 2 deSolve 2 0.694 1.753 0.693 0 0
+#&gt; 1 analytical 2 0.396 1.00 0.396 0 0
+#&gt; 2 deSolve 2 0.709 1.79 0.707 0 0
#&gt; sys.child
#&gt; 1 0
#&gt; 2 0</div><div class='input'> <span class='va'>DFOP_SFO</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>
@@ -193,8 +193,8 @@
deSolve <span class='op'>=</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>DFOP_SFO</span>, <span class='va'>FOCUS_D</span>, solution_type <span class='op'>=</span> <span class='st'>"deSolve"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>,
replications <span class='op'>=</span> <span class='fl'>2</span><span class='op'>)</span>
</div><div class='output co'>#&gt; test replications elapsed relative user.self sys.self user.child
-#&gt; 1 analytical 2 0.838 1.000 0.838 0.001 0
-#&gt; 2 deSolve 2 1.573 1.877 1.572 0.000 0
+#&gt; 1 analytical 2 0.844 1.000 0.844 0 0
+#&gt; 2 deSolve 2 1.624 1.924 1.624 0 0
#&gt; sys.child
#&gt; 1 0
#&gt; 2 0</div><div class='input'><span class='co'># }</span>
diff --git a/docs/dev/reference/dimethenamid_2018-1.png b/docs/dev/reference/dimethenamid_2018-1.png
new file mode 100644
index 00000000..b8c5355f
--- /dev/null
+++ b/docs/dev/reference/dimethenamid_2018-1.png
Binary files differ
diff --git a/docs/dev/reference/dimethenamid_2018-2.png b/docs/dev/reference/dimethenamid_2018-2.png
new file mode 100644
index 00000000..3b8a123b
--- /dev/null
+++ b/docs/dev/reference/dimethenamid_2018-2.png
Binary files differ
diff --git a/docs/dev/reference/dimethenamid_2018.html b/docs/dev/reference/dimethenamid_2018.html
index 21dea623..60c15ade 100644
--- a/docs/dev/reference/dimethenamid_2018.html
+++ b/docs/dev/reference/dimethenamid_2018.html
@@ -77,7 +77,7 @@ constrained by data protection regulations." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
</span>
</div>
@@ -162,13 +162,13 @@ constrained by data protection regulations.</p>
<h2 class="hasAnchor" id="format"><a class="anchor" href="#format"></a>Format</h2>
- <p>An <a href='mkindsg.html'>mkindsg</a> object grouping eight datasets with some meta information</p>
+ <p>An <a href='mkindsg.html'>mkindsg</a> object grouping seven datasets with some meta information</p>
<h2 class="hasAnchor" id="source"><a class="anchor" href="#source"></a>Source</h2>
<p>Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria (2018)
Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour
Rev. 2 - November 2017
-<a href='http://registerofquestions.efsa.europa.eu/roqFrontend/outputLoader?output=ON-5211'>http://registerofquestions.efsa.europa.eu/roqFrontend/outputLoader?output=ON-5211</a></p>
+<a href='https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716'>https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716</a></p>
<h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
<p>The R code used to create this data object is installed with this package
@@ -177,33 +177,249 @@ specific pieces of information in the comments.</p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>dimethenamid_2018</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; &lt;mkindsg&gt; holding 8 mkinds objects
+</div><div class='output co'>#&gt; &lt;mkindsg&gt; holding 7 mkinds objects
#&gt; Title $title: Aerobic soil degradation data on dimethenamid-P from the EU assessment in 2018
#&gt; Occurrence of observed compounds $observed_n:
#&gt; DMTAP M23 M27 M31 DMTA
-#&gt; 4 7 7 7 4
+#&gt; 3 7 7 7 4
#&gt; Time normalisation factors $f_time_norm:
-#&gt; [1] 1.0000000 0.9706477 0.9706477 1.2284784 1.2284784 0.6233856 0.7678922
-#&gt; [8] 0.6733938
+#&gt; [1] 1.0000000 0.9706477 1.2284784 1.2284784 0.6233856 0.7678922 0.6733938
#&gt; Meta information $meta:
-#&gt; study usda_soil_type study_moisture_ref_type
-#&gt; Calke Unsworth 2014 Sandy loam pF2
-#&gt; Borstel 1 Staudenmaier 2013 Sand pF1
-#&gt; Borstel 2 Staudenmaier 2009 Sand pF1
-#&gt; Elliot 1 Wendt 1997 Clay loam pF2.5
-#&gt; Elliot 2 Wendt 1997 Clay loam pF2.5
-#&gt; Flaach König 1996 Sandy clay loam pF1
-#&gt; BBA 2.2 König 1995 Loamy sand pF1
-#&gt; BBA 2.3 König 1995 Sandy loam pF1
-#&gt; rel_moisture study_ref_moisture temperature
-#&gt; Calke 1.00 NA 20
-#&gt; Borstel 1 0.50 23.00 20
-#&gt; Borstel 2 0.50 23.00 20
-#&gt; Elliot 1 0.75 33.37 23
-#&gt; Elliot 2 0.75 33.37 23
-#&gt; Flaach 0.40 NA 20
-#&gt; BBA 2.2 0.40 NA 20
-#&gt; BBA 2.3 0.40 NA 20</div></pre>
+#&gt; study usda_soil_type study_moisture_ref_type rel_moisture
+#&gt; Calke Unsworth 2014 Sandy loam pF2 1.00
+#&gt; Borstel Staudenmaier 2009 Sand pF1 0.50
+#&gt; Elliot 1 Wendt 1997 Clay loam pF2.5 0.75
+#&gt; Elliot 2 Wendt 1997 Clay loam pF2.5 0.75
+#&gt; Flaach König 1996 Sandy clay loam pF1 0.40
+#&gt; BBA 2.2 König 1995 Loamy sand pF1 0.40
+#&gt; BBA 2.3 König 1995 Sandy loam pF1 0.40
+#&gt; study_ref_moisture temperature
+#&gt; Calke NA 20
+#&gt; Borstel 23.00 20
+#&gt; Elliot 1 33.37 23
+#&gt; Elliot 2 33.37 23
+#&gt; Flaach NA 20
+#&gt; BBA 2.2 NA 20
+#&gt; BBA 2.3 NA 20</div><div class='input'><span class='va'>dmta_ds</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fl'>1</span><span class='op'>:</span><span class='fl'>7</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>{</span>
+ <span class='va'>ds_i</span> <span class='op'>&lt;-</span> <span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>ds</span><span class='op'>[[</span><span class='va'>i</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>data</span>
+ <span class='va'>ds_i</span><span class='op'>[</span><span class='va'>ds_i</span><span class='op'>$</span><span class='va'>name</span> <span class='op'>==</span> <span class='st'>"DMTAP"</span>, <span class='st'>"name"</span><span class='op'>]</span> <span class='op'>&lt;-</span> <span class='st'>"DMTA"</span>
+ <span class='va'>ds_i</span><span class='op'>$</span><span class='va'>time</span> <span class='op'>&lt;-</span> <span class='va'>ds_i</span><span class='op'>$</span><span class='va'>time</span> <span class='op'>*</span> <span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>f_time_norm</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span>
+ <span class='va'>ds_i</span>
+<span class='op'>}</span><span class='op'>)</span>
+<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>)</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>sapply</a></span><span class='op'>(</span><span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>ds</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='va'>ds</span><span class='op'>$</span><span class='va'>title</span><span class='op'>)</span>
+<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/cbind.html'>rbind</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 1"</span><span class='op'>]</span><span class='op'>]</span>, <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 2"</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span>
+<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 1"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'>&lt;-</span> <span class='cn'>NULL</span>
+<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 2"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'>&lt;-</span> <span class='cn'>NULL</span>
+<span class='co'># \dontrun{</span>
+<span class='va'>dfop_sfo3_plus</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>
+ DMTA <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"M23"</span>, <span class='st'>"M27"</span>, <span class='st'>"M31"</span><span class='op'>)</span><span class='op'>)</span>,
+ M23 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>,
+ M27 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>,
+ M31 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"M27"</span>, sink <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>,
+ quiet <span class='op'>=</span> <span class='cn'>TRUE</span>
+<span class='op'>)</span>
+<span class='va'>f_dmta_mkin_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span>
+ <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"DFOP-SFO3+"</span> <span class='op'>=</span> <span class='va'>dfop_sfo3_plus</span><span class='op'>)</span>,
+ <span class='va'>dmta_ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span>
+<span class='fu'><a href='nlmixr.mmkin.html'>nlmixr_model</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#&gt; <span class='warning'>Warning: number of items to replace is not a multiple of replacement length</span></div><div class='output co'>#&gt; function ()
+#&gt; {
+#&gt; ini({
+#&gt; DMTA_0 = 98.7132391714013
+#&gt; eta.DMTA_0 ~ 2.32692496033921
+#&gt; log_k_M23 = -3.92162409637283
+#&gt; eta.log_k_M23 ~ 0.549278519419884
+#&gt; log_k_M27 = -4.33057580082049
+#&gt; eta.log_k_M27 ~ 0.855184233768426
+#&gt; log_k_M31 = -4.24415516780733
+#&gt; eta.log_k_M31 ~ 0.745746058085877
+#&gt; log_k1 = -2.23515804885306
+#&gt; eta.log_k1 ~ 0.901033446532357
+#&gt; log_k2 = -3.77581484944379
+#&gt; eta.log_k2 ~ 1.57682329638124
+#&gt; g_qlogis = 0.436302910942805
+#&gt; eta.g_qlogis ~ 3.10190528862808
+#&gt; f_DMTA_tffm0_1_qlogis = -2.0914852208395
+#&gt; eta.f_DMTA_tffm0_1_qlogis ~ 0.3
+#&gt; f_DMTA_tffm0_2_qlogis = -2.17879574608926
+#&gt; eta.f_DMTA_tffm0_2_qlogis ~ 0.3
+#&gt; f_DMTA_tffm0_3_qlogis = -2.14036526460782
+#&gt; eta.f_DMTA_tffm0_3_qlogis ~ 0.3
+#&gt; sigma_low_DMTA = 0.700117227383809
+#&gt; rsd_high_DMTA = 0.0257724286053519
+#&gt; sigma_low_M23 = 0.700117227383809
+#&gt; rsd_high_M23 = 0.0257724286053519
+#&gt; sigma_low_M27 = 0.700117227383809
+#&gt; rsd_high_M27 = 0.0257724286053519
+#&gt; sigma_low_M31 = 0.700117227383809
+#&gt; rsd_high_M31 = 0.0257724286053519
+#&gt; })
+#&gt; model({
+#&gt; DMTA_0_model = DMTA_0 + eta.DMTA_0
+#&gt; DMTA(0) = DMTA_0_model
+#&gt; k_M23 = exp(log_k_M23 + eta.log_k_M23)
+#&gt; k_M27 = exp(log_k_M27 + eta.log_k_M27)
+#&gt; k_M31 = exp(log_k_M31 + eta.log_k_M31)
+#&gt; k1 = exp(log_k1 + eta.log_k1)
+#&gt; k2 = exp(log_k2 + eta.log_k2)
+#&gt; g = expit(g_qlogis + eta.g_qlogis)
+#&gt; f_DMTA_to_M23 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis)
+#&gt; f_DMTA_to_M23 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis)
+#&gt; f_DMTA_to_M23 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis)
+#&gt; f_DMTA_to_M23 = f_DMTA_tffm0_1
+#&gt; f_DMTA_to_M27 = f_DMTA_tffm0_2 * (1 - f_DMTA_tffm0_1)
+#&gt; f_DMTA_to_M31 = f_DMTA_tffm0_3 * (1 - f_DMTA_tffm0_2) *
+#&gt; (1 - f_DMTA_tffm0_1)
+#&gt; d/dt(DMTA) = -((k1 * g * exp(-k1 * time) + k2 * (1 -
+#&gt; g) * exp(-k2 * time))/(g * exp(-k1 * time) + (1 -
+#&gt; g) * exp(-k2 * time))) * DMTA
+#&gt; d/dt(M23) = +f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) +
+#&gt; k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
+#&gt; (1 - g) * exp(-k2 * time))) * DMTA - k_M23 * M23
+#&gt; d/dt(M27) = +f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) +
+#&gt; k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
+#&gt; (1 - g) * exp(-k2 * time))) * DMTA - k_M27 * M27 +
+#&gt; k_M31 * M31
+#&gt; d/dt(M31) = +f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) +
+#&gt; k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
+#&gt; (1 - g) * exp(-k2 * time))) * DMTA - k_M31 * M31
+#&gt; DMTA ~ add(sigma_low_DMTA) + prop(rsd_high_DMTA)
+#&gt; M23 ~ add(sigma_low_M23) + prop(rsd_high_M23)
+#&gt; M27 ~ add(sigma_low_M27) + prop(rsd_high_M27)
+#&gt; M31 ~ add(sigma_low_M31) + prop(rsd_high_M31)
+#&gt; })
+#&gt; }
+#&gt; &lt;environment: 0x555559d89920&gt;</div><div class='input'><span class='co'># The focei fit takes about four minutes on my system</span>
+<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span>
+ <span class='va'>f_dmta_nlmixr_focei</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
+ control <span class='op'>=</span> <span class='fu'>nlmixr</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/foceiControl.html'>foceiControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>500</span><span class='op'>)</span><span class='op'>)</span>
+<span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='warning'>Warning: number of items to replace is not a multiple of replacement length</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:02
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:04
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:01
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:09
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:07
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:06
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:00
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:00
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(DMTA);</span>
+#&gt; <span class='message'>cmt(M23);</span>
+#&gt; <span class='message'>cmt(M27);</span>
+#&gt; <span class='message'>cmt(M31);</span>
+#&gt; <span class='message'>rx_expr_14~ETA[1]+THETA[1];</span>
+#&gt; <span class='message'>DMTA(0)=rx_expr_14;</span>
+#&gt; <span class='message'>rx_expr_15~ETA[5]+THETA[5];</span>
+#&gt; <span class='message'>rx_expr_16~ETA[7]+THETA[7];</span>
+#&gt; <span class='message'>rx_expr_17~ETA[6]+THETA[6];</span>
+#&gt; <span class='message'>rx_expr_24~exp(rx_expr_15);</span>
+#&gt; <span class='message'>rx_expr_25~exp(rx_expr_17);</span>
+#&gt; <span class='message'>rx_expr_29~t*rx_expr_24;</span>
+#&gt; <span class='message'>rx_expr_30~t*rx_expr_25;</span>
+#&gt; <span class='message'>rx_expr_31~exp(-(rx_expr_16));</span>
+#&gt; <span class='message'>rx_expr_35~1+rx_expr_31;</span>
+#&gt; <span class='message'>rx_expr_40~1/(rx_expr_35);</span>
+#&gt; <span class='message'>rx_expr_42~(rx_expr_40);</span>
+#&gt; <span class='message'>rx_expr_43~1-rx_expr_42;</span>
+#&gt; <span class='message'>d/dt(DMTA)=-DMTA*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));</span>
+#&gt; <span class='message'>rx_expr_18~ETA[2]+THETA[2];</span>
+#&gt; <span class='message'>rx_expr_26~exp(rx_expr_18);</span>
+#&gt; <span class='message'>d/dt(M23)=-rx_expr_26*M23+DMTA*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_1/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));</span>
+#&gt; <span class='message'>rx_expr_19~ETA[3]+THETA[3];</span>
+#&gt; <span class='message'>rx_expr_20~ETA[4]+THETA[4];</span>
+#&gt; <span class='message'>rx_expr_21~1-f_DMTA_tffm0_1;</span>
+#&gt; <span class='message'>rx_expr_27~exp(rx_expr_19);</span>
+#&gt; <span class='message'>rx_expr_28~exp(rx_expr_20);</span>
+#&gt; <span class='message'>d/dt(M27)=-rx_expr_27*M27+rx_expr_28*M31+DMTA*(rx_expr_21)*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_2/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));</span>
+#&gt; <span class='message'>rx_expr_22~1-f_DMTA_tffm0_2;</span>
+#&gt; <span class='message'>d/dt(M31)=-rx_expr_28*M31+DMTA*(rx_expr_22)*(rx_expr_21)*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_3/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));</span>
+#&gt; <span class='message'>rx_expr_0~CMT==4;</span>
+#&gt; <span class='message'>rx_expr_1~CMT==2;</span>
+#&gt; <span class='message'>rx_expr_2~CMT==1;</span>
+#&gt; <span class='message'>rx_expr_3~CMT==3;</span>
+#&gt; <span class='message'>rx_expr_4~1-(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_5~1-(rx_expr_1);</span>
+#&gt; <span class='message'>rx_expr_6~1-(rx_expr_3);</span>
+#&gt; <span class='message'>rx_yj_~(rx_expr_4)*((2*(rx_expr_5)*(rx_expr_2)+2*(rx_expr_1))*(rx_expr_6)+2*(rx_expr_3))+2*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_7~(rx_expr_1);</span>
+#&gt; <span class='message'>rx_expr_8~(rx_expr_3);</span>
+#&gt; <span class='message'>rx_expr_9~(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_13~(rx_expr_5);</span>
+#&gt; <span class='message'>rx_expr_32~rx_expr_13*(rx_expr_2);</span>
+#&gt; <span class='message'>rx_lambda_~(rx_expr_4)*((rx_expr_32+rx_expr_7)*(rx_expr_6)+rx_expr_8)+rx_expr_9;</span>
+#&gt; <span class='message'>rx_hi_~(rx_expr_4)*((rx_expr_32+rx_expr_7)*(rx_expr_6)+rx_expr_8)+rx_expr_9;</span>
+#&gt; <span class='message'>rx_low_~0;</span>
+#&gt; <span class='message'>rx_expr_10~M31*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_11~M27*(rx_expr_3);</span>
+#&gt; <span class='message'>rx_expr_12~M23*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_expr_23~DMTA*(rx_expr_5);</span>
+#&gt; <span class='message'>rx_expr_36~rx_expr_23*(rx_expr_2);</span>
+#&gt; <span class='message'>rx_pred_=(rx_expr_4)*((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)));</span>
+#&gt; <span class='message'>rx_expr_33~Rx_pow_di(THETA[12],2);</span>
+#&gt; <span class='message'>rx_expr_34~Rx_pow_di(THETA[11],2);</span>
+#&gt; <span class='message'>rx_r_=(rx_expr_4)*((rx_expr_33*Rx_pow_di(((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6)),2)+rx_expr_34)*(rx_expr_3)+((rx_expr_1)*(rx_expr_33*Rx_pow_di(((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2)),2)+rx_expr_34)+(rx_expr_33*Rx_pow_di(((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2)),2)+rx_expr_34)*(rx_expr_5)*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_33*Rx_pow_di(((rx_expr_4)*((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))),2)+rx_expr_34);</span>
+#&gt; <span class='message'>DMTA_0=THETA[1];</span>
+#&gt; <span class='message'>log_k_M23=THETA[2];</span>
+#&gt; <span class='message'>log_k_M27=THETA[3];</span>
+#&gt; <span class='message'>log_k_M31=THETA[4];</span>
+#&gt; <span class='message'>log_k1=THETA[5];</span>
+#&gt; <span class='message'>log_k2=THETA[6];</span>
+#&gt; <span class='message'>g_qlogis=THETA[7];</span>
+#&gt; <span class='message'>f_DMTA_tffm0_1_qlogis=THETA[8];</span>
+#&gt; <span class='message'>f_DMTA_tffm0_2_qlogis=THETA[9];</span>
+#&gt; <span class='message'>f_DMTA_tffm0_3_qlogis=THETA[10];</span>
+#&gt; <span class='message'>sigma_low=THETA[11];</span>
+#&gt; <span class='message'>rsd_high=THETA[12];</span>
+#&gt; <span class='message'>eta.DMTA_0=ETA[1];</span>
+#&gt; <span class='message'>eta.log_k_M23=ETA[2];</span>
+#&gt; <span class='message'>eta.log_k_M27=ETA[3];</span>
+#&gt; <span class='message'>eta.log_k_M31=ETA[4];</span>
+#&gt; <span class='message'>eta.log_k1=ETA[5];</span>
+#&gt; <span class='message'>eta.log_k2=ETA[6];</span>
+#&gt; <span class='message'>eta.g_qlogis=ETA[7];</span>
+#&gt; <span class='message'>eta.f_DMTA_tffm0_1_qlogis=ETA[8];</span>
+#&gt; <span class='message'>eta.f_DMTA_tffm0_2_qlogis=ETA[9];</span>
+#&gt; <span class='message'>eta.f_DMTA_tffm0_3_qlogis=ETA[10];</span>
+#&gt; <span class='message'>DMTA_0_model=rx_expr_14;</span>
+#&gt; <span class='message'>k_M23=rx_expr_26;</span>
+#&gt; <span class='message'>k_M27=rx_expr_27;</span>
+#&gt; <span class='message'>k_M31=rx_expr_28;</span>
+#&gt; <span class='message'>k1=rx_expr_24;</span>
+#&gt; <span class='message'>k2=rx_expr_25;</span>
+#&gt; <span class='message'>g=1/(rx_expr_35);</span>
+#&gt; <span class='message'>f_DMTA_to_M23=1/(1+exp(-(ETA[8]+THETA[8])));</span>
+#&gt; <span class='message'>f_DMTA_to_M23=1/(1+exp(-(ETA[9]+THETA[9])));</span>
+#&gt; <span class='message'>f_DMTA_to_M23=1/(1+exp(-(ETA[10]+THETA[10])));</span>
+#&gt; <span class='message'>f_DMTA_to_M23=f_DMTA_tffm0_1;</span>
+#&gt; <span class='message'>f_DMTA_to_M27=(rx_expr_21)*f_DMTA_tffm0_2;</span>
+#&gt; <span class='message'>f_DMTA_to_M31=(rx_expr_22)*(rx_expr_21)*f_DMTA_tffm0_3;</span>
+#&gt; <span class='message'>tad=tad();</span>
+#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_DMTA_tffm0_1" "f_DMTA_tffm0_2" "f_DMTA_tffm0_3" "CMT" </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt &lt;- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control &lt;- do.call(foceiControl, control) } if (is.null(env)) { .ret &lt;- new.env(parent = emptyenv()) } else { .ret &lt;- env } .ret$origData &lt;- data .ret$etaNames &lt;- etaNames .ret$thetaFixed &lt;- fixed .ret$control &lt;- control .ret$control$focei.mu.ref &lt;- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel &lt;- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel &lt;- TRUE model &lt;- RxODE::rxGetLin(PKpars) pred &lt;- eval(parse(text = "function(){return(Central);}")) } .square &lt;- function(x) x * x .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames &lt;- .parNames &lt;- c() .ret$adjLik &lt;- control$adjLik .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0 if (!exists("noLik", envir = .ret)) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol &lt;- .ssAtol .ret$control$rxControl$ssRtol &lt;- .ssRtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { if (.ret$noLik) { .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol &lt;- .atol .ret$control$rxControl$rtol &lt;- .rtol } .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only) .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) &lt;- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) &gt; 0) { .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) &gt; 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars &lt;- .ret$model$extra.pars } else { .extraPars &lt;- NULL } } .ret$skipCov &lt;- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp &lt;- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) &lt; length(inits$THTA)) { .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp &lt;- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr &lt;- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp &lt;- (.tmp | .uifErr) } .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms &lt;- thetaNames } .ret$thetaNames &lt;- .nms .thetaReset$thetaNames &lt;- .nms if (length(lower) == 1) { lower &lt;- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper &lt;- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars &lt;- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) &gt; 0) { inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars) .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars)) lower &lt;- c(lower, .lowerErr) upper &lt;- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID &lt;- 0 if (is.null(data$AMT)) data$AMT &lt;- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] &lt;- as.double(data[[.v]]) } .ret$dataSav &lt;- data .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w &lt;- which(tolower(names(data)) == "limit") .limitName &lt;- NULL if (length(.w) == 1L) { .limitName &lt;- names(data)[.w] } .censName &lt;- NULL .w &lt;- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName &lt;- names(data[.w]) } data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh &lt;- .parseOM(inits$OMGA) .nlh &lt;- sapply(.lh, length) .osplt &lt;- rep(1:length(.lh), .nlh) .lini &lt;- list(inits$THTA, unlist(.lh)) .nlini &lt;- sapply(.lini, length) .nsplt &lt;- rep(1:length(.lini), .nlini) .om0 &lt;- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames &lt;- .ret$etaNames } else { .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType &lt;- .ret$rxInv$xType .om0a &lt;- .om0 .om0a &lt;- .om0a/control$diagOmegaBoundLower .om0b &lt;- .om0 .om0b &lt;- .om0b * control$diagOmegaBoundUpper .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a)) .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a)) .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega &lt;- length(.omdf$lower) .ret$control$neta &lt;- sum(.omdf$diag) .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) lower &lt;- c(lower, .omdf$lower) upper &lt;- c(upper, .omdf$upper) } else { .ret$control$nomega &lt;- 0 .ret$control$neta &lt;- 0 .ret$xType &lt;- -1 .ret$control$ntheta &lt;- length(lower) .ret$control$nfixed &lt;- sum(fixed) } .ret$lower &lt;- lower .ret$upper &lt;- upper .ret$thetaIni &lt;- inits$THTA .scaleC &lt;- double(length(lower)) if (is.null(control$scaleC)) { .scaleC &lt;- rep(NA_real_, length(lower)) } else { .scaleC &lt;- as.double(control$scaleC) if (length(lower) &gt; length(.scaleC)) { .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) &lt; length(.scaleC)) { .scaleC &lt;- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC &lt;- .scaleC if (exists("uif", envir = .ret)) { .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- 1 } .ini &lt;- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b &lt;- .ret$logitThetasLow[.i] .c &lt;- .ret$logitThetasHi[.i] .a &lt;- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) &amp; !is.null(control$etaMat)) { .ret$etaMat &lt;- control$etaMat } else { .ret$etaMat &lt;- etaMat } .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp &lt;- .ret$uif$logThetasList .ret$logThetas &lt;- .tmp[[1]] .ret$logThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasList .ret$logitThetas &lt;- .tmp[[1]] .ret$logitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListLow .ret$logitThetasLow &lt;- .tmp[[1]] .ret$logitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$logitThetasListHi .ret$logitThetasHi &lt;- .tmp[[1]] .ret$logitThetasHiF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasList .ret$probitThetas &lt;- .tmp[[1]] .ret$probitThetasF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListLow .ret$probitThetasLow &lt;- .tmp[[1]] .ret$probitThetasLowF &lt;- .tmp[[2]] .tmp &lt;- .ret$uif$probitThetasListHi .ret$probitThetasHi &lt;- .tmp[[1]] .ret$probitThetasHiF &lt;- .tmp[[2]] } else { .ret$logThetasF &lt;- integer(0) .ret$logitThetasF &lt;- integer(0) .ret$logitThetasHiF &lt;- numeric(0) .ret$logitThetasLowF &lt;- numeric(0) .ret$logitThetas &lt;- integer(0) .ret$logitThetasHi &lt;- numeric(0) .ret$logitThetasLow &lt;- numeric(0) .ret$probitThetasF &lt;- integer(0) .ret$probitThetasHiF &lt;- numeric(0) .ret$probitThetasLowF &lt;- numeric(0) .ret$probitThetas &lt;- integer(0) .ret$probitThetasHi &lt;- numeric(0) .ret$probitThetasLow &lt;- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan &lt;- length(.ret$thetaIni) .ret$nobs &lt;- sum(data$EVID == 0) } } .ret$control$printTop &lt;- TRUE .ret$control$nF &lt;- 0 .est0 &lt;- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq &lt;- 0L } .fitFun &lt;- function(.ret) { this.env &lt;- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 &lt;- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm &lt;- names(.ret$thetaIni) .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta &lt;- .thetaReset$omegaTheta .ret$control$printTop &lt;- FALSE .ret$etaMat &lt;- .thetaReset$etaMat .ret$control$etaMat &lt;- .thetaReset$etaMat .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations .ret$control$nF &lt;- .thetaReset$nF .ret$control$gillRetC &lt;- .thetaReset$gillRetC .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillRet &lt;- .thetaReset$gillRet .ret$control$gillDf &lt;- .thetaReset$gillDf .ret$control$gillDf2 &lt;- .thetaReset$gillDf2 .ret$control$gillErr &lt;- .thetaReset$gillErr .ret$control$rEps &lt;- .thetaReset$rEps .ret$control$aEps &lt;- .thetaReset$aEps .ret$control$rEpsC &lt;- .thetaReset$rEpsC .ret$control$aEpsC &lt;- .thetaReset$aEpsC .ret$control$c1 &lt;- .thetaReset$c1 .ret$control$c2 &lt;- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations &lt;- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun &lt;- .bobyqa .ret$control$outerOpt &lt;- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- 1 while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations != 0 &amp;&amp; .n &lt;= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF &lt;- 0 .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew &lt;- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] &lt; lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] &gt; upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni &lt;- .estNew .ret0 &lt;- try(.fitFun(.ret)) .n &lt;- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret &lt;- .ret0 if (exists("parHistData", .ret)) { .tmp &lt;- .ret$parHistData .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter &lt;- .tmp$iter .tmp &lt;- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) &lt;- c("val", "par", "iter") .ret$parHist &lt;- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas &lt;- .ret$ranef .thetas &lt;- .ret$fixef .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table &lt;- tableControl() } if (control$calcTables) { .ret &lt;- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 121.4 8.294 129.7</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 121.5 8.294 129.9</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in summary(f_dmta_nlmixr_focei): object 'f_dmta_nlmixr_focei' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in plot(f_dmta_nlmixr_focei): object 'f_dmta_nlmixr_focei' not found</span></div><div class='input'><span class='co'># Using saemix takes about 18 minutes</span>
+<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span>
+ <span class='va'>f_dmta_saemix</span> <span class='op'>&lt;-</span> <span class='fu'><a href='saem.html'>saem</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+<span class='op'>)</span>
+</div><div class='output co'>#&gt; Running main SAEM algorithm
+#&gt; [1] "Tue Oct 5 16:58:50 2021"
+#&gt; ....
+#&gt; Minimisation finished
+#&gt; [1] "Tue Oct 5 17:17:24 2021"</div><div class='output co'>#&gt; user system elapsed
+#&gt; 1181.365 0.031 1181.470 </div><div class='input'>
+<span class='co'># nlmixr with est = "saem" is pretty fast with default iteration numbers, most</span>
+<span class='co'># of the time (about 2.5 minutes) is spent for calculating the log likelihood at the end</span>
+<span class='co'># The likelihood calculated for the nlmixr fit is much lower than that found by saemix</span>
+<span class='co'># Also, the trace plot and the plot of the individual predictions is not</span>
+<span class='co'># convincing for the parent. It seems we are fitting an overparameterised</span>
+<span class='co'># model, so the result we get strongly depends on starting parameters and control settings.</span>
+<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span>
+ <span class='va'>f_dmta_nlmixr_saem</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
+ control <span class='op'>=</span> <span class='fu'>nlmixr</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/saemControl.html'>saemControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>500</span>, logLik <span class='op'>=</span> <span class='cn'>TRUE</span>, nmc <span class='op'>=</span> <span class='fl'>9</span><span class='op'>)</span><span class='op'>)</span>
+<span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#&gt; <span class='warning'>Warning: number of items to replace is not a multiple of replacement length</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='error'>Error in eval(substitute(expr), data, enclos = parent.frame()): Cannot run SAEM since some of the parameters are not mu-referenced (eta.f_DMTA_tffm0_1_qlogis, eta.f_DMTA_tffm0_2_qlogis, eta.f_DMTA_tffm0_3_qlogis)</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 0.849 0.016 0.864</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 1.041 0.016 1.058</span></div><div class='input'><span class='fu'>traceplot</span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>$</span><span class='va'>nm</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in traceplot(f_dmta_nlmixr_saem$nm): could not find function "traceplot"</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in summary(f_dmta_nlmixr_saem): object 'f_dmta_nlmixr_saem' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in plot(f_dmta_nlmixr_saem): object 'f_dmta_nlmixr_saem' not found</span></div><div class='input'><span class='co'># }</span>
+</div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top">
diff --git a/docs/dev/reference/endpoints.html b/docs/dev/reference/endpoints.html
index db702c2e..aa5bd773 100644
--- a/docs/dev/reference/endpoints.html
+++ b/docs/dev/reference/endpoints.html
@@ -78,7 +78,7 @@ advantage that the SFORB model can also be used for metabolites." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
</span>
</div>
@@ -127,7 +127,7 @@ advantage that the SFORB model can also be used for metabolites." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -165,8 +165,8 @@ advantage that the SFORB model can also be used for metabolites.</p>
<colgroup><col class="name" /><col class="desc" /></colgroup>
<tr>
<th>fit</th>
- <td><p>An object of class <a href='mkinfit.html'>mkinfit</a>, <a href='nlme.mmkin.html'>nlme.mmkin</a> or
-<a href='saem.html'>saem.mmkin</a>. Or another object that has list components
+ <td><p>An object of class <a href='mkinfit.html'>mkinfit</a>, <a href='nlme.mmkin.html'>nlme.mmkin</a>, <a href='saem.html'>saem.mmkin</a> or
+<a href='nlmixr.mmkin.html'>nlmixr.mmkin</a>. Or another object that has list components
mkinmod containing an <a href='mkinmod.html'>mkinmod</a> degradation model, and two numeric vectors,
bparms.optim and bparms.fixed, that contain parameter values
for that model.</p></td>
diff --git a/docs/dev/reference/experimental_data_for_UBA-1.png b/docs/dev/reference/experimental_data_for_UBA-1.png
index 24cb54c5..33946ded 100644
--- a/docs/dev/reference/experimental_data_for_UBA-1.png
+++ b/docs/dev/reference/experimental_data_for_UBA-1.png
Binary files differ
diff --git a/docs/dev/reference/experimental_data_for_UBA.html b/docs/dev/reference/experimental_data_for_UBA.html
index 78e57fb0..9904370f 100644
--- a/docs/dev/reference/experimental_data_for_UBA.html
+++ b/docs/dev/reference/experimental_data_for_UBA.html
@@ -100,7 +100,7 @@ Dataset 12 is from the Renewal Assessment Report (RAR) for thifensulfuron-methyl
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -149,7 +149,7 @@ Dataset 12 is from the Renewal Assessment Report (RAR) for thifensulfuron-methyl
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/f_time_norm_focus.html b/docs/dev/reference/f_time_norm_focus.html
index 3421043d..852e00a0 100644
--- a/docs/dev/reference/f_time_norm_focus.html
+++ b/docs/dev/reference/f_time_norm_focus.html
@@ -73,7 +73,7 @@ in Appendix 8 to the FOCUS kinetics guidance (FOCUS 2014, p. 369)." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
diff --git a/docs/dev/reference/focus_soil_moisture.html b/docs/dev/reference/focus_soil_moisture.html
index c46fd69a..0e6fea28 100644
--- a/docs/dev/reference/focus_soil_moisture.html
+++ b/docs/dev/reference/focus_soil_moisture.html
@@ -73,7 +73,7 @@ corresponds to pF2, MWHC to pF 1 and 1/3 bar to pF 2.5." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ corresponds to pF2, MWHC to pF 1 and 1/3 bar to pF 2.5." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/get_deg_func.html b/docs/dev/reference/get_deg_func.html
index a266bf5f..fb661085 100644
--- a/docs/dev/reference/get_deg_func.html
+++ b/docs/dev/reference/get_deg_func.html
@@ -72,7 +72,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -121,7 +121,7 @@
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/ilr.html b/docs/dev/reference/ilr.html
index 98e51211..452647d6 100644
--- a/docs/dev/reference/ilr.html
+++ b/docs/dev/reference/ilr.html
@@ -73,7 +73,7 @@ transformations." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ transformations." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/index.html b/docs/dev/reference/index.html
index e038ef5c..092e35c8 100644
--- a/docs/dev/reference/index.html
+++ b/docs/dev/reference/index.html
@@ -71,7 +71,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
</span>
</div>
@@ -175,7 +175,7 @@
</tr><tr>
<td>
- <p><code><a href="mmkin.html">mmkin()</a></code> </p>
+ <p><code><a href="mmkin.html">mmkin()</a></code> <code><a href="mmkin.html">print(<i>&lt;mmkin&gt;</i>)</a></code> </p>
</td>
<td><p>Fit one or more kinetic models with one or more state variables to one or
more datasets</p></td>
@@ -297,12 +297,6 @@ of an mmkin object</p></td>
<p><code><a href="AIC.mmkin.html">AIC(<i>&lt;mmkin&gt;</i>)</a></code> <code><a href="AIC.mmkin.html">BIC(<i>&lt;mmkin&gt;</i>)</a></code> </p>
</td>
<td><p>Calculate the AIC for a column of an mmkin object</p></td>
- </tr><tr>
-
- <td>
- <p><code><a href="print.mmkin.html">print(<i>&lt;mmkin&gt;</i>)</a></code> </p>
- </td>
- <td><p>Print method for mmkin objects</p></td>
</tr>
</tbody><tbody>
<tr>
@@ -331,6 +325,12 @@ of an mmkin object</p></td>
</tr><tr>
<td>
+ <p><code><a href="nlmixr.mmkin.html">nlmixr(<i>&lt;mmkin&gt;</i>)</a></code> <code><a href="nlmixr.mmkin.html">print(<i>&lt;nlmixr.mmkin&gt;</i>)</a></code> <code><a href="nlmixr.mmkin.html">nlmixr_model()</a></code> <code><a href="nlmixr.mmkin.html">nlmixr_data()</a></code> </p>
+ </td>
+ <td><p>Fit nonlinear mixed models using nlmixr</p></td>
+ </tr><tr>
+
+ <td>
<p><code><a href="plot.mixed.mmkin.html">plot(<i>&lt;mixed.mmkin&gt;</i>)</a></code> </p>
</td>
<td><p>Plot predictions from a fitted nonlinear mixed model obtained via an mmkin row object</p></td>
@@ -343,13 +343,19 @@ of an mmkin object</p></td>
</tr><tr>
<td>
+ <p><code><a href="summary.nlmixr.mmkin.html">summary(<i>&lt;nlmixr.mmkin&gt;</i>)</a></code> <code><a href="summary.nlmixr.mmkin.html">print(<i>&lt;summary.nlmixr.mmkin&gt;</i>)</a></code> </p>
+ </td>
+ <td><p>Summary method for class "nlmixr.mmkin"</p></td>
+ </tr><tr>
+
+ <td>
<p><code><a href="summary.saem.mmkin.html">summary(<i>&lt;saem.mmkin&gt;</i>)</a></code> <code><a href="summary.saem.mmkin.html">print(<i>&lt;summary.saem.mmkin&gt;</i>)</a></code> </p>
</td>
<td><p>Summary method for class "saem.mmkin"</p></td>
</tr><tr>
<td>
- <p><code><a href="nlme.html">nlme_function()</a></code> <code><a href="nlme.html">mean_degparms()</a></code> <code><a href="nlme.html">nlme_data()</a></code> </p>
+ <p><code><a href="nlme.html">nlme_function()</a></code> <code><a href="nlme.html">nlme_data()</a></code> </p>
</td>
<td><p>Helper functions to create nlme models from mmkin row objects</p></td>
</tr><tr>
@@ -364,6 +370,24 @@ of an mmkin object</p></td>
<p><code><a href="mixed.html">mixed()</a></code> <code><a href="mixed.html">print(<i>&lt;mixed.mmkin&gt;</i>)</a></code> </p>
</td>
<td><p>Create a mixed effects model from an mmkin row object</p></td>
+ </tr><tr>
+
+ <td>
+ <p><code><a href="reexports.html">reexports</a></code> </p>
+ </td>
+ <td><p>Objects exported from other packages</p></td>
+ </tr><tr>
+
+ <td>
+ <p><code><a href="intervals.saem.mmkin.html">intervals(<i>&lt;saem.mmkin&gt;</i>)</a></code> </p>
+ </td>
+ <td><p>Confidence intervals for parameters in saem.mmkin objects</p></td>
+ </tr><tr>
+
+ <td>
+ <p><code><a href="intervals.nlmixr.mmkin.html">intervals(<i>&lt;nlmixr.mmkin&gt;</i>)</a></code> </p>
+ </td>
+ <td><p>Confidence intervals for parameters in nlmixr.mmkin objects</p></td>
</tr>
</tbody><tbody>
<tr>
@@ -576,6 +600,12 @@ kinetic models fitted with mkinfit</p></td>
</tr><tr>
<td>
+ <p><code><a href="tffm0.html">tffm0()</a></code> <code><a href="tffm0.html">invtffm0()</a></code> </p>
+ </td>
+ <td><p>Transform formation fractions as in the first published mkin version</p></td>
+ </tr><tr>
+
+ <td>
<p><code><a href="logLik.mkinfit.html">logLik(<i>&lt;mkinfit&gt;</i>)</a></code> </p>
</td>
<td><p>Calculated the log-likelihood of a fitted mkinfit object</p></td>
@@ -612,6 +642,12 @@ kinetic models fitted with mkinfit</p></td>
</tr><tr>
<td>
+ <p><code><a href="mean_degparms.html">mean_degparms()</a></code> </p>
+ </td>
+ <td><p>Calculate mean degradation parameters for an mmkin row object</p></td>
+ </tr><tr>
+
+ <td>
<p><code><a href="create_deg_func.html">create_deg_func()</a></code> </p>
</td>
<td><p>Create degradation functions for known analytical solutions</p></td>
diff --git a/docs/dev/reference/intervals.nlmixr.mmkin.html b/docs/dev/reference/intervals.nlmixr.mmkin.html
new file mode 100644
index 00000000..ccc348b1
--- /dev/null
+++ b/docs/dev/reference/intervals.nlmixr.mmkin.html
@@ -0,0 +1,203 @@
+<!-- Generated by pkgdown: do not edit by hand -->
+<!DOCTYPE html>
+<html lang="en">
+ <head>
+ <meta charset="utf-8">
+<meta http-equiv="X-UA-Compatible" content="IE=edge">
+<meta name="viewport" content="width=device-width, initial-scale=1.0">
+
+<title>Confidence intervals for parameters in nlmixr.mmkin objects — intervals.nlmixr.mmkin • mkin</title>
+
+
+<!-- jquery -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
+<!-- Bootstrap -->
+
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" />
+
+<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
+
+<!-- bootstrap-toc -->
+<link rel="stylesheet" href="../bootstrap-toc.css">
+<script src="../bootstrap-toc.js"></script>
+
+<!-- Font Awesome icons -->
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" />
+
+<!-- clipboard.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script>
+
+<!-- headroom.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script>
+
+<!-- pkgdown -->
+<link href="../pkgdown.css" rel="stylesheet">
+<script src="../pkgdown.js"></script>
+
+
+
+
+<meta property="og:title" content="Confidence intervals for parameters in nlmixr.mmkin objects — intervals.nlmixr.mmkin" />
+<meta property="og:description" content="Confidence intervals for parameters in nlmixr.mmkin objects" />
+
+
+<meta name="robots" content="noindex">
+
+<!-- mathjax -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
+
+<!--[if lt IE 9]>
+<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
+<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
+<![endif]-->
+
+
+
+ </head>
+
+ <body data-spy="scroll" data-target="#toc">
+ <div class="container template-reference-topic">
+ <header>
+ <div class="navbar navbar-default navbar-fixed-top" role="navigation">
+ <div class="container">
+ <div class="navbar-header">
+ <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
+ <span class="sr-only">Toggle navigation</span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ </button>
+ <span class="navbar-brand">
+ <a class="navbar-link" href="../index.html">mkin</a>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
+ </span>
+ </div>
+
+ <div id="navbar" class="navbar-collapse collapse">
+ <ul class="nav navbar-nav">
+ <li>
+ <a href="../reference/index.html">Functions and data</a>
+</li>
+<li class="dropdown">
+ <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
+ Articles
+
+ <span class="caret"></span>
+ </a>
+ <ul class="dropdown-menu" role="menu">
+ <li>
+ <a href="../articles/mkin.html">Introduction to mkin</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
+ </li>
+ <li>
+ <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
+ </li>
+ </ul>
+</li>
+<li>
+ <a href="../news/index.html">News</a>
+</li>
+ </ul>
+ <ul class="nav navbar-nav navbar-right">
+ <li>
+ <a href="https://github.com/jranke/mkin/">
+ <span class="fab fa-github fa-lg"></span>
+
+ </a>
+</li>
+ </ul>
+
+ </div><!--/.nav-collapse -->
+ </div><!--/.container -->
+</div><!--/.navbar -->
+
+
+
+ </header>
+
+<div class="row">
+ <div class="col-md-9 contents">
+ <div class="page-header">
+ <h1>Confidence intervals for parameters in nlmixr.mmkin objects</h1>
+ <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/intervals.R'><code>R/intervals.R</code></a></small>
+ <div class="hidden name"><code>intervals.nlmixr.mmkin.Rd</code></div>
+ </div>
+
+ <div class="ref-description">
+ <p>Confidence intervals for parameters in nlmixr.mmkin objects</p>
+ </div>
+
+ <pre class="usage"><span class='co'># S3 method for nlmixr.mmkin</span>
+<span class='fu'><a href='https://rdrr.io/pkg/nlme/man/intervals.html'>intervals</a></span><span class='op'>(</span><span class='va'>object</span>, level <span class='op'>=</span> <span class='fl'>0.95</span>, backtransform <span class='op'>=</span> <span class='cn'>TRUE</span>, <span class='va'>...</span><span class='op'>)</span></pre>
+
+ <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
+ <table class="ref-arguments">
+ <colgroup><col class="name" /><col class="desc" /></colgroup>
+ <tr>
+ <th>object</th>
+ <td><p>The fitted saem.mmkin object</p></td>
+ </tr>
+ <tr>
+ <th>level</th>
+ <td><p>The confidence level.</p></td>
+ </tr>
+ <tr>
+ <th>backtransform</th>
+ <td><p>Should we backtransform the parameters where a one to
+one correlation between transformed and backtransformed parameters exists?</p></td>
+ </tr>
+ </table>
+
+ <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
+
+ <p>An object with 'intervals.saem.mmkin' and 'intervals.lme' in the
+class attribute</p>
+
+ </div>
+ <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
+ <nav id="toc" data-toggle="toc" class="sticky-top">
+ <h2 data-toc-skip>Contents</h2>
+ </nav>
+ </div>
+</div>
+
+
+ <footer>
+ <div class="copyright">
+ <p>Developed by Johannes Ranke.</p>
+</div>
+
+<div class="pkgdown">
+ <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
+</div>
+
+ </footer>
+ </div>
+
+
+
+
+ </body>
+</html>
+
+
diff --git a/docs/dev/reference/intervals.saem.mmkin.html b/docs/dev/reference/intervals.saem.mmkin.html
new file mode 100644
index 00000000..a160b21d
--- /dev/null
+++ b/docs/dev/reference/intervals.saem.mmkin.html
@@ -0,0 +1,205 @@
+<!-- Generated by pkgdown: do not edit by hand -->
+<!DOCTYPE html>
+<html lang="en">
+ <head>
+ <meta charset="utf-8">
+<meta http-equiv="X-UA-Compatible" content="IE=edge">
+<meta name="viewport" content="width=device-width, initial-scale=1.0">
+
+<title>Confidence intervals for parameters in saem.mmkin objects — intervals.saem.mmkin • mkin</title>
+
+
+<!-- jquery -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
+<!-- Bootstrap -->
+
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" />
+
+<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
+
+<!-- bootstrap-toc -->
+<link rel="stylesheet" href="../bootstrap-toc.css">
+<script src="../bootstrap-toc.js"></script>
+
+<!-- Font Awesome icons -->
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" />
+
+<!-- clipboard.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script>
+
+<!-- headroom.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script>
+
+<!-- pkgdown -->
+<link href="../pkgdown.css" rel="stylesheet">
+<script src="../pkgdown.js"></script>
+
+
+
+
+<meta property="og:title" content="Confidence intervals for parameters in saem.mmkin objects — intervals.saem.mmkin" />
+<meta property="og:description" content="Confidence intervals for parameters in saem.mmkin objects" />
+
+
+<meta name="robots" content="noindex">
+
+<!-- mathjax -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
+
+<!--[if lt IE 9]>
+<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
+<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
+<![endif]-->
+
+
+
+ </head>
+
+ <body data-spy="scroll" data-target="#toc">
+ <div class="container template-reference-topic">
+ <header>
+ <div class="navbar navbar-default navbar-fixed-top" role="navigation">
+ <div class="container">
+ <div class="navbar-header">
+ <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
+ <span class="sr-only">Toggle navigation</span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ </button>
+ <span class="navbar-brand">
+ <a class="navbar-link" href="../index.html">mkin</a>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
+ </span>
+ </div>
+
+ <div id="navbar" class="navbar-collapse collapse">
+ <ul class="nav navbar-nav">
+ <li>
+ <a href="../reference/index.html">Functions and data</a>
+</li>
+<li class="dropdown">
+ <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
+ Articles
+
+ <span class="caret"></span>
+ </a>
+ <ul class="dropdown-menu" role="menu">
+ <li>
+ <a href="../articles/mkin.html">Introduction to mkin</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
+ </li>
+ <li>
+ <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
+ </li>
+ </ul>
+</li>
+<li>
+ <a href="../news/index.html">News</a>
+</li>
+ </ul>
+ <ul class="nav navbar-nav navbar-right">
+ <li>
+ <a href="https://github.com/jranke/mkin/">
+ <span class="fab fa-github fa-lg"></span>
+
+ </a>
+</li>
+ </ul>
+
+ </div><!--/.nav-collapse -->
+ </div><!--/.container -->
+</div><!--/.navbar -->
+
+
+
+ </header>
+
+<div class="row">
+ <div class="col-md-9 contents">
+ <div class="page-header">
+ <h1>Confidence intervals for parameters in saem.mmkin objects</h1>
+ <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/intervals.R'><code>R/intervals.R</code></a></small>
+ <div class="hidden name"><code>intervals.saem.mmkin.Rd</code></div>
+ </div>
+
+ <div class="ref-description">
+ <p>Confidence intervals for parameters in saem.mmkin objects</p>
+ </div>
+
+ <pre class="usage"><span class='co'># S3 method for saem.mmkin</span>
+<span class='fu'><a href='https://rdrr.io/pkg/nlme/man/intervals.html'>intervals</a></span><span class='op'>(</span><span class='va'>object</span>, level <span class='op'>=</span> <span class='fl'>0.95</span>, backtransform <span class='op'>=</span> <span class='cn'>TRUE</span>, <span class='va'>...</span><span class='op'>)</span></pre>
+
+ <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
+ <table class="ref-arguments">
+ <colgroup><col class="name" /><col class="desc" /></colgroup>
+ <tr>
+ <th>object</th>
+ <td><p>The fitted saem.mmkin object</p></td>
+ </tr>
+ <tr>
+ <th>level</th>
+ <td><p>The confidence level. Must be the default of 0.95 as this is what
+is available in the saemix object</p></td>
+ </tr>
+ <tr>
+ <th>backtransform</th>
+ <td><p>In case the model was fitted with mkin transformations,
+should we backtransform the parameters where a one to one correlation
+between transformed and backtransformed parameters exists?</p></td>
+ </tr>
+ </table>
+
+ <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
+
+ <p>An object with 'intervals.saem.mmkin' and 'intervals.lme' in the
+class attribute</p>
+
+ </div>
+ <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
+ <nav id="toc" data-toggle="toc" class="sticky-top">
+ <h2 data-toc-skip>Contents</h2>
+ </nav>
+ </div>
+</div>
+
+
+ <footer>
+ <div class="copyright">
+ <p>Developed by Johannes Ranke.</p>
+</div>
+
+<div class="pkgdown">
+ <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
+</div>
+
+ </footer>
+ </div>
+
+
+
+
+ </body>
+</html>
+
+
diff --git a/docs/dev/reference/loftest-1.png b/docs/dev/reference/loftest-1.png
index 6b918fec..d6006ecc 100644
--- a/docs/dev/reference/loftest-1.png
+++ b/docs/dev/reference/loftest-1.png
Binary files differ
diff --git a/docs/dev/reference/loftest-2.png b/docs/dev/reference/loftest-2.png
index 60874bd3..4d0dc551 100644
--- a/docs/dev/reference/loftest-2.png
+++ b/docs/dev/reference/loftest-2.png
Binary files differ
diff --git a/docs/dev/reference/loftest-3.png b/docs/dev/reference/loftest-3.png
index 4837e7f2..6afd084b 100644
--- a/docs/dev/reference/loftest-3.png
+++ b/docs/dev/reference/loftest-3.png
Binary files differ
diff --git a/docs/dev/reference/loftest-4.png b/docs/dev/reference/loftest-4.png
index 9c18ac30..f94eede1 100644
--- a/docs/dev/reference/loftest-4.png
+++ b/docs/dev/reference/loftest-4.png
Binary files differ
diff --git a/docs/dev/reference/loftest-5.png b/docs/dev/reference/loftest-5.png
index 11f2bda7..43460a65 100644
--- a/docs/dev/reference/loftest-5.png
+++ b/docs/dev/reference/loftest-5.png
Binary files differ
diff --git a/docs/dev/reference/loftest.html b/docs/dev/reference/loftest.html
index abbbd3b9..9dbd547d 100644
--- a/docs/dev/reference/loftest.html
+++ b/docs/dev/reference/loftest.html
@@ -75,7 +75,7 @@ lrtest.default from the lmtest package." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -124,7 +124,7 @@ lrtest.default from the lmtest package." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/logLik.mkinfit.html b/docs/dev/reference/logLik.mkinfit.html
index 66539dbd..3e9452c6 100644
--- a/docs/dev/reference/logLik.mkinfit.html
+++ b/docs/dev/reference/logLik.mkinfit.html
@@ -76,7 +76,7 @@ the error model." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -125,7 +125,7 @@ the error model." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -196,11 +196,11 @@ and the fitted error model parameters.</p>
parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, to <span class='op'>=</span> <span class='st'>"m1"</span><span class='op'>)</span>,
m1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>
<span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'> <span class='va'>d_t</span> <span class='op'>&lt;-</span> <span class='va'>FOCUS_2006_D</span>
+</div><div class='output co'>#&gt; <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'> <span class='va'>d_t</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>FOCUS_2006_D</span>, <span class='va'>value</span> <span class='op'>!=</span> <span class='fl'>0</span><span class='op'>)</span>
<span class='va'>f_nw</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>sfo_sfo</span>, <span class='va'>d_t</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> <span class='co'># no weighting (weights are unity)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'> <span class='va'>f_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>sfo_sfo</span>, <span class='va'>d_t</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'> <span class='va'>f_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>sfo_sfo</span>, <span class='va'>d_t</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'> <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f_nw</span>, <span class='va'>f_obs</span>, <span class='va'>f_tc</span><span class='op'>)</span>
+ <span class='va'>f_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_nw</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span><span class='op'>)</span>
+ <span class='va'>f_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_nw</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span>
+ <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f_nw</span>, <span class='va'>f_obs</span>, <span class='va'>f_tc</span><span class='op'>)</span>
</div><div class='output co'>#&gt; df AIC
#&gt; f_nw 5 204.4486
#&gt; f_obs 6 205.8727
diff --git a/docs/dev/reference/logistic.solution-2.png b/docs/dev/reference/logistic.solution-2.png
index 764996df..73e6436d 100644
--- a/docs/dev/reference/logistic.solution-2.png
+++ b/docs/dev/reference/logistic.solution-2.png
Binary files differ
diff --git a/docs/dev/reference/logistic.solution.html b/docs/dev/reference/logistic.solution.html
index 950e8a8e..ab68c99e 100644
--- a/docs/dev/reference/logistic.solution.html
+++ b/docs/dev/reference/logistic.solution.html
@@ -73,7 +73,7 @@ an increasing rate constant, supposedly caused by microbial growth" />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ an increasing rate constant, supposedly caused by microbial growth" />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -240,10 +240,10 @@ Version 1.1, 18 December 2014
<span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span><span class='op'>(</span><span class='va'>m</span><span class='op'>)</span>
</div><div class='img'><img src='logistic.solution-2.png' alt='' width='700' height='433' /></div><div class='input'> <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>m</span><span class='op'>)</span><span class='op'>$</span><span class='va'>bpar</span>
</div><div class='output co'>#&gt; Estimate se_notrans t value Pr(&gt;t) Lower
-#&gt; parent_0 1.057896e+02 1.9023449703 55.610119 3.768361e-16 1.016451e+02
-#&gt; kmax 6.398190e-02 0.0143201031 4.467978 3.841829e-04 3.929235e-02
+#&gt; parent_0 1.057896e+02 1.9023449590 55.610120 3.768360e-16 1.016451e+02
+#&gt; kmax 6.398190e-02 0.0143201029 4.467978 3.841828e-04 3.929235e-02
#&gt; k0 1.612775e-04 0.0005866813 0.274898 3.940351e-01 5.846688e-08
-#&gt; r 2.263946e-01 0.1718110715 1.317695 1.061044e-01 4.335843e-02
+#&gt; r 2.263946e-01 0.1718110662 1.317695 1.061043e-01 4.335843e-02
#&gt; sigma 5.332935e+00 0.9145907310 5.830952 4.036926e-05 3.340213e+00
#&gt; Upper
#&gt; parent_0 109.9341588
diff --git a/docs/dev/reference/lrtest.mkinfit.html b/docs/dev/reference/lrtest.mkinfit.html
index b76ebc87..f2d8472e 100644
--- a/docs/dev/reference/lrtest.mkinfit.html
+++ b/docs/dev/reference/lrtest.mkinfit.html
@@ -76,7 +76,7 @@ and can be expressed by fixing the parameters of the other." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -125,7 +125,7 @@ and can be expressed by fixing the parameters of the other." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/max_twa_parent.html b/docs/dev/reference/max_twa_parent.html
index 25f745e9..a358568a 100644
--- a/docs/dev/reference/max_twa_parent.html
+++ b/docs/dev/reference/max_twa_parent.html
@@ -78,7 +78,7 @@ soil section of the FOCUS guidance." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -127,7 +127,7 @@ soil section of the FOCUS guidance." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/mccall81_245T-1.png b/docs/dev/reference/mccall81_245T-1.png
index 5daa5f18..91fe060e 100644
--- a/docs/dev/reference/mccall81_245T-1.png
+++ b/docs/dev/reference/mccall81_245T-1.png
Binary files differ
diff --git a/docs/dev/reference/mccall81_245T.html b/docs/dev/reference/mccall81_245T.html
index 7179533d..f79137be 100644
--- a/docs/dev/reference/mccall81_245T.html
+++ b/docs/dev/reference/mccall81_245T.html
@@ -74,7 +74,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -181,30 +181,30 @@
<span class='va'>fit.1</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO_SFO</span>, <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>mccall81_245T</span>, <span class='va'>soil</span> <span class='op'>==</span> <span class='st'>"Commerce"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'> <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.1</span><span class='op'>)</span><span class='op'>$</span><span class='va'>bpar</span>
</div><div class='output co'>#&gt; Estimate se_notrans t value Pr(&gt;t)
-#&gt; T245_0 1.038550e+02 2.1847074888 47.537272 4.472189e-18
+#&gt; T245_0 1.038550e+02 2.1847074945 47.537272 4.472189e-18
#&gt; k_T245 4.337042e-02 0.0018983965 22.845818 2.276911e-13
-#&gt; k_phenol 4.050581e-01 0.2986993400 1.356073 9.756988e-02
-#&gt; k_anisole 6.678742e-03 0.0008021439 8.326114 2.623176e-07
-#&gt; f_T245_to_phenol 6.227599e-01 0.3985340295 1.562627 6.949412e-02
-#&gt; f_phenol_to_anisole 1.000000e+00 0.6718439378 1.488441 7.867787e-02
-#&gt; sigma 2.514628e+00 0.4907558750 5.123989 6.233156e-05
+#&gt; k_phenol 4.050581e-01 0.2986993563 1.356073 9.756989e-02
+#&gt; k_anisole 6.678742e-03 0.0008021439 8.326114 2.623177e-07
+#&gt; f_T245_to_phenol 6.227599e-01 0.3985340558 1.562627 6.949413e-02
+#&gt; f_phenol_to_anisole 1.000000e+00 0.6718439825 1.488441 7.867789e-02
+#&gt; sigma 2.514628e+00 0.4907558883 5.123989 6.233157e-05
#&gt; Lower Upper
-#&gt; T245_0 99.246061370 1.084640e+02
+#&gt; T245_0 99.246061385 1.084640e+02
#&gt; k_T245 0.039631621 4.746194e-02
-#&gt; k_phenol 0.218013878 7.525762e-01
+#&gt; k_phenol 0.218013879 7.525762e-01
#&gt; k_anisole 0.005370739 8.305299e-03
-#&gt; f_T245_to_phenol 0.547559083 6.924813e-01
+#&gt; f_T245_to_phenol 0.547559081 6.924813e-01
#&gt; f_phenol_to_anisole 0.000000000 1.000000e+00
#&gt; sigma 1.706607296 3.322649e+00</div><div class='input'> <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>fit.1</span><span class='op'>)</span>
</div><div class='output co'>#&gt; $ff
#&gt; T245_phenol T245_sink phenol_anisole phenol_sink
-#&gt; 6.227599e-01 3.772401e-01 1.000000e+00 6.894640e-11
+#&gt; 6.227599e-01 3.772401e-01 1.000000e+00 3.773626e-10
#&gt;
#&gt; $distimes
#&gt; DT50 DT90
#&gt; T245 15.982025 53.09114
#&gt; phenol 1.711229 5.68458
-#&gt; anisole 103.784092 344.76329
+#&gt; anisole 103.784093 344.76329
#&gt; </div><div class='input'> <span class='co'># formation fraction from phenol to anisol is practically 1. As we cannot</span>
<span class='co'># fix formation fractions when using the ilr transformation, we can turn of</span>
<span class='co'># the sink in the model generation</span>
@@ -215,28 +215,28 @@
quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'> <span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.2</span><span class='op'>)</span><span class='op'>$</span><span class='va'>bpar</span>
</div><div class='output co'>#&gt; Estimate se_notrans t value Pr(&gt;t) Lower
-#&gt; T245_0 1.038550e+02 2.1623653027 48.028439 4.993108e-19 99.271020526
-#&gt; k_T245 4.337042e-02 0.0018343666 23.643268 3.573555e-14 0.039650977
-#&gt; k_phenol 4.050582e-01 0.1177237248 3.440752 1.679252e-03 0.218746585
-#&gt; k_anisole 6.678741e-03 0.0006829745 9.778903 1.872894e-08 0.005377083
-#&gt; f_T245_to_phenol 6.227599e-01 0.0342197865 18.198825 2.039410e-12 0.547975628
+#&gt; T245_0 1.038550e+02 2.1623653066 48.028439 4.993108e-19 99.271020284
+#&gt; k_T245 4.337042e-02 0.0018343666 23.643268 3.573556e-14 0.039650976
+#&gt; k_phenol 4.050582e-01 0.1177237473 3.440752 1.679254e-03 0.218746587
+#&gt; k_anisole 6.678742e-03 0.0006829745 9.778903 1.872894e-08 0.005377083
+#&gt; f_T245_to_phenol 6.227599e-01 0.0342197875 18.198824 2.039411e-12 0.547975637
#&gt; sigma 2.514628e+00 0.3790944250 6.633250 2.875782e-06 1.710983655
#&gt; Upper
-#&gt; T245_0 108.43904097
+#&gt; T245_0 108.43904074
#&gt; k_T245 0.04743877
-#&gt; k_phenol 0.75005577
+#&gt; k_phenol 0.75005585
#&gt; k_anisole 0.00829550
-#&gt; f_T245_to_phenol 0.69212306
+#&gt; f_T245_to_phenol 0.69212308
#&gt; sigma 3.31827222</div><div class='input'> <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>fit.1</span><span class='op'>)</span>
</div><div class='output co'>#&gt; $ff
#&gt; T245_phenol T245_sink phenol_anisole phenol_sink
-#&gt; 6.227599e-01 3.772401e-01 1.000000e+00 6.894640e-11
+#&gt; 6.227599e-01 3.772401e-01 1.000000e+00 3.773626e-10
#&gt;
#&gt; $distimes
#&gt; DT50 DT90
#&gt; T245 15.982025 53.09114
#&gt; phenol 1.711229 5.68458
-#&gt; anisole 103.784092 344.76329
+#&gt; anisole 103.784093 344.76329
#&gt; </div><div class='input'> <span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span><span class='op'>(</span><span class='va'>fit.2</span><span class='op'>)</span>
</div><div class='img'><img src='mccall81_245T-1.png' alt='' width='700' height='433' /></div><div class='input'> <span class='co'># }</span>
</div></pre>
diff --git a/docs/dev/reference/mean_degparms.html b/docs/dev/reference/mean_degparms.html
new file mode 100644
index 00000000..5981c625
--- /dev/null
+++ b/docs/dev/reference/mean_degparms.html
@@ -0,0 +1,210 @@
+<!-- Generated by pkgdown: do not edit by hand -->
+<!DOCTYPE html>
+<html lang="en">
+ <head>
+ <meta charset="utf-8">
+<meta http-equiv="X-UA-Compatible" content="IE=edge">
+<meta name="viewport" content="width=device-width, initial-scale=1.0">
+
+<title>Calculate mean degradation parameters for an mmkin row object — mean_degparms • mkin</title>
+
+
+<!-- jquery -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
+<!-- Bootstrap -->
+
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" />
+
+<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
+
+<!-- bootstrap-toc -->
+<link rel="stylesheet" href="../bootstrap-toc.css">
+<script src="../bootstrap-toc.js"></script>
+
+<!-- Font Awesome icons -->
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" />
+
+<!-- clipboard.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script>
+
+<!-- headroom.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script>
+
+<!-- pkgdown -->
+<link href="../pkgdown.css" rel="stylesheet">
+<script src="../pkgdown.js"></script>
+
+
+
+
+<meta property="og:title" content="Calculate mean degradation parameters for an mmkin row object — mean_degparms" />
+<meta property="og:description" content="Calculate mean degradation parameters for an mmkin row object" />
+
+
+<meta name="robots" content="noindex">
+
+<!-- mathjax -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
+
+<!--[if lt IE 9]>
+<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
+<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
+<![endif]-->
+
+
+
+ </head>
+
+ <body data-spy="scroll" data-target="#toc">
+ <div class="container template-reference-topic">
+ <header>
+ <div class="navbar navbar-default navbar-fixed-top" role="navigation">
+ <div class="container">
+ <div class="navbar-header">
+ <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
+ <span class="sr-only">Toggle navigation</span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ </button>
+ <span class="navbar-brand">
+ <a class="navbar-link" href="../index.html">mkin</a>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
+ </span>
+ </div>
+
+ <div id="navbar" class="navbar-collapse collapse">
+ <ul class="nav navbar-nav">
+ <li>
+ <a href="../reference/index.html">Functions and data</a>
+</li>
+<li class="dropdown">
+ <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
+ Articles
+
+ <span class="caret"></span>
+ </a>
+ <ul class="dropdown-menu" role="menu">
+ <li>
+ <a href="../articles/mkin.html">Introduction to mkin</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
+ </li>
+ <li>
+ <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
+ </li>
+ </ul>
+</li>
+<li>
+ <a href="../news/index.html">News</a>
+</li>
+ </ul>
+ <ul class="nav navbar-nav navbar-right">
+ <li>
+ <a href="https://github.com/jranke/mkin/">
+ <span class="fab fa-github fa-lg"></span>
+
+ </a>
+</li>
+ </ul>
+
+ </div><!--/.nav-collapse -->
+ </div><!--/.container -->
+</div><!--/.navbar -->
+
+
+
+ </header>
+
+<div class="row">
+ <div class="col-md-9 contents">
+ <div class="page-header">
+ <h1>Calculate mean degradation parameters for an mmkin row object</h1>
+ <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/mean_degparms.R'><code>R/mean_degparms.R</code></a></small>
+ <div class="hidden name"><code>mean_degparms.Rd</code></div>
+ </div>
+
+ <div class="ref-description">
+ <p>Calculate mean degradation parameters for an mmkin row object</p>
+ </div>
+
+ <pre class="usage"><span class='fu'>mean_degparms</span><span class='op'>(</span><span class='va'>object</span>, random <span class='op'>=</span> <span class='cn'>FALSE</span>, test_log_parms <span class='op'>=</span> <span class='cn'>FALSE</span>, conf.level <span class='op'>=</span> <span class='fl'>0.6</span><span class='op'>)</span></pre>
+
+ <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
+ <table class="ref-arguments">
+ <colgroup><col class="name" /><col class="desc" /></colgroup>
+ <tr>
+ <th>object</th>
+ <td><p>An mmkin row object containing several fits of the same model to different datasets</p></td>
+ </tr>
+ <tr>
+ <th>random</th>
+ <td><p>Should a list with fixed and random effects be returned?</p></td>
+ </tr>
+ <tr>
+ <th>test_log_parms</th>
+ <td><p>If TRUE, log parameters are only considered in
+the mean calculations if their untransformed counterparts (most likely
+rate constants) pass the t-test for significant difference from zero.</p></td>
+ </tr>
+ <tr>
+ <th>conf.level</th>
+ <td><p>Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'.</p></td>
+ </tr>
+ </table>
+
+ <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
+
+ <p>If random is FALSE (default), a named vector containing mean values
+of the fitted degradation model parameters. If random is TRUE, a list with
+fixed and random effects, in the format required by the start argument of
+nlme for the case of a single grouping variable ds.</p>
+
+ </div>
+ <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
+ <nav id="toc" data-toggle="toc" class="sticky-top">
+ <h2 data-toc-skip>Contents</h2>
+ </nav>
+ </div>
+</div>
+
+
+ <footer>
+ <div class="copyright">
+ <p>Developed by Johannes Ranke.</p>
+</div>
+
+<div class="pkgdown">
+ <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
+</div>
+
+ </footer>
+ </div>
+
+
+
+
+ </body>
+</html>
+
+
diff --git a/docs/dev/reference/mixed-1.png b/docs/dev/reference/mixed-1.png
index 3400c4aa..422ab6a0 100644
--- a/docs/dev/reference/mixed-1.png
+++ b/docs/dev/reference/mixed-1.png
Binary files differ
diff --git a/docs/dev/reference/mixed.html b/docs/dev/reference/mixed.html
index 18a67af8..4c849671 100644
--- a/docs/dev/reference/mixed.html
+++ b/docs/dev/reference/mixed.html
@@ -72,7 +72,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
</span>
</div>
@@ -121,7 +121,7 @@
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -180,6 +180,10 @@
</tr>
</table>
+ <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
+
+ <p>An object of class 'mixed.mmkin' which has the observed data in a
+single dataframe which is convenient for plotting</p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><div class='input'><span class='va'>sampling_times</span> <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>0</span>, <span class='fl'>1</span>, <span class='fl'>3</span>, <span class='fl'>7</span>, <span class='fl'>14</span>, <span class='fl'>28</span>, <span class='fl'>60</span>, <span class='fl'>90</span>, <span class='fl'>120</span><span class='op'>)</span>
@@ -235,18 +239,16 @@
#&gt; Status of individual fits:
#&gt;
#&gt; dataset
-#&gt; model 1 2 3 4 5 6 7 8
-#&gt; DFOP-SFO OK OK OK OK OK C OK OK
+#&gt; model 1 2 3 4 5 6 7 8
+#&gt; DFOP-SFO OK OK OK OK OK OK OK OK
#&gt;
#&gt; OK: No warnings
-#&gt; C: Optimisation did not converge:
-#&gt; iteration limit reached without convergence (10)
#&gt;
#&gt; Mean fitted parameters:
#&gt; parent_0 log_k_m1 f_parent_qlogis log_k1 log_k2
-#&gt; 100.606304 -8.759216 -0.002001 -3.350539 -3.989549
+#&gt; 100.674757 -8.761916 -0.004347 -3.348812 -3.986853
#&gt; g_qlogis
-#&gt; -0.090353 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_mixed</span><span class='op'>)</span>
+#&gt; -0.087392 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_mixed</span><span class='op'>)</span>
</div><div class='img'><img src='mixed-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># }</span>
</div></pre>
</div>
diff --git a/docs/dev/reference/mkin_long_to_wide.html b/docs/dev/reference/mkin_long_to_wide.html
index 28a37800..6246fbe2 100644
--- a/docs/dev/reference/mkin_long_to_wide.html
+++ b/docs/dev/reference/mkin_long_to_wide.html
@@ -74,7 +74,7 @@ variable and several dependent variables as columns." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -123,7 +123,7 @@ variable and several dependent variables as columns." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/mkin_wide_to_long.html b/docs/dev/reference/mkin_wide_to_long.html
index f085d162..f2bf00c1 100644
--- a/docs/dev/reference/mkin_wide_to_long.html
+++ b/docs/dev/reference/mkin_wide_to_long.html
@@ -74,7 +74,7 @@ mkinfit." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -123,7 +123,7 @@ mkinfit." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/mkinds.html b/docs/dev/reference/mkinds.html
index 907f8ad3..0d1de46d 100644
--- a/docs/dev/reference/mkinds.html
+++ b/docs/dev/reference/mkinds.html
@@ -75,7 +75,7 @@ provided by this package come as mkinds objects nevertheless." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -124,7 +124,7 @@ provided by this package come as mkinds objects nevertheless." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/mkindsg.html b/docs/dev/reference/mkindsg.html
index 3e4dfb39..67c6e5df 100644
--- a/docs/dev/reference/mkindsg.html
+++ b/docs/dev/reference/mkindsg.html
@@ -75,7 +75,7 @@ dataset if no data are supplied." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -124,7 +124,7 @@ dataset if no data are supplied." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -239,12 +239,12 @@ or covariates like soil pH).</p></dd>
<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>mdsg</span><span class='op'>)</span>
</div><div class='output co'>#&gt; &lt;mkindsg&gt; holding 5 mkinds objects
#&gt; Title $title: Experimental X
-#&gt; Occurrene of observed compounds $observed_n:
+#&gt; Occurrence of observed compounds $observed_n:
#&gt; parent A1
#&gt; 5 5 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>mdsg</span>, verbose <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
</div><div class='output co'>#&gt; &lt;mkindsg&gt; holding 5 mkinds objects
#&gt; Title $title: Experimental X
-#&gt; Occurrene of observed compounds $observed_n:
+#&gt; Occurrence of observed compounds $observed_n:
#&gt; parent A1
#&gt; 5 5
#&gt;
@@ -290,7 +290,7 @@ or covariates like soil pH).</p></dd>
#&gt; Observation unit: \%AR </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>mdsg</span>, verbose <span class='op'>=</span> <span class='cn'>TRUE</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
</div><div class='output co'>#&gt; &lt;mkindsg&gt; holding 5 mkinds objects
#&gt; Title $title: Experimental X
-#&gt; Occurrene of observed compounds $observed_n:
+#&gt; Occurrence of observed compounds $observed_n:
#&gt; parent A1
#&gt; 5 5
#&gt;
diff --git a/docs/dev/reference/mkinerrmin.html b/docs/dev/reference/mkinerrmin.html
index 1cff040d..94c575cb 100644
--- a/docs/dev/reference/mkinerrmin.html
+++ b/docs/dev/reference/mkinerrmin.html
@@ -73,7 +73,7 @@ the chi-squared test as defined in the FOCUS kinetics report from 2006." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ the chi-squared test as defined in the FOCUS kinetics report from 2006." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/mkinerrplot.html b/docs/dev/reference/mkinerrplot.html
index 2324b968..7f1fd048 100644
--- a/docs/dev/reference/mkinerrplot.html
+++ b/docs/dev/reference/mkinerrplot.html
@@ -76,7 +76,7 @@ using the argument show_errplot = TRUE." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -125,7 +125,7 @@ using the argument show_errplot = TRUE." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/mkinfit-1.png b/docs/dev/reference/mkinfit-1.png
index eed9064f..de2a90a9 100644
--- a/docs/dev/reference/mkinfit-1.png
+++ b/docs/dev/reference/mkinfit-1.png
Binary files differ
diff --git a/docs/dev/reference/mkinfit.html b/docs/dev/reference/mkinfit.html
index 6ae7b343..5910038f 100644
--- a/docs/dev/reference/mkinfit.html
+++ b/docs/dev/reference/mkinfit.html
@@ -80,7 +80,7 @@ likelihood function." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -431,17 +431,17 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6
<span class='co'># Use shorthand notation for parent only degradation</span>
<span class='va'>fit</span> <span class='op'>&lt;-</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='st'>"FOMC"</span>, <span class='va'>FOCUS_2006_C</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; mkin version used for fitting: 0.9.50.4
+</div><div class='output co'>#&gt; mkin version used for fitting: 1.0.3.9000
#&gt; R version used for fitting: 4.0.3
-#&gt; Date of fit: Mon Jan 11 12:41:45 2021
-#&gt; Date of summary: Mon Jan 11 12:41:45 2021
+#&gt; Date of fit: Mon Feb 15 17:09:39 2021
+#&gt; Date of summary: Mon Feb 15 17:09:39 2021
#&gt;
#&gt; Equations:
#&gt; d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
#&gt;
#&gt; Model predictions using solution type analytical
#&gt;
-#&gt; Fitted using 222 model solutions performed in 0.046 s
+#&gt; Fitted using 222 model solutions performed in 0.045 s
#&gt;
#&gt; Error model: Constant variance
#&gt;
@@ -476,10 +476,10 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6
#&gt;
#&gt; Parameter correlation:
#&gt; parent_0 log_alpha log_beta sigma
-#&gt; parent_0 1.000e+00 -1.565e-01 -3.142e-01 4.758e-08
-#&gt; log_alpha -1.565e-01 1.000e+00 9.564e-01 1.007e-07
-#&gt; log_beta -3.142e-01 9.564e-01 1.000e+00 8.568e-08
-#&gt; sigma 4.758e-08 1.007e-07 8.568e-08 1.000e+00
+#&gt; parent_0 1.000e+00 -1.565e-01 -3.142e-01 4.772e-08
+#&gt; log_alpha -1.565e-01 1.000e+00 9.564e-01 1.005e-07
+#&gt; log_beta -3.142e-01 9.564e-01 1.000e+00 8.541e-08
+#&gt; sigma 4.772e-08 1.005e-07 8.541e-08 1.000e+00
#&gt;
#&gt; Backtransformed parameters:
#&gt; Confidence intervals for internally transformed parameters are asymmetric.
@@ -548,7 +548,7 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6
#&gt; ---
#&gt; Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</div><div class='input'><span class='fu'><a href='parms.html'>parms</a></span><span class='op'>(</span><span class='va'>fit.tc</span><span class='op'>)</span>
</div><div class='output co'>#&gt; parent_0 k_parent k_m1 f_parent_to_m1 sigma_low
-#&gt; 1.007343e+02 1.005562e-01 5.166712e-03 5.083933e-01 3.049884e-03
+#&gt; 1.007343e+02 1.005562e-01 5.166712e-03 5.083933e-01 3.049883e-03
#&gt; rsd_high
#&gt; 7.928118e-02 </div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>fit.tc</span><span class='op'>)</span>
</div><div class='output co'>#&gt; $ff
@@ -574,10 +574,10 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6
analytical <span class='op'>=</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>,
solution_type <span class='op'>=</span> <span class='st'>"analytical"</span><span class='op'>)</span><span class='op'>)</span>
<span class='op'>}</span>
-</div><div class='output co'>#&gt; <span class='message'>Loading required package: rbenchmark</span></div><div class='output co'>#&gt; test relative elapsed
-#&gt; 3 analytical 1.000 0.526
-#&gt; 1 deSolve_compiled 1.903 1.001
-#&gt; 2 eigen 2.308 1.214</div><div class='input'><span class='co'># }</span>
+</div><div class='output co'>#&gt; test relative elapsed
+#&gt; 3 analytical 1.000 0.563
+#&gt; 1 deSolve_compiled 1.702 0.958
+#&gt; 2 eigen 2.597 1.462</div><div class='input'><span class='co'># }</span>
<span class='co'># Use stepwise fitting, using optimised parameters from parent only fit, FOMC-SFO</span>
<span class='co'># \dontrun{</span>
@@ -587,22 +587,21 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6
</div><div class='output co'>#&gt; <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='va'>fit.FOMC_SFO</span> <span class='op'>&lt;-</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='va'>FOMC_SFO</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='co'># Again, we get a warning and try a more sophisticated error model</span>
<span class='va'>fit.FOMC_SFO.tc</span> <span class='op'>&lt;-</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='va'>FOMC_SFO</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: Optimisation did not converge:</span>
-#&gt; <span class='warning'>iteration limit reached without convergence (10)</span></div><div class='input'><span class='co'># This model has a higher likelihood, but not significantly so</span>
+<span class='co'># This model has a higher likelihood, but not significantly so</span>
<span class='fu'><a href='https://rdrr.io/pkg/lmtest/man/lrtest.html'>lrtest</a></span><span class='op'>(</span><span class='va'>fit.tc</span>, <span class='va'>fit.FOMC_SFO.tc</span><span class='op'>)</span>
</div><div class='output co'>#&gt; Likelihood ratio test
#&gt;
#&gt; Model 1: FOMC_SFO with error model tc and fixed parameter(s) m1_0
#&gt; Model 2: SFO_SFO with error model tc and fixed parameter(s) m1_0
#&gt; #Df LogLik Df Chisq Pr(&gt;Chisq)
-#&gt; 1 7 -64.870
-#&gt; 2 6 -64.983 -1 0.2259 0.6346</div><div class='input'><span class='co'># Also, the missing standard error for log_beta and the t-tests for alpha</span>
+#&gt; 1 7 -64.829
+#&gt; 2 6 -64.983 -1 0.3075 0.5792</div><div class='input'><span class='co'># Also, the missing standard error for log_beta and the t-tests for alpha</span>
<span class='co'># and beta indicate overparameterisation</span>
<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.FOMC_SFO.tc</span>, data <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#&gt; <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#&gt; <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#&gt; <span class='warning'>Warning: diag(.) had 0 or NA entries; non-finite result is doubtful</span></div><div class='output co'>#&gt; mkin version used for fitting: 0.9.50.4
+</div><div class='output co'>#&gt; <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#&gt; <span class='warning'>Warning: NaNs produced</span></div><div class='output co'>#&gt; <span class='warning'>Warning: diag(.) had 0 or NA entries; non-finite result is doubtful</span></div><div class='output co'>#&gt; mkin version used for fitting: 1.0.3.9000
#&gt; R version used for fitting: 4.0.3
-#&gt; Date of fit: Mon Jan 11 12:41:56 2021
-#&gt; Date of summary: Mon Jan 11 12:41:56 2021
+#&gt; Date of fit: Mon Feb 15 17:09:50 2021
+#&gt; Date of summary: Mon Feb 15 17:09:50 2021
#&gt;
#&gt; Equations:
#&gt; d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -611,12 +610,12 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6
#&gt;
#&gt; Model predictions using solution type deSolve
#&gt;
-#&gt; Fitted using 4273 model solutions performed in 3.456 s
+#&gt; Fitted using 3729 model solutions performed in 2.815 s
#&gt;
#&gt; Error model: Two-component variance function
#&gt;
#&gt; Error model algorithm: d_3
-#&gt; Three-step fitting yielded a higher likelihood than direct fitting
+#&gt; Direct fitting and three-step fitting yield approximately the same likelihood
#&gt;
#&gt; Starting values for parameters to be optimised:
#&gt; value type
@@ -642,72 +641,67 @@ doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6
#&gt; value type
#&gt; m1_0 0 state
#&gt;
-#&gt;
-#&gt; Warning(s):
-#&gt; Optimisation did not converge:
-#&gt; iteration limit reached without convergence (10)
-#&gt;
#&gt; Results:
#&gt;
-#&gt; AIC BIC logLik
-#&gt; 143.7396 155.2027 -64.86982
+#&gt; AIC BIC logLik
+#&gt; 143.658 155.1211 -64.82902
#&gt;
#&gt; Optimised, transformed parameters with symmetric confidence intervals:
-#&gt; Estimate Std. Error Lower Upper
-#&gt; parent_0 1.016e+02 1.90600 97.7400 105.5000
-#&gt; log_k_m1 -5.285e+00 0.09286 -5.4740 -5.0950
-#&gt; f_parent_qlogis 6.482e-04 0.06164 -0.1251 0.1264
-#&gt; log_alpha 5.467e+00 NaN NaN NaN
-#&gt; log_beta 7.750e+00 NaN NaN NaN
-#&gt; sigma_low 0.000e+00 NaN NaN NaN
-#&gt; rsd_high 7.989e-02 NaN NaN NaN
+#&gt; Estimate Std. Error Lower Upper
+#&gt; parent_0 101.600000 2.6400000 96.240000 107.000000
+#&gt; log_k_m1 -5.284000 0.0929100 -5.474000 -5.095000
+#&gt; f_parent_qlogis 0.001426 0.0767000 -0.155000 0.157800
+#&gt; log_alpha 5.522000 0.0077320 5.506000 5.538000
+#&gt; log_beta 7.806000 NaN NaN NaN
+#&gt; sigma_low 0.002488 0.0002431 0.001992 0.002984
+#&gt; rsd_high 0.079210 0.0093280 0.060180 0.098230
#&gt;
#&gt; Parameter correlation:
-#&gt; parent_0 log_k_m1 f_parent_qlogis log_alpha log_beta
-#&gt; parent_0 1.0000000 -0.0002167 -0.6060 NaN NaN
-#&gt; log_k_m1 -0.0002167 1.0000000 0.5474 NaN NaN
-#&gt; f_parent_qlogis -0.6060320 0.5474423 1.0000 NaN NaN
-#&gt; log_alpha NaN NaN NaN 1 NaN
-#&gt; log_beta NaN NaN NaN NaN 1
-#&gt; sigma_low NaN NaN NaN NaN NaN
-#&gt; rsd_high NaN NaN NaN NaN NaN
-#&gt; sigma_low rsd_high
-#&gt; parent_0 NaN NaN
-#&gt; log_k_m1 NaN NaN
-#&gt; f_parent_qlogis NaN NaN
-#&gt; log_alpha NaN NaN
-#&gt; log_beta NaN NaN
-#&gt; sigma_low 1 NaN
-#&gt; rsd_high NaN 1
+#&gt; parent_0 log_k_m1 f_parent_qlogis log_alpha log_beta
+#&gt; parent_0 1.000000 -0.095226 -0.76678 0.70544 NaN
+#&gt; log_k_m1 -0.095226 1.000000 0.51432 -0.14387 NaN
+#&gt; f_parent_qlogis -0.766780 0.514321 1.00000 -0.61396 NaN
+#&gt; log_alpha 0.705444 -0.143872 -0.61396 1.00000 NaN
+#&gt; log_beta NaN NaN NaN NaN 1
+#&gt; sigma_low 0.016073 0.001586 0.01548 5.87007 NaN
+#&gt; rsd_high 0.006626 -0.011700 -0.05357 0.04849 NaN
+#&gt; sigma_low rsd_high
+#&gt; parent_0 0.016073 0.006626
+#&gt; log_k_m1 0.001586 -0.011700
+#&gt; f_parent_qlogis 0.015476 -0.053566
+#&gt; log_alpha 5.870075 0.048487
+#&gt; log_beta NaN NaN
+#&gt; sigma_low 1.000000 -0.652558
+#&gt; rsd_high -0.652558 1.000000
#&gt;
#&gt; Backtransformed parameters:
#&gt; Confidence intervals for internally transformed parameters are asymmetric.
#&gt; t-test (unrealistically) based on the assumption of normal distribution
#&gt; for estimators of untransformed parameters.
#&gt; Estimate t value Pr(&gt;t) Lower Upper
-#&gt; parent_0 1.016e+02 32.5400 7.812e-26 97.740000 1.055e+02
-#&gt; k_m1 5.069e-03 10.0400 1.448e-11 0.004194 6.126e-03
-#&gt; f_parent_to_m1 5.002e-01 20.7300 5.001e-20 0.468800 5.315e-01
-#&gt; alpha 2.367e+02 0.6205 2.697e-01 NA NA
-#&gt; beta 2.322e+03 0.6114 2.727e-01 NA NA
-#&gt; sigma_low 0.000e+00 NaN NaN NaN NaN
-#&gt; rsd_high 7.989e-02 8.6630 4.393e-10 NaN NaN
+#&gt; parent_0 1.016e+02 32.7800 6.311e-26 9.624e+01 1.070e+02
+#&gt; k_m1 5.072e-03 10.1200 1.216e-11 4.196e-03 6.130e-03
+#&gt; f_parent_to_m1 5.004e-01 20.8300 4.317e-20 4.613e-01 5.394e-01
+#&gt; alpha 2.502e+02 0.5624 2.889e-01 2.463e+02 2.542e+02
+#&gt; beta 2.455e+03 0.5549 2.915e-01 NA NA
+#&gt; sigma_low 2.488e-03 0.4843 3.158e-01 1.992e-03 2.984e-03
+#&gt; rsd_high 7.921e-02 8.4300 8.001e-10 6.018e-02 9.823e-02
#&gt;
#&gt; FOCUS Chi2 error levels in percent:
#&gt; err.min n.optim df
-#&gt; All data 6.782 5 14
-#&gt; parent 7.142 3 6
-#&gt; m1 4.639 2 8
+#&gt; All data 6.781 5 14
+#&gt; parent 7.141 3 6
+#&gt; m1 4.640 2 8
#&gt;
#&gt; Resulting formation fractions:
#&gt; ff
-#&gt; parent_m1 0.5002
-#&gt; parent_sink 0.4998
+#&gt; parent_m1 0.5004
+#&gt; parent_sink 0.4996
#&gt;
#&gt; Estimated disappearance times:
-#&gt; DT50 DT90 DT50back
-#&gt; parent 6.81 22.7 6.833
-#&gt; m1 136.74 454.2 NA</div><div class='input'>
+#&gt; DT50 DT90 DT50back
+#&gt; parent 6.812 22.7 6.834
+#&gt; m1 136.661 454.0 NA</div><div class='input'>
<span class='co'># We can easily use starting parameters from the parent only fit (only for illustration)</span>
<span class='va'>fit.FOMC</span> <span class='op'>=</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='st'>"FOMC"</span>, <span class='va'>FOCUS_2006_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span>
<span class='va'>fit.FOMC_SFO</span> <span class='op'>&lt;-</span> <span class='fu'>mkinfit</span><span class='op'>(</span><span class='va'>FOMC_SFO</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>,
diff --git a/docs/dev/reference/mkinmod.html b/docs/dev/reference/mkinmod.html
index 9a7dac6f..60a0af96 100644
--- a/docs/dev/reference/mkinmod.html
+++ b/docs/dev/reference/mkinmod.html
@@ -44,9 +44,7 @@
variable, specifying the corresponding submodel as well as outgoing pathways
(see examples).
Print mkinmod objects in a way that the user finds his way to get to its
-components.
-This is a convenience function to set up the lists used as arguments for
-mkinmod." />
+components." />
<meta name="robots" content="noindex">
@@ -78,7 +76,7 @@ mkinmod." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
</span>
</div>
@@ -127,7 +125,7 @@ mkinmod." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -155,8 +153,6 @@ variable, specifying the corresponding submodel as well as outgoing pathways
(see examples).</p>
<p>Print mkinmod objects in a way that the user finds his way to get to its
components.</p>
-<p>This is a convenience function to set up the lists used as arguments for
-<code>mkinmod</code>.</p>
</div>
<pre class="usage"><span class='fu'>mkinmod</span><span class='op'>(</span>
@@ -348,7 +344,7 @@ Evaluating and Calculating Degradation Kinetics in Environmental Media</p>
parent <span class='op'>=</span> <span class='fu'>mkinsub</span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"m1"</span>, full_name <span class='op'>=</span> <span class='st'>"Test compound"</span><span class='op'>)</span>,
m1 <span class='op'>=</span> <span class='fu'>mkinsub</span><span class='op'>(</span><span class='st'>"SFO"</span>, full_name <span class='op'>=</span> <span class='st'>"Metabolite M1"</span><span class='op'>)</span>,
name <span class='op'>=</span> <span class='st'>"SFO_SFO"</span>, dll_dir <span class='op'>=</span> <span class='va'>DLL_dir</span>, unload <span class='op'>=</span> <span class='cn'>TRUE</span>, overwrite <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'>Copied DLL from /tmp/Rtmpy4eiQb/file554e573761a7.so to /home/jranke/.local/share/mkin/SFO_SFO.so</span></div><div class='input'><span class='co'># Now we can save the model and restore it in a new session</span>
+</div><div class='output co'>#&gt; <span class='message'>Copied DLL from /tmp/RtmpWsX48Z/file1029f864aada00.so to /home/jranke/.local/share/mkin/SFO_SFO.so</span></div><div class='input'><span class='co'># Now we can save the model and restore it in a new session</span>
<span class='fu'><a href='https://rdrr.io/r/base/readRDS.html'>saveRDS</a></span><span class='op'>(</span><span class='va'>SFO_SFO.2</span>, file <span class='op'>=</span> <span class='st'>"~/SFO_SFO.rds"</span><span class='op'>)</span>
<span class='co'># Terminate the R session here if you would like to check, and then do</span>
<span class='kw'><a href='https://rdrr.io/r/base/library.html'>library</a></span><span class='op'>(</span><span class='va'><a href='https://pkgdown.jrwb.de/mkin/'>mkin</a></span><span class='op'>)</span>
@@ -397,7 +393,7 @@ Evaluating and Calculating Degradation Kinetics in Environmental Media</p>
#&gt; })
#&gt; return(predicted)
#&gt; }
-#&gt; &lt;environment: 0x55555cac8d00&gt;</div><div class='input'>
+#&gt; &lt;environment: 0x55555cc38878&gt;</div><div class='input'>
<span class='co'># If we have several parallel metabolites</span>
<span class='co'># (compare tests/testthat/test_synthetic_data_for_UBA_2014.R)</span>
<span class='va'>m_synth_DFOP_par</span> <span class='op'>&lt;-</span> <span class='fu'>mkinmod</span><span class='op'>(</span>
diff --git a/docs/dev/reference/mkinparplot-1.png b/docs/dev/reference/mkinparplot-1.png
index dcf3e4b5..c9ed49eb 100644
--- a/docs/dev/reference/mkinparplot-1.png
+++ b/docs/dev/reference/mkinparplot-1.png
Binary files differ
diff --git a/docs/dev/reference/mkinparplot.html b/docs/dev/reference/mkinparplot.html
index 0a989ef9..bac6e71c 100644
--- a/docs/dev/reference/mkinparplot.html
+++ b/docs/dev/reference/mkinparplot.html
@@ -73,7 +73,7 @@ mkinfit." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ mkinfit." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -176,7 +176,8 @@ effect, namely to produce a plot.</p>
phenol <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, to <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"anisole"</span><span class='op'>)</span><span class='op'>)</span>,
anisole <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, use_of_ff <span class='op'>=</span> <span class='st'>"max"</span><span class='op'>)</span>
</div><div class='output co'>#&gt; <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='va'>fit</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>model</span>, <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>mccall81_245T</span>, <span class='va'>soil</span> <span class='op'>==</span> <span class='st'>"Commerce"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='fu'>mkinparplot</span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='output co'>#&gt; <span class='warning'>Warning: Optimisation did not converge:</span>
+#&gt; <span class='warning'>false convergence (8)</span></div><div class='input'><span class='fu'>mkinparplot</span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span>
</div><div class='img'><img src='mkinparplot-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># }</span>
</div></pre>
</div>
diff --git a/docs/dev/reference/mkinplot.html b/docs/dev/reference/mkinplot.html
index 417c8c73..120bddb3 100644
--- a/docs/dev/reference/mkinplot.html
+++ b/docs/dev/reference/mkinplot.html
@@ -73,7 +73,7 @@ plot.mkinfit." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ plot.mkinfit." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/mkinpredict.html b/docs/dev/reference/mkinpredict.html
index 3221fc23..1ebaecb5 100644
--- a/docs/dev/reference/mkinpredict.html
+++ b/docs/dev/reference/mkinpredict.html
@@ -74,7 +74,7 @@ kinetic parameters and initial values for the state variables." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -123,7 +123,7 @@ kinetic parameters and initial values for the state variables." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -408,10 +408,10 @@ as these always return mapped output.</p></td>
solution_type <span class='op'>=</span> <span class='st'>"analytical"</span>, use_compiled <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span><span class='op'>[</span><span class='fl'>201</span>,<span class='op'>]</span><span class='op'>)</span>
<span class='op'>}</span>
</div><div class='output co'>#&gt; test relative elapsed
+#&gt; 2 deSolve_compiled 1.0 0.005
#&gt; 4 analytical 1.0 0.005
-#&gt; 2 deSolve_compiled 1.2 0.006
-#&gt; 1 eigen 4.0 0.020
-#&gt; 3 deSolve 44.2 0.221</div><div class='input'>
+#&gt; 1 eigen 4.4 0.022
+#&gt; 3 deSolve 46.8 0.234</div><div class='input'>
<span class='co'># \dontrun{</span>
<span class='co'># Predict from a fitted model</span>
<span class='va'>f</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_2006_C</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
diff --git a/docs/dev/reference/mkinresplot.html b/docs/dev/reference/mkinresplot.html
index 4b2f6bea..30377f2c 100644
--- a/docs/dev/reference/mkinresplot.html
+++ b/docs/dev/reference/mkinresplot.html
@@ -75,7 +75,7 @@ argument show_residuals = TRUE." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -124,7 +124,7 @@ argument show_residuals = TRUE." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -242,7 +242,7 @@ lines of the mkinfit object, and <code><a href='plot.mkinfit.html'>plot_res</a><
combining the plot of the fit and the residual plot.</p></div>
<h2 class="hasAnchor" id="author"><a class="anchor" href="#author"></a>Author</h2>
- <p>Johannes Ranke</p>
+ <p>Johannes Ranke and Katrin Lindenberger</p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><div class='input'>
diff --git a/docs/dev/reference/mmkin-1.png b/docs/dev/reference/mmkin-1.png
index 7b7da90a..701a6d6a 100644
--- a/docs/dev/reference/mmkin-1.png
+++ b/docs/dev/reference/mmkin-1.png
Binary files differ
diff --git a/docs/dev/reference/mmkin-2.png b/docs/dev/reference/mmkin-2.png
index ce2b2af4..5277b389 100644
--- a/docs/dev/reference/mmkin-2.png
+++ b/docs/dev/reference/mmkin-2.png
Binary files differ
diff --git a/docs/dev/reference/mmkin-3.png b/docs/dev/reference/mmkin-3.png
index bb96f1b2..2659cd61 100644
--- a/docs/dev/reference/mmkin-3.png
+++ b/docs/dev/reference/mmkin-3.png
Binary files differ
diff --git a/docs/dev/reference/mmkin-4.png b/docs/dev/reference/mmkin-4.png
index 351b21aa..ae16ee79 100644
--- a/docs/dev/reference/mmkin-4.png
+++ b/docs/dev/reference/mmkin-4.png
Binary files differ
diff --git a/docs/dev/reference/mmkin-5.png b/docs/dev/reference/mmkin-5.png
index c1c05eea..2b9dc831 100644
--- a/docs/dev/reference/mmkin-5.png
+++ b/docs/dev/reference/mmkin-5.png
Binary files differ
diff --git a/docs/dev/reference/mmkin.html b/docs/dev/reference/mmkin.html
index 651eb9a6..c385bbf6 100644
--- a/docs/dev/reference/mmkin.html
+++ b/docs/dev/reference/mmkin.html
@@ -75,7 +75,7 @@ datasets specified in its first two arguments." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>
</span>
</div>
@@ -124,7 +124,7 @@ datasets specified in its first two arguments." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -155,10 +155,13 @@ datasets specified in its first two arguments.</p>
<pre class="usage"><span class='fu'>mmkin</span><span class='op'>(</span>
models <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span><span class='op'>)</span>,
<span class='va'>datasets</span>,
- cores <span class='op'>=</span> <span class='fu'>parallel</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/r/parallel/detectCores.html'>detectCores</a></span><span class='op'>(</span><span class='op'>)</span>,
+ cores <span class='op'>=</span> <span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/Sys.info.html'>Sys.info</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>[</span><span class='st'>"sysname"</span><span class='op'>]</span> <span class='op'>==</span> <span class='st'>"Windows"</span><span class='op'>)</span> <span class='fl'>1</span> <span class='kw'>else</span> <span class='fu'>parallel</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/r/parallel/detectCores.html'>detectCores</a></span><span class='op'>(</span><span class='op'>)</span>,
cluster <span class='op'>=</span> <span class='cn'>NULL</span>,
<span class='va'>...</span>
-<span class='op'>)</span></pre>
+<span class='op'>)</span>
+
+<span class='co'># S3 method for mmkin</span>
+<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>x</span>, <span class='va'>...</span><span class='op'>)</span></pre>
<h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
<table class="ref-arguments">
@@ -180,7 +183,8 @@ data for <code><a href='mkinfit.html'>mkinfit</a></code>.</p></td>
is only used when the <code>cluster</code> argument is <code>NULL</code>. On Windows
machines, cores &gt; 1 is not supported, you need to use the <code>cluster</code>
argument to use multiple logical processors. Per default, all cores
-detected by <code><a href='https://rdrr.io/r/parallel/detectCores.html'>parallel::detectCores()</a></code> are used.</p></td>
+detected by <code><a href='https://rdrr.io/r/parallel/detectCores.html'>parallel::detectCores()</a></code> are used, except on Windows where
+the default is 1.</p></td>
</tr>
<tr>
<th>cluster</th>
@@ -189,7 +193,11 @@ for parallel execution.</p></td>
</tr>
<tr>
<th>...</th>
- <td><p>Further arguments that will be passed to <code><a href='mkinfit.html'>mkinfit</a></code>.</p></td>
+ <td><p>Not used.</p></td>
+ </tr>
+ <tr>
+ <th>x</th>
+ <td><p>An mmkin object.</p></td>
</tr>
</table>
@@ -227,19 +235,19 @@ plotting.</p></div>
<span class='va'>time_default</span>
</div><div class='output co'>#&gt; user system elapsed
-#&gt; 4.968 0.427 1.342 </div><div class='input'><span class='va'>time_1</span>
+#&gt; 4.771 0.576 1.803 </div><div class='input'><span class='va'>time_1</span>
</div><div class='output co'>#&gt; user system elapsed
-#&gt; 5.365 0.000 5.368 </div><div class='input'>
+#&gt; 5.779 0.000 5.781 </div><div class='input'>
<span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>fits.0</span><span class='op'>[[</span><span class='st'>"SFO_lin"</span>, <span class='fl'>2</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span>
</div><div class='output co'>#&gt; $ff
#&gt; parent_M1 parent_sink M1_M2 M1_sink
-#&gt; 0.7340478 0.2659522 0.7505687 0.2494313
+#&gt; 0.7340481 0.2659519 0.7505683 0.2494317
#&gt;
#&gt; $distimes
#&gt; DT50 DT90
#&gt; parent 0.877769 2.915885
-#&gt; M1 2.325746 7.725960
-#&gt; M2 33.720083 112.015691
+#&gt; M1 2.325744 7.725956
+#&gt; M2 33.720100 112.015749
#&gt; </div><div class='input'>
<span class='co'># plot.mkinfit handles rows or columns of mmkin result objects</span>
<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>fits.0</span><span class='op'>[</span><span class='fl'>1</span>, <span class='op'>]</span><span class='op'>)</span>
@@ -266,12 +274,10 @@ plotting.</p></div>
#&gt; dataset
#&gt; model A B C D
#&gt; SFO OK OK OK OK
-#&gt; FOMC C OK OK OK
+#&gt; FOMC OK OK OK OK
#&gt; DFOP OK OK OK OK
#&gt;
-#&gt; OK: No warnings
-#&gt; C: Optimisation did not converge:
-#&gt; false convergence (8)</div><div class='input'><span class='co'># We get false convergence for the FOMC fit to FOCUS_2006_A because this</span>
+#&gt; OK: No warnings</div><div class='input'><span class='co'># We get false convergence for the FOMC fit to FOCUS_2006_A because this</span>
<span class='co'># dataset is really SFO, and the FOMC fit is overparameterised</span>
<span class='fu'>stopCluster</span><span class='op'>(</span><span class='va'>cl</span><span class='op'>)</span>
<span class='co'># }</span>
diff --git a/docs/dev/reference/nafta-1.png b/docs/dev/reference/nafta-1.png
index 4d823d77..4f0d7833 100644
--- a/docs/dev/reference/nafta-1.png
+++ b/docs/dev/reference/nafta-1.png
Binary files differ
diff --git a/docs/dev/reference/nafta.html b/docs/dev/reference/nafta.html
index bbc8797d..6fb797a5 100644
--- a/docs/dev/reference/nafta.html
+++ b/docs/dev/reference/nafta.html
@@ -76,7 +76,7 @@ order of increasing model complexity, i.e. SFO, then IORE, and finally DFOP." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -125,7 +125,7 @@ order of increasing model complexity, i.e. SFO, then IORE, and finally DFOP." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/nlme-1.png b/docs/dev/reference/nlme-1.png
index 193722c7..365aaef0 100644
--- a/docs/dev/reference/nlme-1.png
+++ b/docs/dev/reference/nlme-1.png
Binary files differ
diff --git a/docs/dev/reference/nlme-2.png b/docs/dev/reference/nlme-2.png
index c0fb6dcf..40841404 100644
--- a/docs/dev/reference/nlme-2.png
+++ b/docs/dev/reference/nlme-2.png
Binary files differ
diff --git a/docs/dev/reference/nlme.html b/docs/dev/reference/nlme.html
index b3e88428..5c88b69d 100644
--- a/docs/dev/reference/nlme.html
+++ b/docs/dev/reference/nlme.html
@@ -75,7 +75,7 @@ datasets. They are used internally by the nlme.mmkin() method." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
</span>
</div>
@@ -124,7 +124,7 @@ datasets. They are used internally by the nlme.mmkin() method." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -155,8 +155,6 @@ datasets. They are used internally by the <code><a href='nlme.mmkin.html'>nlme.m
<pre class="usage"><span class='fu'>nlme_function</span><span class='op'>(</span><span class='va'>object</span><span class='op'>)</span>
-<span class='fu'>mean_degparms</span><span class='op'>(</span><span class='va'>object</span>, random <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>
-
<span class='fu'>nlme_data</span><span class='op'>(</span><span class='va'>object</span><span class='op'>)</span></pre>
<h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
@@ -166,19 +164,11 @@ datasets. They are used internally by the <code><a href='nlme.mmkin.html'>nlme.m
<th>object</th>
<td><p>An mmkin row object containing several fits of the same model to different datasets</p></td>
</tr>
- <tr>
- <th>random</th>
- <td><p>Should a list with fixed and random effects be returned?</p></td>
- </tr>
</table>
<h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
<p>A function that can be used with nlme</p>
-<p>If random is FALSE (default), a named vector containing mean values
-of the fitted degradation model parameters. If random is TRUE, a list with
-fixed and random effects, in the format required by the start argument of
-nlme for the case of a single grouping variable ds.</p>
<p>A <code><a href='https://rdrr.io/pkg/nlme/man/groupedData.html'>groupedData</a></code> object</p>
<h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2>
@@ -206,12 +196,12 @@ nlme for the case of a single grouping variable ds.</p>
<span class='va'>ds</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>d1 <span class='op'>=</span> <span class='va'>d1</span>, d2 <span class='op'>=</span> <span class='va'>d2</span>, d3 <span class='op'>=</span> <span class='va'>d3</span><span class='op'>)</span>
<span class='va'>f</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='va'>ds</span>, cores <span class='op'>=</span> <span class='fl'>1</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-<span class='va'>mean_dp</span> <span class='op'>&lt;-</span> <span class='fu'>mean_degparms</span><span class='op'>(</span><span class='va'>f</span><span class='op'>)</span>
+<span class='va'>mean_dp</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mean_degparms.html'>mean_degparms</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>)</span>
<span class='va'>grouped_data</span> <span class='op'>&lt;-</span> <span class='fu'>nlme_data</span><span class='op'>(</span><span class='va'>f</span><span class='op'>)</span>
<span class='va'>nlme_f</span> <span class='op'>&lt;-</span> <span class='fu'>nlme_function</span><span class='op'>(</span><span class='va'>f</span><span class='op'>)</span>
<span class='co'># These assignments are necessary for these objects to be</span>
<span class='co'># visible to nlme and augPred when evaluation is done by</span>
-<span class='co'># pkgdown to generated the html docs.</span>
+<span class='co'># pkgdown to generate the html docs.</span>
<span class='fu'><a href='https://rdrr.io/r/base/assign.html'>assign</a></span><span class='op'>(</span><span class='st'>"nlme_f"</span>, <span class='va'>nlme_f</span>, <span class='fu'><a href='https://rdrr.io/r/base/environment.html'>globalenv</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/base/assign.html'>assign</a></span><span class='op'>(</span><span class='st'>"grouped_data"</span>, <span class='va'>grouped_data</span>, <span class='fu'><a href='https://rdrr.io/r/base/environment.html'>globalenv</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>)</span>
@@ -224,37 +214,37 @@ nlme for the case of a single grouping variable ds.</p>
<span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>m_nlme</span><span class='op'>)</span>
</div><div class='output co'>#&gt; Nonlinear mixed-effects model fit by maximum likelihood
#&gt; Model: value ~ nlme_f(name, time, parent_0, log_k_parent_sink)
-#&gt; Data: grouped_data
+#&gt; Data: grouped_data
#&gt; AIC BIC logLik
-#&gt; 252.7798 262.1358 -121.3899
+#&gt; 300.6824 310.2426 -145.3412
#&gt;
#&gt; Random effects:
#&gt; Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1)
#&gt; Level: ds
#&gt; Structure: Diagonal
-#&gt; parent_0 log_k_parent_sink Residual
-#&gt; StdDev: 0.0006768135 0.6800777 2.489397
+#&gt; parent_0 log_k_parent_sink Residual
+#&gt; StdDev: 1.697361 0.6801209 3.666073
#&gt;
-#&gt; Fixed effects: parent_0 + log_k_parent_sink ~ 1
-#&gt; Value Std.Error DF t-value p-value
-#&gt; parent_0 101.74884 0.6456014 44 157.60321 0
-#&gt; log_k_parent_sink -3.05575 0.4015811 44 -7.60929 0
+#&gt; Fixed effects: parent_0 + log_k_parent_sink ~ 1
+#&gt; Value Std.Error DF t-value p-value
+#&gt; parent_0 100.99378 1.3890416 46 72.70753 0
+#&gt; log_k_parent_sink -3.07521 0.4018589 46 -7.65246 0
#&gt; Correlation:
#&gt; prnt_0
-#&gt; log_k_parent_sink 0.026
+#&gt; log_k_parent_sink 0.027
#&gt;
#&gt; Standardized Within-Group Residuals:
#&gt; Min Q1 Med Q3 Max
-#&gt; -2.1317488 -0.6878121 0.0828385 0.8592270 2.9529864
+#&gt; -1.9942823 -0.5622565 0.1791579 0.7165038 2.0704781
#&gt;
-#&gt; Number of Observations: 48
+#&gt; Number of Observations: 50
#&gt; Number of Groups: 3 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/pkg/nlme/man/augPred.html'>augPred</a></span><span class='op'>(</span><span class='va'>m_nlme</span>, level <span class='op'>=</span> <span class='fl'>0</span><span class='op'>:</span><span class='fl'>1</span><span class='op'>)</span>, layout <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>3</span>, <span class='fl'>1</span><span class='op'>)</span><span class='op'>)</span>
</div><div class='img'><img src='nlme-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># augPred does not work on fits with more than one state</span>
<span class='co'># variable</span>
<span class='co'>#</span>
<span class='co'># The procedure is greatly simplified by the nlme.mmkin function</span>
<span class='va'>f_nlme</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme</span><span class='op'>)</span>
+<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme</span><span class='op'>)</span>
</div><div class='img'><img src='nlme-2.png' alt='' width='700' height='433' /></div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
diff --git a/docs/dev/reference/nlme.mmkin-1.png b/docs/dev/reference/nlme.mmkin-1.png
index 25bebeca..95adfafb 100644
--- a/docs/dev/reference/nlme.mmkin-1.png
+++ b/docs/dev/reference/nlme.mmkin-1.png
Binary files differ
diff --git a/docs/dev/reference/nlme.mmkin-2.png b/docs/dev/reference/nlme.mmkin-2.png
index c314c149..53b6fc76 100644
--- a/docs/dev/reference/nlme.mmkin-2.png
+++ b/docs/dev/reference/nlme.mmkin-2.png
Binary files differ
diff --git a/docs/dev/reference/nlme.mmkin-3.png b/docs/dev/reference/nlme.mmkin-3.png
index a40b7cad..8df1e73b 100644
--- a/docs/dev/reference/nlme.mmkin-3.png
+++ b/docs/dev/reference/nlme.mmkin-3.png
Binary files differ
diff --git a/docs/dev/reference/nlme.mmkin.html b/docs/dev/reference/nlme.mmkin.html
index a4d7070a..866091ca 100644
--- a/docs/dev/reference/nlme.mmkin.html
+++ b/docs/dev/reference/nlme.mmkin.html
@@ -74,7 +74,7 @@ have been obtained by fitting the same model to a list of datasets." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
</span>
</div>
@@ -123,7 +123,7 @@ have been obtained by fitting the same model to a list of datasets." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -155,11 +155,11 @@ have been obtained by fitting the same model to a list of datasets.</p>
<span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span>
<span class='va'>model</span>,
data <span class='op'>=</span> <span class='st'>"auto"</span>,
- fixed <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>as.list</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='fu'><a href='nlme_function.html'>mean_degparms</a></span><span class='op'>(</span><span class='va'>model</span><span class='op'>)</span><span class='op'>)</span><span class='op'>)</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>el</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/eval.html'>eval</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/parse.html'>parse</a></span><span class='op'>(</span>text <span class='op'>=</span>
+ fixed <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>as.list</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='fu'><a href='mean_degparms.html'>mean_degparms</a></span><span class='op'>(</span><span class='va'>model</span><span class='op'>)</span><span class='op'>)</span><span class='op'>)</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>el</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/eval.html'>eval</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/parse.html'>parse</a></span><span class='op'>(</span>text <span class='op'>=</span>
<span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span><span class='op'>(</span><span class='va'>el</span>, <span class='fl'>1</span>, sep <span class='op'>=</span> <span class='st'>"~"</span><span class='op'>)</span><span class='op'>)</span><span class='op'>)</span><span class='op'>)</span>,
- random <span class='op'>=</span> <span class='fu'>pdDiag</span><span class='op'>(</span><span class='va'>fixed</span><span class='op'>)</span>,
+ random <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/pdDiag.html'>pdDiag</a></span><span class='op'>(</span><span class='va'>fixed</span><span class='op'>)</span>,
<span class='va'>groups</span>,
- start <span class='op'>=</span> <span class='fu'><a href='nlme_function.html'>mean_degparms</a></span><span class='op'>(</span><span class='va'>model</span>, random <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>,
+ start <span class='op'>=</span> <span class='fu'><a href='mean_degparms.html'>mean_degparms</a></span><span class='op'>(</span><span class='va'>model</span>, random <span class='op'>=</span> <span class='cn'>TRUE</span>, test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>,
correlation <span class='op'>=</span> <span class='cn'>NULL</span>,
weights <span class='op'>=</span> <span class='cn'>NULL</span>,
<span class='va'>subset</span>,
@@ -194,10 +194,9 @@ mmkin model are used as fixed parameters</p></td>
</tr>
<tr>
<th>random</th>
- <td><p>If not specified, correlated random effects are set up
-for all optimised degradation model parameters using the log-Cholesky
-parameterization <a href='https://rdrr.io/pkg/nlme/man/pdLogChol.html'>nlme::pdLogChol</a> that is also the default of
-the generic <a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a> method.</p></td>
+ <td><p>If not specified, no correlations between random effects are
+set up for the optimised degradation model parameters. This is
+achieved by using the <a href='https://rdrr.io/pkg/nlme/man/pdDiag.html'>nlme::pdDiag</a> method.</p></td>
</tr>
<tr>
<th>groups</th>
@@ -262,6 +261,12 @@ parameters taken from the mmkin object are used</p></td>
<p>Upon success, a fitted 'nlme.mmkin' object, which is an nlme object
with additional elements. It also inherits from 'mixed.mmkin'.</p>
+ <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
+
+ <p>Note that the convergence of the nlme algorithms depends on the quality
+of the data. In degradation kinetics, we often only have few datasets
+(e.g. data for few soils) and complicated degradation models, which may
+make it impossible to obtain convergence with nlme.</p>
<h2 class="hasAnchor" id="note"><a class="anchor" href="#note"></a>Note</h2>
<p>As the object inherits from <a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme::nlme</a>, there is a wealth of
@@ -284,7 +289,7 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
<span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo</span>, <span class='va'>f_nlme_dfop</span><span class='op'>)</span>
</div><div class='output co'>#&gt; Model df AIC BIC logLik Test L.Ratio p-value
#&gt; f_nlme_sfo 1 5 625.0539 637.5529 -307.5269
-#&gt; f_nlme_dfop 2 9 495.1270 517.6253 -238.5635 1 vs 2 137.9268 &lt;.0001</div><div class='input'> <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span>
+#&gt; f_nlme_dfop 2 9 495.1270 517.6253 -238.5635 1 vs 2 137.9269 &lt;.0001</div><div class='input'> <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span>
</div><div class='output co'>#&gt; Kinetic nonlinear mixed-effects model fit by maximum likelihood
#&gt;
#&gt; Structural model:
@@ -312,7 +317,7 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
</div><div class='img'><img src='nlme.mmkin-1.png' alt='' width='700' height='433' /></div><div class='input'> <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span>
</div><div class='output co'>#&gt; $distimes
#&gt; DT50 DT90 DT50back DT50_k1 DT50_k2
-#&gt; parent 10.79857 100.7937 30.34192 4.193937 43.85442
+#&gt; parent 10.79857 100.7937 30.34193 4.193938 43.85443
#&gt; </div><div class='input'>
<span class='va'>ds_2</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>experimental_data_for_UBA_2019</span><span class='op'>[</span><span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>]</span>,
<span class='kw'>function</span><span class='op'>(</span><span class='va'>x</span><span class='op'>)</span> <span class='va'>x</span><span class='op'>$</span><span class='va'>data</span><span class='op'>[</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"name"</span>, <span class='st'>"time"</span>, <span class='st'>"value"</span><span class='op'>)</span><span class='op'>]</span><span class='op'>)</span>
@@ -335,16 +340,17 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
<span class='co'># f_nlme_sfo_sfo_ff &lt;- nlme(f_2["SFO-SFO-ff", ])</span>
<span class='co'>#plot(f_nlme_sfo_sfo_ff)</span>
- <span class='co'># With the log-Cholesky parameterization, this converges in 11</span>
- <span class='co'># iterations and around 100 seconds, but without tweaking control</span>
- <span class='co'># parameters (with pdDiag, increasing the tolerance and pnlsMaxIter was</span>
- <span class='co'># necessary)</span>
- <span class='va'>f_nlme_dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in nlme.formula(model = value ~ (mkin::get_deg_func())(name, time, parent_0, log_k_A1, f_parent_qlogis, log_k1, log_k2, g_qlogis), data = structure(list(ds = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L ), .Label = c("1", "2", "3", "4", "5"), class = c("ordered", "factor")), name = c("parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1"), time = c(0, 0, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 0, 0, 3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180, 3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91, 91, 120, 120, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91, 91, 120, 120, 0, 0, 8, 8, 14, 14, 21, 21, 41, 41, 63, 63, 91, 91, 120, 120, 8, 8, 14, 14, 21, 21, 41, 41, 63, 63, 91, 91, 120, 120), value = c(97.2, 96.4, 71.1, 69.2, 58.1, 56.6, 44.4, 43.4, 33.3, 29.2, 17.6, 18, 10.5, 9.3, 4.5, 4.7, 3, 3.4, 2.3, 2.7, 4.3, 4.6, 7, 7.2, 8.2, 8, 11, 13.7, 11.5, 12.7, 14.9, 14.5, 12.1, 12.3, 9.9, 10.2, 8.8, 7.8, 93.6, 92.3, 87, 82.2, 74, 73.9, 64.2, 69.5, 54, 54.6, 41.1, 38.4, 32.5, 35.5, 28.1, 29, 26.5, 27.6, 3.9, 3.1, 6.9, 6.6, 10.4, 8.3, 14.4, 13.7, 22.1, 22.3, 27.5, 25.4, 28, 26.6, 25.8, 25.3, 91.9, 90.8, 64.9, 66.2, 43.5, 44.1, 18.3, 18.1, 10.2, 10.8, 4.9, 3.3, 1.6, 1.5, 1.1, 0.9, 9.6, 7.7, 15, 15.1, 21.2, 21.1, 19.7, 18.9, 17.5, 15.9, 9.5, 9.8, 6.2, 6.1, 99.8, 98.3, 77.1, 77.2, 59, 58.1, 27.4, 29.2, 19.1, 29.6, 10.1, 18.2, 4.5, 9.1, 2.3, 2.9, 2, 1.8, 2, 2.2, 4.2, 3.9, 7.4, 7.9, 14.5, 13.7, 14.2, 12.2, 13.7, 13.2, 13.6, 15.4, 10.4, 11.6, 10, 9.5, 9.1, 9, 96.1, 94.3, 73.9, 73.9, 69.4, 73.1, 65.6, 65.3, 55.9, 54.4, 47, 49.3, 44.7, 46.7, 42.1, 41.3, 3.3, 3.4, 3.9, 2.9, 6.4, 7.2, 9.1, 8.5, 11.7, 12, 13.3, 13.2, 14.3, 12.1)), row.names = c(NA, -170L), class = c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame"), formula = value ~ time | ds, FUN = function (x) max(x, na.rm = TRUE), order.groups = FALSE), start = list( fixed = c(parent_0 = 93.8101519326534, log_k_A1 = -9.76474551635931, f_parent_qlogis = -0.971114801595408, log_k1 = -1.87993711571859, log_k2 = -4.27081421366622, g_qlogis = 0.135644115277507 ), random = list(ds = structure(c(2.56569977430371, -3.49441920289139, -3.32614443321494, 4.35347873814922, -0.0986148763466161, 4.65850590018027, 1.8618544764481, 6.12693257601545, 4.91792724701579, -17.5652201996596, -0.466203822618637, 0.746660653597927, 0.282193987271096, -0.42053488943072, -0.142115928819667, 0.369240076779088, -1.38985563501659, 1.02592753494098, 0.73090914081534, -0.736221117518819, 0.768170629350299, -1.89347658079869, 1.72168783460352, 0.844607177798114, -1.44098906095325, -0.377731855445672, 0.168180098477565, 0.469683412912104, 0.500717664434525, -0.760849320378522), .Dim = 5:6, .Dimnames = list(c("1", "2", "3", "4", "5"), c("parent_0", "log_k_A1", "f_parent_qlogis", "log_k1", "log_k2", "g_qlogis"))))), fixed = list(parent_0 ~ 1, log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1), random = structure(numeric(0), class = c("pdDiag", "pdMat"), formula = structure(list(parent_0 ~ 1, log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1), class = "listForm"), Dimnames = list(NULL, NULL))): maximum number of iterations (maxIter = 50) reached without convergence</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 49.95 16.5 44.08</span></div><div class='input'>
+ <span class='co'># For the following, we need to increase pnlsMaxIter and the tolerance</span>
+ <span class='co'># to get convergence</span>
+ <span class='va'>f_nlme_dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>pnlsMaxIter <span class='op'>=</span> <span class='fl'>120</span>, tolerance <span class='op'>=</span> <span class='fl'>5e-4</span><span class='op'>)</span><span class='op'>)</span>
+
<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in plot(f_nlme_dfop_sfo): object 'f_nlme_dfop_sfo' not found</span></div><div class='input'>
+</div><div class='img'><img src='nlme.mmkin-3.png' alt='' width='700' height='433' /></div><div class='input'>
<span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span>, <span class='va'>f_nlme_sfo_sfo</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in anova(f_nlme_dfop_sfo, f_nlme_sfo_sfo): object 'f_nlme_dfop_sfo' not found</span></div><div class='input'>
+</div><div class='output co'>#&gt; Model df AIC BIC logLik Test L.Ratio p-value
+#&gt; f_nlme_dfop_sfo 1 13 843.8547 884.6201 -408.9274
+#&gt; f_nlme_sfo_sfo 2 9 1085.1821 1113.4043 -533.5910 1 vs 2 249.3274 &lt;.0001</div><div class='input'>
<span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo</span><span class='op'>)</span>
</div><div class='output co'>#&gt; $ff
#&gt; parent_sink parent_A1 A1_sink
@@ -355,7 +361,15 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#&gt; parent 19.13518 63.5657
#&gt; A1 66.02155 219.3189
#&gt; </div><div class='input'> <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in endpoints(f_nlme_dfop_sfo): object 'f_nlme_dfop_sfo' not found</span></div><div class='input'>
+</div><div class='output co'>#&gt; $ff
+#&gt; parent_A1 parent_sink
+#&gt; 0.2768574 0.7231426
+#&gt;
+#&gt; $distimes
+#&gt; DT50 DT90 DT50back DT50_k1 DT50_k2
+#&gt; parent 11.07091 104.6320 31.49737 4.462383 46.20825
+#&gt; A1 162.30519 539.1662 NA NA NA
+#&gt; </div><div class='input'>
<span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='fu'>findFunction</span><span class='op'>(</span><span class='st'>"varConstProp"</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>&gt;</span> <span class='fl'>0</span><span class='op'>)</span> <span class='op'>{</span> <span class='co'># tc error model for nlme available</span>
<span class='co'># Attempts to fit metabolite kinetics with the tc error model are possible,</span>
<span class='co'># but need tweeking of control values and sometimes do not converge</span>
@@ -381,7 +395,7 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#&gt; Fixed effects:
#&gt; list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
#&gt; parent_0 log_k1 log_k2 g_qlogis
-#&gt; 94.04775 -1.82340 -4.16715 0.05685
+#&gt; 94.04774 -1.82340 -4.16716 0.05686
#&gt;
#&gt; Random effects:
#&gt; Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
@@ -395,10 +409,8 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#&gt; Formula: ~fitted(.)
#&gt; Parameter estimates:
#&gt; const prop
-#&gt; 2.23224114 0.01262341 </div><div class='input'>
- <span class='va'>f_2_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>m_sfo_sfo</span>,
- <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>m_dfop_sfo</span><span class='op'>)</span>,
- <span class='va'>ds_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span><span class='op'>)</span>
+#&gt; 2.23223147 0.01262395 </div><div class='input'>
+ <span class='va'>f_2_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_2</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span><span class='op'>)</span>
<span class='va'>f_nlme_sfo_sfo_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_obs</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo_obs</span><span class='op'>)</span>
</div><div class='output co'>#&gt; Kinetic nonlinear mixed-effects model fit by maximum likelihood
@@ -429,18 +441,21 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#&gt; Formula: ~1 | name
#&gt; Parameter estimates:
#&gt; parent A1
-#&gt; 1.0000000 0.2050003 </div><div class='input'> <span class='va'>f_nlme_dfop_sfo_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in nlme.formula(model = value ~ (mkin::get_deg_func())(name, time, parent_0, log_k_A1, f_parent_qlogis, log_k1, log_k2, g_qlogis), data = structure(list(ds = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L ), .Label = c("1", "2", "3", "4", "5"), class = c("ordered", "factor")), name = c("parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1"), time = c(0, 0, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 0, 0, 3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180, 3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91, 91, 120, 120, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91, 91, 120, 120, 0, 0, 8, 8, 14, 14, 21, 21, 41, 41, 63, 63, 91, 91, 120, 120, 8, 8, 14, 14, 21, 21, 41, 41, 63, 63, 91, 91, 120, 120), value = c(97.2, 96.4, 71.1, 69.2, 58.1, 56.6, 44.4, 43.4, 33.3, 29.2, 17.6, 18, 10.5, 9.3, 4.5, 4.7, 3, 3.4, 2.3, 2.7, 4.3, 4.6, 7, 7.2, 8.2, 8, 11, 13.7, 11.5, 12.7, 14.9, 14.5, 12.1, 12.3, 9.9, 10.2, 8.8, 7.8, 93.6, 92.3, 87, 82.2, 74, 73.9, 64.2, 69.5, 54, 54.6, 41.1, 38.4, 32.5, 35.5, 28.1, 29, 26.5, 27.6, 3.9, 3.1, 6.9, 6.6, 10.4, 8.3, 14.4, 13.7, 22.1, 22.3, 27.5, 25.4, 28, 26.6, 25.8, 25.3, 91.9, 90.8, 64.9, 66.2, 43.5, 44.1, 18.3, 18.1, 10.2, 10.8, 4.9, 3.3, 1.6, 1.5, 1.1, 0.9, 9.6, 7.7, 15, 15.1, 21.2, 21.1, 19.7, 18.9, 17.5, 15.9, 9.5, 9.8, 6.2, 6.1, 99.8, 98.3, 77.1, 77.2, 59, 58.1, 27.4, 29.2, 19.1, 29.6, 10.1, 18.2, 4.5, 9.1, 2.3, 2.9, 2, 1.8, 2, 2.2, 4.2, 3.9, 7.4, 7.9, 14.5, 13.7, 14.2, 12.2, 13.7, 13.2, 13.6, 15.4, 10.4, 11.6, 10, 9.5, 9.1, 9, 96.1, 94.3, 73.9, 73.9, 69.4, 73.1, 65.6, 65.3, 55.9, 54.4, 47, 49.3, 44.7, 46.7, 42.1, 41.3, 3.3, 3.4, 3.9, 2.9, 6.4, 7.2, 9.1, 8.5, 11.7, 12, 13.3, 13.2, 14.3, 12.1)), row.names = c(NA, -170L), class = c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame"), formula = value ~ time | ds, FUN = function (x) max(x, na.rm = TRUE), order.groups = FALSE), start = list( fixed = c(parent_0 = 93.4272167134207, log_k_A1 = -9.71590717106959, f_parent_qlogis = -0.953712099744438, log_k1 = -1.95256957646888, log_k2 = -4.42919226610318, g_qlogis = 0.193023137298073 ), random = list(ds = structure(c(2.85557330683041, -3.87630303729395, -2.78062140212751, 4.82042042600536, -1.01906929341432, 4.613992019697, 2.05871276943309, 6.0766404049189, 4.86471337131288, -17.6140585653619, -0.480721175257541, 0.773079218835614, 0.260464433006093, -0.440615012802434, -0.112207463781733, 0.445812953745225, -1.49588630006094, 1.13602040717272, 0.801850880762046, -0.887797941619048, 0.936480292463262, -2.43093808171905, 1.91256225793793, 0.984827519864443, -1.40293198854659, -0.455176326336681, 0.376355651864385, 0.343919720700401, 0.46329187713133, -0.728390923359434 ), .Dim = 5:6, .Dimnames = list(c("1", "2", "3", "4", "5"), c("parent_0", "log_k_A1", "f_parent_qlogis", "log_k1", "log_k2", "g_qlogis"))))), fixed = list(parent_0 ~ 1, log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1), random = structure(numeric(0), class = c("pdDiag", "pdMat"), formula = structure(list(parent_0 ~ 1, log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1), class = "listForm"), Dimnames = list(NULL, NULL)), weights = structure(numeric(0), formula = ~1 | name, class = c("varIdent", "varFunc"))): maximum number of iterations (maxIter = 50) reached without convergence</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 59.38 16.5 53.5</span></div><div class='input'>
- <span class='va'>f_2_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>m_sfo_sfo</span>,
- <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>m_dfop_sfo</span><span class='op'>)</span>,
- <span class='va'>ds_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span>
- <span class='co'># f_nlme_sfo_sfo_tc &lt;- nlme(f_2_tc["SFO-SFO", ]) # stops with error message</span>
- <span class='va'>f_nlme_dfop_sfo_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#&gt; <span class='error'>Error in X[, fmap[[nm]]] &lt;- gradnm: number of items to replace is not a multiple of replacement length</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 6.363 2.688 5.469</span></div><div class='input'> <span class='co'># We get warnings about false convergence in the LME step in several iterations</span>
- <span class='co'># but as the last such warning occurs in iteration 25 and we have 28 iterations</span>
- <span class='co'># we can ignore these</span>
- <span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span>, <span class='va'>f_nlme_dfop_sfo_obs</span>, <span class='va'>f_nlme_dfop_sfo_tc</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in anova(f_nlme_dfop_sfo, f_nlme_dfop_sfo_obs, f_nlme_dfop_sfo_tc): object 'f_nlme_dfop_sfo' not found</span></div><div class='input'>
+#&gt; 1.0000000 0.2049995 </div><div class='input'> <span class='va'>f_nlme_dfop_sfo_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>pnlsMaxIter <span class='op'>=</span> <span class='fl'>120</span>, tolerance <span class='op'>=</span> <span class='fl'>5e-4</span><span class='op'>)</span><span class='op'>)</span>
+
+ <span class='va'>f_2_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_2</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span>
+ <span class='co'># f_nlme_sfo_sfo_tc &lt;- nlme(f_2_tc["SFO-SFO", ]) # No convergence with 50 iterations</span>
+ <span class='co'># f_nlme_dfop_sfo_tc &lt;- nlme(f_2_tc["DFOP-SFO", ],</span>
+ <span class='co'># control = list(pnlsMaxIter = 120, tolerance = 5e-4)) # Error in X[, fmap[[nm]]] &lt;- gradnm</span>
+
+ <span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span>, <span class='va'>f_nlme_dfop_sfo_obs</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; Model df AIC BIC logLik Test L.Ratio
+#&gt; f_nlme_dfop_sfo 1 13 843.8547 884.6201 -408.9274
+#&gt; f_nlme_dfop_sfo_obs 2 14 817.5338 861.4350 -394.7669 1 vs 2 28.32091
+#&gt; p-value
+#&gt; f_nlme_dfop_sfo
+#&gt; f_nlme_dfop_sfo_obs &lt;.0001</div><div class='input'>
<span class='co'># }</span>
</div></pre>
</div>
diff --git a/docs/dev/reference/nlmixr.mmkin-1.png b/docs/dev/reference/nlmixr.mmkin-1.png
new file mode 100644
index 00000000..e7e1ded0
--- /dev/null
+++ b/docs/dev/reference/nlmixr.mmkin-1.png
Binary files differ
diff --git a/docs/dev/reference/nlmixr.mmkin-2.png b/docs/dev/reference/nlmixr.mmkin-2.png
new file mode 100644
index 00000000..37432f76
--- /dev/null
+++ b/docs/dev/reference/nlmixr.mmkin-2.png
Binary files differ
diff --git a/docs/dev/reference/nlmixr.mmkin.html b/docs/dev/reference/nlmixr.mmkin.html
new file mode 100644
index 00000000..55e256a0
--- /dev/null
+++ b/docs/dev/reference/nlmixr.mmkin.html
@@ -0,0 +1,12556 @@
+<!-- Generated by pkgdown: do not edit by hand -->
+<!DOCTYPE html>
+<html lang="en">
+ <head>
+ <meta charset="utf-8">
+<meta http-equiv="X-UA-Compatible" content="IE=edge">
+<meta name="viewport" content="width=device-width, initial-scale=1.0">
+
+<title>Fit nonlinear mixed models using nlmixr — nlmixr.mmkin • mkin</title>
+
+
+<!-- jquery -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
+<!-- Bootstrap -->
+
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" />
+
+<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
+
+<!-- bootstrap-toc -->
+<link rel="stylesheet" href="../bootstrap-toc.css">
+<script src="../bootstrap-toc.js"></script>
+
+<!-- Font Awesome icons -->
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" />
+
+<!-- clipboard.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script>
+
+<!-- headroom.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script>
+
+<!-- pkgdown -->
+<link href="../pkgdown.css" rel="stylesheet">
+<script src="../pkgdown.js"></script>
+
+
+
+
+<meta property="og:title" content="Fit nonlinear mixed models using nlmixr — nlmixr.mmkin" />
+<meta property="og:description" content="This function uses nlmixr::nlmixr() as a backend for fitting nonlinear mixed
+effects models created from mmkin row objects using the Stochastic Approximation
+Expectation Maximisation algorithm (SAEM) or First Order Conditional
+Estimation with Interaction (FOCEI)." />
+
+
+<meta name="robots" content="noindex">
+
+<!-- mathjax -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
+
+<!--[if lt IE 9]>
+<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
+<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
+<![endif]-->
+
+
+
+ </head>
+
+ <body data-spy="scroll" data-target="#toc">
+ <div class="container template-reference-topic">
+ <header>
+ <div class="navbar navbar-default navbar-fixed-top" role="navigation">
+ <div class="container">
+ <div class="navbar-header">
+ <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
+ <span class="sr-only">Toggle navigation</span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ </button>
+ <span class="navbar-brand">
+ <a class="navbar-link" href="../index.html">mkin</a>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
+ </span>
+ </div>
+
+ <div id="navbar" class="navbar-collapse collapse">
+ <ul class="nav navbar-nav">
+ <li>
+ <a href="../reference/index.html">Functions and data</a>
+</li>
+<li class="dropdown">
+ <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
+ Articles
+
+ <span class="caret"></span>
+ </a>
+ <ul class="dropdown-menu" role="menu">
+ <li>
+ <a href="../articles/mkin.html">Introduction to mkin</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
+ </li>
+ <li>
+ <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
+ </li>
+ </ul>
+</li>
+<li>
+ <a href="../news/index.html">News</a>
+</li>
+ </ul>
+ <ul class="nav navbar-nav navbar-right">
+ <li>
+ <a href="https://github.com/jranke/mkin/">
+ <span class="fab fa-github fa-lg"></span>
+
+ </a>
+</li>
+ </ul>
+
+ </div><!--/.nav-collapse -->
+ </div><!--/.container -->
+</div><!--/.navbar -->
+
+
+
+ </header>
+
+<div class="row">
+ <div class="col-md-9 contents">
+ <div class="page-header">
+ <h1>Fit nonlinear mixed models using nlmixr</h1>
+ <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/nlmixr.R'><code>R/nlmixr.R</code></a></small>
+ <div class="hidden name"><code>nlmixr.mmkin.Rd</code></div>
+ </div>
+
+ <div class="ref-description">
+ <p>This function uses <code><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr()</a></code> as a backend for fitting nonlinear mixed
+effects models created from <a href='mmkin.html'>mmkin</a> row objects using the Stochastic Approximation
+Expectation Maximisation algorithm (SAEM) or First Order Conditional
+Estimation with Interaction (FOCEI).</p>
+ </div>
+
+ <pre class="usage"><span class='co'># S3 method for mmkin</span>
+<span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span>
+ <span class='va'>object</span>,
+ data <span class='op'>=</span> <span class='cn'>NULL</span>,
+ est <span class='op'>=</span> <span class='cn'>NULL</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='op'>)</span>,
+ table <span class='op'>=</span> <span class='fu'>tableControl</span><span class='op'>(</span><span class='op'>)</span>,
+ error_model <span class='op'>=</span> <span class='va'>object</span><span class='op'>[[</span><span class='fl'>1</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>err_mod</span>,
+ test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span>,
+ conf.level <span class='op'>=</span> <span class='fl'>0.6</span>,
+ degparms_start <span class='op'>=</span> <span class='st'>"auto"</span>,
+ eta_start <span class='op'>=</span> <span class='st'>"auto"</span>,
+ <span class='va'>...</span>,
+ save <span class='op'>=</span> <span class='cn'>NULL</span>,
+ envir <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/sys.parent.html'>parent.frame</a></span><span class='op'>(</span><span class='op'>)</span>
+<span class='op'>)</span>
+
+<span class='co'># S3 method for nlmixr.mmkin</span>
+<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>x</span>, digits <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/Extremes.html'>max</a></span><span class='op'>(</span><span class='fl'>3</span>, <span class='fu'><a href='https://rdrr.io/r/base/options.html'>getOption</a></span><span class='op'>(</span><span class='st'>"digits"</span><span class='op'>)</span> <span class='op'>-</span> <span class='fl'>3</span><span class='op'>)</span>, <span class='va'>...</span><span class='op'>)</span>
+
+<span class='fu'>nlmixr_model</span><span class='op'>(</span>
+ <span class='va'>object</span>,
+ est <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"saem"</span>, <span class='st'>"focei"</span><span class='op'>)</span>,
+ degparms_start <span class='op'>=</span> <span class='st'>"auto"</span>,
+ eta_start <span class='op'>=</span> <span class='st'>"auto"</span>,
+ test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span>,
+ conf.level <span class='op'>=</span> <span class='fl'>0.6</span>,
+ error_model <span class='op'>=</span> <span class='va'>object</span><span class='op'>[[</span><span class='fl'>1</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>err_mod</span>,
+ add_attributes <span class='op'>=</span> <span class='cn'>FALSE</span>
+<span class='op'>)</span>
+
+<span class='fu'>nlmixr_data</span><span class='op'>(</span><span class='va'>object</span>, <span class='va'>...</span><span class='op'>)</span></pre>
+
+ <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
+ <table class="ref-arguments">
+ <colgroup><col class="name" /><col class="desc" /></colgroup>
+ <tr>
+ <th>object</th>
+ <td><p>An <a href='mmkin.html'>mmkin</a> row object containing several fits of the same
+<a href='mkinmod.html'>mkinmod</a> model to different datasets</p></td>
+ </tr>
+ <tr>
+ <th>data</th>
+ <td><p>Not used, as the data are extracted from the mmkin row object</p></td>
+ </tr>
+ <tr>
+ <th>est</th>
+ <td><p>Estimation method passed to <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a></p></td>
+ </tr>
+ <tr>
+ <th>control</th>
+ <td><p>Passed to <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a></p></td>
+ </tr>
+ <tr>
+ <th>table</th>
+ <td><p>Passed to <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a></p></td>
+ </tr>
+ <tr>
+ <th>error_model</th>
+ <td><p>Optional argument to override the error model which is
+being set based on the error model used in the mmkin row object.</p></td>
+ </tr>
+ <tr>
+ <th>test_log_parms</th>
+ <td><p>If TRUE, an attempt is made to use more robust starting
+values for population parameters fitted as log parameters in mkin (like
+rate constants) by only considering rate constants that pass the t-test
+when calculating mean degradation parameters using <a href='mean_degparms.html'>mean_degparms</a>.</p></td>
+ </tr>
+ <tr>
+ <th>conf.level</th>
+ <td><p>Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'.</p></td>
+ </tr>
+ <tr>
+ <th>degparms_start</th>
+ <td><p>Parameter values given as a named numeric vector will
+be used to override the starting values obtained from the 'mmkin' object.</p></td>
+ </tr>
+ <tr>
+ <th>eta_start</th>
+ <td><p>Standard deviations on the transformed scale given as a
+named numeric vector will be used to override the starting values obtained
+from the 'mmkin' object.</p></td>
+ </tr>
+ <tr>
+ <th>...</th>
+ <td><p>Passed to nlmixr_model</p></td>
+ </tr>
+ <tr>
+ <th>save</th>
+ <td><p>Passed to <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a></p></td>
+ </tr>
+ <tr>
+ <th>envir</th>
+ <td><p>Passed to <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a></p></td>
+ </tr>
+ <tr>
+ <th>x</th>
+ <td><p>An nlmixr.mmkin object to print</p></td>
+ </tr>
+ <tr>
+ <th>digits</th>
+ <td><p>Number of digits to use for printing</p></td>
+ </tr>
+ <tr>
+ <th>add_attributes</th>
+ <td><p>Should the starting values used for degradation model
+parameters and their distribution and for the error model parameters
+be returned as attributes?</p></td>
+ </tr>
+ </table>
+
+ <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
+
+ <p>An S3 object of class 'nlmixr.mmkin', containing the fitted
+<a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a> object as a list component named 'nm'. The
+object also inherits from 'mixed.mmkin'.</p>
+<p>An function defining a model suitable for fitting with <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a>.</p>
+<p>An dataframe suitable for use with <a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr::nlmixr</a></p>
+ <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
+
+ <p>An mmkin row object is essentially a list of mkinfit objects that have been
+obtained by fitting the same model to a list of datasets using <a href='mkinfit.html'>mkinfit</a>.</p>
+ <h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2>
+
+ <div class='dont-index'><p><a href='summary.nlmixr.mmkin.html'>summary.nlmixr.mmkin</a> <a href='plot.mixed.mmkin.html'>plot.mixed.mmkin</a></p></div>
+
+ <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
+ <pre class="examples"><div class='input'><span class='co'># \dontrun{</span>
+<span class='va'>ds</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>experimental_data_for_UBA_2019</span><span class='op'>[</span><span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>]</span>,
+ <span class='kw'>function</span><span class='op'>(</span><span class='va'>x</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>x</span><span class='op'>$</span><span class='va'>data</span><span class='op'>[</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"name"</span>, <span class='st'>"time"</span>, <span class='st'>"value"</span><span class='op'>)</span><span class='op'>]</span><span class='op'>)</span><span class='op'>)</span>
+<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span><span class='op'>(</span><span class='st'>"Dataset"</span>, <span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>)</span>
+
+<span class='va'>f_mmkin_parent</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span>, <span class='st'>"HS"</span><span class='op'>)</span>, <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, cores <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span>
+<span class='va'>f_mmkin_parent_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span><span class='op'>)</span>, <span class='va'>ds</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>,
+ cores <span class='op'>=</span> <span class='fl'>1</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+
+<span class='kw'><a href='https://rdrr.io/r/base/library.html'>library</a></span><span class='op'>(</span><span class='va'><a href='https://github.com/nlmixrdevelopment/nlmixr'>nlmixr</a></span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'></span>
+#&gt; <span class='message'>Attaching package: ‘nlmixr’</span></div><div class='output co'>#&gt; <span class='message'>The following object is masked from ‘package:mkin’:</span>
+#&gt; <span class='message'></span>
+#&gt; <span class='message'> saem</span></div><div class='input'><span class='va'>f_nlmixr_sfo_saem</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/saemControl.html'>saemControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>RxODE 1.1.2 using 8 threads (see ?getRxThreads)</span>
+#&gt; <span class='message'> no cache: create with `rxCreateCache()`</span></div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_sfo_focei</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/foceiControl.html'>foceiControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
+<span class='va'>f_nlmixr_fomc_saem</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/saemControl.html'>saemControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_fomc_focei</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/foceiControl.html'>foceiControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
+<span class='va'>f_nlmixr_dfop_saem</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"DFOP"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/saemControl.html'>saemControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_dfop_focei</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"DFOP"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/foceiControl.html'>foceiControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
+<span class='va'>f_nlmixr_hs_saem</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"HS"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/saemControl.html'>saemControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_hs_focei</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"HS"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/foceiControl.html'>foceiControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using S matrix to calculate covariance, can check sandwich or R matrix with $covRS and $covR</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
+<span class='va'>f_nlmixr_fomc_saem_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent_tc</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/saemControl.html'>saemControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_fomc_focei_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent_tc</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/foceiControl.html'>foceiControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: parameter estimate near boundary; covariance not calculated:</span>
+#&gt; <span class='warning'> "rsd_high" </span>
+#&gt; <span class='warning'> use 'getVarCov' to calculate anyway</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate; see $scaleInfo</span></div><div class='input'>
+<span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span>
+ <span class='va'>f_nlmixr_sfo_saem</span><span class='op'>$</span><span class='va'>nm</span>, <span class='va'>f_nlmixr_sfo_focei</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_fomc_saem</span><span class='op'>$</span><span class='va'>nm</span>, <span class='va'>f_nlmixr_fomc_focei</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_dfop_saem</span><span class='op'>$</span><span class='va'>nm</span>, <span class='va'>f_nlmixr_dfop_focei</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_hs_saem</span><span class='op'>$</span><span class='va'>nm</span>, <span class='va'>f_nlmixr_hs_focei</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_fomc_saem_tc</span><span class='op'>$</span><span class='va'>nm</span>, <span class='va'>f_nlmixr_fomc_focei_tc</span><span class='op'>$</span><span class='va'>nm</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; df AIC
+#&gt; f_nlmixr_sfo_saem$nm 5 624.9492
+#&gt; f_nlmixr_sfo_focei$nm 5 625.0695
+#&gt; f_nlmixr_fomc_saem$nm 7 463.7577
+#&gt; f_nlmixr_fomc_focei$nm 7 468.0861
+#&gt; f_nlmixr_dfop_saem$nm 9 495.1980
+#&gt; f_nlmixr_dfop_focei$nm 9 495.1072
+#&gt; f_nlmixr_hs_saem$nm 9 531.0689
+#&gt; f_nlmixr_hs_focei$nm 9 545.6728
+#&gt; f_nlmixr_fomc_saem_tc$nm 8 462.1411
+#&gt; f_nlmixr_fomc_focei_tc$nm 8 470.0745</div><div class='input'>
+<span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span><span class='op'>)</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; [1] 468.0781</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"HS"</span>, <span class='op'>]</span><span class='op'>)</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; [1] 535.609</div><div class='input'>
+<span class='co'># The FOCEI fit of FOMC with constant variance or the tc error model is best</span>
+<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlmixr_fomc_saem_tc</span><span class='op'>)</span>
+</div><div class='img'><img src='nlmixr.mmkin-1.png' alt='' width='700' height='433' /></div><div class='input'>
+<span class='va'>sfo_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,
+ A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+<span class='va'>fomc_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"FOMC"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,
+ A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+<span class='va'>dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,
+ A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+
+<span class='va'>f_mmkin_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>
+ <span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>sfo_sfo</span>, <span class='st'>"FOMC-SFO"</span> <span class='op'>=</span> <span class='va'>fomc_sfo</span>, <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>dfop_sfo</span><span class='op'>)</span>,
+ <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"const"</span><span class='op'>)</span>
+<span class='va'>f_mmkin_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>
+ <span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>sfo_sfo</span>, <span class='st'>"FOMC-SFO"</span> <span class='op'>=</span> <span class='va'>fomc_sfo</span>, <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>dfop_sfo</span><span class='op'>)</span>,
+ <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span><span class='op'>)</span>
+<span class='va'>f_mmkin_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>
+ <span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>sfo_sfo</span>, <span class='st'>"FOMC-SFO"</span> <span class='op'>=</span> <span class='va'>fomc_sfo</span>, <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>dfop_sfo</span><span class='op'>)</span>,
+ <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span>
+
+<span class='fu'>nlmixr_model</span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'>Constant variance for more than one variable is not supported for est = 'saem'</span>
+#&gt; <span class='message'>Changing the error model to 'obs' (variance by observed variable)</span></div><div class='output co'>#&gt; function ()
+#&gt; {
+#&gt; ini({
+#&gt; parent_0 = 87
+#&gt; eta.parent_0 ~ 4.2
+#&gt; log_k_parent = -3.2
+#&gt; eta.log_k_parent ~ 1.5
+#&gt; log_k_A1 = -4.6
+#&gt; eta.log_k_A1 ~ 0.56
+#&gt; f_parent_qlogis = -0.33
+#&gt; eta.f_parent_qlogis ~ 1.1
+#&gt; sigma_parent = 4.3
+#&gt; sigma_A1 = 4.3
+#&gt; })
+#&gt; model({
+#&gt; parent_0_model = parent_0 + eta.parent_0
+#&gt; parent(0) = parent_0_model
+#&gt; k_parent = exp(log_k_parent + eta.log_k_parent)
+#&gt; k_A1 = exp(log_k_A1 + eta.log_k_A1)
+#&gt; f_parent_to_A1 = expit(f_parent_qlogis + eta.f_parent_qlogis)
+#&gt; d/dt(parent) = -k_parent * parent
+#&gt; d/dt(A1) = +f_parent_to_A1 * k_parent * parent - k_A1 *
+#&gt; A1
+#&gt; parent ~ add(sigma_parent)
+#&gt; A1 ~ add(sigma_A1)
+#&gt; })
+#&gt; }
+#&gt; &lt;environment: 0x55556675b428&gt;</div><div class='input'>
+<span class='co'># A single constant variance is currently only possible with est = 'focei' in nlmixr</span>
+<span class='va'>f_nlmixr_sfo_sfo_focei_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 |log_k_parent | log_k_A1 |f_parent_qlogis |
+#&gt; |.....................| sigma | o1 | o2 | o3 |
+#&gt; <span style='text-decoration: underline;'>|.....................| o4 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 1</span>| 756.61847 | 1.000 | -0.9694 | -1.000 | -0.9068 |
+#&gt; |.....................| -0.8057 | -0.8843 | -0.8798 | -0.8743 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8782 |...........|...........|...........|</span>
+#&gt; | U| 756.61847 | 87.00 | -3.200 | -4.600 | -0.3300 |
+#&gt; |.....................| 4.300 | 0.6985 | 0.9036 | 1.156 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9765 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 756.61847</span> | 87.00 | 0.04076 | 0.01005 | 0.4182 |
+#&gt; |.....................| 4.300 | 0.6985 | 0.9036 | 1.156 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9765 |...........|...........|...........|</span>
+#&gt; | G| Gill Diff. | 104.1 | 0.02915 | 0.3320 | 0.4427 |
+#&gt; |.....................| -29.46 | 6.499 | 3.260 | -8.158 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.501 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 2</span>| 4014.8405 | 0.04387 | -0.9697 | -1.003 | -0.9108 |
+#&gt; |.....................| -0.5352 | -0.9440 | -0.9098 | -0.7994 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8277 |...........|...........|...........|</span>
+#&gt; | U| 4014.8405 | 3.817 | -3.200 | -4.603 | -0.3313 |
+#&gt; |.....................| 4.882 | 0.6569 | 0.8766 | 1.243 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.026 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 4014.8405</span> | 3.817 | 0.04075 | 0.01002 | 0.4179 |
+#&gt; |.....................| 4.882 | 0.6569 | 0.8766 | 1.243 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.026 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 3</span>| 784.09766 | 0.9044 | -0.9695 | -1.000 | -0.9072 |
+#&gt; |.....................| -0.7786 | -0.8903 | -0.8828 | -0.8668 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8732 |...........|...........|...........|</span>
+#&gt; | U| 784.09766 | 78.68 | -3.200 | -4.600 | -0.3301 |
+#&gt; |.....................| 4.358 | 0.6944 | 0.9009 | 1.165 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9814 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 784.09766</span> | 78.68 | 0.04076 | 0.01005 | 0.4182 |
+#&gt; |.....................| 4.358 | 0.6944 | 0.9009 | 1.165 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9814 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 4</span>| 755.85897 | 0.9864 | -0.9694 | -1.000 | -0.9068 |
+#&gt; |.....................| -0.8018 | -0.8852 | -0.8803 | -0.8733 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8775 |...........|...........|...........|</span>
+#&gt; | U| 755.85897 | 85.82 | -3.200 | -4.600 | -0.3300 |
+#&gt; |.....................| 4.308 | 0.6979 | 0.9032 | 1.157 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9772 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 755.85897</span> | 85.82 | 0.04076 | 0.01005 | 0.4182 |
+#&gt; |.....................| 4.308 | 0.6979 | 0.9032 | 1.157 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9772 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -10.67 | 0.1182 | 0.2197 | 0.3686 |
+#&gt; |.....................| -28.82 | 3.860 | 3.200 | -8.294 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.254 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 5</span>| 755.50135 | 0.9911 | -0.9695 | -1.000 | -0.9070 |
+#&gt; |.....................| -0.7893 | -0.8868 | -0.8816 | -0.8697 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8752 |...........|...........|...........|</span>
+#&gt; | U| 755.50135 | 86.22 | -3.200 | -4.600 | -0.3301 |
+#&gt; |.....................| 4.335 | 0.6968 | 0.9020 | 1.161 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9794 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 755.50135</span> | 86.22 | 0.04076 | 0.01005 | 0.4182 |
+#&gt; |.....................| 4.335 | 0.6968 | 0.9020 | 1.161 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9794 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 6</span>| 755.34910 | 0.9966 | -0.9695 | -1.000 | -0.9072 |
+#&gt; |.....................| -0.7744 | -0.8888 | -0.8833 | -0.8654 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8725 |...........|...........|...........|</span>
+#&gt; | U| 755.3491 | 86.70 | -3.200 | -4.600 | -0.3301 |
+#&gt; |.....................| 4.367 | 0.6954 | 0.9005 | 1.166 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9820 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 755.3491</span> | 86.70 | 0.04076 | 0.01005 | 0.4182 |
+#&gt; |.....................| 4.367 | 0.6954 | 0.9005 | 1.166 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9820 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 73.92 | 0.04965 | 0.3063 | 0.4373 |
+#&gt; |.....................| -23.46 | 5.143 | 2.934 | -7.746 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.165 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 7</span>| 754.44379 | 0.9831 | -0.9697 | -1.001 | -0.9076 |
+#&gt; |.....................| -0.7489 | -0.8930 | -0.8865 | -0.8566 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8669 |...........|...........|...........|</span>
+#&gt; | U| 754.44379 | 85.53 | -3.200 | -4.601 | -0.3303 |
+#&gt; |.....................| 4.422 | 0.6925 | 0.8975 | 1.176 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9875 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 754.44379</span> | 85.53 | 0.04075 | 0.01005 | 0.4182 |
+#&gt; |.....................| 4.422 | 0.6925 | 0.8975 | 1.176 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9875 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -36.39 | 0.1354 | 0.1953 | 0.3724 |
+#&gt; |.....................| -19.20 | 3.020 | 2.621 | -7.506 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.671 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 8</span>| 753.82350 | 0.9908 | -0.9699 | -1.001 | -0.9085 |
+#&gt; |.....................| -0.7249 | -0.8992 | -0.8910 | -0.8427 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8580 |...........|...........|...........|</span>
+#&gt; | U| 753.8235 | 86.20 | -3.200 | -4.601 | -0.3306 |
+#&gt; |.....................| 4.474 | 0.6881 | 0.8935 | 1.193 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9962 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 753.8235</span> | 86.20 | 0.04074 | 0.01004 | 0.4181 |
+#&gt; |.....................| 4.474 | 0.6881 | 0.8935 | 1.193 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.9962 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 25.33 | 0.08213 | 0.2542 | 0.4339 |
+#&gt; |.....................| -14.89 | 3.322 | 2.230 | -6.934 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.324 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 9</span>| 753.42397 | 0.9836 | -0.9702 | -1.002 | -0.9101 |
+#&gt; |.....................| -0.7094 | -0.9058 | -0.8962 | -0.8215 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8457 |...........|...........|...........|</span>
+#&gt; | U| 753.42397 | 85.57 | -3.201 | -4.602 | -0.3311 |
+#&gt; |.....................| 4.507 | 0.6835 | 0.8888 | 1.217 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.008 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 753.42397</span> | 85.57 | 0.04073 | 0.01003 | 0.4180 |
+#&gt; |.....................| 4.507 | 0.6835 | 0.8888 | 1.217 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.008 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -31.38 | 0.1220 | 0.1752 | 0.4111 |
+#&gt; |.....................| -12.58 | 2.402 | 1.769 | -6.044 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -3.541 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 10</span>| 753.10125 | 0.9902 | -0.9707 | -1.003 | -0.9128 |
+#&gt; |.....................| -0.7033 | -0.9147 | -0.8999 | -0.7966 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8328 |...........|...........|...........|</span>
+#&gt; | U| 753.10125 | 86.15 | -3.201 | -4.603 | -0.3320 |
+#&gt; |.....................| 4.520 | 0.6773 | 0.8855 | 1.246 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.021 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 753.10125</span> | 86.15 | 0.04071 | 0.01002 | 0.4178 |
+#&gt; |.....................| 4.520 | 0.6773 | 0.8855 | 1.246 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.021 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 18.19 | 0.07644 | 0.2005 | 0.4693 |
+#&gt; |.....................| -11.34 | 2.660 | 1.470 | -4.866 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.908 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 11</span>| 752.83558 | 0.9856 | -0.9716 | -1.004 | -0.9194 |
+#&gt; |.....................| -0.6931 | -0.9294 | -0.8999 | -0.7740 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8246 |...........|...........|...........|</span>
+#&gt; | U| 752.83558 | 85.75 | -3.202 | -4.604 | -0.3342 |
+#&gt; |.....................| 4.542 | 0.6671 | 0.8855 | 1.272 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.029 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.83558</span> | 85.75 | 0.04067 | 0.01001 | 0.4172 |
+#&gt; |.....................| 4.542 | 0.6671 | 0.8855 | 1.272 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.029 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -17.42 | 0.09700 | 0.1175 | 0.4453 |
+#&gt; |.....................| -9.793 | 1.829 | 1.489 | -3.997 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.337 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 12</span>| 752.64046 | 0.9898 | -0.9731 | -1.005 | -0.9331 |
+#&gt; |.....................| -0.6718 | -0.9413 | -0.9101 | -0.7759 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8318 |...........|...........|...........|</span>
+#&gt; | U| 752.64046 | 86.12 | -3.204 | -4.605 | -0.3387 |
+#&gt; |.....................| 4.588 | 0.6587 | 0.8763 | 1.270 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.022 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.64046</span> | 86.12 | 0.04061 | 0.01000 | 0.4161 |
+#&gt; |.....................| 4.588 | 0.6587 | 0.8763 | 1.270 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.022 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 12.96 | 0.06018 | 0.1556 | 0.4415 |
+#&gt; |.....................| -6.445 | 1.822 | 0.6282 | -4.092 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.761 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 13</span>| 752.52461 | 0.9874 | -0.9741 | -1.006 | -0.9430 |
+#&gt; |.....................| -0.6755 | -0.9483 | -0.9069 | -0.7553 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8127 |...........|...........|...........|</span>
+#&gt; | U| 752.52461 | 85.90 | -3.205 | -4.606 | -0.3420 |
+#&gt; |.....................| 4.580 | 0.6538 | 0.8792 | 1.294 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.040 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.52461</span> | 85.90 | 0.04057 | 0.009996 | 0.4153 |
+#&gt; |.....................| 4.580 | 0.6538 | 0.8792 | 1.294 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.040 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -5.319 | 0.06758 | 0.1323 | 0.4528 |
+#&gt; |.....................| -7.018 | 1.348 | 0.9128 | -3.312 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.706 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 14</span>| 752.47650 | 0.9920 | -0.9750 | -1.008 | -0.9578 |
+#&gt; |.....................| -0.6735 | -0.9481 | -0.9014 | -0.7293 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8100 |...........|...........|...........|</span>
+#&gt; | U| 752.4765 | 86.30 | -3.206 | -4.608 | -0.3468 |
+#&gt; |.....................| 4.584 | 0.6539 | 0.8841 | 1.324 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.043 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.4765</span> | 86.30 | 0.04054 | 0.009974 | 0.4142 |
+#&gt; |.....................| 4.584 | 0.6539 | 0.8841 | 1.324 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.043 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 26.38 | 0.03719 | 0.08701 | 0.4621 |
+#&gt; |.....................| -6.642 | 1.808 | 1.401 | -2.463 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.595 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 15</span>| 752.37074 | 0.9880 | -0.9759 | -1.009 | -0.9778 |
+#&gt; |.....................| -0.6665 | -0.9465 | -0.9156 | -0.7192 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8239 |...........|...........|...........|</span>
+#&gt; | U| 752.37074 | 85.96 | -3.206 | -4.609 | -0.3534 |
+#&gt; |.....................| 4.599 | 0.6551 | 0.8713 | 1.335 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.030 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.37074</span> | 85.96 | 0.04050 | 0.009963 | 0.4125 |
+#&gt; |.....................| 4.599 | 0.6551 | 0.8713 | 1.335 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.030 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.8866 | 0.05090 | -0.01541 | 0.3812 |
+#&gt; |.....................| -5.712 | 1.436 | 0.1646 | -2.191 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.247 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 16</span>| 752.26949 | 0.9921 | -0.9761 | -1.009 | -0.9796 |
+#&gt; |.....................| -0.6402 | -0.9531 | -0.9164 | -0.7091 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8135 |...........|...........|...........|</span>
+#&gt; | U| 752.26949 | 86.31 | -3.207 | -4.609 | -0.3540 |
+#&gt; |.....................| 4.656 | 0.6505 | 0.8706 | 1.347 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.040 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.26949</span> | 86.31 | 0.04049 | 0.009963 | 0.4124 |
+#&gt; |.....................| 4.656 | 0.6505 | 0.8706 | 1.347 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.040 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 26.82 | 0.02710 | 0.03892 | 0.4267 |
+#&gt; |.....................| -2.005 | 1.500 | 0.1022 | -1.862 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.773 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 17</span>| 752.20271 | 0.9873 | -0.9768 | -1.006 | -0.9927 |
+#&gt; |.....................| -0.6361 | -0.9677 | -0.9007 | -0.7162 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7982 |...........|...........|...........|</span>
+#&gt; | U| 752.20271 | 85.89 | -3.207 | -4.606 | -0.3584 |
+#&gt; |.....................| 4.664 | 0.6403 | 0.8848 | 1.339 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.055 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.20271</span> | 85.89 | 0.04046 | 0.009992 | 0.4114 |
+#&gt; |.....................| 4.664 | 0.6403 | 0.8848 | 1.339 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.055 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -7.259 | 0.05081 | 0.1320 | 0.4166 |
+#&gt; |.....................| -1.497 | 0.4663 | 1.471 | -1.984 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.9590 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 18</span>| 752.16826 | 0.9883 | -0.9778 | -1.006 | -1.005 |
+#&gt; |.....................| -0.6437 | -0.9795 | -0.9210 | -0.7076 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7873 |...........|...........|...........|</span>
+#&gt; | U| 752.16826 | 85.98 | -3.208 | -4.606 | -0.3626 |
+#&gt; |.....................| 4.648 | 0.6320 | 0.8664 | 1.349 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.16826</span> | 85.98 | 0.04042 | 0.009989 | 0.4103 |
+#&gt; |.....................| 4.648 | 0.6320 | 0.8664 | 1.349 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.732 | 0.03428 | 0.1666 | 0.4265 |
+#&gt; |.....................| -2.413 | 0.2526 | -0.2557 | -1.689 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3553 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 19</span>| 752.25223 | 0.9952 | -0.9788 | -1.010 | -1.023 |
+#&gt; |.....................| -0.6370 | -0.9826 | -0.9156 | -0.6853 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7912 |...........|...........|...........|</span>
+#&gt; | U| 752.25223 | 86.58 | -3.209 | -4.610 | -0.3684 |
+#&gt; |.....................| 4.663 | 0.6299 | 0.8713 | 1.374 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.061 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.25223</span> | 86.58 | 0.04038 | 0.009949 | 0.4089 |
+#&gt; |.....................| 4.663 | 0.6299 | 0.8713 | 1.374 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.061 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 20</span>| 752.18605 | 0.9920 | -0.9778 | -1.007 | -1.006 |
+#&gt; |.....................| -0.6387 | -0.9801 | -0.9204 | -0.7040 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7866 |...........|...........|...........|</span>
+#&gt; | U| 752.18605 | 86.30 | -3.208 | -4.607 | -0.3629 |
+#&gt; |.....................| 4.659 | 0.6316 | 0.8669 | 1.353 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.18605</span> | 86.30 | 0.04042 | 0.009985 | 0.4103 |
+#&gt; |.....................| 4.659 | 0.6316 | 0.8669 | 1.353 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 21</span>| 752.16428 | 0.9894 | -0.9778 | -1.006 | -1.006 |
+#&gt; |.....................| -0.6422 | -0.9797 | -0.9208 | -0.7065 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7871 |...........|...........|...........|</span>
+#&gt; | U| 752.16428 | 86.08 | -3.208 | -4.606 | -0.3627 |
+#&gt; |.....................| 4.651 | 0.6319 | 0.8666 | 1.350 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.16428</span> | 86.08 | 0.04042 | 0.009988 | 0.4103 |
+#&gt; |.....................| 4.651 | 0.6319 | 0.8666 | 1.350 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 5.144 | 0.02886 | 0.1726 | 0.4333 |
+#&gt; |.....................| -2.192 | 0.3285 | -0.2407 | -1.661 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3568 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 22</span>| 752.15919 | 0.9884 | -0.9779 | -1.007 | -1.007 |
+#&gt; |.....................| -0.6420 | -0.9798 | -0.9206 | -0.7051 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7874 |...........|...........|...........|</span>
+#&gt; | U| 752.15919 | 85.99 | -3.208 | -4.607 | -0.3630 |
+#&gt; |.....................| 4.652 | 0.6319 | 0.8668 | 1.352 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.15919</span> | 85.99 | 0.04042 | 0.009985 | 0.4102 |
+#&gt; |.....................| 4.652 | 0.6319 | 0.8668 | 1.352 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.486 | 0.03361 | 0.1549 | 0.4244 |
+#&gt; |.....................| -2.177 | 0.2364 | -0.2213 | -1.616 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3570 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 23</span>| 752.15545 | 0.9894 | -0.9779 | -1.007 | -1.007 |
+#&gt; |.....................| -0.6405 | -0.9799 | -0.9204 | -0.7040 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7872 |...........|...........|...........|</span>
+#&gt; | U| 752.15545 | 86.07 | -3.208 | -4.607 | -0.3631 |
+#&gt; |.....................| 4.655 | 0.6318 | 0.8669 | 1.353 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.15545</span> | 86.07 | 0.04042 | 0.009984 | 0.4102 |
+#&gt; |.....................| 4.655 | 0.6318 | 0.8669 | 1.353 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 4.936 | 0.02854 | 0.1600 | 0.4306 |
+#&gt; |.....................| -1.962 | 0.3065 | -0.2063 | -1.586 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3570 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 24</span>| 752.15077 | 0.9884 | -0.9779 | -1.007 | -1.008 |
+#&gt; |.....................| -0.6403 | -0.9800 | -0.9202 | -0.7026 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7875 |...........|...........|...........|</span>
+#&gt; | U| 752.15077 | 85.99 | -3.209 | -4.607 | -0.3635 |
+#&gt; |.....................| 4.656 | 0.6317 | 0.8672 | 1.355 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.15077</span> | 85.99 | 0.04042 | 0.009981 | 0.4101 |
+#&gt; |.....................| 4.656 | 0.6317 | 0.8672 | 1.355 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.303 | 0.03292 | 0.1430 | 0.4220 |
+#&gt; |.....................| -1.955 | 0.2207 | -0.1874 | -1.542 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3581 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 25</span>| 752.14731 | 0.9893 | -0.9780 | -1.007 | -1.009 |
+#&gt; |.....................| -0.6389 | -0.9801 | -0.9200 | -0.7014 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7873 |...........|...........|...........|</span>
+#&gt; | U| 752.14731 | 86.07 | -3.209 | -4.607 | -0.3637 |
+#&gt; |.....................| 4.659 | 0.6316 | 0.8673 | 1.356 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.14731</span> | 86.07 | 0.04042 | 0.009980 | 0.4101 |
+#&gt; |.....................| 4.659 | 0.6316 | 0.8673 | 1.356 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 4.764 | 0.02806 | 0.1473 | 0.4277 |
+#&gt; |.....................| -1.749 | 0.2865 | -0.1727 | -1.510 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3572 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 26</span>| 752.14299 | 0.9884 | -0.9780 | -1.007 | -1.010 |
+#&gt; |.....................| -0.6388 | -0.9801 | -0.9198 | -0.7000 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7876 |...........|...........|...........|</span>
+#&gt; | U| 752.14299 | 85.99 | -3.209 | -4.607 | -0.3641 |
+#&gt; |.....................| 4.659 | 0.6316 | 0.8675 | 1.358 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.14299</span> | 85.99 | 0.04041 | 0.009978 | 0.4100 |
+#&gt; |.....................| 4.659 | 0.6316 | 0.8675 | 1.358 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.130 | 0.03192 | 0.1311 | 0.4194 |
+#&gt; |.....................| -1.750 | 0.2064 | -0.1542 | -1.466 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3587 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 27</span>| 752.13982 | 0.9893 | -0.9781 | -1.008 | -1.010 |
+#&gt; |.....................| -0.6374 | -0.9803 | -0.9196 | -0.6987 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7873 |...........|...........|...........|</span>
+#&gt; | U| 752.13982 | 86.07 | -3.209 | -4.608 | -0.3642 |
+#&gt; |.....................| 4.662 | 0.6315 | 0.8676 | 1.359 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.13982</span> | 86.07 | 0.04041 | 0.009977 | 0.4099 |
+#&gt; |.....................| 4.662 | 0.6315 | 0.8676 | 1.359 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 4.635 | 0.02760 | 0.1350 | 0.4248 |
+#&gt; |.....................| -1.550 | 0.2683 | -0.1407 | -1.433 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3557 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 28</span>| 752.13580 | 0.9884 | -0.9782 | -1.008 | -1.012 |
+#&gt; |.....................| -0.6373 | -0.9803 | -0.9194 | -0.6973 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7876 |...........|...........|...........|</span>
+#&gt; | U| 752.1358 | 85.99 | -3.209 | -4.608 | -0.3647 |
+#&gt; |.....................| 4.662 | 0.6315 | 0.8678 | 1.361 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.1358</span> | 85.99 | 0.04041 | 0.009975 | 0.4098 |
+#&gt; |.....................| 4.662 | 0.6315 | 0.8678 | 1.361 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.9657 | 0.03147 | 0.1207 | 0.4166 |
+#&gt; |.....................| -1.557 | 0.1931 | -0.1227 | -1.391 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3574 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 29</span>| 752.13295 | 0.9893 | -0.9782 | -1.008 | -1.012 |
+#&gt; |.....................| -0.6359 | -0.9805 | -0.9193 | -0.6961 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7873 |...........|...........|...........|</span>
+#&gt; | U| 752.13295 | 86.07 | -3.209 | -4.608 | -0.3648 |
+#&gt; |.....................| 4.665 | 0.6314 | 0.8679 | 1.362 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.13295</span> | 86.07 | 0.04041 | 0.009973 | 0.4098 |
+#&gt; |.....................| 4.665 | 0.6314 | 0.8679 | 1.362 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 4.554 | 0.02702 | 0.1245 | 0.4220 |
+#&gt; |.....................| -1.357 | 0.2511 | -0.1114 | -1.356 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3512 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 30</span>| 752.12919 | 0.9885 | -0.9783 | -1.008 | -1.014 |
+#&gt; |.....................| -0.6359 | -0.9804 | -0.9191 | -0.6947 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7876 |...........|...........|...........|</span>
+#&gt; | U| 752.12919 | 86.00 | -3.209 | -4.608 | -0.3653 |
+#&gt; |.....................| 4.665 | 0.6314 | 0.8681 | 1.364 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.12919</span> | 86.00 | 0.04040 | 0.009972 | 0.4097 |
+#&gt; |.....................| 4.665 | 0.6314 | 0.8681 | 1.364 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.8077 | 0.03076 | 0.1104 | 0.4140 |
+#&gt; |.....................| -1.370 | 0.1799 | -0.09417 | -1.307 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3529 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 31</span>| 752.12656 | 0.9893 | -0.9783 | -1.008 | -1.014 |
+#&gt; |.....................| -0.6345 | -0.9806 | -0.9190 | -0.6934 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7872 |...........|...........|...........|</span>
+#&gt; | U| 752.12656 | 86.07 | -3.209 | -4.608 | -0.3654 |
+#&gt; |.....................| 4.668 | 0.6313 | 0.8682 | 1.365 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.12656</span> | 86.07 | 0.04040 | 0.009970 | 0.4096 |
+#&gt; |.....................| 4.668 | 0.6313 | 0.8682 | 1.365 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 4.375 | 0.02651 | 0.1140 | 0.4191 |
+#&gt; |.....................| -1.173 | 0.2330 | -0.08481 | -1.281 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3435 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 32</span>| 752.12310 | 0.9885 | -0.9784 | -1.008 | -1.016 |
+#&gt; |.....................| -0.6345 | -0.9806 | -0.9188 | -0.6922 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7875 |...........|...........|...........|</span>
+#&gt; | U| 752.1231 | 86.00 | -3.209 | -4.608 | -0.3659 |
+#&gt; |.....................| 4.668 | 0.6313 | 0.8684 | 1.367 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.1231</span> | 86.00 | 0.04040 | 0.009969 | 0.4095 |
+#&gt; |.....................| 4.668 | 0.6313 | 0.8684 | 1.367 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.6515 | 0.02994 | 0.1012 | 0.4113 |
+#&gt; |.....................| -1.192 | 0.1669 | -0.06829 | -1.233 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3455 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 33</span>| 752.12055 | 0.9892 | -0.9784 | -1.008 | -1.016 |
+#&gt; |.....................| -0.6332 | -0.9808 | -0.9187 | -0.6908 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7871 |...........|...........|...........|</span>
+#&gt; | U| 752.12055 | 86.06 | -3.209 | -4.608 | -0.3661 |
+#&gt; |.....................| 4.671 | 0.6312 | 0.8685 | 1.368 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.12055</span> | 86.06 | 0.04040 | 0.009968 | 0.4095 |
+#&gt; |.....................| 4.671 | 0.6312 | 0.8685 | 1.368 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.998 | 0.02610 | 0.1041 | 0.4159 |
+#&gt; |.....................| -1.002 | 0.2127 | -0.06061 | -1.206 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3333 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 34</span>| 752.11747 | 0.9885 | -0.9785 | -1.009 | -1.018 |
+#&gt; |.....................| -0.6332 | -0.9807 | -0.9185 | -0.6896 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7874 |...........|...........|...........|</span>
+#&gt; | U| 752.11747 | 86.00 | -3.209 | -4.609 | -0.3666 |
+#&gt; |.....................| 4.671 | 0.6312 | 0.8687 | 1.370 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.11747</span> | 86.00 | 0.04039 | 0.009966 | 0.4094 |
+#&gt; |.....................| 4.671 | 0.6312 | 0.8687 | 1.370 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.5772 | 0.02918 | 0.09258 | 0.4085 |
+#&gt; |.....................| -1.024 | 0.1535 | -0.04467 | -1.159 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3360 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 35</span>| 752.11522 | 0.9892 | -0.9785 | -1.009 | -1.018 |
+#&gt; |.....................| -0.6319 | -0.9809 | -0.9185 | -0.6881 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7870 |...........|...........|...........|</span>
+#&gt; | U| 752.11522 | 86.06 | -3.209 | -4.609 | -0.3668 |
+#&gt; |.....................| 4.674 | 0.6311 | 0.8687 | 1.371 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.11522</span> | 86.06 | 0.04039 | 0.009965 | 0.4093 |
+#&gt; |.....................| 4.674 | 0.6311 | 0.8687 | 1.371 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.959 | 0.02535 | 0.09612 | 0.4130 |
+#&gt; |.....................| -0.8451 | 0.1980 | -0.03883 | -1.121 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3219 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 36</span>| 752.11234 | 0.9885 | -0.9786 | -1.009 | -1.020 |
+#&gt; |.....................| -0.6320 | -0.9808 | -0.9183 | -0.6870 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7872 |...........|...........|...........|</span>
+#&gt; | U| 752.11234 | 86.00 | -3.209 | -4.609 | -0.3673 |
+#&gt; |.....................| 4.673 | 0.6311 | 0.8689 | 1.373 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.11234</span> | 86.00 | 0.04039 | 0.009964 | 0.4092 |
+#&gt; |.....................| 4.673 | 0.6311 | 0.8689 | 1.373 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.065 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.5042 | 0.02791 | 0.08363 | 0.4056 |
+#&gt; |.....................| -0.8741 | 0.1402 | -0.02542 | -1.088 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3257 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 37</span>| 752.11033 | 0.9892 | -0.9787 | -1.009 | -1.020 |
+#&gt; |.....................| -0.6308 | -0.9810 | -0.9182 | -0.6855 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7868 |...........|...........|...........|</span>
+#&gt; | U| 752.11033 | 86.06 | -3.209 | -4.609 | -0.3675 |
+#&gt; |.....................| 4.676 | 0.6310 | 0.8689 | 1.374 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.11033</span> | 86.06 | 0.04039 | 0.009963 | 0.4091 |
+#&gt; |.....................| 4.676 | 0.6310 | 0.8689 | 1.374 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.874 | 0.02465 | 0.08719 | 0.4100 |
+#&gt; |.....................| -0.7032 | 0.1835 | -0.01978 | -1.047 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3084 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 38</span>| 752.10764 | 0.9885 | -0.9787 | -1.009 | -1.022 |
+#&gt; |.....................| -0.6309 | -0.9810 | -0.9181 | -0.6844 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7870 |...........|...........|...........|</span>
+#&gt; | U| 752.10764 | 86.00 | -3.209 | -4.609 | -0.3681 |
+#&gt; |.....................| 4.676 | 0.6310 | 0.8691 | 1.376 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.10764</span> | 86.00 | 0.04038 | 0.009962 | 0.4090 |
+#&gt; |.....................| 4.676 | 0.6310 | 0.8691 | 1.376 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.4131 | 0.02699 | 0.07721 | 0.4026 |
+#&gt; |.....................| -0.7354 | 0.1282 | -0.007503 | -1.011 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3125 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 39</span>| 752.10572 | 0.9892 | -0.9788 | -1.009 | -1.023 |
+#&gt; |.....................| -0.6298 | -0.9812 | -0.9181 | -0.6829 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7865 |...........|...........|...........|</span>
+#&gt; | U| 752.10572 | 86.06 | -3.209 | -4.609 | -0.3683 |
+#&gt; |.....................| 4.678 | 0.6309 | 0.8691 | 1.377 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.10572</span> | 86.06 | 0.04038 | 0.009960 | 0.4090 |
+#&gt; |.....................| 4.678 | 0.6309 | 0.8691 | 1.377 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.580 | 0.02411 | 0.07834 | 0.4067 |
+#&gt; |.....................| -0.5755 | 0.1666 | -0.003596 | -0.9604 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2924 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 40</span>| 752.10333 | 0.9885 | -0.9789 | -1.009 | -1.024 |
+#&gt; |.....................| -0.6300 | -0.9811 | -0.9179 | -0.6819 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7867 |...........|...........|...........|</span>
+#&gt; | U| 752.10333 | 86.00 | -3.209 | -4.609 | -0.3688 |
+#&gt; |.....................| 4.678 | 0.6309 | 0.8692 | 1.378 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.10333</span> | 86.00 | 0.04038 | 0.009959 | 0.4088 |
+#&gt; |.....................| 4.678 | 0.6309 | 0.8692 | 1.378 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.3772 | 0.02648 | 0.06875 | 0.3997 |
+#&gt; |.....................| -0.6082 | 0.1162 | 0.008208 | -0.9328 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2962 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 41</span>| 752.10169 | 0.9892 | -0.9789 | -1.009 | -1.025 |
+#&gt; |.....................| -0.6289 | -0.9813 | -0.9179 | -0.6803 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7862 |...........|...........|...........|</span>
+#&gt; | U| 752.10169 | 86.06 | -3.209 | -4.609 | -0.3691 |
+#&gt; |.....................| 4.680 | 0.6308 | 0.8692 | 1.380 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.10169</span> | 86.06 | 0.04038 | 0.009958 | 0.4088 |
+#&gt; |.....................| 4.680 | 0.6308 | 0.8692 | 1.380 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.644 | 0.02338 | 0.07127 | 0.4037 |
+#&gt; |.....................| -0.4618 | 0.1554 | 0.009391 | -0.8908 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2755 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 42</span>| 752.09938 | 0.9886 | -0.9790 | -1.009 | -1.027 |
+#&gt; |.....................| -0.6291 | -0.9812 | -0.9178 | -0.6794 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7864 |...........|...........|...........|</span>
+#&gt; | U| 752.09938 | 86.00 | -3.210 | -4.609 | -0.3697 |
+#&gt; |.....................| 4.680 | 0.6308 | 0.8693 | 1.381 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.09938</span> | 86.00 | 0.04037 | 0.009958 | 0.4086 |
+#&gt; |.....................| 4.680 | 0.6308 | 0.8693 | 1.381 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.2627 | 0.02548 | 0.06256 | 0.3967 |
+#&gt; |.....................| -0.4955 | 0.1055 | 0.02027 | -0.8653 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2789 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 43</span>| 752.09757 | 0.9890 | -0.9791 | -1.010 | -1.028 |
+#&gt; |.....................| -0.6281 | -0.9814 | -0.9178 | -0.6778 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7859 |...........|...........|...........|</span>
+#&gt; | U| 752.09757 | 86.05 | -3.210 | -4.610 | -0.3699 |
+#&gt; |.....................| 4.682 | 0.6307 | 0.8693 | 1.383 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.09757</span> | 86.05 | 0.04037 | 0.009956 | 0.4086 |
+#&gt; |.....................| 4.682 | 0.6307 | 0.8693 | 1.383 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.867 | 0.02296 | 0.06369 | 0.3997 |
+#&gt; |.....................| -0.3645 | 0.1327 | 0.01894 | -0.8216 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2549 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 44</span>| 752.09570 | 0.9886 | -0.9791 | -1.010 | -1.030 |
+#&gt; |.....................| -0.6283 | -0.9814 | -0.9177 | -0.6770 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7861 |...........|...........|...........|</span>
+#&gt; | U| 752.0957 | 86.00 | -3.210 | -4.610 | -0.3705 |
+#&gt; |.....................| 4.681 | 0.6307 | 0.8694 | 1.384 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.0957</span> | 86.00 | 0.04037 | 0.009956 | 0.4084 |
+#&gt; |.....................| 4.681 | 0.6307 | 0.8694 | 1.384 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.066 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.2846 | 0.02474 | 0.05675 | 0.3935 |
+#&gt; |.....................| -0.3960 | 0.09353 | 0.02976 | -0.7961 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2595 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 45</span>| 752.09434 | 0.9891 | -0.9792 | -1.010 | -1.030 |
+#&gt; |.....................| -0.6275 | -0.9816 | -0.9177 | -0.6754 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7856 |...........|...........|...........|</span>
+#&gt; | U| 752.09434 | 86.05 | -3.210 | -4.610 | -0.3708 |
+#&gt; |.....................| 4.683 | 0.6306 | 0.8694 | 1.386 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.09434</span> | 86.05 | 0.04037 | 0.009955 | 0.4083 |
+#&gt; |.....................| 4.683 | 0.6306 | 0.8694 | 1.386 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.348 | 0.02147 | 0.05816 | 0.3967 |
+#&gt; |.....................| -0.2833 | 0.1286 | 0.02562 | -0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2380 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 46</span>| 752.09236 | 0.9886 | -0.9793 | -1.010 | -1.032 |
+#&gt; |.....................| -0.6277 | -0.9815 | -0.9176 | -0.6746 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7858 |...........|...........|...........|</span>
+#&gt; | U| 752.09236 | 86.01 | -3.210 | -4.610 | -0.3715 |
+#&gt; |.....................| 4.683 | 0.6306 | 0.8695 | 1.387 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.09236</span> | 86.01 | 0.04036 | 0.009954 | 0.4082 |
+#&gt; |.....................| 4.683 | 0.6306 | 0.8695 | 1.387 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.1856 | 0.02378 | 0.05144 | 0.3902 |
+#&gt; |.....................| -0.3147 | 0.08386 | 0.03545 | -0.7433 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2408 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 47</span>| 752.09077 | 0.9890 | -0.9793 | -1.010 | -1.033 |
+#&gt; |.....................| -0.6269 | -0.9817 | -0.9177 | -0.6729 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7852 |...........|...........|...........|</span>
+#&gt; | U| 752.09077 | 86.04 | -3.210 | -4.610 | -0.3717 |
+#&gt; |.....................| 4.684 | 0.6305 | 0.8694 | 1.389 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.09077</span> | 86.04 | 0.04036 | 0.009953 | 0.4081 |
+#&gt; |.....................| 4.684 | 0.6305 | 0.8694 | 1.389 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 48</span>| 752.08937 | 0.9892 | -0.9795 | -1.010 | -1.036 |
+#&gt; |.....................| -0.6267 | -0.9818 | -0.9176 | -0.6714 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7852 |...........|...........|...........|</span>
+#&gt; | U| 752.08937 | 86.06 | -3.210 | -4.610 | -0.3725 |
+#&gt; |.....................| 4.685 | 0.6304 | 0.8695 | 1.391 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.08937</span> | 86.06 | 0.04036 | 0.009952 | 0.4079 |
+#&gt; |.....................| 4.685 | 0.6304 | 0.8695 | 1.391 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.945 | 0.01952 | 0.05064 | 0.3906 |
+#&gt; |.....................| -0.1866 | 0.1233 | 0.03740 | -0.6554 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2138 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 49</span>| 752.08593 | 0.9886 | -0.9796 | -1.010 | -1.040 |
+#&gt; |.....................| -0.6271 | -0.9817 | -0.9174 | -0.6701 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7856 |...........|...........|...........|</span>
+#&gt; | U| 752.08593 | 86.01 | -3.210 | -4.610 | -0.3740 |
+#&gt; |.....................| 4.684 | 0.6305 | 0.8697 | 1.392 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.08593</span> | 86.01 | 0.04035 | 0.009951 | 0.4076 |
+#&gt; |.....................| 4.684 | 0.6305 | 0.8697 | 1.392 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.04707 | 0.02143 | 0.04311 | 0.3795 |
+#&gt; |.....................| -0.2514 | 0.07631 | 0.05739 | -0.6184 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2313 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 50</span>| 752.08243 | 0.9889 | -0.9798 | -1.010 | -1.042 |
+#&gt; |.....................| -0.6256 | -0.9821 | -0.9177 | -0.6665 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7842 |...........|...........|...........|</span>
+#&gt; | U| 752.08243 | 86.03 | -3.210 | -4.610 | -0.3748 |
+#&gt; |.....................| 4.687 | 0.6302 | 0.8694 | 1.396 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.068 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.08243</span> | 86.03 | 0.04034 | 0.009949 | 0.4074 |
+#&gt; |.....................| 4.687 | 0.6302 | 0.8694 | 1.396 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.068 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 51</span>| 752.07616 | 0.9895 | -0.9803 | -1.011 | -1.054 |
+#&gt; |.....................| -0.6231 | -0.9827 | -0.9181 | -0.6582 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7817 |...........|...........|...........|</span>
+#&gt; | U| 752.07616 | 86.08 | -3.211 | -4.611 | -0.3786 |
+#&gt; |.....................| 4.693 | 0.6298 | 0.8690 | 1.406 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.071 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.07616</span> | 86.08 | 0.04032 | 0.009942 | 0.4065 |
+#&gt; |.....................| 4.693 | 0.6298 | 0.8690 | 1.406 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.071 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 5.128 | 0.01286 | 0.03023 | 0.3726 |
+#&gt; |.....................| 0.2708 | 0.07184 | -0.02487 | -0.2959 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.03882 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 52</span>| 752.06706 | 0.9888 | -0.9810 | -1.011 | -1.073 |
+#&gt; |.....................| -0.6241 | -0.9834 | -0.9174 | -0.6562 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7830 |...........|...........|...........|</span>
+#&gt; | U| 752.06706 | 86.03 | -3.212 | -4.611 | -0.3848 |
+#&gt; |.....................| 4.690 | 0.6293 | 0.8696 | 1.408 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.069 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.06706</span> | 86.03 | 0.04030 | 0.009938 | 0.4050 |
+#&gt; |.....................| 4.690 | 0.6293 | 0.8696 | 1.408 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.069 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 53</span>| 752.05726 | 0.9892 | -0.9821 | -1.012 | -1.106 |
+#&gt; |.....................| -0.6257 | -0.9847 | -0.9162 | -0.6528 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7853 |...........|...........|...........|</span>
+#&gt; | U| 752.05726 | 86.06 | -3.213 | -4.612 | -0.3958 |
+#&gt; |.....................| 4.687 | 0.6284 | 0.8707 | 1.412 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.05726</span> | 86.06 | 0.04025 | 0.009929 | 0.4023 |
+#&gt; |.....................| 4.687 | 0.6284 | 0.8707 | 1.412 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.067 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 54</span>| 752.04392 | 0.9898 | -0.9854 | -1.015 | -1.200 |
+#&gt; |.....................| -0.6305 | -0.9883 | -0.9128 | -0.6430 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7918 |...........|...........|...........|</span>
+#&gt; | U| 752.04392 | 86.11 | -3.216 | -4.615 | -0.4269 |
+#&gt; |.....................| 4.677 | 0.6259 | 0.8738 | 1.423 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.061 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.04392</span> | 86.11 | 0.04012 | 0.009906 | 0.3949 |
+#&gt; |.....................| 4.677 | 0.6259 | 0.8738 | 1.423 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.061 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | 5.566 | -0.02004 | 0.02472 | 0.1678 |
+#&gt; |.....................| -0.6767 | -0.003606 | 0.4773 | 0.08205 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6933 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 55</span>| 752.05860 | 0.9880 | -0.9900 | -1.027 | -1.486 |
+#&gt; |.....................| -0.6186 | -0.9338 | -0.9168 | -0.6653 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7443 |...........|...........|...........|</span>
+#&gt; | U| 752.0586 | 85.96 | -3.221 | -4.627 | -0.5212 |
+#&gt; |.....................| 4.702 | 0.6640 | 0.8702 | 1.398 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.107 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.0586</span> | 85.96 | 0.03993 | 0.009780 | 0.3726 |
+#&gt; |.....................| 4.702 | 0.6640 | 0.8702 | 1.398 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.107 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 56</span>| 752.02137 | 0.9885 | -0.9874 | -1.020 | -1.325 |
+#&gt; |.....................| -0.6252 | -0.9645 | -0.9146 | -0.6528 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7710 |...........|...........|...........|</span>
+#&gt; | U| 752.02137 | 86.00 | -3.218 | -4.620 | -0.4681 |
+#&gt; |.....................| 4.688 | 0.6425 | 0.8722 | 1.412 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.081 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.02137</span> | 86.00 | 0.04004 | 0.009850 | 0.3851 |
+#&gt; |.....................| 4.688 | 0.6425 | 0.8722 | 1.412 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.081 |...........|...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.728 | -0.02729 | 0.08518 | 0.04185 |
+#&gt; |.....................| -0.2367 | 0.4063 | 0.2432 | 0.01436 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.07563 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 57</span>| 752.06656 | 0.9886 | -0.9792 | -1.053 | -1.433 |
+#&gt; |.....................| -0.6165 | -1.020 | -0.9133 | -0.6801 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7607 |...........|...........|...........|</span>
+#&gt; | U| 752.06656 | 86.01 | -3.210 | -4.653 | -0.5037 |
+#&gt; |.....................| 4.707 | 0.6037 | 0.8734 | 1.380 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.091 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.06656</span> | 86.01 | 0.04036 | 0.009533 | 0.3767 |
+#&gt; |.....................| 4.707 | 0.6037 | 0.8734 | 1.380 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.091 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 58</span>| 752.02137 | 0.9885 | -0.9874 | -1.020 | -1.325 |
+#&gt; |.....................| -0.6252 | -0.9645 | -0.9146 | -0.6528 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7710 |...........|...........|...........|</span>
+#&gt; | U| 752.02137 | 86.00 | -3.218 | -4.620 | -0.4681 |
+#&gt; |.....................| 4.688 | 0.6425 | 0.8722 | 1.412 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.081 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 752.02137</span> | 86.00 | 0.04004 | 0.009850 | 0.3851 |
+#&gt; |.....................| 4.688 | 0.6425 | 0.8722 | 1.412 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.081 |...........|...........|...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
+#&gt; |.....................| log_beta | sigma | o1 | o2 |
+#&gt; <span style='text-decoration: underline;'>|.....................| o3 | o4 | o5 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 1</span>| 494.78160 | 1.000 | -1.000 | -0.9115 | -0.8954 |
+#&gt; |.....................| -0.8491 | -0.8592 | -0.8761 | -0.8740 |
+#&gt; |.....................| -0.8674 | -0.8694 | -0.8683 |...........|
+#&gt; | U| 494.7816 | 94.00 | -5.400 | -1.000 | -0.2000 |
+#&gt; |.....................| 2.100 | 1.600 | 0.7598 | 0.8633 |
+#&gt; |.....................| 1.189 | 1.089 | 1.146 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 494.7816</span> | 94.00 | 0.004517 | 0.2689 | 0.8187 |
+#&gt; |.....................| 8.166 | 1.600 | 0.7598 | 0.8633 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.189 | 1.089 | 1.146 |...........|</span>
+#&gt; | G| Gill Diff. | -28.01 | 1.933 | -0.2086 | 0.01492 |
+#&gt; |.....................| -0.1687 | -59.79 | 10.74 | 9.966 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -11.82 | -8.862 | -10.52 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 2</span>| 1353.4477 | 1.400 | -1.028 | -0.9085 | -0.8956 |
+#&gt; |.....................| -0.8467 | -0.005584 | -1.029 | -1.016 |
+#&gt; |.....................| -0.6987 | -0.7429 | -0.7181 |...........|
+#&gt; | U| 1353.4477 | 131.6 | -5.428 | -0.9970 | -0.2002 |
+#&gt; |.....................| 2.102 | 2.283 | 0.6433 | 0.7405 |
+#&gt; |.....................| 1.390 | 1.227 | 1.318 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 1353.4477</span> | 131.6 | 0.004394 | 0.2695 | 0.8186 |
+#&gt; |.....................| 8.186 | 2.283 | 0.6433 | 0.7405 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.390 | 1.227 | 1.318 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 3</span>| 504.82409 | 1.040 | -1.003 | -0.9112 | -0.8954 |
+#&gt; |.....................| -0.8489 | -0.7738 | -0.8914 | -0.8882 |
+#&gt; |.....................| -0.8506 | -0.8568 | -0.8533 |...........|
+#&gt; | U| 504.82409 | 97.76 | -5.403 | -0.9997 | -0.2000 |
+#&gt; |.....................| 2.100 | 1.668 | 0.7482 | 0.8511 |
+#&gt; |.....................| 1.209 | 1.103 | 1.163 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 504.82409</span> | 97.76 | 0.004504 | 0.2690 | 0.8187 |
+#&gt; |.....................| 8.168 | 1.668 | 0.7482 | 0.8511 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.209 | 1.103 | 1.163 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 4</span>| 494.10898 | 1.008 | -1.001 | -0.9114 | -0.8954 |
+#&gt; |.....................| -0.8490 | -0.8416 | -0.8792 | -0.8769 |
+#&gt; |.....................| -0.8640 | -0.8668 | -0.8652 |...........|
+#&gt; | U| 494.10898 | 94.77 | -5.401 | -0.9999 | -0.2000 |
+#&gt; |.....................| 2.100 | 1.614 | 0.7574 | 0.8608 |
+#&gt; |.....................| 1.193 | 1.092 | 1.149 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 494.10898</span> | 94.77 | 0.004514 | 0.2690 | 0.8187 |
+#&gt; |.....................| 8.167 | 1.614 | 0.7574 | 0.8608 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.193 | 1.092 | 1.149 |...........|</span>
+#&gt; | F| Forward Diff. | 147.0 | 1.955 | -0.08761 | 0.06834 |
+#&gt; |.....................| 0.05948 | -55.61 | 11.89 | 8.304 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -12.01 | -8.510 | -10.24 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 5</span>| 492.58255 | 0.9992 | -1.001 | -0.9114 | -0.8954 |
+#&gt; |.....................| -0.8490 | -0.8245 | -0.8825 | -0.8797 |
+#&gt; |.....................| -0.8605 | -0.8643 | -0.8621 |...........|
+#&gt; | U| 492.58255 | 93.93 | -5.401 | -0.9999 | -0.2000 |
+#&gt; |.....................| 2.100 | 1.628 | 0.7550 | 0.8584 |
+#&gt; |.....................| 1.197 | 1.095 | 1.153 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 492.58255</span> | 93.93 | 0.004511 | 0.2690 | 0.8187 |
+#&gt; |.....................| 8.167 | 1.628 | 0.7550 | 0.8584 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.197 | 1.095 | 1.153 |...........|</span>
+#&gt; | F| Forward Diff. | -43.22 | 1.882 | -0.2206 | -0.004719 |
+#&gt; |.....................| -0.1970 | -51.78 | 10.22 | 6.620 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -11.81 | -8.346 | -10.04 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 6</span>| 491.66702 | 1.006 | -1.002 | -0.9113 | -0.8954 |
+#&gt; |.....................| -0.8490 | -0.8063 | -0.8860 | -0.8822 |
+#&gt; |.....................| -0.8565 | -0.8614 | -0.8588 |...........|
+#&gt; | U| 491.66702 | 94.52 | -5.402 | -0.9998 | -0.2000 |
+#&gt; |.....................| 2.100 | 1.642 | 0.7523 | 0.8562 |
+#&gt; |.....................| 1.202 | 1.098 | 1.157 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 491.66702</span> | 94.52 | 0.004509 | 0.2690 | 0.8187 |
+#&gt; |.....................| 8.167 | 1.642 | 0.7523 | 0.8562 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.202 | 1.098 | 1.157 |...........|</span>
+#&gt; | F| Forward Diff. | 87.79 | 1.893 | -0.1269 | 0.04418 |
+#&gt; |.....................| -0.01699 | -47.85 | 10.34 | 7.758 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -11.67 | -8.213 | -9.916 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 7</span>| 490.57489 | 0.9987 | -1.002 | -0.9112 | -0.8954 |
+#&gt; |.....................| -0.8489 | -0.7885 | -0.8895 | -0.8851 |
+#&gt; |.....................| -0.8525 | -0.8586 | -0.8553 |...........|
+#&gt; | U| 490.57489 | 93.88 | -5.402 | -0.9998 | -0.2000 |
+#&gt; |.....................| 2.100 | 1.657 | 0.7496 | 0.8537 |
+#&gt; |.....................| 1.207 | 1.101 | 1.161 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 490.57489</span> | 93.88 | 0.004506 | 0.2690 | 0.8187 |
+#&gt; |.....................| 8.168 | 1.657 | 0.7496 | 0.8537 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.207 | 1.101 | 1.161 |...........|</span>
+#&gt; | F| Forward Diff. | -52.56 | 1.834 | -0.2285 | -0.01046 |
+#&gt; |.....................| -0.2159 | -44.44 | 9.379 | 7.248 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -11.47 | -8.044 | -9.710 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 8</span>| 489.67804 | 1.004 | -1.003 | -0.9112 | -0.8954 |
+#&gt; |.....................| -0.8489 | -0.7706 | -0.8932 | -0.8884 |
+#&gt; |.....................| -0.8482 | -0.8554 | -0.8516 |...........|
+#&gt; | U| 489.67804 | 94.42 | -5.403 | -0.9997 | -0.2000 |
+#&gt; |.....................| 2.100 | 1.671 | 0.7468 | 0.8509 |
+#&gt; |.....................| 1.212 | 1.105 | 1.165 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 489.67804</span> | 94.42 | 0.004503 | 0.2690 | 0.8187 |
+#&gt; |.....................| 8.168 | 1.671 | 0.7468 | 0.8509 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.212 | 1.105 | 1.165 |...........|</span>
+#&gt; | F| Forward Diff. | 63.10 | 1.841 | -0.1396 | 0.03713 |
+#&gt; |.....................| -0.05177 | -40.65 | 9.345 | 6.018 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -11.29 | -7.879 | -9.567 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 9</span>| 488.80457 | 0.9984 | -1.004 | -0.9111 | -0.8954 |
+#&gt; |.....................| -0.8488 | -0.7529 | -0.8970 | -0.8913 |
+#&gt; |.....................| -0.8435 | -0.8521 | -0.8475 |...........|
+#&gt; | U| 488.80457 | 93.85 | -5.404 | -0.9996 | -0.2000 |
+#&gt; |.....................| 2.100 | 1.685 | 0.7439 | 0.8484 |
+#&gt; |.....................| 1.218 | 1.108 | 1.170 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 488.80457</span> | 93.85 | 0.004499 | 0.2690 | 0.8187 |
+#&gt; |.....................| 8.168 | 1.685 | 0.7439 | 0.8484 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.218 | 1.108 | 1.170 |...........|</span>
+#&gt; | F| Forward Diff. | -56.52 | 1.788 | -0.2313 | -0.01570 |
+#&gt; |.....................| -0.2287 | -37.43 | 8.740 | 5.512 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -11.08 | -7.680 | -9.353 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 10</span>| 487.98244 | 1.004 | -1.005 | -0.9110 | -0.8954 |
+#&gt; |.....................| -0.8487 | -0.7356 | -0.9012 | -0.8939 |
+#&gt; |.....................| -0.8380 | -0.8482 | -0.8428 |...........|
+#&gt; | U| 487.98244 | 94.36 | -5.405 | -0.9995 | -0.2000 |
+#&gt; |.....................| 2.100 | 1.699 | 0.7407 | 0.8461 |
+#&gt; |.....................| 1.224 | 1.112 | 1.175 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 487.98244</span> | 94.36 | 0.004495 | 0.2690 | 0.8187 |
+#&gt; |.....................| 8.169 | 1.699 | 0.7407 | 0.8461 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.224 | 1.112 | 1.175 |...........|</span>
+#&gt; | F| Forward Diff. | 49.57 | 1.794 | -0.1466 | 0.03517 |
+#&gt; |.....................| -0.07178 | -34.12 | 8.494 | 6.684 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -10.82 | -7.482 | -9.140 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 11</span>| 487.23587 | 0.9987 | -1.006 | -0.9109 | -0.8954 |
+#&gt; |.....................| -0.8487 | -0.7192 | -0.9058 | -0.8980 |
+#&gt; |.....................| -0.8316 | -0.8438 | -0.8374 |...........|
+#&gt; | U| 487.23587 | 93.88 | -5.406 | -0.9994 | -0.2001 |
+#&gt; |.....................| 2.100 | 1.712 | 0.7372 | 0.8426 |
+#&gt; |.....................| 1.232 | 1.117 | 1.181 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 487.23587</span> | 93.88 | 0.004490 | 0.2691 | 0.8187 |
+#&gt; |.....................| 8.170 | 1.712 | 0.7372 | 0.8426 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.232 | 1.117 | 1.181 |...........|</span>
+#&gt; | F| Forward Diff. | -49.22 | 1.745 | -0.2274 | -0.009194 |
+#&gt; |.....................| -0.2301 | -31.48 | 7.992 | 6.132 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -10.64 | -7.269 | -8.903 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 12</span>| 486.53337 | 1.004 | -1.007 | -0.9107 | -0.8954 |
+#&gt; |.....................| -0.8485 | -0.7047 | -0.9109 | -0.9037 |
+#&gt; |.....................| -0.8240 | -0.8386 | -0.8310 |...........|
+#&gt; | U| 486.53337 | 94.34 | -5.407 | -0.9993 | -0.2001 |
+#&gt; |.....................| 2.101 | 1.724 | 0.7334 | 0.8376 |
+#&gt; |.....................| 1.241 | 1.123 | 1.189 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 486.53337</span> | 94.34 | 0.004484 | 0.2691 | 0.8187 |
+#&gt; |.....................| 8.171 | 1.724 | 0.7334 | 0.8376 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.241 | 1.123 | 1.189 |...........|</span>
+#&gt; | F| Forward Diff. | 43.47 | 1.742 | -0.1424 | 0.02918 |
+#&gt; |.....................| -0.07089 | -28.76 | 7.629 | 4.806 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -10.24 | -6.953 | -8.584 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 13</span>| 485.91669 | 0.9989 | -1.009 | -0.9105 | -0.8955 |
+#&gt; |.....................| -0.8484 | -0.6920 | -0.9165 | -0.9072 |
+#&gt; |.....................| -0.8145 | -0.8325 | -0.8231 |...........|
+#&gt; | U| 485.91669 | 93.90 | -5.409 | -0.9991 | -0.2001 |
+#&gt; |.....................| 2.101 | 1.734 | 0.7291 | 0.8346 |
+#&gt; |.....................| 1.252 | 1.130 | 1.198 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 485.91669</span> | 93.90 | 0.004476 | 0.2691 | 0.8187 |
+#&gt; |.....................| 8.172 | 1.734 | 0.7291 | 0.8346 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.252 | 1.130 | 1.198 |...........|</span>
+#&gt; | F| Forward Diff. | -44.30 | 1.699 | -0.2182 | 0.001936 |
+#&gt; |.....................| -0.2284 | -26.86 | 7.286 | 5.487 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.898 | -6.659 | -8.234 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 14</span>| 485.33976 | 1.003 | -1.011 | -0.9103 | -0.8955 |
+#&gt; |.....................| -0.8481 | -0.6819 | -0.9228 | -0.9110 |
+#&gt; |.....................| -0.8035 | -0.8257 | -0.8143 |...........|
+#&gt; | U| 485.33976 | 94.29 | -5.411 | -0.9988 | -0.2001 |
+#&gt; |.....................| 2.101 | 1.742 | 0.7243 | 0.8314 |
+#&gt; |.....................| 1.265 | 1.137 | 1.208 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 485.33976</span> | 94.29 | 0.004467 | 0.2692 | 0.8186 |
+#&gt; |.....................| 8.174 | 1.742 | 0.7243 | 0.8314 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.265 | 1.137 | 1.208 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 15</span>| 484.77317 | 1.003 | -1.014 | -0.9100 | -0.8956 |
+#&gt; |.....................| -0.8479 | -0.6718 | -0.9302 | -0.9153 |
+#&gt; |.....................| -0.7902 | -0.8175 | -0.8035 |...........|
+#&gt; | U| 484.77317 | 94.32 | -5.414 | -0.9986 | -0.2002 |
+#&gt; |.....................| 2.101 | 1.750 | 0.7187 | 0.8276 |
+#&gt; |.....................| 1.281 | 1.146 | 1.220 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 484.77317</span> | 94.32 | 0.004455 | 0.2692 | 0.8186 |
+#&gt; |.....................| 8.176 | 1.750 | 0.7187 | 0.8276 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.281 | 1.146 | 1.220 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 16</span>| 483.17588 | 1.004 | -1.023 | -0.9091 | -0.8958 |
+#&gt; |.....................| -0.8469 | -0.6384 | -0.9549 | -0.9296 |
+#&gt; |.....................| -0.7463 | -0.7903 | -0.7681 |...........|
+#&gt; | U| 483.17588 | 94.41 | -5.423 | -0.9976 | -0.2004 |
+#&gt; |.....................| 2.102 | 1.777 | 0.6999 | 0.8153 |
+#&gt; |.....................| 1.333 | 1.176 | 1.261 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 483.17588</span> | 94.41 | 0.004415 | 0.2694 | 0.8184 |
+#&gt; |.....................| 8.184 | 1.777 | 0.6999 | 0.8153 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.333 | 1.176 | 1.261 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 17</span>| 481.21481 | 1.006 | -1.040 | -0.9072 | -0.8961 |
+#&gt; |.....................| -0.8451 | -0.5721 | -1.004 | -0.9579 |
+#&gt; |.....................| -0.6592 | -0.7365 | -0.6977 |...........|
+#&gt; | U| 481.21481 | 94.58 | -5.440 | -0.9958 | -0.2008 |
+#&gt; |.....................| 2.104 | 1.830 | 0.6628 | 0.7909 |
+#&gt; |.....................| 1.437 | 1.234 | 1.341 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 481.21481</span> | 94.58 | 0.004338 | 0.2698 | 0.8181 |
+#&gt; |.....................| 8.199 | 1.830 | 0.6628 | 0.7909 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.437 | 1.234 | 1.341 |...........|</span>
+#&gt; | F| Forward Diff. | 62.86 | 1.476 | 0.06730 | 0.05792 |
+#&gt; |.....................| 0.1123 | -8.977 | 1.055 | 2.914 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -3.044 | -1.094 | -2.299 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 18</span>| 481.29476 | 1.000 | -1.145 | -0.9129 | -0.8997 |
+#&gt; |.....................| -0.8485 | -0.5378 | -0.8985 | -1.168 |
+#&gt; |.....................| -0.6228 | -0.8149 | -0.6969 |...........|
+#&gt; | U| 481.29476 | 94.03 | -5.545 | -1.001 | -0.2043 |
+#&gt; |.....................| 2.101 | 1.857 | 0.7428 | 0.6099 |
+#&gt; |.....................| 1.480 | 1.149 | 1.342 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 481.29476</span> | 94.03 | 0.003907 | 0.2687 | 0.8152 |
+#&gt; |.....................| 8.171 | 1.857 | 0.7428 | 0.6099 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.480 | 1.149 | 1.342 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 19</span>| 480.77138 | 1.000 | -1.090 | -0.9099 | -0.8978 |
+#&gt; |.....................| -0.8467 | -0.5555 | -0.9542 | -1.057 |
+#&gt; |.....................| -0.6419 | -0.7733 | -0.6972 |...........|
+#&gt; | U| 480.77138 | 94.01 | -5.490 | -0.9984 | -0.2025 |
+#&gt; |.....................| 2.102 | 1.843 | 0.7004 | 0.7055 |
+#&gt; |.....................| 1.457 | 1.194 | 1.342 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.77138</span> | 94.01 | 0.004129 | 0.2693 | 0.8167 |
+#&gt; |.....................| 8.186 | 1.843 | 0.7004 | 0.7055 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.457 | 1.194 | 1.342 |...........|</span>
+#&gt; | F| Forward Diff. | -25.72 | 1.151 | 0.08772 | -0.007897 |
+#&gt; |.....................| -0.07232 | -6.930 | 3.330 | -2.491 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.626 | -3.111 | -2.500 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 20</span>| 480.61717 | 1.001 | -1.203 | -0.9227 | -0.9002 |
+#&gt; |.....................| -0.8503 | -0.5418 | -0.9405 | -1.001 |
+#&gt; |.....................| -0.6281 | -0.7705 | -0.6908 |...........|
+#&gt; | U| 480.61717 | 94.09 | -5.603 | -1.011 | -0.2049 |
+#&gt; |.....................| 2.099 | 1.854 | 0.7108 | 0.7537 |
+#&gt; |.....................| 1.474 | 1.197 | 1.349 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.61717</span> | 94.09 | 0.003688 | 0.2667 | 0.8147 |
+#&gt; |.....................| 8.156 | 1.854 | 0.7108 | 0.7537 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.474 | 1.197 | 1.349 |...........|</span>
+#&gt; | F| Forward Diff. | -10.61 | 0.9224 | -0.5881 | -0.06621 |
+#&gt; |.....................| -0.1838 | -5.929 | 3.775 | 2.798 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.936 | -2.993 | -2.208 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 21</span>| 480.72130 | 1.009 | -1.314 | -0.9169 | -0.9003 |
+#&gt; |.....................| -0.8494 | -0.5516 | -0.9873 | -1.003 |
+#&gt; |.....................| -0.6340 | -0.7292 | -0.6819 |...........|
+#&gt; | U| 480.7213 | 94.81 | -5.714 | -1.005 | -0.2049 |
+#&gt; |.....................| 2.100 | 1.846 | 0.6753 | 0.7523 |
+#&gt; |.....................| 1.467 | 1.242 | 1.359 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.7213</span> | 94.81 | 0.003299 | 0.2679 | 0.8147 |
+#&gt; |.....................| 8.163 | 1.846 | 0.6753 | 0.7523 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.467 | 1.242 | 1.359 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 22</span>| 480.86254 | 1.009 | -1.247 | -0.9202 | -0.9002 |
+#&gt; |.....................| -0.8499 | -0.5429 | -0.9605 | -1.003 |
+#&gt; |.....................| -0.6295 | -0.7530 | -0.6863 |...........|
+#&gt; | U| 480.86254 | 94.84 | -5.647 | -1.009 | -0.2048 |
+#&gt; |.....................| 2.099 | 1.853 | 0.6957 | 0.7520 |
+#&gt; |.....................| 1.472 | 1.216 | 1.354 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.86254</span> | 94.84 | 0.003530 | 0.2672 | 0.8148 |
+#&gt; |.....................| 8.160 | 1.853 | 0.6957 | 0.7520 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.472 | 1.216 | 1.354 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 23</span>| 480.98412 | 1.009 | -1.209 | -0.9220 | -0.9002 |
+#&gt; |.....................| -0.8501 | -0.5381 | -0.9458 | -1.003 |
+#&gt; |.....................| -0.6270 | -0.7661 | -0.6887 |...........|
+#&gt; | U| 480.98412 | 94.85 | -5.609 | -1.010 | -0.2048 |
+#&gt; |.....................| 2.099 | 1.857 | 0.7069 | 0.7519 |
+#&gt; |.....................| 1.475 | 1.202 | 1.352 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.98412</span> | 94.85 | 0.003664 | 0.2669 | 0.8148 |
+#&gt; |.....................| 8.158 | 1.857 | 0.7069 | 0.7519 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.475 | 1.202 | 1.352 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 24</span>| 480.60990 | 1.003 | -1.203 | -0.9226 | -0.9002 |
+#&gt; |.....................| -0.8503 | -0.5410 | -0.9411 | -1.001 |
+#&gt; |.....................| -0.6278 | -0.7701 | -0.6905 |...........|
+#&gt; | U| 480.6099 | 94.24 | -5.603 | -1.011 | -0.2049 |
+#&gt; |.....................| 2.099 | 1.855 | 0.7104 | 0.7534 |
+#&gt; |.....................| 1.474 | 1.198 | 1.350 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.6099</span> | 94.24 | 0.003688 | 0.2668 | 0.8148 |
+#&gt; |.....................| 8.156 | 1.855 | 0.7104 | 0.7534 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.474 | 1.198 | 1.350 |...........|</span>
+#&gt; | F| Forward Diff. | 15.29 | 0.9278 | -0.5289 | -0.04762 |
+#&gt; |.....................| -0.1043 | -5.468 | 3.876 | 0.6273 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.897 | -2.941 | -2.183 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 25</span>| 480.59557 | 1.001 | -1.204 | -0.9225 | -0.9002 |
+#&gt; |.....................| -0.8503 | -0.5407 | -0.9419 | -1.001 |
+#&gt; |.....................| -0.6277 | -0.7694 | -0.6902 |...........|
+#&gt; | U| 480.59557 | 94.13 | -5.604 | -1.011 | -0.2049 |
+#&gt; |.....................| 2.099 | 1.855 | 0.7098 | 0.7533 |
+#&gt; |.....................| 1.474 | 1.198 | 1.350 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.59557</span> | 94.13 | 0.003683 | 0.2668 | 0.8148 |
+#&gt; |.....................| 8.157 | 1.855 | 0.7098 | 0.7533 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.474 | 1.198 | 1.350 |...........|</span>
+#&gt; | F| Forward Diff. | -4.733 | 0.9212 | -0.5619 | -0.05855 |
+#&gt; |.....................| -0.1664 | -5.388 | 3.833 | 0.5854 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.924 | -2.927 | -2.102 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 26</span>| 480.58581 | 1.002 | -1.204 | -0.9224 | -0.9002 |
+#&gt; |.....................| -0.8502 | -0.5395 | -0.9428 | -1.002 |
+#&gt; |.....................| -0.6273 | -0.7688 | -0.6897 |...........|
+#&gt; | U| 480.58581 | 94.23 | -5.604 | -1.011 | -0.2048 |
+#&gt; |.....................| 2.099 | 1.856 | 0.7092 | 0.7532 |
+#&gt; |.....................| 1.475 | 1.199 | 1.351 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.58581</span> | 94.23 | 0.003683 | 0.2668 | 0.8148 |
+#&gt; |.....................| 8.157 | 1.856 | 0.7092 | 0.7532 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.475 | 1.199 | 1.351 |...........|</span>
+#&gt; | F| Forward Diff. | 12.31 | 0.9226 | -0.5246 | -0.05019 |
+#&gt; |.....................| -0.1134 | -5.293 | 3.771 | 0.5822 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.938 | -2.904 | -2.175 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 27</span>| 480.57360 | 1.001 | -1.205 | -0.9222 | -0.9002 |
+#&gt; |.....................| -0.8502 | -0.5392 | -0.9437 | -1.002 |
+#&gt; |.....................| -0.6271 | -0.7681 | -0.6894 |...........|
+#&gt; | U| 480.5736 | 94.13 | -5.605 | -1.011 | -0.2048 |
+#&gt; |.....................| 2.099 | 1.856 | 0.7085 | 0.7532 |
+#&gt; |.....................| 1.475 | 1.200 | 1.351 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.5736</span> | 94.13 | 0.003678 | 0.2668 | 0.8148 |
+#&gt; |.....................| 8.157 | 1.856 | 0.7085 | 0.7532 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.475 | 1.200 | 1.351 |...........|</span>
+#&gt; | F| Forward Diff. | -4.864 | 0.9151 | -0.5515 | -0.06112 |
+#&gt; |.....................| -0.1679 | -5.184 | 3.617 | 0.5746 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.832 | -2.849 | -2.141 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 28</span>| 480.56429 | 1.002 | -1.206 | -0.9220 | -0.9002 |
+#&gt; |.....................| -0.8502 | -0.5382 | -0.9446 | -1.002 |
+#&gt; |.....................| -0.6268 | -0.7674 | -0.6889 |...........|
+#&gt; | U| 480.56429 | 94.23 | -5.606 | -1.011 | -0.2048 |
+#&gt; |.....................| 2.099 | 1.857 | 0.7078 | 0.7531 |
+#&gt; |.....................| 1.475 | 1.201 | 1.351 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.56429</span> | 94.23 | 0.003676 | 0.2669 | 0.8148 |
+#&gt; |.....................| 8.158 | 1.857 | 0.7078 | 0.7531 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.475 | 1.201 | 1.351 |...........|</span>
+#&gt; | F| Forward Diff. | 12.18 | 0.9169 | -0.5105 | -0.05061 |
+#&gt; |.....................| -0.1125 | -5.131 | 3.532 | 0.5638 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.931 | -2.821 | -2.132 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 29</span>| 480.55246 | 1.001 | -1.207 | -0.9218 | -0.9002 |
+#&gt; |.....................| -0.8501 | -0.5380 | -0.9454 | -1.002 |
+#&gt; |.....................| -0.6266 | -0.7667 | -0.6886 |...........|
+#&gt; | U| 480.55246 | 94.13 | -5.607 | -1.010 | -0.2048 |
+#&gt; |.....................| 2.099 | 1.857 | 0.7071 | 0.7532 |
+#&gt; |.....................| 1.476 | 1.201 | 1.352 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.55246</span> | 94.13 | 0.003672 | 0.2669 | 0.8148 |
+#&gt; |.....................| 8.158 | 1.857 | 0.7071 | 0.7532 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.476 | 1.201 | 1.352 |...........|</span>
+#&gt; | F| Forward Diff. | -4.480 | 0.9098 | -0.5353 | -0.06055 |
+#&gt; |.....................| -0.1647 | -5.053 | 3.625 | 0.5654 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.860 | -2.782 | -2.112 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 30</span>| 480.54335 | 1.002 | -1.207 | -0.9217 | -0.9002 |
+#&gt; |.....................| -0.8501 | -0.5368 | -0.9463 | -1.002 |
+#&gt; |.....................| -0.6262 | -0.7660 | -0.6881 |...........|
+#&gt; | U| 480.54335 | 94.23 | -5.607 | -1.010 | -0.2048 |
+#&gt; |.....................| 2.099 | 1.858 | 0.7065 | 0.7530 |
+#&gt; |.....................| 1.476 | 1.202 | 1.352 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.54335</span> | 94.23 | 0.003671 | 0.2669 | 0.8148 |
+#&gt; |.....................| 8.158 | 1.858 | 0.7065 | 0.7530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.476 | 1.202 | 1.352 |...........|</span>
+#&gt; | F| Forward Diff. | 12.09 | 0.9120 | -0.4955 | -0.05014 |
+#&gt; |.....................| -0.1107 | -4.912 | 3.583 | 0.5835 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.814 | -2.702 | -2.057 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 31</span>| 480.53185 | 1.001 | -1.209 | -0.9215 | -0.9002 |
+#&gt; |.....................| -0.8500 | -0.5366 | -0.9472 | -1.002 |
+#&gt; |.....................| -0.6260 | -0.7654 | -0.6878 |...........|
+#&gt; | U| 480.53185 | 94.13 | -5.609 | -1.010 | -0.2048 |
+#&gt; |.....................| 2.099 | 1.858 | 0.7058 | 0.7531 |
+#&gt; |.....................| 1.476 | 1.203 | 1.353 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.53185</span> | 94.13 | 0.003666 | 0.2670 | 0.8148 |
+#&gt; |.....................| 8.158 | 1.858 | 0.7058 | 0.7531 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.476 | 1.203 | 1.353 |...........|</span>
+#&gt; | F| Forward Diff. | -4.509 | 0.9048 | -0.5214 | -0.06027 |
+#&gt; |.....................| -0.1665 | -4.870 | 3.525 | 0.5641 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.813 | -2.699 | -2.069 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 32</span>| 480.52276 | 1.002 | -1.209 | -0.9214 | -0.9001 |
+#&gt; |.....................| -0.8500 | -0.5356 | -0.9481 | -1.002 |
+#&gt; |.....................| -0.6256 | -0.7647 | -0.6873 |...........|
+#&gt; | U| 480.52276 | 94.22 | -5.609 | -1.010 | -0.2048 |
+#&gt; |.....................| 2.099 | 1.859 | 0.7051 | 0.7530 |
+#&gt; |.....................| 1.477 | 1.203 | 1.353 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.52276</span> | 94.22 | 0.003664 | 0.2670 | 0.8148 |
+#&gt; |.....................| 8.159 | 1.859 | 0.7051 | 0.7530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.477 | 1.203 | 1.353 |...........|</span>
+#&gt; | F| Forward Diff. | 11.38 | 0.9060 | -0.4821 | -0.05014 |
+#&gt; |.....................| -0.1110 | -4.747 | 3.479 | 0.5798 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.777 | -2.636 | -2.020 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 33</span>| 480.51194 | 1.001 | -1.211 | -0.9212 | -0.9001 |
+#&gt; |.....................| -0.8500 | -0.5355 | -0.9490 | -1.002 |
+#&gt; |.....................| -0.6255 | -0.7641 | -0.6869 |...........|
+#&gt; | U| 480.51194 | 94.13 | -5.611 | -1.010 | -0.2048 |
+#&gt; |.....................| 2.099 | 1.859 | 0.7044 | 0.7530 |
+#&gt; |.....................| 1.477 | 1.204 | 1.354 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.51194</span> | 94.13 | 0.003659 | 0.2670 | 0.8148 |
+#&gt; |.....................| 8.159 | 1.859 | 0.7044 | 0.7530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.477 | 1.204 | 1.354 |...........|</span>
+#&gt; | F| Forward Diff. | -4.485 | 0.8991 | -0.5064 | -0.06148 |
+#&gt; |.....................| -0.1643 | -4.758 | 3.403 | 0.5432 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.772 | -2.633 | -2.022 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 34</span>| 480.50302 | 1.002 | -1.211 | -0.9210 | -0.9001 |
+#&gt; |.....................| -0.8499 | -0.5345 | -0.9500 | -1.002 |
+#&gt; |.....................| -0.6251 | -0.7633 | -0.6864 |...........|
+#&gt; | U| 480.50302 | 94.22 | -5.611 | -1.010 | -0.2047 |
+#&gt; |.....................| 2.099 | 1.860 | 0.7037 | 0.7529 |
+#&gt; |.....................| 1.477 | 1.205 | 1.354 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.50302</span> | 94.22 | 0.003656 | 0.2671 | 0.8149 |
+#&gt; |.....................| 8.159 | 1.860 | 0.7037 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.477 | 1.205 | 1.354 |...........|</span>
+#&gt; | F| Forward Diff. | 10.83 | 0.8997 | -0.4680 | -0.05021 |
+#&gt; |.....................| -0.1106 | -4.703 | 3.332 | 0.5674 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.765 | -2.559 | -1.986 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 35</span>| 480.49281 | 1.001 | -1.213 | -0.9209 | -0.9001 |
+#&gt; |.....................| -0.8499 | -0.5344 | -0.9509 | -1.002 |
+#&gt; |.....................| -0.6250 | -0.7627 | -0.6860 |...........|
+#&gt; | U| 480.49281 | 94.13 | -5.613 | -1.009 | -0.2047 |
+#&gt; |.....................| 2.099 | 1.860 | 0.7030 | 0.7529 |
+#&gt; |.....................| 1.478 | 1.206 | 1.355 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.49281</span> | 94.13 | 0.003652 | 0.2671 | 0.8149 |
+#&gt; |.....................| 8.160 | 1.860 | 0.7030 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.478 | 1.206 | 1.355 |...........|</span>
+#&gt; | F| Forward Diff. | -4.447 | 0.8934 | -0.4900 | -0.06030 |
+#&gt; |.....................| -0.1577 | -4.708 | 3.266 | 0.5080 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.782 | -2.544 | -1.983 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 36</span>| 480.48415 | 1.002 | -1.213 | -0.9207 | -0.9001 |
+#&gt; |.....................| -0.8498 | -0.5335 | -0.9518 | -1.002 |
+#&gt; |.....................| -0.6246 | -0.7620 | -0.6855 |...........|
+#&gt; | U| 480.48415 | 94.22 | -5.613 | -1.009 | -0.2047 |
+#&gt; |.....................| 2.099 | 1.861 | 0.7023 | 0.7528 |
+#&gt; |.....................| 1.478 | 1.206 | 1.355 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.48415</span> | 94.22 | 0.003649 | 0.2671 | 0.8149 |
+#&gt; |.....................| 8.160 | 1.861 | 0.7023 | 0.7528 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.478 | 1.206 | 1.355 |...........|</span>
+#&gt; | F| Forward Diff. | 10.47 | 0.8932 | -0.4526 | -0.04997 |
+#&gt; |.....................| -0.1093 | -4.502 | 3.250 | 0.5653 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.769 | -2.486 | -1.944 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 37</span>| 480.47437 | 1.001 | -1.215 | -0.9205 | -0.9001 |
+#&gt; |.....................| -0.8498 | -0.5334 | -0.9527 | -1.002 |
+#&gt; |.....................| -0.6244 | -0.7613 | -0.6852 |...........|
+#&gt; | U| 480.47437 | 94.13 | -5.615 | -1.009 | -0.2047 |
+#&gt; |.....................| 2.099 | 1.861 | 0.7016 | 0.7528 |
+#&gt; |.....................| 1.478 | 1.207 | 1.356 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.47437</span> | 94.13 | 0.003644 | 0.2672 | 0.8149 |
+#&gt; |.....................| 8.161 | 1.861 | 0.7016 | 0.7528 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.478 | 1.207 | 1.356 |...........|</span>
+#&gt; | F| Forward Diff. | -4.431 | 0.8869 | -0.4735 | -0.05983 |
+#&gt; |.....................| -0.1554 | -4.492 | 3.189 | -0.6996 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.700 | -2.467 | -1.937 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 38</span>| 480.46651 | 1.002 | -1.216 | -0.9203 | -0.9000 |
+#&gt; |.....................| -0.8497 | -0.5326 | -0.9537 | -1.002 |
+#&gt; |.....................| -0.6240 | -0.7606 | -0.6847 |...........|
+#&gt; | U| 480.46651 | 94.21 | -5.616 | -1.009 | -0.2047 |
+#&gt; |.....................| 2.099 | 1.861 | 0.7009 | 0.7530 |
+#&gt; |.....................| 1.479 | 1.208 | 1.356 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.46651</span> | 94.21 | 0.003640 | 0.2672 | 0.8149 |
+#&gt; |.....................| 8.161 | 1.861 | 0.7009 | 0.7530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.479 | 1.208 | 1.356 |...........|</span>
+#&gt; | F| Forward Diff. | 9.502 | 0.8860 | -0.4381 | -0.05035 |
+#&gt; |.....................| -0.1103 | -4.453 | 3.114 | 0.5384 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.770 | -2.407 | -1.897 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 39</span>| 480.45755 | 1.001 | -1.217 | -0.9200 | -0.9000 |
+#&gt; |.....................| -0.8497 | -0.5325 | -0.9546 | -1.002 |
+#&gt; |.....................| -0.6238 | -0.7600 | -0.6843 |...........|
+#&gt; | U| 480.45755 | 94.13 | -5.617 | -1.009 | -0.2047 |
+#&gt; |.....................| 2.099 | 1.861 | 0.7002 | 0.7530 |
+#&gt; |.....................| 1.479 | 1.209 | 1.357 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.45755</span> | 94.13 | 0.003635 | 0.2673 | 0.8149 |
+#&gt; |.....................| 8.162 | 1.861 | 0.7002 | 0.7530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.479 | 1.209 | 1.357 |...........|</span>
+#&gt; | F| Forward Diff. | -4.779 | 0.8798 | -0.4544 | -0.05816 |
+#&gt; |.....................| -0.1541 | -4.432 | 3.060 | 0.5236 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.719 | -2.365 | -1.874 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 40</span>| 480.44943 | 1.002 | -1.218 | -0.9199 | -0.9000 |
+#&gt; |.....................| -0.8496 | -0.5319 | -0.9555 | -1.002 |
+#&gt; |.....................| -0.6235 | -0.7592 | -0.6838 |...........|
+#&gt; | U| 480.44943 | 94.21 | -5.618 | -1.008 | -0.2046 |
+#&gt; |.....................| 2.099 | 1.862 | 0.6995 | 0.7529 |
+#&gt; |.....................| 1.479 | 1.209 | 1.357 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.44943</span> | 94.21 | 0.003631 | 0.2673 | 0.8149 |
+#&gt; |.....................| 8.162 | 1.862 | 0.6995 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.479 | 1.209 | 1.357 |...........|</span>
+#&gt; | F| Forward Diff. | 8.806 | 0.8785 | -0.4202 | -0.05024 |
+#&gt; |.....................| -0.1124 | -4.289 | 3.039 | 0.5974 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.651 | -2.322 | -1.843 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 41</span>| 480.44100 | 1.001 | -1.220 | -0.9197 | -0.9000 |
+#&gt; |.....................| -0.8496 | -0.5318 | -0.9564 | -1.002 |
+#&gt; |.....................| -0.6233 | -0.7586 | -0.6835 |...........|
+#&gt; | U| 480.441 | 94.13 | -5.620 | -1.008 | -0.2046 |
+#&gt; |.....................| 2.100 | 1.862 | 0.6988 | 0.7529 |
+#&gt; |.....................| 1.480 | 1.210 | 1.358 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.441</span> | 94.13 | 0.003626 | 0.2673 | 0.8150 |
+#&gt; |.....................| 8.162 | 1.862 | 0.6988 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.480 | 1.210 | 1.358 |...........|</span>
+#&gt; | F| Forward Diff. | -4.662 | 0.8724 | -0.4382 | -0.05735 |
+#&gt; |.....................| -0.1541 | -4.192 | 3.008 | 0.5718 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.633 | -2.283 | -1.828 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 42</span>| 480.43316 | 1.002 | -1.221 | -0.9195 | -0.9000 |
+#&gt; |.....................| -0.8495 | -0.5313 | -0.9573 | -1.002 |
+#&gt; |.....................| -0.6230 | -0.7579 | -0.6830 |...........|
+#&gt; | U| 480.43316 | 94.21 | -5.621 | -1.008 | -0.2046 |
+#&gt; |.....................| 2.100 | 1.862 | 0.6981 | 0.7529 |
+#&gt; |.....................| 1.480 | 1.211 | 1.358 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.43316</span> | 94.21 | 0.003622 | 0.2674 | 0.8150 |
+#&gt; |.....................| 8.163 | 1.862 | 0.6981 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.480 | 1.211 | 1.358 |...........|</span>
+#&gt; | F| Forward Diff. | 8.374 | 0.8709 | -0.4057 | -0.04981 |
+#&gt; |.....................| -0.1077 | -4.274 | 2.898 | 0.5670 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.709 | -2.249 | -1.806 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 43</span>| 480.42514 | 1.001 | -1.222 | -0.9194 | -0.8999 |
+#&gt; |.....................| -0.8495 | -0.5312 | -0.9582 | -1.002 |
+#&gt; |.....................| -0.6227 | -0.7573 | -0.6826 |...........|
+#&gt; | U| 480.42514 | 94.13 | -5.622 | -1.008 | -0.2046 |
+#&gt; |.....................| 2.100 | 1.862 | 0.6974 | 0.7529 |
+#&gt; |.....................| 1.480 | 1.212 | 1.359 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.42514</span> | 94.13 | 0.003617 | 0.2674 | 0.8150 |
+#&gt; |.....................| 8.163 | 1.862 | 0.6974 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.480 | 1.212 | 1.359 |...........|</span>
+#&gt; | F| Forward Diff. | -4.560 | 0.8648 | -0.4238 | -0.05673 |
+#&gt; |.....................| -0.1505 | -4.130 | 2.894 | 0.5588 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.637 | -2.210 | -1.785 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 44</span>| 480.41757 | 1.002 | -1.223 | -0.9192 | -0.8999 |
+#&gt; |.....................| -0.8494 | -0.5307 | -0.9591 | -1.002 |
+#&gt; |.....................| -0.6223 | -0.7566 | -0.6821 |...........|
+#&gt; | U| 480.41757 | 94.21 | -5.623 | -1.008 | -0.2046 |
+#&gt; |.....................| 2.100 | 1.863 | 0.6967 | 0.7528 |
+#&gt; |.....................| 1.481 | 1.212 | 1.359 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.41757</span> | 94.21 | 0.003613 | 0.2674 | 0.8150 |
+#&gt; |.....................| 8.164 | 1.863 | 0.6967 | 0.7528 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.481 | 1.212 | 1.359 |...........|</span>
+#&gt; | F| Forward Diff. | 8.260 | 0.8632 | -0.3905 | -0.04898 |
+#&gt; |.....................| -0.1050 | -4.163 | 2.793 | 0.5626 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.680 | -2.170 | -1.767 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 45</span>| 480.40986 | 1.001 | -1.225 | -0.9190 | -0.8999 |
+#&gt; |.....................| -0.8494 | -0.5306 | -0.9600 | -1.002 |
+#&gt; |.....................| -0.6221 | -0.7560 | -0.6818 |...........|
+#&gt; | U| 480.40986 | 94.13 | -5.625 | -1.008 | -0.2045 |
+#&gt; |.....................| 2.100 | 1.863 | 0.6961 | 0.7528 |
+#&gt; |.....................| 1.481 | 1.213 | 1.360 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.40986</span> | 94.13 | 0.003607 | 0.2675 | 0.8150 |
+#&gt; |.....................| 8.164 | 1.863 | 0.6961 | 0.7528 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.481 | 1.213 | 1.360 |...........|</span>
+#&gt; | F| Forward Diff. | -4.433 | 0.8570 | -0.4082 | -0.05598 |
+#&gt; |.....................| -0.1439 | -4.083 | 2.776 | -0.7191 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.623 | -2.134 | -1.744 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 46</span>| 480.40309 | 1.002 | -1.226 | -0.9188 | -0.8999 |
+#&gt; |.....................| -0.8493 | -0.5301 | -0.9609 | -1.002 |
+#&gt; |.....................| -0.6217 | -0.7553 | -0.6813 |...........|
+#&gt; | U| 480.40309 | 94.20 | -5.626 | -1.007 | -0.2045 |
+#&gt; |.....................| 2.100 | 1.863 | 0.6954 | 0.7529 |
+#&gt; |.....................| 1.481 | 1.214 | 1.360 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.40309</span> | 94.20 | 0.003603 | 0.2675 | 0.8151 |
+#&gt; |.....................| 8.165 | 1.863 | 0.6954 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.481 | 1.214 | 1.360 |...........|</span>
+#&gt; | F| Forward Diff. | 7.640 | 0.8551 | -0.3719 | -0.04853 |
+#&gt; |.....................| -0.1037 | -4.111 | 2.689 | 0.5674 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.653 | -2.095 | -1.726 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 47</span>| 480.39597 | 1.001 | -1.227 | -0.9185 | -0.8998 |
+#&gt; |.....................| -0.8492 | -0.5300 | -0.9618 | -1.002 |
+#&gt; |.....................| -0.6215 | -0.7547 | -0.6809 |...........|
+#&gt; | U| 480.39597 | 94.13 | -5.627 | -1.007 | -0.2045 |
+#&gt; |.....................| 2.100 | 1.863 | 0.6947 | 0.7530 |
+#&gt; |.....................| 1.482 | 1.214 | 1.361 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.39597</span> | 94.13 | 0.003598 | 0.2676 | 0.8151 |
+#&gt; |.....................| 8.165 | 1.863 | 0.6947 | 0.7530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.214 | 1.361 |...........|</span>
+#&gt; | F| Forward Diff. | -4.827 | 0.8487 | -0.3865 | -0.05558 |
+#&gt; |.....................| -0.1453 | -3.997 | 2.662 | 0.5449 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.580 | -2.061 | -1.701 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 48</span>| 480.38900 | 1.002 | -1.229 | -0.9184 | -0.8998 |
+#&gt; |.....................| -0.8491 | -0.5297 | -0.9626 | -1.002 |
+#&gt; |.....................| -0.6211 | -0.7540 | -0.6805 |...........|
+#&gt; | U| 480.389 | 94.20 | -5.629 | -1.007 | -0.2044 |
+#&gt; |.....................| 2.100 | 1.864 | 0.6940 | 0.7529 |
+#&gt; |.....................| 1.482 | 1.215 | 1.361 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.389</span> | 94.20 | 0.003593 | 0.2676 | 0.8151 |
+#&gt; |.....................| 8.166 | 1.864 | 0.6940 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.215 | 1.361 |...........|</span>
+#&gt; | F| Forward Diff. | 7.052 | 0.8465 | -0.3544 | -0.04836 |
+#&gt; |.....................| -0.1022 | -3.917 | 2.636 | 0.5926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.553 | -2.027 | -1.689 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 49</span>| 480.38219 | 1.001 | -1.230 | -0.9183 | -0.8998 |
+#&gt; |.....................| -0.8491 | -0.5296 | -0.9634 | -1.002 |
+#&gt; |.....................| -0.6209 | -0.7534 | -0.6801 |...........|
+#&gt; | U| 480.38219 | 94.13 | -5.630 | -1.007 | -0.2044 |
+#&gt; |.....................| 2.100 | 1.864 | 0.6934 | 0.7529 |
+#&gt; |.....................| 1.482 | 1.216 | 1.362 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.38219</span> | 94.13 | 0.003587 | 0.2676 | 0.8151 |
+#&gt; |.....................| 8.166 | 1.864 | 0.6934 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.216 | 1.362 |...........|</span>
+#&gt; | F| Forward Diff. | -4.619 | 0.8406 | -0.3725 | -0.05439 |
+#&gt; |.....................| -0.1411 | -3.915 | 2.594 | -0.6808 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.519 | -1.986 | -1.659 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 50</span>| 480.37598 | 1.002 | -1.232 | -0.9180 | -0.8998 |
+#&gt; |.....................| -0.8490 | -0.5292 | -0.9644 | -1.002 |
+#&gt; |.....................| -0.6206 | -0.7528 | -0.6796 |...........|
+#&gt; | U| 480.37598 | 94.20 | -5.632 | -1.007 | -0.2044 |
+#&gt; |.....................| 2.100 | 1.864 | 0.6927 | 0.7530 |
+#&gt; |.....................| 1.483 | 1.216 | 1.362 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.37598</span> | 94.20 | 0.003582 | 0.2677 | 0.8152 |
+#&gt; |.....................| 8.167 | 1.864 | 0.6927 | 0.7530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.483 | 1.216 | 1.362 |...........|</span>
+#&gt; | F| Forward Diff. | 6.566 | 0.8383 | -0.3380 | -0.04700 |
+#&gt; |.....................| -0.09943 | -3.949 | 2.377 | 0.5751 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.561 | -1.951 | -1.641 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 51</span>| 480.36982 | 1.001 | -1.233 | -0.9178 | -0.8997 |
+#&gt; |.....................| -0.8489 | -0.5291 | -0.9651 | -1.002 |
+#&gt; |.....................| -0.6204 | -0.7522 | -0.6792 |...........|
+#&gt; | U| 480.36982 | 94.12 | -5.633 | -1.006 | -0.2043 |
+#&gt; |.....................| 2.100 | 1.864 | 0.6922 | 0.7530 |
+#&gt; |.....................| 1.483 | 1.217 | 1.363 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.36982</span> | 94.12 | 0.003577 | 0.2677 | 0.8152 |
+#&gt; |.....................| 8.167 | 1.864 | 0.6922 | 0.7530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.483 | 1.217 | 1.363 |...........|</span>
+#&gt; | F| Forward Diff. | -5.243 | 0.8317 | -0.3515 | -0.05392 |
+#&gt; |.....................| -0.1358 | -3.830 | 2.493 | 0.5823 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.510 | -1.918 | -1.620 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 52</span>| 480.36331 | 1.002 | -1.235 | -0.9176 | -0.8997 |
+#&gt; |.....................| -0.8489 | -0.5289 | -0.9659 | -1.002 |
+#&gt; |.....................| -0.6201 | -0.7516 | -0.6788 |...........|
+#&gt; | U| 480.36331 | 94.19 | -5.635 | -1.006 | -0.2043 |
+#&gt; |.....................| 2.100 | 1.864 | 0.6916 | 0.7530 |
+#&gt; |.....................| 1.483 | 1.218 | 1.363 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.36331</span> | 94.19 | 0.003572 | 0.2677 | 0.8152 |
+#&gt; |.....................| 8.168 | 1.864 | 0.6916 | 0.7530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.483 | 1.218 | 1.363 |...........|</span>
+#&gt; | F| Forward Diff. | 5.492 | 0.8288 | -0.3226 | -0.04732 |
+#&gt; |.....................| -0.09956 | -3.829 | 2.435 | 0.5676 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.517 | -1.882 | -1.604 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 53</span>| 480.35731 | 1.001 | -1.236 | -0.9175 | -0.8996 |
+#&gt; |.....................| -0.8488 | -0.5288 | -0.9666 | -1.002 |
+#&gt; |.....................| -0.6198 | -0.7510 | -0.6783 |...........|
+#&gt; | U| 480.35731 | 94.12 | -5.636 | -1.006 | -0.2043 |
+#&gt; |.....................| 2.100 | 1.864 | 0.6910 | 0.7529 |
+#&gt; |.....................| 1.484 | 1.218 | 1.364 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.35731</span> | 94.12 | 0.003566 | 0.2678 | 0.8152 |
+#&gt; |.....................| 8.168 | 1.864 | 0.6910 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.484 | 1.218 | 1.364 |...........|</span>
+#&gt; | F| Forward Diff. | -5.442 | 0.8230 | -0.3401 | -0.05270 |
+#&gt; |.....................| -0.1329 | -3.818 | 2.394 | -0.6865 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.462 | -1.826 | -1.568 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 54</span>| 480.35158 | 1.002 | -1.238 | -0.9173 | -0.8996 |
+#&gt; |.....................| -0.8487 | -0.5286 | -0.9675 | -1.002 |
+#&gt; |.....................| -0.6197 | -0.7504 | -0.6779 |...........|
+#&gt; | U| 480.35158 | 94.19 | -5.638 | -1.006 | -0.2042 |
+#&gt; |.....................| 2.100 | 1.864 | 0.6904 | 0.7530 |
+#&gt; |.....................| 1.484 | 1.219 | 1.364 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.35158</span> | 94.19 | 0.003561 | 0.2678 | 0.8153 |
+#&gt; |.....................| 8.169 | 1.864 | 0.6904 | 0.7530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.484 | 1.219 | 1.364 |...........|</span>
+#&gt; | F| Forward Diff. | 5.119 | 0.8198 | -0.3066 | -0.04724 |
+#&gt; |.....................| -0.1005 | -3.787 | 2.338 | 0.5896 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.465 | -1.812 | -1.559 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 55</span>| 480.34603 | 1.001 | -1.239 | -0.9170 | -0.8996 |
+#&gt; |.....................| -0.8486 | -0.5283 | -0.9683 | -1.002 |
+#&gt; |.....................| -0.6195 | -0.7499 | -0.6775 |...........|
+#&gt; | U| 480.34603 | 94.12 | -5.639 | -1.006 | -0.2042 |
+#&gt; |.....................| 2.100 | 1.865 | 0.6897 | 0.7530 |
+#&gt; |.....................| 1.484 | 1.220 | 1.364 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.34603</span> | 94.12 | 0.003555 | 0.2679 | 0.8153 |
+#&gt; |.....................| 8.170 | 1.865 | 0.6897 | 0.7530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.484 | 1.220 | 1.364 |...........|</span>
+#&gt; | F| Forward Diff. | -5.669 | 0.8137 | -0.3182 | -0.05158 |
+#&gt; |.....................| -0.1292 | -3.845 | 2.251 | 0.5349 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.532 | -1.781 | -1.537 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 56</span>| 480.33997 | 1.002 | -1.241 | -0.9169 | -0.8995 |
+#&gt; |.....................| -0.8486 | -0.5282 | -0.9690 | -1.002 |
+#&gt; |.....................| -0.6192 | -0.7493 | -0.6772 |...........|
+#&gt; | U| 480.33997 | 94.19 | -5.641 | -1.005 | -0.2041 |
+#&gt; |.....................| 2.101 | 1.865 | 0.6892 | 0.7529 |
+#&gt; |.....................| 1.484 | 1.220 | 1.365 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.33997</span> | 94.19 | 0.003550 | 0.2679 | 0.8153 |
+#&gt; |.....................| 8.170 | 1.865 | 0.6892 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.484 | 1.220 | 1.365 |...........|</span>
+#&gt; | F| Forward Diff. | 4.944 | 0.8109 | -0.2900 | -0.04418 |
+#&gt; |.....................| -0.09220 | -3.817 | 2.207 | 0.5423 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.530 | -1.750 | -1.524 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 57</span>| 480.33440 | 1.001 | -1.242 | -0.9168 | -0.8995 |
+#&gt; |.....................| -0.8485 | -0.5280 | -0.9697 | -1.002 |
+#&gt; |.....................| -0.6188 | -0.7487 | -0.6768 |...........|
+#&gt; | U| 480.3344 | 94.12 | -5.642 | -1.005 | -0.2041 |
+#&gt; |.....................| 2.101 | 1.865 | 0.6887 | 0.7529 |
+#&gt; |.....................| 1.485 | 1.221 | 1.365 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.3344</span> | 94.12 | 0.003544 | 0.2679 | 0.8154 |
+#&gt; |.....................| 8.171 | 1.865 | 0.6887 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.485 | 1.221 | 1.365 |...........|</span>
+#&gt; | F| Forward Diff. | -5.630 | 0.8048 | -0.3070 | -0.04965 |
+#&gt; |.....................| -0.1246 | -3.770 | 2.179 | 0.5400 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.465 | -1.710 | -1.500 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 58</span>| 480.32852 | 1.002 | -1.244 | -0.9167 | -0.8994 |
+#&gt; |.....................| -0.8485 | -0.5278 | -0.9703 | -1.002 |
+#&gt; |.....................| -0.6184 | -0.7482 | -0.6764 |...........|
+#&gt; | U| 480.32852 | 94.19 | -5.644 | -1.005 | -0.2041 |
+#&gt; |.....................| 2.101 | 1.865 | 0.6882 | 0.7528 |
+#&gt; |.....................| 1.485 | 1.221 | 1.366 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.32852</span> | 94.19 | 0.003538 | 0.2679 | 0.8154 |
+#&gt; |.....................| 8.171 | 1.865 | 0.6882 | 0.7528 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.485 | 1.221 | 1.366 |...........|</span>
+#&gt; | F| Forward Diff. | 4.819 | 0.8018 | -0.2789 | -0.04260 |
+#&gt; |.....................| -0.08823 | -3.653 | 2.177 | -0.6593 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.384 | -1.678 | -1.478 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 59</span>| 480.32382 | 1.001 | -1.246 | -0.9164 | -0.8994 |
+#&gt; |.....................| -0.8484 | -0.5276 | -0.9711 | -1.002 |
+#&gt; |.....................| -0.6183 | -0.7477 | -0.6761 |...........|
+#&gt; | U| 480.32382 | 94.12 | -5.646 | -1.005 | -0.2040 |
+#&gt; |.....................| 2.101 | 1.865 | 0.6876 | 0.7529 |
+#&gt; |.....................| 1.486 | 1.222 | 1.366 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.32382</span> | 94.12 | 0.003533 | 0.2680 | 0.8155 |
+#&gt; |.....................| 8.172 | 1.865 | 0.6876 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.486 | 1.222 | 1.366 |...........|</span>
+#&gt; | F| Forward Diff. | -5.225 | 0.7951 | -0.2896 | -0.04843 |
+#&gt; |.....................| -0.1194 | -3.720 | 2.091 | -0.7072 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.430 | -1.641 | -1.454 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 60</span>| 480.31902 | 1.002 | -1.247 | -0.9160 | -0.8993 |
+#&gt; |.....................| -0.8482 | -0.5273 | -0.9719 | -1.002 |
+#&gt; |.....................| -0.6182 | -0.7473 | -0.6757 |...........|
+#&gt; | U| 480.31902 | 94.19 | -5.647 | -1.005 | -0.2039 |
+#&gt; |.....................| 2.101 | 1.865 | 0.6870 | 0.7531 |
+#&gt; |.....................| 1.486 | 1.222 | 1.367 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.31902</span> | 94.19 | 0.003527 | 0.2681 | 0.8155 |
+#&gt; |.....................| 8.173 | 1.865 | 0.6870 | 0.7531 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.486 | 1.222 | 1.367 |...........|</span>
+#&gt; | F| Forward Diff. | 4.904 | 0.7922 | -0.2469 | -0.04034 |
+#&gt; |.....................| -0.08539 | -3.545 | 2.094 | -0.6237 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.331 | -1.619 | -1.454 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 61</span>| 480.31471 | 1.001 | -1.249 | -0.9156 | -0.8993 |
+#&gt; |.....................| -0.8481 | -0.5271 | -0.9727 | -1.001 |
+#&gt; |.....................| -0.6181 | -0.7468 | -0.6753 |...........|
+#&gt; | U| 480.31471 | 94.12 | -5.649 | -1.004 | -0.2039 |
+#&gt; |.....................| 2.101 | 1.866 | 0.6864 | 0.7533 |
+#&gt; |.....................| 1.486 | 1.223 | 1.367 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.31471</span> | 94.12 | 0.003522 | 0.2681 | 0.8156 |
+#&gt; |.....................| 8.174 | 1.866 | 0.6864 | 0.7533 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.486 | 1.223 | 1.367 |...........|</span>
+#&gt; | F| Forward Diff. | -5.295 | 0.7853 | -0.2507 | -0.04627 |
+#&gt; |.....................| -0.1126 | -3.760 | 1.942 | -0.7288 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.482 | -1.617 | -1.436 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 62</span>| 480.31013 | 1.002 | -1.250 | -0.9152 | -0.8992 |
+#&gt; |.....................| -0.8480 | -0.5269 | -0.9734 | -1.001 |
+#&gt; |.....................| -0.6180 | -0.7464 | -0.6750 |...........|
+#&gt; | U| 480.31013 | 94.19 | -5.650 | -1.004 | -0.2038 |
+#&gt; |.....................| 2.101 | 1.866 | 0.6859 | 0.7535 |
+#&gt; |.....................| 1.486 | 1.223 | 1.367 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.31013</span> | 94.19 | 0.003516 | 0.2682 | 0.8156 |
+#&gt; |.....................| 8.175 | 1.866 | 0.6859 | 0.7535 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.486 | 1.223 | 1.367 |...........|</span>
+#&gt; | F| Forward Diff. | 4.435 | 0.7821 | -0.2118 | -0.03855 |
+#&gt; |.....................| -0.07590 | -3.495 | 2.000 | -0.6027 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.382 | -1.576 | -1.413 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 63</span>| 480.30581 | 1.001 | -1.252 | -0.9149 | -0.8991 |
+#&gt; |.....................| -0.8479 | -0.5266 | -0.9741 | -1.001 |
+#&gt; |.....................| -0.6178 | -0.7459 | -0.6746 |...........|
+#&gt; | U| 480.30581 | 94.12 | -5.652 | -1.003 | -0.2037 |
+#&gt; |.....................| 2.101 | 1.866 | 0.6854 | 0.7536 |
+#&gt; |.....................| 1.486 | 1.224 | 1.368 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.30581</span> | 94.12 | 0.003510 | 0.2683 | 0.8157 |
+#&gt; |.....................| 8.176 | 1.866 | 0.6854 | 0.7536 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.486 | 1.224 | 1.368 |...........|</span>
+#&gt; | F| Forward Diff. | -5.315 | 0.7789 | -0.2090 | -0.03720 |
+#&gt; |.....................| -0.09944 | -3.577 | 1.911 | -0.6518 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.378 | -1.528 | -1.376 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 64</span>| 480.30125 | 1.002 | -1.254 | -0.9146 | -0.8990 |
+#&gt; |.....................| -0.8478 | -0.5264 | -0.9748 | -1.001 |
+#&gt; |.....................| -0.6176 | -0.7454 | -0.6743 |...........|
+#&gt; | U| 480.30125 | 94.19 | -5.654 | -1.003 | -0.2037 |
+#&gt; |.....................| 2.101 | 1.866 | 0.6848 | 0.7538 |
+#&gt; |.....................| 1.486 | 1.224 | 1.368 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.30125</span> | 94.19 | 0.003505 | 0.2683 | 0.8157 |
+#&gt; |.....................| 8.177 | 1.866 | 0.6848 | 0.7538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.486 | 1.224 | 1.368 |...........|</span>
+#&gt; | F| Forward Diff. | 4.353 | 0.7723 | -0.1834 | -0.03622 |
+#&gt; |.....................| -0.07047 | -3.672 | 1.822 | -0.6713 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.445 | -1.532 | -1.389 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 65</span>| 480.29714 | 1.001 | -1.255 | -0.9143 | -0.8990 |
+#&gt; |.....................| -0.8476 | -0.5261 | -0.9754 | -1.001 |
+#&gt; |.....................| -0.6174 | -0.7450 | -0.6740 |...........|
+#&gt; | U| 480.29714 | 94.12 | -5.655 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.101 | 1.866 | 0.6843 | 0.7539 |
+#&gt; |.....................| 1.487 | 1.225 | 1.369 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.29714</span> | 94.12 | 0.003499 | 0.2684 | 0.8158 |
+#&gt; |.....................| 8.178 | 1.866 | 0.6843 | 0.7539 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.487 | 1.225 | 1.369 |...........|</span>
+#&gt; | F| Forward Diff. | -5.435 | 0.7663 | -0.1878 | -0.03986 |
+#&gt; |.....................| -0.1019 | -3.343 | 1.893 | 0.6711 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.269 | -1.487 | -1.354 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 66</span>| 480.29215 | 1.002 | -1.257 | -0.9143 | -0.8989 |
+#&gt; |.....................| -0.8476 | -0.5260 | -0.9760 | -1.001 |
+#&gt; |.....................| -0.6172 | -0.7444 | -0.6736 |...........|
+#&gt; | U| 480.29215 | 94.18 | -5.657 | -1.003 | -0.2036 |
+#&gt; |.....................| 2.102 | 1.867 | 0.6839 | 0.7538 |
+#&gt; |.....................| 1.487 | 1.226 | 1.369 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.29215</span> | 94.18 | 0.003493 | 0.2684 | 0.8158 |
+#&gt; |.....................| 8.179 | 1.867 | 0.6839 | 0.7538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.487 | 1.226 | 1.369 |...........|</span>
+#&gt; | F| Forward Diff. | 4.161 | 0.7621 | -0.1686 | -0.03452 |
+#&gt; |.....................| -0.06632 | -3.552 | 1.775 | 0.6057 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.379 | -1.473 | -1.364 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 67</span>| 480.28721 | 1.001 | -1.259 | -0.9145 | -0.8989 |
+#&gt; |.....................| -0.8476 | -0.5257 | -0.9765 | -1.001 |
+#&gt; |.....................| -0.6170 | -0.7439 | -0.6732 |...........|
+#&gt; | U| 480.28721 | 94.12 | -5.659 | -1.003 | -0.2035 |
+#&gt; |.....................| 2.102 | 1.867 | 0.6836 | 0.7537 |
+#&gt; |.....................| 1.487 | 1.226 | 1.369 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.28721</span> | 94.12 | 0.003487 | 0.2684 | 0.8159 |
+#&gt; |.....................| 8.179 | 1.867 | 0.6836 | 0.7537 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.487 | 1.226 | 1.369 |...........|</span>
+#&gt; | F| Forward Diff. | -4.925 | 0.7584 | -0.1913 | -0.03513 |
+#&gt; |.....................| -0.09132 | -3.418 | 1.781 | -0.6203 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.349 | -1.417 | -1.313 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 68</span>| 480.28278 | 1.002 | -1.260 | -0.9144 | -0.8988 |
+#&gt; |.....................| -0.8475 | -0.5255 | -0.9770 | -1.001 |
+#&gt; |.....................| -0.6167 | -0.7434 | -0.6728 |...........|
+#&gt; | U| 480.28278 | 94.19 | -5.660 | -1.003 | -0.2035 |
+#&gt; |.....................| 2.102 | 1.867 | 0.6832 | 0.7537 |
+#&gt; |.....................| 1.487 | 1.227 | 1.370 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.28278</span> | 94.19 | 0.003481 | 0.2684 | 0.8159 |
+#&gt; |.....................| 8.179 | 1.867 | 0.6832 | 0.7537 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.487 | 1.227 | 1.370 |...........|</span>
+#&gt; | F| Forward Diff. | 4.442 | 0.7524 | -0.1734 | -0.03276 |
+#&gt; |.....................| -0.06267 | -3.400 | 1.746 | -0.5960 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.307 | -1.411 | -1.323 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 69</span>| 480.27897 | 1.001 | -1.262 | -0.9141 | -0.8988 |
+#&gt; |.....................| -0.8474 | -0.5252 | -0.9776 | -1.001 |
+#&gt; |.....................| -0.6165 | -0.7431 | -0.6724 |...........|
+#&gt; | U| 480.27897 | 94.13 | -5.662 | -1.003 | -0.2034 |
+#&gt; |.....................| 2.102 | 1.867 | 0.6827 | 0.7539 |
+#&gt; |.....................| 1.488 | 1.227 | 1.370 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.27897</span> | 94.13 | 0.003475 | 0.2684 | 0.8159 |
+#&gt; |.....................| 8.180 | 1.867 | 0.6827 | 0.7539 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.488 | 1.227 | 1.370 |...........|</span>
+#&gt; | F| Forward Diff. | -4.732 | 0.7463 | -0.1764 | -0.03625 |
+#&gt; |.....................| -0.08933 | -3.375 | 1.716 | 0.6486 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.273 | -1.374 | -1.283 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 70</span>| 480.27440 | 1.002 | -1.264 | -0.9140 | -0.8987 |
+#&gt; |.....................| -0.8473 | -0.5250 | -0.9782 | -1.001 |
+#&gt; |.....................| -0.6164 | -0.7427 | -0.6721 |...........|
+#&gt; | U| 480.2744 | 94.19 | -5.664 | -1.003 | -0.2034 |
+#&gt; |.....................| 2.102 | 1.867 | 0.6823 | 0.7538 |
+#&gt; |.....................| 1.488 | 1.227 | 1.371 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.2744</span> | 94.19 | 0.003469 | 0.2684 | 0.8160 |
+#&gt; |.....................| 8.181 | 1.867 | 0.6823 | 0.7538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.488 | 1.227 | 1.371 |...........|</span>
+#&gt; | F| Forward Diff. | 4.305 | 0.7431 | -0.1535 | -0.02884 |
+#&gt; |.....................| -0.05624 | -3.424 | 1.641 | -0.6166 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.366 | -1.368 | -1.291 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 71</span>| 480.27043 | 1.001 | -1.266 | -0.9140 | -0.8987 |
+#&gt; |.....................| -0.8473 | -0.5247 | -0.9786 | -1.001 |
+#&gt; |.....................| -0.6161 | -0.7423 | -0.6718 |...........|
+#&gt; | U| 480.27043 | 94.13 | -5.666 | -1.002 | -0.2033 |
+#&gt; |.....................| 2.102 | 1.868 | 0.6819 | 0.7539 |
+#&gt; |.....................| 1.488 | 1.228 | 1.371 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.27043</span> | 94.13 | 0.003463 | 0.2685 | 0.8160 |
+#&gt; |.....................| 8.181 | 1.868 | 0.6819 | 0.7539 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.488 | 1.228 | 1.371 |...........|</span>
+#&gt; | F| Forward Diff. | -4.306 | 0.7372 | -0.1665 | -0.03186 |
+#&gt; |.....................| -0.08221 | -3.333 | 1.631 | -0.6040 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.265 | -1.322 | -1.255 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 72</span>| 480.26665 | 1.002 | -1.267 | -0.9136 | -0.8986 |
+#&gt; |.....................| -0.8471 | -0.5244 | -0.9791 | -1.001 |
+#&gt; |.....................| -0.6160 | -0.7419 | -0.6714 |...........|
+#&gt; | U| 480.26665 | 94.19 | -5.667 | -1.002 | -0.2032 |
+#&gt; |.....................| 2.102 | 1.868 | 0.6815 | 0.7540 |
+#&gt; |.....................| 1.488 | 1.228 | 1.371 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.26665</span> | 94.19 | 0.003457 | 0.2685 | 0.8161 |
+#&gt; |.....................| 8.182 | 1.868 | 0.6815 | 0.7540 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.488 | 1.228 | 1.371 |...........|</span>
+#&gt; | F| Forward Diff. | 4.654 | 0.7327 | -0.1326 | -0.02617 |
+#&gt; |.....................| -0.04981 | -3.394 | 1.559 | -0.6139 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.358 | -1.341 | -1.268 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 73</span>| 480.26300 | 1.001 | -1.269 | -0.9132 | -0.8985 |
+#&gt; |.....................| -0.8470 | -0.5241 | -0.9796 | -1.000 |
+#&gt; |.....................| -0.6158 | -0.7416 | -0.6711 |...........|
+#&gt; | U| 480.263 | 94.13 | -5.669 | -1.002 | -0.2032 |
+#&gt; |.....................| 2.102 | 1.868 | 0.6812 | 0.7542 |
+#&gt; |.....................| 1.488 | 1.229 | 1.372 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.263</span> | 94.13 | 0.003451 | 0.2686 | 0.8162 |
+#&gt; |.....................| 8.183 | 1.868 | 0.6812 | 0.7542 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.488 | 1.229 | 1.372 |...........|</span>
+#&gt; | F| Forward Diff. | -4.009 | 0.7258 | -0.1343 | -0.03035 |
+#&gt; |.....................| -0.07619 | -3.164 | 1.609 | -0.5397 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.251 | -1.282 | -1.219 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 74</span>| 480.25930 | 1.002 | -1.271 | -0.9130 | -0.8985 |
+#&gt; |.....................| -0.8469 | -0.5239 | -0.9802 | -1.000 |
+#&gt; |.....................| -0.6155 | -0.7412 | -0.6708 |...........|
+#&gt; | U| 480.2593 | 94.19 | -5.671 | -1.002 | -0.2031 |
+#&gt; |.....................| 2.102 | 1.868 | 0.6807 | 0.7543 |
+#&gt; |.....................| 1.489 | 1.229 | 1.372 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.2593</span> | 94.19 | 0.003445 | 0.2686 | 0.8162 |
+#&gt; |.....................| 8.184 | 1.868 | 0.6807 | 0.7543 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.489 | 1.229 | 1.372 |...........|</span>
+#&gt; | F| Forward Diff. | 4.851 | 0.7223 | -0.1045 | -0.02290 |
+#&gt; |.....................| -0.04316 | -3.376 | 1.478 | 0.6193 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.343 | -1.302 | -1.232 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 75</span>| 480.25486 | 1.001 | -1.273 | -0.9131 | -0.8984 |
+#&gt; |.....................| -0.8469 | -0.5237 | -0.9805 | -1.000 |
+#&gt; |.....................| -0.6152 | -0.7408 | -0.6705 |...........|
+#&gt; | U| 480.25486 | 94.14 | -5.673 | -1.002 | -0.2030 |
+#&gt; |.....................| 2.102 | 1.868 | 0.6805 | 0.7542 |
+#&gt; |.....................| 1.489 | 1.230 | 1.373 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.25486</span> | 94.14 | 0.003439 | 0.2686 | 0.8162 |
+#&gt; |.....................| 8.184 | 1.868 | 0.6805 | 0.7542 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.489 | 1.230 | 1.373 |...........|</span>
+#&gt; | F| Forward Diff. | -3.282 | 0.7167 | -0.1236 | -0.02586 |
+#&gt; |.....................| -0.06793 | -3.294 | 1.470 | 0.6693 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.247 | -1.242 | -1.194 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 76</span>| 480.25000 | 1.002 | -1.274 | -0.9134 | -0.8984 |
+#&gt; |.....................| -0.8469 | -0.5231 | -0.9806 | -1.001 |
+#&gt; |.....................| -0.6147 | -0.7402 | -0.6701 |...........|
+#&gt; | U| 480.25 | 94.20 | -5.674 | -1.002 | -0.2030 |
+#&gt; |.....................| 2.102 | 1.869 | 0.6804 | 0.7539 |
+#&gt; |.....................| 1.490 | 1.230 | 1.373 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.25</span> | 94.20 | 0.003434 | 0.2686 | 0.8163 |
+#&gt; |.....................| 8.184 | 1.869 | 0.6804 | 0.7539 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.490 | 1.230 | 1.373 |...........|</span>
+#&gt; | F| Forward Diff. | 5.823 | 0.7134 | -0.1173 | -0.02040 |
+#&gt; |.....................| -0.04062 | -3.151 | 1.491 | -0.5685 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.243 | -1.237 | -1.210 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 77</span>| 480.24598 | 1.001 | -1.276 | -0.9134 | -0.8984 |
+#&gt; |.....................| -0.8469 | -0.5229 | -0.9809 | -1.001 |
+#&gt; |.....................| -0.6145 | -0.7399 | -0.6698 |...........|
+#&gt; | U| 480.24598 | 94.13 | -5.676 | -1.002 | -0.2030 |
+#&gt; |.....................| 2.102 | 1.869 | 0.6802 | 0.7539 |
+#&gt; |.....................| 1.490 | 1.231 | 1.373 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.24598</span> | 94.13 | 0.003427 | 0.2686 | 0.8163 |
+#&gt; |.....................| 8.184 | 1.869 | 0.6802 | 0.7539 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.490 | 1.231 | 1.373 |...........|</span>
+#&gt; | F| Forward Diff. | -3.294 | 0.7076 | -0.1362 | -0.02383 |
+#&gt; |.....................| -0.06566 | -3.147 | 1.461 | 0.6663 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.244 | -1.185 | -1.155 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 78</span>| 480.24152 | 1.002 | -1.278 | -0.9134 | -0.8983 |
+#&gt; |.....................| -0.8469 | -0.5225 | -0.9813 | -1.001 |
+#&gt; |.....................| -0.6142 | -0.7395 | -0.6694 |...........|
+#&gt; | U| 480.24152 | 94.19 | -5.678 | -1.002 | -0.2030 |
+#&gt; |.....................| 2.102 | 1.869 | 0.6799 | 0.7538 |
+#&gt; |.....................| 1.490 | 1.231 | 1.374 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.24152</span> | 94.19 | 0.003421 | 0.2686 | 0.8163 |
+#&gt; |.....................| 8.184 | 1.869 | 0.6799 | 0.7538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.490 | 1.231 | 1.374 |...........|</span>
+#&gt; | F| Forward Diff. | 4.573 | 0.7031 | -0.1214 | -0.01999 |
+#&gt; |.....................| -0.04022 | -3.129 | 1.425 | 0.6287 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.274 | -1.197 | -1.174 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 79</span>| 480.23703 | 1.001 | -1.280 | -0.9136 | -0.8983 |
+#&gt; |.....................| -0.8469 | -0.5223 | -0.9815 | -1.001 |
+#&gt; |.....................| -0.6136 | -0.7392 | -0.6691 |...........|
+#&gt; | U| 480.23703 | 94.13 | -5.680 | -1.002 | -0.2030 |
+#&gt; |.....................| 2.102 | 1.869 | 0.6797 | 0.7536 |
+#&gt; |.....................| 1.491 | 1.231 | 1.374 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.23703</span> | 94.13 | 0.003415 | 0.2685 | 0.8163 |
+#&gt; |.....................| 8.184 | 1.869 | 0.6797 | 0.7536 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.491 | 1.231 | 1.374 |...........|</span>
+#&gt; | F| Forward Diff. | -3.496 | 0.6977 | -0.1464 | -0.02500 |
+#&gt; |.....................| -0.06997 | -3.031 | 1.316 | 0.6455 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.198 | -1.144 | -1.124 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 80</span>| 480.23246 | 1.002 | -1.281 | -0.9138 | -0.8983 |
+#&gt; |.....................| -0.8469 | -0.5219 | -0.9816 | -1.001 |
+#&gt; |.....................| -0.6131 | -0.7387 | -0.6687 |...........|
+#&gt; | U| 480.23246 | 94.19 | -5.681 | -1.002 | -0.2030 |
+#&gt; |.....................| 2.102 | 1.870 | 0.6796 | 0.7533 |
+#&gt; |.....................| 1.492 | 1.232 | 1.375 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.23246</span> | 94.19 | 0.003409 | 0.2685 | 0.8163 |
+#&gt; |.....................| 8.184 | 1.870 | 0.6796 | 0.7533 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.492 | 1.232 | 1.375 |...........|</span>
+#&gt; | F| Forward Diff. | 4.825 | 0.6940 | -0.1347 | -0.01919 |
+#&gt; |.....................| -0.03939 | -3.118 | 1.378 | 0.5922 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.219 | -1.136 | -1.127 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 81</span>| 480.22809 | 1.001 | -1.283 | -0.9138 | -0.8983 |
+#&gt; |.....................| -0.8469 | -0.5217 | -0.9816 | -1.002 |
+#&gt; |.....................| -0.6127 | -0.7384 | -0.6684 |...........|
+#&gt; | U| 480.22809 | 94.14 | -5.683 | -1.002 | -0.2029 |
+#&gt; |.....................| 2.102 | 1.870 | 0.6796 | 0.7531 |
+#&gt; |.....................| 1.492 | 1.232 | 1.375 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.22809</span> | 94.14 | 0.003403 | 0.2685 | 0.8163 |
+#&gt; |.....................| 8.184 | 1.870 | 0.6796 | 0.7531 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.492 | 1.232 | 1.375 |...........|</span>
+#&gt; | F| Forward Diff. | -3.001 | 0.6885 | -0.1518 | -0.02256 |
+#&gt; |.....................| -0.06414 | -2.892 | 1.443 | 0.6415 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.085 | -1.098 | -1.101 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 82</span>| 480.22387 | 1.002 | -1.285 | -0.9139 | -0.8983 |
+#&gt; |.....................| -0.8469 | -0.5212 | -0.9821 | -1.002 |
+#&gt; |.....................| -0.6124 | -0.7381 | -0.6680 |...........|
+#&gt; | U| 480.22387 | 94.19 | -5.685 | -1.002 | -0.2029 |
+#&gt; |.....................| 2.102 | 1.870 | 0.6793 | 0.7529 |
+#&gt; |.....................| 1.492 | 1.232 | 1.375 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.22387</span> | 94.19 | 0.003397 | 0.2685 | 0.8163 |
+#&gt; |.....................| 8.184 | 1.870 | 0.6793 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.492 | 1.232 | 1.375 |...........|</span>
+#&gt; | F| Forward Diff. | 5.360 | 0.6846 | -0.1392 | -0.01938 |
+#&gt; |.....................| -0.04006 | -2.853 | 1.421 | -0.5715 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -1.117 | -1.118 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 83</span>| 480.22054 | 1.001 | -1.287 | -0.9139 | -0.8983 |
+#&gt; |.....................| -0.8469 | -0.5210 | -0.9826 | -1.002 |
+#&gt; |.....................| -0.6125 | -0.7380 | -0.6676 |...........|
+#&gt; | U| 480.22054 | 94.14 | -5.687 | -1.002 | -0.2029 |
+#&gt; |.....................| 2.102 | 1.871 | 0.6789 | 0.7530 |
+#&gt; |.....................| 1.492 | 1.233 | 1.376 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.22054</span> | 94.14 | 0.003391 | 0.2685 | 0.8163 |
+#&gt; |.....................| 8.184 | 1.871 | 0.6789 | 0.7530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.492 | 1.233 | 1.376 |...........|</span>
+#&gt; | F| Forward Diff. | -2.774 | 0.6781 | -0.1521 | -0.02419 |
+#&gt; |.....................| -0.06697 | -2.800 | 1.392 | 0.6467 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.111 | -1.074 | -1.064 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 84</span>| 480.21670 | 1.002 | -1.288 | -0.9138 | -0.8983 |
+#&gt; |.....................| -0.8469 | -0.5206 | -0.9832 | -1.002 |
+#&gt; |.....................| -0.6123 | -0.7378 | -0.6672 |...........|
+#&gt; | U| 480.2167 | 94.19 | -5.688 | -1.002 | -0.2029 |
+#&gt; |.....................| 2.102 | 1.871 | 0.6784 | 0.7529 |
+#&gt; |.....................| 1.493 | 1.233 | 1.376 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.2167</span> | 94.19 | 0.003385 | 0.2685 | 0.8163 |
+#&gt; |.....................| 8.184 | 1.871 | 0.6784 | 0.7529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.493 | 1.233 | 1.376 |...........|</span>
+#&gt; | F| Forward Diff. | 4.519 | 0.6730 | -0.1351 | -0.02088 |
+#&gt; |.....................| -0.04118 | -2.856 | 1.311 | 0.6094 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.165 | -1.062 | -1.048 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 85</span>| 480.21269 | 1.001 | -1.290 | -0.9139 | -0.8983 |
+#&gt; |.....................| -0.8469 | -0.5205 | -0.9835 | -1.002 |
+#&gt; |.....................| -0.6119 | -0.7376 | -0.6670 |...........|
+#&gt; | U| 480.21269 | 94.14 | -5.690 | -1.002 | -0.2029 |
+#&gt; |.....................| 2.102 | 1.871 | 0.6782 | 0.7527 |
+#&gt; |.....................| 1.493 | 1.233 | 1.377 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.21269</span> | 94.14 | 0.003379 | 0.2685 | 0.8163 |
+#&gt; |.....................| 8.184 | 1.871 | 0.6782 | 0.7527 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.493 | 1.233 | 1.377 |...........|</span>
+#&gt; | F| Forward Diff. | -2.933 | 0.6686 | -0.1517 | -0.01805 |
+#&gt; |.....................| -0.06304 | -2.806 | 1.298 | 0.6045 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.073 | -1.045 | -1.026 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 86</span>| 480.20865 | 1.002 | -1.292 | -0.9139 | -0.8983 |
+#&gt; |.....................| -0.8469 | -0.5201 | -0.9839 | -1.002 |
+#&gt; |.....................| -0.6115 | -0.7373 | -0.6667 |...........|
+#&gt; | U| 480.20865 | 94.19 | -5.692 | -1.002 | -0.2029 |
+#&gt; |.....................| 2.102 | 1.871 | 0.6779 | 0.7525 |
+#&gt; |.....................| 1.494 | 1.233 | 1.377 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.20865</span> | 94.19 | 0.003373 | 0.2685 | 0.8163 |
+#&gt; |.....................| 8.184 | 1.871 | 0.6779 | 0.7525 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.494 | 1.233 | 1.377 |...........|</span>
+#&gt; | F| Forward Diff. | 4.802 | 0.6647 | -0.1367 | -0.01906 |
+#&gt; |.....................| -0.03994 | -2.699 | 1.311 | -0.5807 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.078 | -1.030 | -1.030 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 87</span>| 480.20558 | 1.001 | -1.294 | -0.9137 | -0.8983 |
+#&gt; |.....................| -0.8468 | -0.5199 | -0.9842 | -1.002 |
+#&gt; |.....................| -0.6113 | -0.7372 | -0.6665 |...........|
+#&gt; | U| 480.20558 | 94.14 | -5.694 | -1.002 | -0.2029 |
+#&gt; |.....................| 2.102 | 1.871 | 0.6776 | 0.7525 |
+#&gt; |.....................| 1.494 | 1.233 | 1.377 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.20558</span> | 94.14 | 0.003367 | 0.2685 | 0.8163 |
+#&gt; |.....................| 8.185 | 1.871 | 0.6776 | 0.7525 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.494 | 1.233 | 1.377 |...........|</span>
+#&gt; | F| Forward Diff. | -2.911 | 0.6576 | -0.1438 | -0.02051 |
+#&gt; |.....................| -0.06613 | -2.751 | 1.246 | -0.6218 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.053 | -1.017 | -1.010 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 88</span>| 480.20291 | 1.002 | -1.296 | -0.9132 | -0.8982 |
+#&gt; |.....................| -0.8467 | -0.5195 | -0.9848 | -1.002 |
+#&gt; |.....................| -0.6112 | -0.7370 | -0.6662 |...........|
+#&gt; | U| 480.20291 | 94.19 | -5.696 | -1.002 | -0.2029 |
+#&gt; |.....................| 2.102 | 1.872 | 0.6772 | 0.7527 |
+#&gt; |.....................| 1.494 | 1.234 | 1.377 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.20291</span> | 94.19 | 0.003361 | 0.2686 | 0.8164 |
+#&gt; |.....................| 8.186 | 1.872 | 0.6772 | 0.7527 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.494 | 1.234 | 1.377 |...........|</span>
+#&gt; | F| Forward Diff. | 4.296 | 0.6533 | -0.1055 | -0.01383 |
+#&gt; |.....................| -0.03435 | -2.750 | 1.192 | -0.6155 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.121 | -1.037 | -1.054 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 89</span>| 480.20010 | 1.001 | -1.297 | -0.9127 | -0.8982 |
+#&gt; |.....................| -0.8466 | -0.5193 | -0.9850 | -1.002 |
+#&gt; |.....................| -0.6110 | -0.7368 | -0.6658 |...........|
+#&gt; | U| 480.2001 | 94.14 | -5.697 | -1.001 | -0.2028 |
+#&gt; |.....................| 2.103 | 1.872 | 0.6771 | 0.7528 |
+#&gt; |.....................| 1.494 | 1.234 | 1.378 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.2001</span> | 94.14 | 0.003355 | 0.2687 | 0.8164 |
+#&gt; |.....................| 8.187 | 1.872 | 0.6771 | 0.7528 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.494 | 1.234 | 1.378 |...........|</span>
+#&gt; | F| Forward Diff. | -2.841 | 0.6461 | -0.09617 | -0.01892 |
+#&gt; |.....................| -0.05600 | -2.503 | 1.255 | 0.6797 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.9587 | -1.006 | -0.9794 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 90</span>| 480.19652 | 1.002 | -1.299 | -0.9127 | -0.8982 |
+#&gt; |.....................| -0.8466 | -0.5191 | -0.9853 | -1.002 |
+#&gt; |.....................| -0.6108 | -0.7364 | -0.6653 |...........|
+#&gt; | U| 480.19652 | 94.19 | -5.699 | -1.001 | -0.2028 |
+#&gt; |.....................| 2.103 | 1.872 | 0.6768 | 0.7526 |
+#&gt; |.....................| 1.494 | 1.234 | 1.378 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.19652</span> | 94.19 | 0.003349 | 0.2687 | 0.8164 |
+#&gt; |.....................| 8.187 | 1.872 | 0.6768 | 0.7526 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.494 | 1.234 | 1.378 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 91</span>| 480.19461 | 1.002 | -1.301 | -0.9128 | -0.8982 |
+#&gt; |.....................| -0.8466 | -0.5193 | -0.9855 | -1.002 |
+#&gt; |.....................| -0.6107 | -0.7361 | -0.6650 |...........|
+#&gt; | U| 480.19461 | 94.18 | -5.701 | -1.001 | -0.2028 |
+#&gt; |.....................| 2.103 | 1.872 | 0.6767 | 0.7526 |
+#&gt; |.....................| 1.494 | 1.235 | 1.379 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.19461</span> | 94.18 | 0.003342 | 0.2687 | 0.8164 |
+#&gt; |.....................| 8.187 | 1.872 | 0.6767 | 0.7526 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.494 | 1.235 | 1.379 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 92</span>| 480.18441 | 1.002 | -1.313 | -0.9134 | -0.8983 |
+#&gt; |.....................| -0.8466 | -0.5209 | -0.9862 | -1.003 |
+#&gt; |.....................| -0.6104 | -0.7344 | -0.6628 |...........|
+#&gt; | U| 480.18441 | 94.17 | -5.713 | -1.002 | -0.2029 |
+#&gt; |.....................| 2.103 | 1.871 | 0.6762 | 0.7522 |
+#&gt; |.....................| 1.495 | 1.237 | 1.381 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.18441</span> | 94.17 | 0.003303 | 0.2686 | 0.8164 |
+#&gt; |.....................| 8.187 | 1.871 | 0.6762 | 0.7522 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.495 | 1.237 | 1.381 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 93</span>| 480.15712 | 1.001 | -1.360 | -0.9157 | -0.8984 |
+#&gt; |.....................| -0.8466 | -0.5271 | -0.9890 | -1.004 |
+#&gt; |.....................| -0.6089 | -0.7277 | -0.6540 |...........|
+#&gt; | U| 480.15712 | 94.12 | -5.760 | -1.004 | -0.2031 |
+#&gt; |.....................| 2.103 | 1.866 | 0.6740 | 0.7509 |
+#&gt; |.....................| 1.497 | 1.244 | 1.391 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.15712</span> | 94.12 | 0.003151 | 0.2681 | 0.8162 |
+#&gt; |.....................| 8.187 | 1.866 | 0.6740 | 0.7509 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.497 | 1.244 | 1.391 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 94</span>| 480.23418 | 0.9997 | -1.543 | -0.9246 | -0.8991 |
+#&gt; |.....................| -0.8465 | -0.5509 | -1.000 | -1.011 |
+#&gt; |.....................| -0.6032 | -0.7017 | -0.6198 |...........|
+#&gt; | U| 480.23418 | 93.97 | -5.943 | -1.013 | -0.2037 |
+#&gt; |.....................| 2.103 | 1.847 | 0.6655 | 0.7454 |
+#&gt; |.....................| 1.503 | 1.272 | 1.431 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.23418</span> | 93.97 | 0.002624 | 0.2664 | 0.8157 |
+#&gt; |.....................| 8.187 | 1.847 | 0.6655 | 0.7454 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.503 | 1.272 | 1.431 |...........|</span>
+#&gt; | F| Forward Diff. | -6.048 | 0.4781 | -0.2230 | -0.02217 |
+#&gt; |.....................| -0.05480 | -3.577 | 0.9301 | 0.6494 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.028 | -0.4525 | -0.4232 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 95</span>| 480.10748 | 1.002 | -1.612 | -0.8919 | -0.8955 |
+#&gt; |.....................| -0.8419 | -0.5057 | -1.005 | -1.011 |
+#&gt; |.....................| -0.6089 | -0.7402 | -0.6757 |...........|
+#&gt; | U| 480.10748 | 94.20 | -6.012 | -0.9804 | -0.2001 |
+#&gt; |.....................| 2.107 | 1.883 | 0.6618 | 0.7449 |
+#&gt; |.....................| 1.497 | 1.230 | 1.367 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.10748</span> | 94.20 | 0.002450 | 0.2728 | 0.8186 |
+#&gt; |.....................| 8.225 | 1.883 | 0.6618 | 0.7449 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.497 | 1.230 | 1.367 |...........|</span>
+#&gt; | F| Forward Diff. | 5.588 | -0.2032 | 1.050 | 0.05863 |
+#&gt; |.....................| 0.1556 | -1.013 | -0.1797 | 0.1430 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.088 | -1.192 | -1.504 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 96</span>| 480.44664 | 1.003 | -1.804 | -0.9880 | -0.8940 |
+#&gt; |.....................| -0.8524 | -0.4601 | -0.9127 | -1.040 |
+#&gt; |.....................| -0.5485 | -0.7099 | -0.6226 |...........|
+#&gt; | U| 480.44664 | 94.31 | -6.204 | -1.077 | -0.1987 |
+#&gt; |.....................| 2.097 | 1.919 | 0.7320 | 0.7196 |
+#&gt; |.....................| 1.568 | 1.263 | 1.427 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.44664</span> | 94.31 | 0.002022 | 0.2542 | 0.8198 |
+#&gt; |.....................| 8.139 | 1.919 | 0.7320 | 0.7196 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.568 | 1.263 | 1.427 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 97</span>| 480.05051 | 1.002 | -1.657 | -0.9147 | -0.8952 |
+#&gt; |.....................| -0.8444 | -0.4949 | -0.9832 | -1.018 |
+#&gt; |.....................| -0.5946 | -0.7329 | -0.6630 |...........|
+#&gt; | U| 480.05051 | 94.19 | -6.057 | -1.003 | -0.1998 |
+#&gt; |.....................| 2.105 | 1.891 | 0.6784 | 0.7389 |
+#&gt; |.....................| 1.514 | 1.238 | 1.381 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.05051</span> | 94.19 | 0.002341 | 0.2683 | 0.8189 |
+#&gt; |.....................| 8.205 | 1.891 | 0.6784 | 0.7389 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.514 | 1.238 | 1.381 |...........|</span>
+#&gt; | F| Forward Diff. | 3.048 | -0.2764 | -0.02525 | 0.07726 |
+#&gt; |.....................| 0.1002 | 0.1555 | 1.072 | 0.1458 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.5013 | -0.7465 | -0.9442 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 98</span>| 480.05873 | 1.002 | -1.641 | -0.9145 | -0.9051 |
+#&gt; |.....................| -0.8597 | -0.5017 | -0.9961 | -1.019 |
+#&gt; |.....................| -0.5552 | -0.7600 | -0.6392 |...........|
+#&gt; | U| 480.05873 | 94.21 | -6.041 | -1.003 | -0.2097 |
+#&gt; |.....................| 2.089 | 1.886 | 0.6686 | 0.7381 |
+#&gt; |.....................| 1.561 | 1.209 | 1.408 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.05873</span> | 94.21 | 0.002380 | 0.2684 | 0.8108 |
+#&gt; |.....................| 8.080 | 1.886 | 0.6686 | 0.7381 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.561 | 1.209 | 1.408 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 99</span>| 480.03299 | 1.002 | -1.650 | -0.9146 | -0.8993 |
+#&gt; |.....................| -0.8508 | -0.4977 | -0.9887 | -1.018 |
+#&gt; |.....................| -0.5780 | -0.7442 | -0.6529 |...........|
+#&gt; | U| 480.03299 | 94.17 | -6.050 | -1.003 | -0.2040 |
+#&gt; |.....................| 2.098 | 1.889 | 0.6742 | 0.7386 |
+#&gt; |.....................| 1.533 | 1.226 | 1.393 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.03299</span> | 94.17 | 0.002357 | 0.2683 | 0.8155 |
+#&gt; |.....................| 8.152 | 1.889 | 0.6742 | 0.7386 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.533 | 1.226 | 1.393 |...........|</span>
+#&gt; | F| Forward Diff. | -0.07884 | -0.2508 | -0.03233 | -0.02314 |
+#&gt; |.....................| -0.1302 | 0.06288 | 0.7629 | 0.2261 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.3850 | -1.277 | -0.6610 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 100</span>| 480.00970 | 1.003 | -1.641 | -0.9125 | -0.9005 |
+#&gt; |.....................| -0.8500 | -0.4980 | -0.9983 | -1.021 |
+#&gt; |.....................| -0.5841 | -0.7275 | -0.6414 |...........|
+#&gt; | U| 480.0097 | 94.26 | -6.041 | -1.001 | -0.2051 |
+#&gt; |.....................| 2.099 | 1.889 | 0.6670 | 0.7367 |
+#&gt; |.....................| 1.526 | 1.244 | 1.406 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.0097</span> | 94.26 | 0.002380 | 0.2687 | 0.8145 |
+#&gt; |.....................| 8.159 | 1.889 | 0.6670 | 0.7367 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.526 | 1.244 | 1.406 |...........|</span>
+#&gt; | F| Forward Diff. | 12.51 | -0.2151 | 0.1066 | -0.04414 |
+#&gt; |.....................| -0.06212 | -0.2557 | 0.09002 | -0.09728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.06582 | -0.3883 | 0.07016 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 101</span>| 480.02569 | 1.000 | -1.627 | -0.9257 | -0.9015 |
+#&gt; |.....................| -0.8496 | -0.4974 | -1.010 | -1.023 |
+#&gt; |.....................| -0.5876 | -0.7200 | -0.6493 |...........|
+#&gt; | U| 480.02569 | 94.03 | -6.027 | -1.014 | -0.2061 |
+#&gt; |.....................| 2.099 | 1.889 | 0.6581 | 0.7348 |
+#&gt; |.....................| 1.522 | 1.252 | 1.397 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.02569</span> | 94.03 | 0.002413 | 0.2662 | 0.8138 |
+#&gt; |.....................| 8.162 | 1.889 | 0.6581 | 0.7348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.522 | 1.252 | 1.397 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 102</span>| 480.01783 | 1.000 | -1.636 | -0.9171 | -0.9008 |
+#&gt; |.....................| -0.8499 | -0.4978 | -1.002 | -1.021 |
+#&gt; |.....................| -0.5853 | -0.7249 | -0.6441 |...........|
+#&gt; | U| 480.01783 | 94.03 | -6.036 | -1.006 | -0.2055 |
+#&gt; |.....................| 2.099 | 1.889 | 0.6639 | 0.7361 |
+#&gt; |.....................| 1.525 | 1.247 | 1.403 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.01783</span> | 94.03 | 0.002392 | 0.2678 | 0.8143 |
+#&gt; |.....................| 8.160 | 1.889 | 0.6639 | 0.7361 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.525 | 1.247 | 1.403 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 103</span>| 480.01762 | 1.000 | -1.639 | -0.9140 | -0.9006 |
+#&gt; |.....................| -0.8500 | -0.4979 | -0.9995 | -1.021 |
+#&gt; |.....................| -0.5844 | -0.7266 | -0.6422 |...........|
+#&gt; | U| 480.01762 | 94.04 | -6.039 | -1.002 | -0.2052 |
+#&gt; |.....................| 2.099 | 1.889 | 0.6660 | 0.7365 |
+#&gt; |.....................| 1.526 | 1.245 | 1.405 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.01762</span> | 94.04 | 0.002384 | 0.2685 | 0.8145 |
+#&gt; |.....................| 8.159 | 1.889 | 0.6660 | 0.7365 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.526 | 1.245 | 1.405 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 104</span>| 480.00603 | 1.001 | -1.641 | -0.9125 | -0.9005 |
+#&gt; |.....................| -0.8500 | -0.4980 | -0.9983 | -1.021 |
+#&gt; |.....................| -0.5841 | -0.7275 | -0.6414 |...........|
+#&gt; | U| 480.00603 | 94.12 | -6.041 | -1.001 | -0.2051 |
+#&gt; |.....................| 2.099 | 1.889 | 0.6670 | 0.7367 |
+#&gt; |.....................| 1.526 | 1.244 | 1.406 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.00603</span> | 94.12 | 0.002380 | 0.2687 | 0.8145 |
+#&gt; |.....................| 8.159 | 1.889 | 0.6670 | 0.7367 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.526 | 1.244 | 1.406 |...........|</span>
+#&gt; | F| Forward Diff. | -6.885 | -0.2187 | 0.06031 | -0.05864 |
+#&gt; |.....................| -0.1316 | -0.6942 | -0.07940 | 0.7419 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2628 | -0.6303 | -0.1748 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 105</span>| 480.00355 | 1.002 | -1.640 | -0.9125 | -0.9004 |
+#&gt; |.....................| -0.8497 | -0.4981 | -0.9983 | -1.021 |
+#&gt; |.....................| -0.5835 | -0.7267 | -0.6420 |...........|
+#&gt; | U| 480.00355 | 94.17 | -6.040 | -1.001 | -0.2050 |
+#&gt; |.....................| 2.099 | 1.889 | 0.6669 | 0.7366 |
+#&gt; |.....................| 1.527 | 1.245 | 1.405 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.00355</span> | 94.17 | 0.002382 | 0.2687 | 0.8147 |
+#&gt; |.....................| 8.162 | 1.889 | 0.6669 | 0.7366 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.527 | 1.245 | 1.405 |...........|</span>
+#&gt; | F| Forward Diff. | -0.1332 | -0.2152 | 0.07761 | -0.04946 |
+#&gt; |.....................| -0.09731 | -0.07704 | 0.1258 | 0.9492 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.08309 | -0.3432 | 0.03979 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 106</span>| 480.00003 | 1.002 | -1.640 | -0.9126 | -0.9003 |
+#&gt; |.....................| -0.8495 | -0.4980 | -0.9985 | -1.022 |
+#&gt; |.....................| -0.5836 | -0.7262 | -0.6420 |...........|
+#&gt; | U| 480.00003 | 94.19 | -6.040 | -1.001 | -0.2049 |
+#&gt; |.....................| 2.100 | 1.889 | 0.6668 | 0.7355 |
+#&gt; |.....................| 1.527 | 1.245 | 1.405 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 480.00003</span> | 94.19 | 0.002382 | 0.2687 | 0.8147 |
+#&gt; |.....................| 8.163 | 1.889 | 0.6668 | 0.7355 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.527 | 1.245 | 1.405 |...........|</span>
+#&gt; | F| Forward Diff. | 2.294 | -0.2073 | 0.08146 | -0.04541 |
+#&gt; |.....................| -0.07807 | -0.2293 | 0.05730 | 0.8075 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.008164 | -0.3171 | 0.03808 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 107</span>| 479.99578 | 1.002 | -1.638 | -0.9109 | -0.8997 |
+#&gt; |.....................| -0.8483 | -0.4984 | -0.9975 | -1.023 |
+#&gt; |.....................| -0.5809 | -0.7230 | -0.6440 |...........|
+#&gt; | U| 479.99578 | 94.17 | -6.038 | -0.9994 | -0.2043 |
+#&gt; |.....................| 2.101 | 1.889 | 0.6675 | 0.7343 |
+#&gt; |.....................| 1.530 | 1.249 | 1.403 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99578</span> | 94.17 | 0.002387 | 0.2691 | 0.8152 |
+#&gt; |.....................| 8.172 | 1.889 | 0.6675 | 0.7343 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.530 | 1.249 | 1.403 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 108</span>| 479.99301 | 1.002 | -1.632 | -0.9055 | -0.8980 |
+#&gt; |.....................| -0.8447 | -0.4999 | -0.9947 | -1.027 |
+#&gt; |.....................| -0.5728 | -0.7134 | -0.6498 |...........|
+#&gt; | U| 479.99301 | 94.16 | -6.032 | -0.9941 | -0.2026 |
+#&gt; |.....................| 2.104 | 1.887 | 0.6697 | 0.7310 |
+#&gt; |.....................| 1.540 | 1.259 | 1.396 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.99301</span> | 94.16 | 0.002402 | 0.2701 | 0.8166 |
+#&gt; |.....................| 8.202 | 1.887 | 0.6697 | 0.7310 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.540 | 1.259 | 1.396 |...........|</span>
+#&gt; | F| Forward Diff. | -0.5972 | -0.1625 | 0.4650 | 0.009686 |
+#&gt; |.....................| 0.08636 | -1.694 | -0.1652 | -1.042 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1517 | 0.4204 | -0.3659 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 109</span>| 479.98697 | 1.002 | -1.611 | -0.9101 | -0.8945 |
+#&gt; |.....................| -0.8385 | -0.4966 | -0.9980 | -1.027 |
+#&gt; |.....................| -0.5750 | -0.7140 | -0.6459 |...........|
+#&gt; | U| 479.98697 | 94.17 | -6.011 | -0.9986 | -0.1991 |
+#&gt; |.....................| 2.111 | 1.890 | 0.6672 | 0.7309 |
+#&gt; |.....................| 1.537 | 1.259 | 1.401 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.98697</span> | 94.17 | 0.002451 | 0.2692 | 0.8195 |
+#&gt; |.....................| 8.253 | 1.890 | 0.6672 | 0.7309 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.537 | 1.259 | 1.401 |...........|</span>
+#&gt; | F| Forward Diff. | -0.005684 | -0.1115 | 0.2082 | 0.08938 |
+#&gt; |.....................| 0.3008 | 0.01411 | 0.1052 | -0.7061 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.4111 | 0.4010 | -0.1199 |...........|</span>
+#&gt; |<span style='font-weight: bold;'> 110</span>| 479.98697 | 1.002 | -1.611 | -0.9101 | -0.8945 |
+#&gt; |.....................| -0.8385 | -0.4966 | -0.9980 | -1.027 |
+#&gt; |.....................| -0.5750 | -0.7140 | -0.6459 |...........|
+#&gt; | U| 479.98697 | 94.17 | -6.011 | -0.9986 | -0.1991 |
+#&gt; |.....................| 2.111 | 1.890 | 0.6672 | 0.7309 |
+#&gt; |.....................| 1.537 | 1.259 | 1.401 |...........|
+#&gt; | X|<span style='font-weight: bold;'> 479.98697</span> | 94.17 | 0.002451 | 0.2692 | 0.8195 |
+#&gt; |.....................| 8.253 | 1.890 | 0.6672 | 0.7309 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.537 | 1.259 | 1.401 |...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
+#&gt; |.....................| log_k2 | g_qlogis | sigma | o1 |
+#&gt; |.....................| o2 | o3 | o4 | o5 |
+#&gt; <span style='text-decoration: underline;'>|.....................| o6 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 1</span>| 517.20934 | 1.000 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8592 | -0.8766 |
+#&gt; |.....................| -0.8740 | -0.8675 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8680 |...........|...........|...........|</span>
+#&gt; | U| 517.20934 | 94.00 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 517.20934</span> | 94.00 | 0.004517 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | G| Gill Diff. | 64.43 | 1.648 | -0.07882 | -0.2050 |
+#&gt; |.....................| -0.4304 | 0.05992 | -56.51 | 17.73 |
+#&gt; |.....................| 9.983 | -11.00 | -3.771 | 3.593 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -10.58 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 2</span>| 2737.3115 | 0.2806 | -1.018 | -0.9100 | -0.9273 |
+#&gt; |.....................| -0.9731 | -0.8892 | -0.2282 | -1.075 |
+#&gt; |.....................| -0.9854 | -0.7447 | -0.8291 | -0.9136 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7499 |...........|...........|...........|</span>
+#&gt; | U| 2737.3115 | 26.38 | -5.418 | -0.9691 | -1.898 |
+#&gt; |.....................| -4.295 | 0.1399 | 2.105 | 0.5864 |
+#&gt; |.....................| 0.7671 | 1.329 | 1.042 | 0.8535 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.298 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 2737.3115</span> | 26.38 | 0.004434 | 0.2751 | 0.1499 |
+#&gt; |.....................| 0.01363 | 0.5349 | 2.105 | 0.5864 |
+#&gt; |.....................| 0.7671 | 1.329 | 1.042 | 0.8535 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.298 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 3</span>| 569.57476 | 0.9281 | -1.002 | -0.9108 | -0.9293 |
+#&gt; |.....................| -0.9774 | -0.8886 | -0.7961 | -0.8964 |
+#&gt; |.....................| -0.8851 | -0.8553 | -0.8670 | -0.8775 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8562 |...........|...........|...........|</span>
+#&gt; | U| 569.57476 | 87.24 | -5.402 | -0.9699 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.650 | 0.7166 |
+#&gt; |.....................| 0.8537 | 1.198 | 1.004 | 0.8856 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.175 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 569.57476</span> | 87.24 | 0.004508 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01358 | 0.5349 | 1.650 | 0.7166 |
+#&gt; |.....................| 0.8537 | 1.198 | 1.004 | 0.8856 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.175 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 4</span>| 531.41065 | 0.9928 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9778 | -0.8885 | -0.8528 | -0.8786 |
+#&gt; |.....................| -0.8751 | -0.8663 | -0.8708 | -0.8739 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8668 |...........|...........|...........|</span>
+#&gt; | U| 531.41065 | 93.32 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.605 | 0.7297 |
+#&gt; |.....................| 0.8624 | 1.185 | 1.000 | 0.8888 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.163 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.41065</span> | 93.32 | 0.004516 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.605 | 0.7297 |
+#&gt; |.....................| 0.8624 | 1.185 | 1.000 | 0.8888 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.163 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 5</span>| 531.74000 | 0.9993 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8585 | -0.8768 |
+#&gt; |.....................| -0.8741 | -0.8674 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8679 |...........|...........|...........|</span>
+#&gt; | U| 531.74 | 93.93 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.601 | 0.7310 |
+#&gt; |.....................| 0.8632 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.74</span> | 93.93 | 0.004516 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.601 | 0.7310 |
+#&gt; |.....................| 0.8632 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 6</span>| 531.81753 | 0.9999 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8591 | -0.8767 |
+#&gt; |.....................| -0.8740 | -0.8675 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8680 |...........|...........|...........|</span>
+#&gt; | U| 531.81753 | 93.99 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.81753</span> | 93.99 | 0.004517 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 7</span>| 531.82573 | 1.000 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8591 | -0.8766 |
+#&gt; |.....................| -0.8740 | -0.8675 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8680 |...........|...........|...........|</span>
+#&gt; | U| 531.82573 | 94.00 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.82573</span> | 94.00 | 0.004517 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 8</span>| 531.82668 | 1.000 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8592 | -0.8766 |
+#&gt; |.....................| -0.8740 | -0.8675 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8680 |...........|...........|...........|</span>
+#&gt; | U| 531.82668 | 94.00 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.82668</span> | 94.00 | 0.004517 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 9</span>| 531.82678 | 1.000 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8592 | -0.8766 |
+#&gt; |.....................| -0.8740 | -0.8675 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8680 |...........|...........|...........|</span>
+#&gt; | U| 531.82678 | 94.00 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.82678</span> | 94.00 | 0.004517 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 10</span>| 531.82679 | 1.000 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8592 | -0.8766 |
+#&gt; |.....................| -0.8740 | -0.8675 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8680 |...........|...........|...........|</span>
+#&gt; | U| 531.82679 | 94.00 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.82679</span> | 94.00 | 0.004517 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 11</span>| 531.82679 | 1.000 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8592 | -0.8766 |
+#&gt; |.....................| -0.8740 | -0.8675 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8680 |...........|...........|...........|</span>
+#&gt; | U| 531.82679 | 94.00 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.82679</span> | 94.00 | 0.004517 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 12</span>| 531.82678 | 1.000 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8592 | -0.8766 |
+#&gt; |.....................| -0.8740 | -0.8675 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8680 |...........|...........|...........|</span>
+#&gt; | U| 531.82678 | 94.00 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.82678</span> | 94.00 | 0.004517 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 13</span>| 531.82679 | 1.000 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8592 | -0.8766 |
+#&gt; |.....................| -0.8740 | -0.8675 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8680 |...........|...........|...........|</span>
+#&gt; | U| 531.82679 | 94.00 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.82679</span> | 94.00 | 0.004517 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 14</span>| 531.82679 | 1.000 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8592 | -0.8766 |
+#&gt; |.....................| -0.8740 | -0.8675 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8680 |...........|...........|...........|</span>
+#&gt; | U| 531.82679 | 94.00 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.82679</span> | 94.00 | 0.004517 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 15</span>| 531.82679 | 1.000 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8592 | -0.8766 |
+#&gt; |.....................| -0.8740 | -0.8675 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8680 |...........|...........|...........|</span>
+#&gt; | U| 531.82679 | 94.00 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.82679</span> | 94.00 | 0.004517 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 16</span>| 531.82679 | 1.000 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8592 | -0.8766 |
+#&gt; |.....................| -0.8740 | -0.8675 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8680 |...........|...........|...........|</span>
+#&gt; | U| 531.82679 | 94.00 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.82679</span> | 94.00 | 0.004517 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 17</span>| 531.82679 | 1.000 | -1.000 | -0.9109 | -0.9296 |
+#&gt; |.....................| -0.9779 | -0.8885 | -0.8592 | -0.8766 |
+#&gt; |.....................| -0.8740 | -0.8675 | -0.8712 | -0.8735 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8680 |...........|...........|...........|</span>
+#&gt; | U| 531.82679 | 94.00 | -5.400 | -0.9700 | -1.900 |
+#&gt; |.....................| -4.300 | 0.1400 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 531.82679</span> | 94.00 | 0.004517 | 0.2749 | 0.1496 |
+#&gt; |.....................| 0.01357 | 0.5349 | 1.600 | 0.7311 |
+#&gt; |.....................| 0.8633 | 1.183 | 1.000 | 0.8891 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.161 |...........|...........|...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
+<span class='co'># Variance by variable is supported by 'saem' and 'focei'</span>
+<span class='va'>f_nlmixr_fomc_sfo_saem_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; 1: 93.4067 -5.7935 -0.0604 2.2993 -1.1624 2.9450 1.7342 0.6650 0.5890 0.4750 14.5215 9.1023
+#&gt; 2: 93.8811 -5.7873 -0.0289 2.3640 -1.0762 2.7977 2.0710 0.6317 0.5595 0.4512 11.1033 4.6425
+#&gt; 3: 94.0397 -5.9934 0.0119 2.4035 -1.0703 3.0693 2.4524 0.6124 0.5316 0.4287 10.0698 3.4243
+#&gt; 4: 93.8834 -6.0401 0.0041 2.3944 -1.0097 2.9159 3.1645 0.6120 0.5050 0.4073 9.2013 3.2162
+#&gt; 5: 94.0163 -5.8381 -0.0267 2.3580 -1.0239 2.7701 3.0063 0.5814 0.4797 0.3869 9.0330 3.0330
+#&gt; 6: 93.9753 -5.8371 -0.0315 2.3598 -1.0052 2.6316 2.8559 0.5708 0.4558 0.3675 8.6051 2.6518
+#&gt; 7: 93.6109 -5.8741 -0.0401 2.3570 -1.0025 2.5000 2.7131 0.5691 0.4330 0.3492 8.4407 2.4701
+#&gt; 8: 93.2480 -6.0361 -0.0523 2.3504 -1.0028 2.3750 3.1584 0.5407 0.4113 0.3317 8.6121 2.2437
+#&gt; 9: 93.2245 -6.0431 -0.0503 2.3552 -0.9828 2.2562 3.9790 0.5395 0.3908 0.3151 8.6609 2.1129
+#&gt; 10: 93.3040 -6.1080 -0.0503 2.3613 -0.9784 2.1434 4.8606 0.5401 0.3712 0.2994 8.6497 2.0865
+#&gt; 11: 93.4509 -5.9532 -0.0503 2.3444 -0.9823 3.0948 4.6176 0.5679 0.3527 0.2844 8.1651 2.0310
+#&gt; 12: 93.5099 -6.1699 -0.0503 2.3408 -0.9746 3.2814 4.3867 0.5679 0.3350 0.2702 8.1716 1.9862
+#&gt; 13: 93.8052 -6.1984 -0.0474 2.3233 -0.9922 3.1173 4.6967 0.5644 0.3183 0.2567 8.2982 2.0040
+#&gt; 14: 93.6510 -6.0090 -0.0429 2.3601 -0.9885 2.9615 4.4618 0.5526 0.3024 0.2438 8.3254 2.0605
+#&gt; 15: 93.8952 -6.3354 -0.0394 2.3580 -0.9792 2.8134 5.2117 0.5657 0.2872 0.2316 8.1329 2.0520
+#&gt; 16: 93.4703 -6.0722 -0.0434 2.3386 -1.0026 2.6727 4.9512 0.5781 0.2729 0.2201 8.0866 2.0994
+#&gt; 17: 93.4238 -6.2132 -0.0755 2.3120 -1.0119 2.5391 4.7036 0.5495 0.2592 0.2091 7.5958 2.2864
+#&gt; 18: 93.5288 -6.2747 -0.0616 2.3223 -1.0105 2.4121 4.4684 0.5467 0.2463 0.1986 7.1910 1.9828
+#&gt; 19: 93.2607 -6.3635 -0.0631 2.3206 -1.0045 3.6271 4.8142 0.5405 0.2340 0.1928 7.3672 1.8187
+#&gt; 20: 93.3918 -6.3241 -0.0742 2.2941 -1.0140 3.4457 4.9242 0.5596 0.2223 0.1950 7.1427 1.8754
+#&gt; 21: 93.6794 -6.1336 -0.0758 2.3000 -1.0048 3.2734 4.6780 0.5565 0.2111 0.1852 7.0989 1.9232
+#&gt; 22: 94.0006 -6.1882 -0.0800 2.3099 -1.0252 3.1098 4.4441 0.5354 0.2006 0.1870 7.0038 1.9920
+#&gt; 23: 93.6433 -6.2626 -0.0841 2.2791 -1.0183 4.8893 4.4476 0.5276 0.1906 0.1798 6.3698 1.8787
+#&gt; 24: 93.9545 -6.3772 -0.0816 2.2887 -1.0019 4.6448 5.1698 0.5293 0.1810 0.1779 6.5903 1.9474
+#&gt; 25: 94.2280 -6.3235 -0.0839 2.2600 -0.9932 5.2801 4.9113 0.5262 0.1720 0.1806 6.5267 1.9807
+#&gt; 26: 94.2022 -6.2830 -0.0883 2.2643 -1.0012 5.9595 4.6658 0.5225 0.1634 0.1795 6.3678 1.9659
+#&gt; 27: 94.4398 -6.1769 -0.0894 2.2564 -1.0177 9.0771 4.4325 0.5207 0.1552 0.1880 6.4522 1.8590
+#&gt; 28: 94.2586 -6.1652 -0.0882 2.2574 -1.0226 8.6233 4.2108 0.5158 0.1475 0.1881 6.3701 1.7882
+#&gt; 29: 94.3490 -6.1505 -0.0854 2.2615 -1.0081 9.6333 4.0003 0.5109 0.1423 0.1833 6.3601 1.8485
+#&gt; 30: 94.6929 -6.0285 -0.0909 2.2610 -1.0082 9.1517 3.8003 0.5117 0.1401 0.2097 6.2461 1.8606
+#&gt; 31: 94.2553 -6.0390 -0.0896 2.2625 -1.0078 8.6941 3.6103 0.5072 0.1378 0.2088 6.3337 1.8220
+#&gt; 32: 94.3096 -5.7252 -0.0886 2.2677 -0.9967 9.0244 3.4298 0.5051 0.1325 0.2015 6.4601 1.8880
+#&gt; 33: 94.8327 -5.8775 -0.0865 2.2684 -0.9976 8.6305 3.2583 0.4920 0.1333 0.1993 6.4804 1.8203
+#&gt; 34: 94.3527 -5.9488 -0.0826 2.2879 -0.9989 8.1989 3.1538 0.4969 0.1388 0.1984 6.4201 1.7696
+#&gt; 35: 94.4411 -6.1171 -0.0826 2.2913 -0.9964 8.4377 3.7937 0.4969 0.1387 0.1972 6.3878 1.7612
+#&gt; 36: 94.2058 -6.1151 -0.0844 2.2920 -1.0069 8.0158 3.7963 0.4962 0.1395 0.1938 6.2469 1.6680
+#&gt; 37: 93.7449 -6.1251 -0.0925 2.2736 -1.0019 7.6150 3.8477 0.5101 0.1325 0.1841 6.1375 1.7472
+#&gt; 38: 93.6861 -6.0575 -0.0934 2.2803 -1.0097 7.2343 3.6553 0.5119 0.1259 0.1862 6.0729 1.7608
+#&gt; 39: 93.9767 -6.0314 -0.0999 2.2548 -1.0231 6.8726 3.4725 0.5195 0.1234 0.1951 6.1947 1.8276
+#&gt; 40: 94.0297 -6.1559 -0.0989 2.2440 -1.0374 6.5290 3.8559 0.5199 0.1279 0.1891 6.0195 1.8906
+#&gt; 41: 94.2069 -6.3055 -0.0820 2.2710 -1.0275 6.2025 4.7866 0.5304 0.1215 0.1858 6.1777 1.8541
+#&gt; 42: 94.2400 -6.3179 -0.0790 2.2783 -1.0379 5.8924 4.6915 0.5253 0.1154 0.1794 6.0530 1.8960
+#&gt; 43: 93.9851 -6.4096 -0.0784 2.2832 -1.0341 5.5978 5.0608 0.5163 0.1097 0.1773 6.0057 1.8136
+#&gt; 44: 94.1440 -6.2214 -0.0746 2.2969 -1.0262 5.3179 4.8077 0.5130 0.1079 0.1851 6.1182 1.8390
+#&gt; 45: 93.8847 -6.3883 -0.0745 2.3059 -1.0132 6.8202 5.1378 0.5130 0.1174 0.1769 6.1000 1.8391
+#&gt; 46: 93.7228 -6.3305 -0.0794 2.3033 -1.0107 6.4792 4.8809 0.5095 0.1196 0.1783 6.2794 1.7304
+#&gt; 47: 93.7031 -6.4232 -0.0796 2.3006 -1.0028 6.1552 5.5756 0.5092 0.1243 0.1887 6.1716 1.7279
+#&gt; 48: 93.5210 -6.2770 -0.0794 2.2948 -1.0122 5.8475 5.2968 0.5098 0.1247 0.1863 5.9847 1.7994
+#&gt; 49: 93.3676 -6.4486 -0.0754 2.3079 -1.0061 5.5551 5.4356 0.5018 0.1198 0.1858 6.1108 1.7598
+#&gt; 50: 93.8573 -6.3944 -0.0755 2.3057 -1.0038 5.2773 5.2487 0.5063 0.1193 0.1843 6.0935 1.7725
+#&gt; 51: 93.7004 -6.2783 -0.0854 2.2836 -1.0074 5.0135 4.9863 0.4932 0.1269 0.1858 6.1630 1.8063
+#&gt; 52: 93.4843 -6.3763 -0.0962 2.2731 -1.0073 4.7628 5.0969 0.4815 0.1345 0.1924 6.0823 1.8013
+#&gt; 53: 93.6971 -6.5002 -0.0887 2.2774 -1.0111 4.5246 5.7428 0.4726 0.1346 0.1982 6.1744 1.7695
+#&gt; 54: 93.6176 -6.4928 -0.0917 2.2648 -1.0220 4.2984 5.4557 0.4765 0.1419 0.2017 6.3732 1.8195
+#&gt; 55: 93.7072 -6.5760 -0.0833 2.2865 -1.0282 4.0835 5.9775 0.4732 0.1434 0.1963 6.3653 1.7028
+#&gt; 56: 94.1360 -6.6854 -0.0901 2.2941 -1.0244 3.8793 7.2562 0.4637 0.1393 0.1935 6.3001 1.7878
+#&gt; 57: 93.4627 -6.6255 -0.1049 2.2502 -1.0233 3.6854 6.8934 0.4847 0.1323 0.1878 6.2357 1.8480
+#&gt; 58: 93.8066 -6.6603 -0.1049 2.2362 -1.0280 3.5011 6.9334 0.4847 0.1397 0.1872 6.3582 1.7787
+#&gt; 59: 93.8599 -6.7837 -0.1046 2.2450 -1.0274 3.3260 8.4672 0.4853 0.1332 0.1833 6.1248 1.8066
+#&gt; 60: 93.6190 -6.5618 -0.1055 2.2381 -1.0244 3.1597 8.0438 0.4742 0.1390 0.1858 6.2589 1.7881
+#&gt; 61: 93.7045 -6.6482 -0.1159 2.2413 -1.0272 3.2942 7.8485 0.4655 0.1406 0.1827 5.8425 1.7744
+#&gt; 62: 93.5232 -6.5027 -0.1168 2.2418 -1.0187 3.3810 7.4560 0.4766 0.1414 0.1790 5.9349 1.7717
+#&gt; 63: 93.4884 -6.4221 -0.1164 2.2505 -1.0062 3.2119 7.0832 0.4768 0.1422 0.1752 6.0193 1.7434
+#&gt; 64: 93.2305 -6.4456 -0.1153 2.2573 -1.0062 4.1468 6.7291 0.4776 0.1395 0.1753 5.8355 1.7529
+#&gt; 65: 93.3743 -6.3237 -0.1227 2.2484 -1.0102 3.9395 6.3926 0.4864 0.1374 0.1800 5.6731 1.7808
+#&gt; 66: 93.7132 -6.3178 -0.1186 2.2389 -0.9894 4.0557 6.0730 0.4909 0.1426 0.1807 5.7099 1.7283
+#&gt; 67: 93.7490 -6.3514 -0.1155 2.2445 -0.9946 3.8529 5.7693 0.4938 0.1379 0.1830 5.7366 1.7847
+#&gt; 68: 93.7617 -6.1181 -0.1251 2.2487 -0.9841 3.7650 5.4809 0.4816 0.1549 0.1769 5.6569 1.7415
+#&gt; 69: 93.4342 -6.3588 -0.1301 2.2350 -0.9813 4.5688 5.2068 0.4745 0.1624 0.1736 5.5771 1.7091
+#&gt; 70: 93.5303 -6.3266 -0.1330 2.2384 -0.9753 4.3404 4.9465 0.4734 0.1563 0.1699 5.5332 1.7256
+#&gt; 71: 93.4733 -6.2859 -0.1364 2.2170 -0.9781 4.1234 4.6992 0.4701 0.1604 0.1649 5.6661 1.7335
+#&gt; 72: 93.3055 -6.2502 -0.1462 2.2156 -0.9724 3.9172 4.7693 0.4519 0.1607 0.1582 5.4776 1.7679
+#&gt; 73: 93.3010 -6.6844 -0.1490 2.2262 -0.9777 3.7213 6.9975 0.4426 0.1848 0.1640 5.7066 1.7588
+#&gt; 74: 93.1104 -6.6720 -0.1484 2.2079 -0.9982 3.5353 6.7811 0.4436 0.1807 0.1732 5.7700 1.7343
+#&gt; 75: 93.4534 -6.9644 -0.1480 2.2078 -0.9930 3.3585 8.7027 0.4497 0.1717 0.1708 5.5371 1.7098
+#&gt; 76: 93.5886 -6.3503 -0.1491 2.1958 -0.9884 3.7136 8.2676 0.4509 0.1731 0.1706 5.3943 1.7340
+#&gt; 77: 93.4345 -6.4976 -0.1531 2.1831 -0.9928 4.5945 7.8542 0.4592 0.1741 0.1703 5.5564 1.7164
+#&gt; 78: 93.6007 -6.4885 -0.1538 2.1850 -0.9919 4.3647 7.4615 0.4607 0.1803 0.1692 5.4698 1.7354
+#&gt; 79: 93.2897 -7.0329 -0.1518 2.1935 -0.9863 4.6922 10.9870 0.4569 0.1790 0.1608 5.3799 1.7484
+#&gt; 80: 93.4130 -6.6634 -0.1531 2.1865 -0.9839 5.4720 10.4377 0.4585 0.1852 0.1543 5.4298 1.7237
+#&gt; 81: 93.5828 -6.7204 -0.1563 2.1914 -0.9882 5.1984 9.9158 0.4548 0.1973 0.1600 5.4425 1.7741
+#&gt; 82: 93.4450 -6.7357 -0.1537 2.1964 -0.9958 4.9384 10.1331 0.4577 0.1874 0.1632 5.6874 1.7789
+#&gt; 83: 93.6109 -6.9249 -0.1493 2.2061 -0.9945 4.6915 11.1537 0.4474 0.1781 0.1686 5.4249 1.7317
+#&gt; 84: 93.7133 -6.8029 -0.1493 2.2016 -0.9886 4.4569 10.9568 0.4474 0.1715 0.1689 5.5426 1.7227
+#&gt; 85: 93.8040 -6.6434 -0.1483 2.2032 -0.9861 5.4991 10.4090 0.4330 0.1749 0.1726 5.4570 1.7332
+#&gt; 86: 93.9029 -6.7750 -0.1472 2.2066 -0.9892 5.2241 11.7325 0.4352 0.1819 0.1644 5.5652 1.6802
+#&gt; 87: 93.8127 -6.7015 -0.1499 2.2019 -0.9891 4.9629 11.1459 0.4292 0.1977 0.1661 5.7122 1.6713
+#&gt; 88: 93.6777 -6.7044 -0.1440 2.2074 -1.0050 4.7148 10.5886 0.4379 0.1878 0.1750 5.6084 1.7096
+#&gt; 89: 94.0481 -6.2990 -0.1443 2.2085 -0.9869 4.4790 10.0591 0.4355 0.1951 0.1688 5.4280 1.8093
+#&gt; 90: 93.6399 -6.3965 -0.1429 2.2138 -0.9737 5.1306 9.5562 0.4367 0.1917 0.1604 5.5652 1.7458
+#&gt; 91: 93.8670 -6.3075 -0.1426 2.2128 -0.9856 5.1368 9.0784 0.4427 0.1993 0.1546 5.3927 1.8246
+#&gt; 92: 93.7332 -6.4793 -0.1426 2.2091 -0.9835 5.0102 8.6245 0.4427 0.1986 0.1585 5.4463 1.7343
+#&gt; 93: 93.8211 -6.3270 -0.1416 2.2123 -0.9941 4.7597 8.1932 0.4431 0.1908 0.1689 5.5213 1.7093
+#&gt; 94: 93.7499 -6.0880 -0.1390 2.2158 -0.9960 5.1992 7.7836 0.4444 0.1958 0.1733 5.5329 1.7880
+#&gt; 95: 93.6253 -6.2196 -0.1436 2.2126 -1.0053 4.9392 7.3944 0.4383 0.2011 0.1717 5.6042 1.7460
+#&gt; 96: 93.8862 -6.1475 -0.1408 2.2211 -0.9922 4.6923 7.0247 0.4347 0.2077 0.1669 5.6807 1.6943
+#&gt; 97: 93.7610 -6.2409 -0.1368 2.2281 -0.9864 4.4576 6.6734 0.4313 0.2084 0.1723 5.5387 1.7075
+#&gt; 98: 93.5362 -6.3378 -0.1368 2.2294 -0.9813 4.2348 6.3398 0.4313 0.2127 0.1877 5.5850 1.6627
+#&gt; 99: 93.5044 -6.2557 -0.1311 2.2282 -0.9993 4.0230 6.0228 0.4461 0.2167 0.1879 5.6437 1.7076
+#&gt; 100: 93.3102 -6.3602 -0.1311 2.2368 -1.0040 3.8219 5.7216 0.4461 0.2139 0.1875 5.8029 1.7592
+#&gt; 101: 93.4687 -6.0385 -0.1241 2.2347 -1.0031 3.6308 5.4356 0.4483 0.2035 0.1816 6.0097 1.7002
+#&gt; 102: 93.6536 -6.2867 -0.1299 2.2421 -1.0002 3.4492 5.1743 0.4434 0.1993 0.1872 5.8540 1.7162
+#&gt; 103: 93.9532 -6.2261 -0.1277 2.2361 -0.9931 3.2768 5.0546 0.4450 0.2069 0.1884 5.6688 1.7324
+#&gt; 104: 93.9839 -6.1980 -0.1287 2.2286 -1.0081 3.1129 5.0671 0.4475 0.1997 0.1985 5.7690 1.7636
+#&gt; 105: 94.1682 -6.1671 -0.1283 2.2217 -1.0154 2.9573 4.8137 0.4481 0.1976 0.1965 5.9277 1.7386
+#&gt; 106: 94.2778 -6.1839 -0.1243 2.2323 -1.0022 3.5381 4.5730 0.4707 0.1980 0.1932 5.7059 1.7184
+#&gt; 107: 94.3667 -5.9941 -0.1182 2.2283 -1.0191 3.3612 4.3444 0.4753 0.1984 0.1986 5.7813 1.7446
+#&gt; 108: 94.2722 -6.1869 -0.1171 2.2293 -1.0027 3.6659 4.6329 0.4742 0.1986 0.2011 5.7827 1.7074
+#&gt; 109: 94.1997 -6.2385 -0.1172 2.2241 -1.0083 3.4826 4.7954 0.4721 0.2027 0.2020 5.8339 1.7650
+#&gt; 110: 94.3017 -6.3774 -0.1291 2.2229 -0.9857 3.7634 5.8516 0.4810 0.2126 0.1984 5.7961 1.6706
+#&gt; 111: 93.9803 -6.0240 -0.1258 2.2273 -0.9879 3.5752 5.5590 0.4749 0.2060 0.1976 5.6243 1.7082
+#&gt; 112: 94.1307 -6.0036 -0.1253 2.2365 -0.9886 4.0368 5.2810 0.4760 0.2060 0.1975 5.5732 1.7063
+#&gt; 113: 93.8676 -6.2496 -0.1118 2.2600 -1.0080 3.8350 5.0170 0.4855 0.2109 0.2006 5.6406 1.7357
+#&gt; 114: 93.5949 -6.3200 -0.1044 2.2449 -1.0172 3.6472 4.7661 0.4868 0.2095 0.2131 5.7690 1.7428
+#&gt; 115: 93.6997 -6.3282 -0.1046 2.2567 -1.0135 3.4648 4.8622 0.4876 0.2264 0.2134 5.8853 1.7823
+#&gt; 116: 93.8191 -6.0802 -0.1087 2.2535 -1.0011 3.4347 4.6191 0.4786 0.2176 0.2108 5.6553 1.7802
+#&gt; 117: 93.8575 -6.0930 -0.1022 2.2498 -0.9898 3.3071 4.3881 0.4822 0.2163 0.2075 5.7806 1.8150
+#&gt; 118: 93.9164 -5.9787 -0.1133 2.2535 -0.9861 4.2578 4.1687 0.4687 0.2198 0.2088 5.4441 1.8411
+#&gt; 119: 93.8748 -6.0108 -0.1165 2.2488 -0.9775 4.0449 3.9603 0.4653 0.2271 0.2032 5.6119 1.7501
+#&gt; 120: 93.6001 -6.0447 -0.1144 2.2477 -0.9821 3.8426 3.7623 0.4641 0.2223 0.2055 5.6454 1.7244
+#&gt; 121: 93.6712 -5.9851 -0.1195 2.2484 -0.9917 3.6505 3.5742 0.4600 0.2143 0.2010 5.4083 1.7965
+#&gt; 122: 93.6859 -6.0390 -0.1145 2.2497 -0.9888 3.4680 3.5595 0.4618 0.2136 0.1986 5.4111 1.7519
+#&gt; 123: 93.6014 -5.8383 -0.1145 2.2584 -0.9893 3.6047 3.3815 0.4618 0.2155 0.2045 5.3624 1.7023
+#&gt; 124: 93.6333 -5.7861 -0.1131 2.2556 -0.9872 3.4245 3.2125 0.4621 0.2153 0.2025 5.3930 1.7036
+#&gt; 125: 93.4504 -5.9483 -0.1154 2.2531 -0.9924 3.2533 3.0518 0.4640 0.2175 0.2030 5.5097 1.6830
+#&gt; 126: 93.5693 -5.8818 -0.1120 2.2506 -0.9960 3.0906 2.8992 0.4606 0.2267 0.2016 5.4583 1.6650
+#&gt; 127: 93.7074 -5.8191 -0.1178 2.2412 -0.9891 2.9361 2.7543 0.4688 0.2234 0.2039 5.4861 1.8125
+#&gt; 128: 93.5959 -5.8842 -0.1179 2.2544 -0.9985 3.0224 2.6166 0.4700 0.2237 0.2019 5.6417 1.8454
+#&gt; 129: 93.5600 -5.8683 -0.1161 2.2365 -0.9987 3.4186 2.4857 0.4721 0.2182 0.1918 5.4391 1.8145
+#&gt; 130: 93.4104 -5.8226 -0.1126 2.2355 -0.9892 3.3648 2.4231 0.4763 0.2212 0.1873 5.3999 1.7457
+#&gt; 131: 93.5045 -5.7255 -0.1118 2.2486 -0.9918 4.1951 2.3020 0.4776 0.2121 0.1927 5.4342 1.7744
+#&gt; 132: 93.2626 -5.8379 -0.1097 2.2510 -0.9933 3.9853 2.5572 0.4763 0.2114 0.1966 5.2979 1.7239
+#&gt; 133: 93.4370 -5.9097 -0.1049 2.2578 -0.9939 4.2190 2.8246 0.4738 0.2036 0.2020 5.2853 1.6765
+#&gt; 134: 93.8665 -5.9439 -0.1035 2.2654 -0.9832 4.0081 3.1228 0.4756 0.2102 0.1961 5.3467 1.7177
+#&gt; 135: 93.6301 -5.8062 -0.1031 2.2702 -0.9737 3.9024 2.9667 0.4748 0.2101 0.2003 5.3053 1.6977
+#&gt; 136: 93.7744 -5.9328 -0.1055 2.2685 -0.9764 3.7072 2.9952 0.4721 0.2096 0.1949 5.4319 1.6864
+#&gt; 137: 93.6734 -5.9886 -0.1107 2.2517 -0.9732 3.8811 3.4962 0.4642 0.2204 0.1924 5.4294 1.6684
+#&gt; 138: 93.7128 -5.9927 -0.1119 2.2517 -0.9775 3.6870 3.4543 0.4667 0.2204 0.1953 5.3912 1.7060
+#&gt; 139: 93.6530 -6.1296 -0.1210 2.2456 -0.9929 3.5027 4.6472 0.4527 0.2296 0.1855 5.4953 1.7242
+#&gt; 140: 93.9344 -6.2519 -0.1384 2.2304 -0.9970 3.6814 4.4707 0.4337 0.2182 0.1762 5.5643 1.7596
+#&gt; 141: 93.7356 -6.2804 -0.1296 2.2549 -0.9921 3.9811 4.4876 0.4218 0.2361 0.1674 5.3531 1.7175
+#&gt; 142: 93.7399 -6.0023 -0.1098 2.2611 -0.9815 3.7821 4.2632 0.4395 0.2421 0.1807 5.3139 1.7191
+#&gt; 143: 93.4732 -6.0376 -0.1108 2.2689 -0.9734 3.5930 4.0500 0.4396 0.2541 0.1718 5.2930 1.6229
+#&gt; 144: 93.4900 -5.9517 -0.1093 2.2876 -0.9675 3.4133 3.8475 0.4337 0.2542 0.1711 5.4258 1.5660
+#&gt; 145: 93.4090 -5.9596 -0.1000 2.2942 -0.9756 3.2426 3.6551 0.4274 0.2422 0.1671 5.3539 1.6971
+#&gt; 146: 93.4142 -5.9549 -0.0982 2.2846 -0.9704 3.0805 3.6092 0.4226 0.2339 0.1745 5.5092 1.6696
+#&gt; 147: 93.4409 -6.0720 -0.0971 2.2942 -0.9891 2.9265 3.9922 0.4224 0.2373 0.1781 5.5599 1.6080
+#&gt; 148: 93.4504 -6.2201 -0.0980 2.2855 -0.9832 2.7802 4.6985 0.4104 0.2464 0.1856 5.5016 1.5877
+#&gt; 149: 93.4240 -6.2122 -0.1005 2.2728 -0.9881 3.7659 4.7755 0.4082 0.2642 0.1885 5.4942 1.5534
+#&gt; 150: 93.5094 -6.1295 -0.1087 2.2717 -0.9941 3.5776 4.5367 0.4109 0.2611 0.1928 5.3468 1.5585
+#&gt; 151: 93.4038 -6.2751 -0.1130 2.2643 -0.9892 3.3987 4.9866 0.4172 0.2638 0.1905 5.4955 1.6256
+#&gt; 152: 93.5072 -6.3361 -0.1147 2.2627 -0.9988 2.3580 5.3824 0.4175 0.2656 0.1819 5.7685 1.6126
+#&gt; 153: 93.3582 -6.2019 -0.1227 2.2526 -0.9929 2.5874 4.7052 0.4348 0.2621 0.1810 5.5149 1.6181
+#&gt; 154: 93.1890 -6.3537 -0.1263 2.2446 -0.9871 2.4073 5.7070 0.4351 0.2586 0.1829 5.3136 1.6272
+#&gt; 155: 93.1706 -6.4117 -0.1260 2.2484 -0.9845 2.3035 6.0004 0.4463 0.2586 0.1781 5.4260 1.6494
+#&gt; 156: 93.3240 -6.3931 -0.1259 2.2469 -0.9824 2.5659 5.7375 0.4466 0.2781 0.1754 5.6202 1.6591
+#&gt; 157: 93.3239 -6.1812 -0.1242 2.2541 -0.9743 1.6054 4.5906 0.4478 0.2657 0.1758 5.6806 1.6367
+#&gt; 158: 93.3756 -6.2562 -0.1264 2.2706 -0.9888 1.5329 4.6790 0.4458 0.2532 0.1728 5.7756 1.6248
+#&gt; 159: 93.3034 -6.3291 -0.1217 2.2524 -0.9954 1.7774 5.7204 0.4532 0.2642 0.1715 5.8189 1.6830
+#&gt; 160: 93.4387 -6.5115 -0.1196 2.2488 -0.9846 2.2219 6.4960 0.4555 0.2728 0.1689 5.5273 1.6332
+#&gt; 161: 93.7646 -6.3820 -0.1231 2.2520 -0.9837 2.8322 5.7269 0.4498 0.2712 0.1730 5.3659 1.5787
+#&gt; 162: 93.6252 -6.4563 -0.1243 2.2472 -0.9867 2.8322 5.9119 0.4502 0.2671 0.1726 5.4519 1.5819
+#&gt; 163: 93.6787 -6.6444 -0.1292 2.2366 -0.9899 2.0520 7.4835 0.4556 0.2705 0.1689 5.4095 1.5883
+#&gt; 164: 93.7458 -6.9330 -0.1257 2.2430 -0.9872 1.7825 9.4340 0.4495 0.2701 0.1593 5.4517 1.6116
+#&gt; 165: 93.7370 -6.9118 -0.1250 2.2421 -0.9832 1.9949 10.6549 0.4499 0.2685 0.1622 5.6272 1.6075
+#&gt; 166: 94.0889 -6.8704 -0.1276 2.2409 -0.9872 1.5618 10.4435 0.4482 0.2608 0.1648 5.5891 1.6208
+#&gt; 167: 94.1319 -7.2779 -0.1206 2.2505 -0.9894 1.5063 13.4312 0.4393 0.2549 0.1661 5.6013 1.6043
+#&gt; 168: 93.8341 -6.9310 -0.1140 2.2495 -0.9844 1.7329 11.3224 0.4463 0.2540 0.1629 5.8366 1.6765
+#&gt; 169: 93.8923 -6.6547 -0.1173 2.2620 -0.9872 1.4531 8.4608 0.4419 0.2414 0.1666 5.8784 1.6268
+#&gt; 170: 94.0072 -6.3970 -0.1173 2.2606 -0.9861 1.4164 6.9237 0.4419 0.2468 0.1656 5.8793 1.6387
+#&gt; 171: 93.8690 -6.5151 -0.1079 2.2482 -0.9880 1.9225 7.7681 0.4547 0.2404 0.1523 6.0158 1.6281
+#&gt; 172: 93.6847 -6.3416 -0.1095 2.2438 -0.9849 2.0143 5.5739 0.4498 0.2450 0.1534 6.1355 1.6422
+#&gt; 173: 93.4817 -6.3165 -0.1115 2.2573 -0.9885 1.6855 5.5626 0.4440 0.2471 0.1542 6.1343 1.6337
+#&gt; 174: 93.6781 -6.2722 -0.1113 2.2521 -0.9958 1.9186 5.3383 0.4471 0.2427 0.1565 6.1081 1.6358
+#&gt; 175: 93.7764 -6.1664 -0.1113 2.2468 -0.9864 1.6286 4.6233 0.4471 0.2426 0.1596 5.8892 1.6375
+#&gt; 176: 93.9246 -6.2164 -0.1160 2.2529 -0.9853 1.0357 4.8013 0.4422 0.2471 0.1756 5.7340 1.6016
+#&gt; 177: 93.9711 -6.1274 -0.1112 2.2540 -0.9883 1.2079 4.1536 0.4415 0.2492 0.1783 5.8399 1.6291
+#&gt; 178: 93.9212 -6.0532 -0.1116 2.2593 -0.9742 1.2409 3.6443 0.4489 0.2458 0.1683 5.8422 1.6290
+#&gt; 179: 94.0137 -6.0739 -0.1095 2.2664 -0.9778 1.5060 3.9878 0.4506 0.2370 0.1746 6.0349 1.6326
+#&gt; 180: 93.9247 -6.0681 -0.1130 2.2660 -0.9934 1.9619 3.9582 0.4474 0.2328 0.1773 5.8082 1.6740
+#&gt; 181: 93.7150 -6.0191 -0.1153 2.2558 -0.9915 2.6849 3.7075 0.4491 0.2283 0.1759 5.7187 1.6842
+#&gt; 182: 93.5908 -6.1098 -0.1111 2.2769 -0.9942 3.0096 3.9325 0.4643 0.2275 0.1736 5.9243 1.6466
+#&gt; 183: 93.3386 -6.0987 -0.1131 2.2630 -0.9962 3.5457 4.1285 0.4693 0.2373 0.1751 5.6948 1.7222
+#&gt; 184: 93.4889 -6.3097 -0.1134 2.2660 -0.9720 3.0855 5.2642 0.4648 0.2255 0.1585 5.6827 1.7444
+#&gt; 185: 93.6387 -6.1883 -0.1188 2.2622 -0.9603 3.3568 4.8291 0.4554 0.2223 0.1681 5.7089 1.8164
+#&gt; 186: 93.3420 -6.2909 -0.1195 2.2656 -0.9835 3.2124 4.8317 0.4541 0.2286 0.1531 5.7574 1.7708
+#&gt; 187: 93.4395 -6.0358 -0.1165 2.2528 -0.9917 3.8299 3.3301 0.4518 0.2370 0.1593 5.8508 1.6988
+#&gt; 188: 93.5358 -6.0105 -0.1161 2.2540 -0.9813 5.1249 3.3448 0.4522 0.2361 0.1660 5.8700 1.6525
+#&gt; 189: 93.4932 -6.1199 -0.1129 2.2636 -0.9812 4.5430 4.3213 0.4428 0.2359 0.1907 5.6970 1.7268
+#&gt; 190: 93.4754 -5.9088 -0.1171 2.2564 -0.9614 4.6253 3.2590 0.4410 0.2399 0.1864 5.7116 1.8140
+#&gt; 191: 93.4709 -5.9676 -0.1171 2.2568 -0.9748 4.8326 3.6704 0.4410 0.2428 0.1812 5.5925 1.7267
+#&gt; 192: 93.3895 -5.9940 -0.1191 2.2523 -0.9691 4.3019 3.5174 0.4360 0.2484 0.1591 5.4631 1.7057
+#&gt; 193: 93.4904 -6.0400 -0.1173 2.2519 -0.9697 4.6476 3.6255 0.4389 0.2388 0.1694 5.5362 1.7174
+#&gt; 194: 93.4591 -5.9642 -0.1245 2.2626 -0.9559 5.3125 3.8133 0.4297 0.2550 0.1660 5.7591 1.7344
+#&gt; 195: 93.6610 -6.2211 -0.1226 2.2580 -0.9669 5.2051 4.9271 0.4318 0.2414 0.1811 5.7010 1.7710
+#&gt; 196: 93.4249 -5.9570 -0.1068 2.2735 -0.9727 5.1049 3.4872 0.4442 0.2429 0.1815 5.7753 1.7379
+#&gt; 197: 93.4082 -6.0568 -0.1054 2.2754 -0.9865 5.2827 3.9305 0.4554 0.2408 0.1925 5.7514 1.7163
+#&gt; 198: 93.3856 -5.8616 -0.1087 2.2708 -0.9686 4.1369 3.0197 0.4530 0.2473 0.1878 5.6920 1.7043
+#&gt; 199: 93.5488 -6.0494 -0.1167 2.2682 -0.9719 3.8010 3.8897 0.4600 0.2445 0.1860 5.7126 1.6605
+#&gt; 200: 93.3779 -5.9779 -0.1110 2.2761 -0.9780 3.5955 3.4721 0.4595 0.2468 0.1941 5.7539 1.6736
+#&gt; 201: 93.4946 -6.0259 -0.1102 2.2676 -0.9755 3.0583 3.7305 0.4592 0.2554 0.1921 5.8877 1.6730
+#&gt; 202: 93.4698 -6.0522 -0.1110 2.2685 -0.9703 2.9421 3.8718 0.4579 0.2595 0.1906 5.8527 1.6701
+#&gt; 203: 93.4625 -6.0744 -0.1132 2.2642 -0.9696 3.1854 4.0983 0.4589 0.2596 0.1886 5.7532 1.6655
+#&gt; 204: 93.4984 -6.0853 -0.1138 2.2589 -0.9718 3.2826 4.1667 0.4581 0.2588 0.1851 5.7274 1.6694
+#&gt; 205: 93.5279 -6.1054 -0.1151 2.2562 -0.9742 3.3257 4.2680 0.4569 0.2584 0.1832 5.6976 1.6777
+#&gt; 206: 93.6025 -6.1087 -0.1174 2.2518 -0.9767 3.2399 4.2443 0.4582 0.2589 0.1822 5.6809 1.6775
+#&gt; 207: 93.6382 -6.0990 -0.1204 2.2481 -0.9801 3.2768 4.1473 0.4579 0.2591 0.1823 5.6460 1.6819
+#&gt; 208: 93.6250 -6.0878 -0.1224 2.2438 -0.9812 3.1815 4.0872 0.4579 0.2577 0.1818 5.6256 1.6887
+#&gt; 209: 93.6102 -6.0740 -0.1255 2.2394 -0.9803 3.1716 3.9968 0.4561 0.2573 0.1812 5.6063 1.6886
+#&gt; 210: 93.6005 -6.0571 -0.1277 2.2348 -0.9799 3.2408 3.8923 0.4548 0.2572 0.1798 5.5849 1.6912
+#&gt; 211: 93.6270 -6.0425 -0.1306 2.2292 -0.9807 3.3500 3.8267 0.4538 0.2586 0.1792 5.5578 1.6992
+#&gt; 212: 93.6641 -6.0403 -0.1331 2.2253 -0.9806 3.4487 3.8366 0.4529 0.2596 0.1786 5.5422 1.7022
+#&gt; 213: 93.6743 -6.0344 -0.1354 2.2214 -0.9800 3.5484 3.8260 0.4518 0.2606 0.1781 5.5250 1.7069
+#&gt; 214: 93.6719 -6.0405 -0.1377 2.2179 -0.9804 3.5538 3.8785 0.4506 0.2612 0.1769 5.5148 1.7087
+#&gt; 215: 93.6743 -6.0403 -0.1396 2.2146 -0.9801 3.5578 3.9180 0.4496 0.2615 0.1761 5.5118 1.7094
+#&gt; 216: 93.6666 -6.0436 -0.1413 2.2115 -0.9796 3.5848 3.9484 0.4488 0.2624 0.1755 5.5015 1.7116
+#&gt; 217: 93.6715 -6.0438 -0.1430 2.2086 -0.9794 3.6188 3.9603 0.4478 0.2631 0.1748 5.4884 1.7132
+#&gt; 218: 93.6765 -6.0488 -0.1441 2.2060 -0.9796 3.6126 3.9885 0.4471 0.2632 0.1746 5.4714 1.7156
+#&gt; 219: 93.6714 -6.0557 -0.1453 2.2038 -0.9798 3.6603 4.0118 0.4463 0.2632 0.1735 5.4593 1.7235
+#&gt; 220: 93.6728 -6.0711 -0.1462 2.2027 -0.9794 3.7244 4.0910 0.4457 0.2639 0.1730 5.4531 1.7241
+#&gt; 221: 93.6723 -6.0822 -0.1470 2.2015 -0.9788 3.7754 4.1554 0.4450 0.2647 0.1724 5.4511 1.7247
+#&gt; 222: 93.6789 -6.0745 -0.1480 2.1998 -0.9780 3.8735 4.1186 0.4442 0.2662 0.1718 5.4419 1.7258
+#&gt; 223: 93.6891 -6.0700 -0.1488 2.1984 -0.9778 3.9353 4.0998 0.4434 0.2681 0.1715 5.4375 1.7251
+#&gt; 224: 93.7125 -6.0705 -0.1496 2.1976 -0.9774 4.0220 4.0861 0.4427 0.2697 0.1711 5.4378 1.7230
+#&gt; 225: 93.7332 -6.0695 -0.1502 2.1966 -0.9775 4.0553 4.0669 0.4422 0.2712 0.1711 5.4355 1.7205
+#&gt; 226: 93.7631 -6.0712 -0.1508 2.1951 -0.9779 4.0755 4.0572 0.4417 0.2728 0.1712 5.4347 1.7190
+#&gt; 227: 93.7912 -6.0687 -0.1512 2.1938 -0.9785 4.0621 4.0439 0.4409 0.2742 0.1716 5.4325 1.7189
+#&gt; 228: 93.8077 -6.0644 -0.1517 2.1927 -0.9791 4.0246 4.0190 0.4400 0.2755 0.1722 5.4269 1.7193
+#&gt; 229: 93.8255 -6.0661 -0.1521 2.1909 -0.9796 3.9958 4.0166 0.4392 0.2769 0.1725 5.4214 1.7214
+#&gt; 230: 93.8403 -6.0766 -0.1530 2.1895 -0.9802 4.0152 4.0548 0.4380 0.2788 0.1730 5.4214 1.7232
+#&gt; 231: 93.8549 -6.0768 -0.1541 2.1877 -0.9810 4.0690 4.0542 0.4368 0.2803 0.1734 5.4157 1.7236
+#&gt; 232: 93.8666 -6.0728 -0.1550 2.1858 -0.9816 4.0852 4.0337 0.4356 0.2818 0.1736 5.4136 1.7224
+#&gt; 233: 93.8728 -6.0672 -0.1557 2.1844 -0.9820 4.1001 4.0000 0.4346 0.2828 0.1738 5.4028 1.7243
+#&gt; 234: 93.8862 -6.0646 -0.1563 2.1830 -0.9825 4.1303 3.9850 0.4337 0.2838 0.1737 5.3924 1.7222
+#&gt; 235: 93.8862 -6.0632 -0.1570 2.1819 -0.9827 4.1149 3.9735 0.4329 0.2847 0.1737 5.3846 1.7225
+#&gt; 236: 93.8827 -6.0639 -0.1577 2.1814 -0.9834 4.1004 3.9711 0.4322 0.2852 0.1739 5.3838 1.7220
+#&gt; 237: 93.8729 -6.0680 -0.1582 2.1808 -0.9840 4.0606 3.9866 0.4316 0.2857 0.1741 5.3806 1.7213
+#&gt; 238: 93.8739 -6.0733 -0.1587 2.1806 -0.9845 4.0331 4.0011 0.4311 0.2859 0.1742 5.3775 1.7199
+#&gt; 239: 93.8732 -6.0729 -0.1591 2.1802 -0.9853 3.9850 3.9892 0.4307 0.2859 0.1744 5.3782 1.7216
+#&gt; 240: 93.8760 -6.0754 -0.1595 2.1796 -0.9854 3.9349 3.9867 0.4303 0.2858 0.1747 5.3781 1.7232
+#&gt; 241: 93.8779 -6.0749 -0.1599 2.1791 -0.9853 3.9241 3.9801 0.4299 0.2858 0.1748 5.3757 1.7228
+#&gt; 242: 93.8842 -6.0716 -0.1602 2.1786 -0.9852 3.9394 3.9651 0.4297 0.2859 0.1749 5.3726 1.7224
+#&gt; 243: 93.8884 -6.0719 -0.1606 2.1778 -0.9851 3.9310 3.9741 0.4295 0.2857 0.1750 5.3705 1.7224
+#&gt; 244: 93.8910 -6.0712 -0.1610 2.1771 -0.9850 3.9173 3.9819 0.4294 0.2856 0.1749 5.3700 1.7222
+#&gt; 245: 93.9054 -6.0736 -0.1614 2.1764 -0.9854 3.9106 3.9984 0.4293 0.2856 0.1748 5.3711 1.7217
+#&gt; 246: 93.9209 -6.0753 -0.1617 2.1757 -0.9859 3.9080 4.0071 0.4291 0.2852 0.1746 5.3711 1.7215
+#&gt; 247: 93.9273 -6.0846 -0.1621 2.1752 -0.9861 3.8790 4.0580 0.4286 0.2851 0.1745 5.3755 1.7206
+#&gt; 248: 93.9265 -6.0884 -0.1625 2.1749 -0.9865 3.8613 4.0784 0.4286 0.2848 0.1744 5.3760 1.7198
+#&gt; 249: 93.9286 -6.0926 -0.1627 2.1746 -0.9872 3.8663 4.1008 0.4287 0.2845 0.1745 5.3755 1.7195
+#&gt; 250: 93.9287 -6.0968 -0.1629 2.1744 -0.9878 3.8822 4.1269 0.4289 0.2844 0.1743 5.3755 1.7201
+#&gt; 251: 93.9314 -6.1017 -0.1630 2.1739 -0.9882 3.8878 4.1495 0.4291 0.2843 0.1744 5.3729 1.7200
+#&gt; 252: 93.9351 -6.1036 -0.1632 2.1734 -0.9885 3.8908 4.1545 0.4293 0.2843 0.1746 5.3684 1.7191
+#&gt; 253: 93.9415 -6.1053 -0.1634 2.1729 -0.9889 3.8727 4.1602 0.4294 0.2842 0.1747 5.3650 1.7196
+#&gt; 254: 93.9473 -6.1088 -0.1636 2.1723 -0.9891 3.8657 4.1769 0.4296 0.2843 0.1749 5.3666 1.7190
+#&gt; 255: 93.9505 -6.1087 -0.1639 2.1717 -0.9888 3.8457 4.1720 0.4298 0.2841 0.1749 5.3617 1.7191
+#&gt; 256: 93.9497 -6.1054 -0.1642 2.1715 -0.9885 3.8395 4.1559 0.4299 0.2839 0.1749 5.3598 1.7192
+#&gt; 257: 93.9477 -6.1008 -0.1643 2.1713 -0.9882 3.8383 4.1360 0.4299 0.2836 0.1749 5.3567 1.7196
+#&gt; 258: 93.9402 -6.0998 -0.1645 2.1713 -0.9880 3.8516 4.1288 0.4300 0.2832 0.1749 5.3565 1.7190
+#&gt; 259: 93.9318 -6.0979 -0.1646 2.1711 -0.9879 3.8396 4.1182 0.4301 0.2829 0.1750 5.3583 1.7188
+#&gt; 260: 93.9277 -6.1002 -0.1646 2.1713 -0.9879 3.8173 4.1273 0.4304 0.2826 0.1751 5.3611 1.7186
+#&gt; 261: 93.9251 -6.0973 -0.1646 2.1714 -0.9879 3.8140 4.1105 0.4306 0.2822 0.1750 5.3588 1.7192
+#&gt; 262: 93.9186 -6.1009 -0.1647 2.1715 -0.9880 3.8177 4.1303 0.4308 0.2822 0.1750 5.3604 1.7194
+#&gt; 263: 93.9130 -6.1033 -0.1646 2.1715 -0.9880 3.8029 4.1529 0.4309 0.2822 0.1748 5.3647 1.7188
+#&gt; 264: 93.9040 -6.1077 -0.1645 2.1717 -0.9879 3.7950 4.1820 0.4310 0.2822 0.1747 5.3699 1.7184
+#&gt; 265: 93.9012 -6.1071 -0.1645 2.1714 -0.9879 3.7834 4.1895 0.4310 0.2822 0.1746 5.3755 1.7191
+#&gt; 266: 93.8988 -6.1051 -0.1644 2.1714 -0.9879 3.7788 4.1822 0.4311 0.2822 0.1745 5.3765 1.7203
+#&gt; 267: 93.8964 -6.1059 -0.1643 2.1714 -0.9877 3.7774 4.1896 0.4311 0.2822 0.1744 5.3792 1.7197
+#&gt; 268: 93.8901 -6.1092 -0.1643 2.1715 -0.9876 3.7790 4.2198 0.4310 0.2822 0.1742 5.3811 1.7200
+#&gt; 269: 93.8842 -6.1105 -0.1643 2.1717 -0.9875 3.7620 4.2336 0.4310 0.2823 0.1742 5.3838 1.7193
+#&gt; 270: 93.8760 -6.1125 -0.1643 2.1721 -0.9874 3.7668 4.2483 0.4308 0.2823 0.1741 5.3852 1.7181
+#&gt; 271: 93.8705 -6.1149 -0.1643 2.1722 -0.9873 3.7785 4.2625 0.4306 0.2823 0.1742 5.3853 1.7172
+#&gt; 272: 93.8674 -6.1149 -0.1643 2.1723 -0.9871 3.7829 4.2581 0.4304 0.2823 0.1743 5.3836 1.7162
+#&gt; 273: 93.8644 -6.1159 -0.1642 2.1725 -0.9870 3.7910 4.2631 0.4303 0.2825 0.1743 5.3818 1.7154
+#&gt; 274: 93.8585 -6.1158 -0.1640 2.1728 -0.9869 3.7926 4.2612 0.4302 0.2825 0.1743 5.3816 1.7147
+#&gt; 275: 93.8564 -6.1151 -0.1639 2.1732 -0.9867 3.8053 4.2581 0.4301 0.2826 0.1743 5.3804 1.7143
+#&gt; 276: 93.8564 -6.1132 -0.1638 2.1736 -0.9866 3.7958 4.2486 0.4300 0.2827 0.1745 5.3810 1.7144
+#&gt; 277: 93.8564 -6.1120 -0.1637 2.1741 -0.9867 3.7952 4.2426 0.4298 0.2829 0.1747 5.3808 1.7148
+#&gt; 278: 93.8528 -6.1113 -0.1636 2.1743 -0.9867 3.7922 4.2352 0.4297 0.2832 0.1750 5.3819 1.7144
+#&gt; 279: 93.8503 -6.1124 -0.1636 2.1744 -0.9867 3.7930 4.2390 0.4298 0.2834 0.1753 5.3826 1.7144
+#&gt; 280: 93.8466 -6.1146 -0.1636 2.1743 -0.9867 3.7946 4.2470 0.4299 0.2838 0.1755 5.3832 1.7142
+#&gt; 281: 93.8435 -6.1165 -0.1638 2.1743 -0.9867 3.7994 4.2552 0.4298 0.2840 0.1756 5.3828 1.7140
+#&gt; 282: 93.8421 -6.1162 -0.1639 2.1741 -0.9868 3.7967 4.2496 0.4296 0.2843 0.1758 5.3816 1.7137
+#&gt; 283: 93.8382 -6.1146 -0.1641 2.1740 -0.9866 3.7957 4.2387 0.4294 0.2845 0.1760 5.3796 1.7135
+#&gt; 284: 93.8356 -6.1131 -0.1641 2.1740 -0.9865 3.7904 4.2263 0.4292 0.2848 0.1762 5.3776 1.7127
+#&gt; 285: 93.8349 -6.1113 -0.1642 2.1740 -0.9865 3.7841 4.2129 0.4291 0.2850 0.1765 5.3763 1.7130
+#&gt; 286: 93.8372 -6.1095 -0.1643 2.1741 -0.9864 3.7801 4.2035 0.4289 0.2853 0.1769 5.3779 1.7130
+#&gt; 287: 93.8393 -6.1077 -0.1643 2.1741 -0.9864 3.7804 4.1908 0.4287 0.2857 0.1771 5.3785 1.7132
+#&gt; 288: 93.8395 -6.1071 -0.1644 2.1740 -0.9866 3.7714 4.1834 0.4284 0.2859 0.1772 5.3798 1.7120
+#&gt; 289: 93.8398 -6.1065 -0.1645 2.1738 -0.9865 3.7635 4.1765 0.4282 0.2861 0.1774 5.3821 1.7111
+#&gt; 290: 93.8376 -6.1089 -0.1647 2.1737 -0.9865 3.7495 4.1853 0.4281 0.2863 0.1776 5.3852 1.7106
+#&gt; 291: 93.8341 -6.1091 -0.1647 2.1738 -0.9863 3.7340 4.1854 0.4278 0.2865 0.1776 5.3868 1.7098
+#&gt; 292: 93.8329 -6.1080 -0.1647 2.1741 -0.9863 3.7189 4.1760 0.4275 0.2868 0.1777 5.3885 1.7091
+#&gt; 293: 93.8312 -6.1065 -0.1647 2.1743 -0.9862 3.7091 4.1651 0.4272 0.2871 0.1778 5.3896 1.7086
+#&gt; 294: 93.8310 -6.1042 -0.1647 2.1745 -0.9861 3.6946 4.1521 0.4269 0.2874 0.1780 5.3908 1.7077
+#&gt; 295: 93.8299 -6.1033 -0.1648 2.1747 -0.9861 3.6968 4.1433 0.4265 0.2880 0.1781 5.3904 1.7066
+#&gt; 296: 93.8276 -6.1027 -0.1648 2.1749 -0.9862 3.7072 4.1361 0.4261 0.2885 0.1782 5.3910 1.7056
+#&gt; 297: 93.8212 -6.1015 -0.1647 2.1750 -0.9859 3.7253 4.1278 0.4256 0.2891 0.1783 5.3927 1.7051
+#&gt; 298: 93.8173 -6.0980 -0.1647 2.1751 -0.9858 3.7552 4.1115 0.4251 0.2897 0.1784 5.3932 1.7045
+#&gt; 299: 93.8168 -6.0984 -0.1646 2.1754 -0.9856 3.7687 4.1143 0.4246 0.2902 0.1786 5.3949 1.7037
+#&gt; 300: 93.8154 -6.0967 -0.1646 2.1756 -0.9855 3.7888 4.1072 0.4241 0.2906 0.1788 5.3962 1.7030
+#&gt; 301: 93.8129 -6.0946 -0.1646 2.1757 -0.9852 3.8097 4.1006 0.4236 0.2911 0.1791 5.3971 1.7026
+#&gt; 302: 93.8120 -6.0932 -0.1646 2.1759 -0.9849 3.8403 4.0955 0.4231 0.2917 0.1792 5.3971 1.7021
+#&gt; 303: 93.8115 -6.0942 -0.1646 2.1762 -0.9850 3.8602 4.1004 0.4227 0.2922 0.1795 5.3976 1.7020
+#&gt; 304: 93.8106 -6.0979 -0.1645 2.1765 -0.9850 3.8898 4.1217 0.4222 0.2926 0.1798 5.3975 1.7024
+#&gt; 305: 93.8091 -6.1009 -0.1644 2.1767 -0.9851 3.9165 4.1374 0.4218 0.2931 0.1801 5.3989 1.7024
+#&gt; 306: 93.8090 -6.1043 -0.1644 2.1770 -0.9850 3.9485 4.1617 0.4214 0.2936 0.1803 5.3998 1.7021
+#&gt; 307: 93.8082 -6.1063 -0.1644 2.1772 -0.9850 3.9730 4.1797 0.4210 0.2940 0.1803 5.3998 1.7017
+#&gt; 308: 93.8093 -6.1090 -0.1644 2.1775 -0.9850 3.9874 4.2026 0.4205 0.2945 0.1804 5.3996 1.7006
+#&gt; 309: 93.8092 -6.1122 -0.1643 2.1777 -0.9849 3.9948 4.2297 0.4201 0.2948 0.1804 5.4001 1.6998
+#&gt; 310: 93.8080 -6.1142 -0.1642 2.1780 -0.9850 3.9976 4.2436 0.4197 0.2951 0.1803 5.4016 1.6989
+#&gt; 311: 93.8094 -6.1164 -0.1641 2.1784 -0.9851 4.0015 4.2552 0.4194 0.2952 0.1803 5.4033 1.6978
+#&gt; 312: 93.8107 -6.1184 -0.1640 2.1788 -0.9851 4.0006 4.2628 0.4190 0.2954 0.1802 5.4042 1.6972
+#&gt; 313: 93.8118 -6.1190 -0.1640 2.1789 -0.9851 3.9991 4.2638 0.4186 0.2955 0.1802 5.4053 1.6967
+#&gt; 314: 93.8139 -6.1188 -0.1639 2.1791 -0.9851 4.0019 4.2619 0.4183 0.2956 0.1802 5.4049 1.6966
+#&gt; 315: 93.8152 -6.1173 -0.1639 2.1792 -0.9851 4.0111 4.2553 0.4179 0.2957 0.1802 5.4052 1.6966
+#&gt; 316: 93.8178 -6.1158 -0.1639 2.1792 -0.9851 4.0073 4.2498 0.4175 0.2957 0.1802 5.4050 1.6966
+#&gt; 317: 93.8205 -6.1155 -0.1639 2.1792 -0.9851 3.9999 4.2491 0.4172 0.2957 0.1802 5.4048 1.6963
+#&gt; 318: 93.8216 -6.1145 -0.1639 2.1792 -0.9850 3.9961 4.2438 0.4168 0.2957 0.1802 5.4031 1.6961
+#&gt; 319: 93.8241 -6.1143 -0.1639 2.1792 -0.9849 4.0009 4.2412 0.4164 0.2958 0.1801 5.4004 1.6956
+#&gt; 320: 93.8257 -6.1142 -0.1639 2.1792 -0.9849 4.0018 4.2380 0.4160 0.2958 0.1801 5.3986 1.6952
+#&gt; 321: 93.8280 -6.1134 -0.1639 2.1792 -0.9849 4.0055 4.2339 0.4156 0.2959 0.1802 5.3966 1.6950
+#&gt; 322: 93.8299 -6.1122 -0.1639 2.1793 -0.9848 4.0075 4.2274 0.4152 0.2959 0.1802 5.3969 1.6948
+#&gt; 323: 93.8318 -6.1123 -0.1639 2.1794 -0.9848 4.0087 4.2257 0.4149 0.2960 0.1802 5.3980 1.6941
+#&gt; 324: 93.8352 -6.1098 -0.1639 2.1795 -0.9848 4.0123 4.2136 0.4145 0.2960 0.1802 5.3988 1.6936
+#&gt; 325: 93.8374 -6.1072 -0.1638 2.1796 -0.9848 4.0230 4.2005 0.4142 0.2961 0.1802 5.3991 1.6933
+#&gt; 326: 93.8410 -6.1050 -0.1637 2.1796 -0.9849 4.0327 4.1891 0.4139 0.2963 0.1802 5.4004 1.6927
+#&gt; 327: 93.8457 -6.1023 -0.1637 2.1796 -0.9849 4.0327 4.1767 0.4135 0.2964 0.1802 5.4013 1.6922
+#&gt; 328: 93.8493 -6.1017 -0.1637 2.1797 -0.9850 4.0440 4.1730 0.4131 0.2964 0.1802 5.4019 1.6915
+#&gt; 329: 93.8515 -6.1001 -0.1637 2.1799 -0.9851 4.0556 4.1648 0.4128 0.2963 0.1803 5.4017 1.6912
+#&gt; 330: 93.8541 -6.1001 -0.1636 2.1800 -0.9852 4.0606 4.1631 0.4124 0.2962 0.1804 5.4025 1.6912
+#&gt; 331: 93.8539 -6.0994 -0.1635 2.1801 -0.9854 4.0654 4.1584 0.4120 0.2961 0.1805 5.4025 1.6907
+#&gt; 332: 93.8536 -6.0999 -0.1634 2.1803 -0.9854 4.0696 4.1601 0.4116 0.2960 0.1808 5.4027 1.6904
+#&gt; 333: 93.8531 -6.1002 -0.1633 2.1806 -0.9853 4.0682 4.1646 0.4112 0.2960 0.1810 5.4038 1.6893
+#&gt; 334: 93.8543 -6.1005 -0.1632 2.1809 -0.9852 4.0771 4.1690 0.4108 0.2960 0.1812 5.4040 1.6883
+#&gt; 335: 93.8552 -6.1010 -0.1631 2.1813 -0.9851 4.0888 4.1775 0.4104 0.2960 0.1813 5.4044 1.6878
+#&gt; 336: 93.8555 -6.1016 -0.1630 2.1817 -0.9850 4.0969 4.1858 0.4099 0.2961 0.1814 5.4046 1.6873
+#&gt; 337: 93.8553 -6.1025 -0.1628 2.1820 -0.9849 4.1152 4.1921 0.4094 0.2962 0.1815 5.4070 1.6863
+#&gt; 338: 93.8553 -6.1018 -0.1626 2.1824 -0.9848 4.1314 4.1904 0.4090 0.2963 0.1816 5.4080 1.6852
+#&gt; 339: 93.8567 -6.1004 -0.1625 2.1828 -0.9847 4.1449 4.1855 0.4087 0.2964 0.1817 5.4087 1.6841
+#&gt; 340: 93.8582 -6.0987 -0.1623 2.1832 -0.9846 4.1603 4.1799 0.4083 0.2965 0.1819 5.4086 1.6832
+#&gt; 341: 93.8589 -6.0962 -0.1620 2.1836 -0.9844 4.1692 4.1694 0.4079 0.2965 0.1820 5.4102 1.6828
+#&gt; 342: 93.8583 -6.0932 -0.1618 2.1841 -0.9844 4.1729 4.1563 0.4075 0.2966 0.1821 5.4117 1.6821
+#&gt; 343: 93.8590 -6.0906 -0.1615 2.1845 -0.9844 4.1840 4.1447 0.4071 0.2966 0.1822 5.4125 1.6819
+#&gt; 344: 93.8582 -6.0890 -0.1613 2.1851 -0.9845 4.1860 4.1347 0.4068 0.2968 0.1826 5.4135 1.6814
+#&gt; 345: 93.8576 -6.0876 -0.1610 2.1857 -0.9846 4.1889 4.1252 0.4064 0.2969 0.1829 5.4143 1.6810
+#&gt; 346: 93.8549 -6.0853 -0.1608 2.1862 -0.9845 4.1925 4.1121 0.4061 0.2969 0.1832 5.4157 1.6803
+#&gt; 347: 93.8540 -6.0829 -0.1605 2.1867 -0.9845 4.2031 4.0990 0.4058 0.2970 0.1834 5.4158 1.6803
+#&gt; 348: 93.8516 -6.0814 -0.1602 2.1873 -0.9845 4.2169 4.0885 0.4055 0.2971 0.1836 5.4174 1.6801
+#&gt; 349: 93.8505 -6.0797 -0.1600 2.1879 -0.9845 4.2253 4.0779 0.4052 0.2971 0.1837 5.4190 1.6799
+#&gt; 350: 93.8512 -6.0773 -0.1597 2.1885 -0.9845 4.2268 4.0657 0.4049 0.2972 0.1839 5.4209 1.6797
+#&gt; 351: 93.8507 -6.0754 -0.1595 2.1890 -0.9845 4.2245 4.0559 0.4046 0.2972 0.1840 5.4230 1.6794
+#&gt; 352: 93.8490 -6.0736 -0.1592 2.1896 -0.9845 4.2296 4.0474 0.4044 0.2973 0.1841 5.4252 1.6790
+#&gt; 353: 93.8460 -6.0718 -0.1589 2.1901 -0.9845 4.2356 4.0374 0.4042 0.2973 0.1843 5.4272 1.6790
+#&gt; 354: 93.8437 -6.0695 -0.1586 2.1906 -0.9845 4.2408 4.0255 0.4041 0.2973 0.1844 5.4303 1.6787
+#&gt; 355: 93.8420 -6.0679 -0.1584 2.1912 -0.9844 4.2428 4.0166 0.4040 0.2973 0.1845 5.4342 1.6785
+#&gt; 356: 93.8413 -6.0666 -0.1581 2.1916 -0.9843 4.2418 4.0072 0.4040 0.2973 0.1845 5.4348 1.6792
+#&gt; 357: 93.8406 -6.0650 -0.1578 2.1921 -0.9844 4.2531 3.9973 0.4040 0.2973 0.1846 5.4350 1.6798
+#&gt; 358: 93.8404 -6.0639 -0.1575 2.1926 -0.9844 4.2596 3.9901 0.4040 0.2973 0.1846 5.4357 1.6805
+#&gt; 359: 93.8373 -6.0630 -0.1572 2.1931 -0.9845 4.2724 3.9820 0.4039 0.2973 0.1848 5.4368 1.6816
+#&gt; 360: 93.8347 -6.0622 -0.1569 2.1936 -0.9845 4.2788 3.9747 0.4039 0.2973 0.1849 5.4377 1.6824
+#&gt; 361: 93.8327 -6.0626 -0.1566 2.1942 -0.9846 4.2919 3.9749 0.4038 0.2973 0.1850 5.4382 1.6831
+#&gt; 362: 93.8326 -6.0629 -0.1562 2.1947 -0.9846 4.2989 3.9737 0.4038 0.2973 0.1850 5.4408 1.6838
+#&gt; 363: 93.8316 -6.0629 -0.1559 2.1953 -0.9846 4.3007 3.9725 0.4037 0.2972 0.1850 5.4420 1.6842
+#&gt; 364: 93.8317 -6.0629 -0.1556 2.1957 -0.9846 4.2910 3.9739 0.4038 0.2971 0.1850 5.4430 1.6840
+#&gt; 365: 93.8317 -6.0629 -0.1553 2.1962 -0.9846 4.2878 3.9759 0.4040 0.2967 0.1849 5.4441 1.6839
+#&gt; 366: 93.8319 -6.0633 -0.1549 2.1966 -0.9845 4.2870 3.9823 0.4042 0.2963 0.1849 5.4461 1.6839
+#&gt; 367: 93.8320 -6.0636 -0.1546 2.1971 -0.9845 4.2828 3.9850 0.4042 0.2959 0.1849 5.4479 1.6843
+#&gt; 368: 93.8312 -6.0635 -0.1544 2.1975 -0.9844 4.2781 3.9859 0.4043 0.2955 0.1849 5.4475 1.6841
+#&gt; 369: 93.8301 -6.0640 -0.1541 2.1979 -0.9844 4.2760 3.9891 0.4043 0.2953 0.1850 5.4472 1.6835
+#&gt; 370: 93.8306 -6.0651 -0.1539 2.1983 -0.9844 4.2690 3.9967 0.4042 0.2950 0.1850 5.4484 1.6829
+#&gt; 371: 93.8312 -6.0669 -0.1536 2.1988 -0.9845 4.2613 4.0111 0.4042 0.2947 0.1851 5.4494 1.6822
+#&gt; 372: 93.8312 -6.0681 -0.1533 2.1992 -0.9845 4.2585 4.0252 0.4042 0.2945 0.1852 5.4513 1.6817
+#&gt; 373: 93.8307 -6.0681 -0.1531 2.1996 -0.9846 4.2605 4.0284 0.4042 0.2943 0.1853 5.4523 1.6815
+#&gt; 374: 93.8305 -6.0678 -0.1529 2.1999 -0.9846 4.2676 4.0279 0.4040 0.2942 0.1853 5.4533 1.6816
+#&gt; 375: 93.8313 -6.0673 -0.1528 2.2002 -0.9846 4.2708 4.0232 0.4038 0.2940 0.1854 5.4543 1.6813
+#&gt; 376: 93.8310 -6.0672 -0.1527 2.2004 -0.9846 4.2775 4.0214 0.4037 0.2938 0.1855 5.4538 1.6809
+#&gt; 377: 93.8298 -6.0666 -0.1526 2.2007 -0.9846 4.2787 4.0166 0.4035 0.2937 0.1856 5.4532 1.6806
+#&gt; 378: 93.8276 -6.0664 -0.1525 2.2009 -0.9846 4.2781 4.0135 0.4033 0.2935 0.1857 5.4538 1.6801
+#&gt; 379: 93.8262 -6.0671 -0.1524 2.2012 -0.9846 4.2800 4.0157 0.4031 0.2932 0.1857 5.4530 1.6803
+#&gt; 380: 93.8243 -6.0675 -0.1523 2.2015 -0.9846 4.2735 4.0168 0.4029 0.2929 0.1857 5.4523 1.6803
+#&gt; 381: 93.8233 -6.0677 -0.1522 2.2017 -0.9845 4.2670 4.0189 0.4027 0.2926 0.1858 5.4517 1.6798
+#&gt; 382: 93.8229 -6.0674 -0.1521 2.2019 -0.9845 4.2655 4.0211 0.4025 0.2924 0.1858 5.4510 1.6794
+#&gt; 383: 93.8196 -6.0681 -0.1521 2.2021 -0.9843 4.2696 4.0291 0.4023 0.2922 0.1859 5.4504 1.6788
+#&gt; 384: 93.8174 -6.0688 -0.1520 2.2023 -0.9842 4.2851 4.0333 0.4021 0.2919 0.1860 5.4500 1.6783
+#&gt; 385: 93.8156 -6.0682 -0.1518 2.2028 -0.9840 4.3056 4.0305 0.4019 0.2920 0.1862 5.4503 1.6774
+#&gt; 386: 93.8145 -6.0684 -0.1516 2.2032 -0.9838 4.3195 4.0302 0.4016 0.2920 0.1863 5.4499 1.6765
+#&gt; 387: 93.8121 -6.0679 -0.1514 2.2036 -0.9837 4.3290 4.0272 0.4014 0.2920 0.1864 5.4501 1.6756
+#&gt; 388: 93.8105 -6.0676 -0.1513 2.2040 -0.9835 4.3393 4.0267 0.4011 0.2920 0.1865 5.4509 1.6751
+#&gt; 389: 93.8089 -6.0664 -0.1510 2.2045 -0.9833 4.3458 4.0224 0.4009 0.2920 0.1865 5.4512 1.6746
+#&gt; 390: 93.8080 -6.0658 -0.1508 2.2049 -0.9832 4.3422 4.0199 0.4007 0.2920 0.1866 5.4514 1.6744
+#&gt; 391: 93.8077 -6.0669 -0.1507 2.2053 -0.9831 4.3500 4.0277 0.4007 0.2920 0.1867 5.4511 1.6740
+#&gt; 392: 93.8069 -6.0676 -0.1505 2.2056 -0.9831 4.3525 4.0326 0.4006 0.2920 0.1868 5.4500 1.6733
+#&gt; 393: 93.8072 -6.0678 -0.1504 2.2059 -0.9830 4.3562 4.0344 0.4005 0.2920 0.1868 5.4491 1.6725
+#&gt; 394: 93.8083 -6.0684 -0.1503 2.2061 -0.9829 4.3577 4.0386 0.4004 0.2920 0.1869 5.4493 1.6716
+#&gt; 395: 93.8086 -6.0685 -0.1501 2.2064 -0.9828 4.3574 4.0394 0.4003 0.2920 0.1869 5.4493 1.6709
+#&gt; 396: 93.8078 -6.0677 -0.1500 2.2067 -0.9827 4.3591 4.0355 0.4002 0.2921 0.1870 5.4493 1.6707
+#&gt; 397: 93.8064 -6.0668 -0.1499 2.2071 -0.9825 4.3621 4.0317 0.4000 0.2922 0.1871 5.4495 1.6704
+#&gt; 398: 93.8058 -6.0661 -0.1499 2.2073 -0.9823 4.3701 4.0285 0.3999 0.2923 0.1872 5.4491 1.6699
+#&gt; 399: 93.8057 -6.0651 -0.1498 2.2075 -0.9822 4.3803 4.0243 0.3997 0.2924 0.1872 5.4485 1.6699
+#&gt; 400: 93.8057 -6.0647 -0.1498 2.2076 -0.9820 4.3854 4.0225 0.3996 0.2924 0.1872 5.4488 1.6699
+#&gt; 401: 93.8059 -6.0635 -0.1498 2.2078 -0.9819 4.3939 4.0178 0.3995 0.2925 0.1873 5.4491 1.6702
+#&gt; 402: 93.8063 -6.0621 -0.1498 2.2079 -0.9818 4.4033 4.0120 0.3993 0.2926 0.1875 5.4492 1.6704
+#&gt; 403: 93.8055 -6.0609 -0.1498 2.2080 -0.9816 4.4098 4.0069 0.3992 0.2926 0.1876 5.4494 1.6703
+#&gt; 404: 93.8040 -6.0608 -0.1499 2.2081 -0.9815 4.4153 4.0050 0.3991 0.2927 0.1877 5.4494 1.6701
+#&gt; 405: 93.8030 -6.0604 -0.1499 2.2082 -0.9814 4.4181 4.0047 0.3990 0.2928 0.1879 5.4491 1.6700
+#&gt; 406: 93.8002 -6.0597 -0.1499 2.2083 -0.9812 4.4257 4.0025 0.3989 0.2928 0.1880 5.4498 1.6702
+#&gt; 407: 93.7969 -6.0593 -0.1500 2.2085 -0.9810 4.4343 3.9994 0.3988 0.2928 0.1881 5.4514 1.6703
+#&gt; 408: 93.7947 -6.0582 -0.1499 2.2087 -0.9809 4.4509 3.9936 0.3987 0.2927 0.1882 5.4526 1.6704
+#&gt; 409: 93.7929 -6.0579 -0.1499 2.2088 -0.9807 4.4584 3.9918 0.3987 0.2926 0.1882 5.4537 1.6707
+#&gt; 410: 93.7896 -6.0593 -0.1499 2.2089 -0.9807 4.4664 4.0002 0.3987 0.2925 0.1883 5.4560 1.6705
+#&gt; 411: 93.7875 -6.0601 -0.1499 2.2090 -0.9807 4.4626 4.0057 0.3987 0.2924 0.1883 5.4567 1.6705
+#&gt; 412: 93.7862 -6.0602 -0.1499 2.2091 -0.9808 4.4574 4.0095 0.3986 0.2923 0.1884 5.4565 1.6706
+#&gt; 413: 93.7858 -6.0606 -0.1498 2.2092 -0.9808 4.4527 4.0146 0.3986 0.2922 0.1885 5.4561 1.6708
+#&gt; 414: 93.7859 -6.0615 -0.1498 2.2093 -0.9808 4.4451 4.0211 0.3987 0.2921 0.1885 5.4574 1.6708
+#&gt; 415: 93.7864 -6.0629 -0.1498 2.2092 -0.9808 4.4443 4.0298 0.3986 0.2921 0.1885 5.4576 1.6707
+#&gt; 416: 93.7851 -6.0639 -0.1498 2.2092 -0.9808 4.4462 4.0362 0.3985 0.2920 0.1884 5.4575 1.6706
+#&gt; 417: 93.7820 -6.0644 -0.1499 2.2092 -0.9808 4.4425 4.0387 0.3985 0.2920 0.1884 5.4577 1.6703
+#&gt; 418: 93.7801 -6.0652 -0.1499 2.2093 -0.9808 4.4365 4.0420 0.3985 0.2920 0.1883 5.4589 1.6702
+#&gt; 419: 93.7799 -6.0648 -0.1499 2.2094 -0.9807 4.4303 4.0418 0.3984 0.2921 0.1883 5.4596 1.6703
+#&gt; 420: 93.7797 -6.0641 -0.1498 2.2095 -0.9807 4.4216 4.0383 0.3983 0.2921 0.1884 5.4607 1.6702
+#&gt; 421: 93.7803 -6.0641 -0.1498 2.2096 -0.9808 4.4120 4.0396 0.3983 0.2922 0.1885 5.4621 1.6702
+#&gt; 422: 93.7806 -6.0638 -0.1498 2.2097 -0.9809 4.4017 4.0373 0.3981 0.2923 0.1885 5.4635 1.6702
+#&gt; 423: 93.7800 -6.0636 -0.1498 2.2098 -0.9810 4.3948 4.0339 0.3981 0.2923 0.1885 5.4640 1.6701
+#&gt; 424: 93.7789 -6.0638 -0.1498 2.2099 -0.9810 4.3884 4.0336 0.3980 0.2924 0.1885 5.4651 1.6700
+#&gt; 425: 93.7774 -6.0628 -0.1498 2.2101 -0.9810 4.3814 4.0271 0.3978 0.2925 0.1884 5.4666 1.6699
+#&gt; 426: 93.7755 -6.0619 -0.1498 2.2102 -0.9811 4.3841 4.0221 0.3977 0.2925 0.1884 5.4693 1.6697
+#&gt; 427: 93.7753 -6.0612 -0.1498 2.2103 -0.9810 4.3785 4.0167 0.3975 0.2926 0.1883 5.4712 1.6696
+#&gt; 428: 93.7741 -6.0613 -0.1498 2.2104 -0.9810 4.3767 4.0161 0.3973 0.2926 0.1882 5.4729 1.6696
+#&gt; 429: 93.7717 -6.0613 -0.1498 2.2105 -0.9810 4.3744 4.0158 0.3971 0.2926 0.1880 5.4743 1.6694
+#&gt; 430: 93.7690 -6.0619 -0.1498 2.2106 -0.9809 4.3744 4.0189 0.3969 0.2926 0.1879 5.4753 1.6692
+#&gt; 431: 93.7668 -6.0615 -0.1498 2.2107 -0.9809 4.3709 4.0174 0.3967 0.2925 0.1878 5.4762 1.6691
+#&gt; 432: 93.7656 -6.0619 -0.1498 2.2108 -0.9809 4.3710 4.0173 0.3966 0.2926 0.1878 5.4770 1.6688
+#&gt; 433: 93.7632 -6.0625 -0.1498 2.2108 -0.9809 4.3689 4.0204 0.3964 0.2926 0.1877 5.4774 1.6687
+#&gt; 434: 93.7624 -6.0621 -0.1498 2.2109 -0.9808 4.3687 4.0178 0.3962 0.2926 0.1876 5.4774 1.6683
+#&gt; 435: 93.7608 -6.0622 -0.1497 2.2111 -0.9808 4.3714 4.0182 0.3961 0.2927 0.1875 5.4777 1.6679
+#&gt; 436: 93.7586 -6.0622 -0.1498 2.2112 -0.9808 4.3695 4.0178 0.3959 0.2928 0.1874 5.4784 1.6679
+#&gt; 437: 93.7558 -6.0622 -0.1498 2.2114 -0.9809 4.3658 4.0167 0.3957 0.2928 0.1873 5.4795 1.6678
+#&gt; 438: 93.7519 -6.0627 -0.1499 2.2115 -0.9808 4.3601 4.0183 0.3955 0.2928 0.1872 5.4807 1.6674
+#&gt; 439: 93.7478 -6.0618 -0.1499 2.2115 -0.9807 4.3538 4.0133 0.3952 0.2928 0.1871 5.4814 1.6672
+#&gt; 440: 93.7449 -6.0612 -0.1499 2.2117 -0.9805 4.3504 4.0103 0.3951 0.2928 0.1870 5.4820 1.6669
+#&gt; 441: 93.7433 -6.0608 -0.1499 2.2117 -0.9805 4.3438 4.0077 0.3949 0.2928 0.1869 5.4818 1.6666
+#&gt; 442: 93.7417 -6.0604 -0.1500 2.2118 -0.9805 4.3354 4.0058 0.3947 0.2927 0.1868 5.4824 1.6666
+#&gt; 443: 93.7407 -6.0604 -0.1500 2.2119 -0.9805 4.3281 4.0046 0.3946 0.2927 0.1867 5.4832 1.6667
+#&gt; 444: 93.7397 -6.0608 -0.1500 2.2118 -0.9805 4.3180 4.0069 0.3944 0.2928 0.1866 5.4857 1.6664
+#&gt; 445: 93.7387 -6.0613 -0.1501 2.2118 -0.9805 4.3092 4.0085 0.3942 0.2929 0.1866 5.4866 1.6663
+#&gt; 446: 93.7376 -6.0612 -0.1502 2.2117 -0.9805 4.3022 4.0075 0.3939 0.2930 0.1865 5.4866 1.6660
+#&gt; 447: 93.7375 -6.0613 -0.1503 2.2116 -0.9806 4.2981 4.0076 0.3937 0.2931 0.1865 5.4863 1.6658
+#&gt; 448: 93.7388 -6.0617 -0.1504 2.2115 -0.9806 4.2970 4.0087 0.3935 0.2932 0.1864 5.4870 1.6658
+#&gt; 449: 93.7400 -6.0617 -0.1504 2.2115 -0.9807 4.2904 4.0069 0.3933 0.2933 0.1864 5.4880 1.6655
+#&gt; 450: 93.7414 -6.0623 -0.1505 2.2113 -0.9808 4.2829 4.0095 0.3930 0.2935 0.1863 5.4880 1.6653
+#&gt; 451: 93.7426 -6.0634 -0.1506 2.2112 -0.9808 4.2797 4.0146 0.3928 0.2936 0.1863 5.4877 1.6655
+#&gt; 452: 93.7447 -6.0642 -0.1507 2.2110 -0.9809 4.2770 4.0171 0.3926 0.2938 0.1862 5.4876 1.6657
+#&gt; 453: 93.7465 -6.0644 -0.1508 2.2108 -0.9810 4.2698 4.0184 0.3924 0.2940 0.1862 5.4877 1.6652
+#&gt; 454: 93.7478 -6.0645 -0.1509 2.2106 -0.9810 4.2657 4.0182 0.3922 0.2941 0.1861 5.4874 1.6648
+#&gt; 455: 93.7486 -6.0650 -0.1511 2.2104 -0.9811 4.2656 4.0203 0.3921 0.2943 0.1861 5.4871 1.6644
+#&gt; 456: 93.7485 -6.0659 -0.1512 2.2102 -0.9812 4.2646 4.0240 0.3920 0.2945 0.1860 5.4869 1.6641
+#&gt; 457: 93.7487 -6.0668 -0.1514 2.2099 -0.9813 4.2613 4.0277 0.3919 0.2946 0.1860 5.4866 1.6640
+#&gt; 458: 93.7484 -6.0667 -0.1515 2.2097 -0.9812 4.2586 4.0263 0.3918 0.2947 0.1859 5.4854 1.6639
+#&gt; 459: 93.7468 -6.0661 -0.1517 2.2095 -0.9812 4.2565 4.0225 0.3917 0.2948 0.1858 5.4853 1.6639
+#&gt; 460: 93.7458 -6.0652 -0.1518 2.2093 -0.9812 4.2548 4.0171 0.3916 0.2950 0.1858 5.4843 1.6638
+#&gt; 461: 93.7435 -6.0645 -0.1519 2.2091 -0.9811 4.2554 4.0121 0.3914 0.2951 0.1858 5.4843 1.6637
+#&gt; 462: 93.7421 -6.0637 -0.1521 2.2089 -0.9811 4.2509 4.0079 0.3913 0.2953 0.1857 5.4840 1.6638
+#&gt; 463: 93.7406 -6.0630 -0.1522 2.2088 -0.9810 4.2534 4.0036 0.3912 0.2955 0.1857 5.4834 1.6640
+#&gt; 464: 93.7406 -6.0622 -0.1524 2.2086 -0.9810 4.2548 3.9986 0.3911 0.2956 0.1857 5.4828 1.6639
+#&gt; 465: 93.7404 -6.0617 -0.1525 2.2084 -0.9810 4.2511 3.9955 0.3910 0.2958 0.1857 5.4828 1.6638
+#&gt; 466: 93.7414 -6.0610 -0.1527 2.2080 -0.9809 4.2468 3.9918 0.3910 0.2959 0.1857 5.4812 1.6640
+#&gt; 467: 93.7419 -6.0606 -0.1529 2.2077 -0.9810 4.2446 3.9885 0.3909 0.2960 0.1858 5.4799 1.6642
+#&gt; 468: 93.7427 -6.0604 -0.1531 2.2074 -0.9809 4.2473 3.9872 0.3909 0.2961 0.1858 5.4790 1.6643
+#&gt; 469: 93.7435 -6.0608 -0.1532 2.2073 -0.9810 4.2457 3.9891 0.3907 0.2963 0.1858 5.4789 1.6641
+#&gt; 470: 93.7442 -6.0611 -0.1533 2.2071 -0.9811 4.2443 3.9895 0.3905 0.2965 0.1858 5.4785 1.6640
+#&gt; 471: 93.7443 -6.0618 -0.1534 2.2070 -0.9812 4.2415 3.9932 0.3903 0.2967 0.1858 5.4773 1.6639
+#&gt; 472: 93.7433 -6.0624 -0.1535 2.2069 -0.9812 4.2414 3.9958 0.3901 0.2969 0.1858 5.4765 1.6637
+#&gt; 473: 93.7421 -6.0621 -0.1536 2.2067 -0.9811 4.2330 3.9962 0.3899 0.2970 0.1858 5.4762 1.6637
+#&gt; 474: 93.7415 -6.0621 -0.1537 2.2066 -0.9812 4.2263 3.9968 0.3897 0.2972 0.1858 5.4755 1.6638
+#&gt; 475: 93.7396 -6.0621 -0.1538 2.2066 -0.9812 4.2261 3.9956 0.3895 0.2973 0.1859 5.4751 1.6637
+#&gt; 476: 93.7373 -6.0626 -0.1539 2.2065 -0.9811 4.2265 3.9976 0.3893 0.2975 0.1859 5.4743 1.6634
+#&gt; 477: 93.7357 -6.0623 -0.1540 2.2063 -0.9811 4.2222 3.9953 0.3891 0.2976 0.1859 5.4741 1.6635
+#&gt; 478: 93.7345 -6.0620 -0.1541 2.2062 -0.9811 4.2165 3.9939 0.3889 0.2978 0.1860 5.4745 1.6638
+#&gt; 479: 93.7341 -6.0615 -0.1542 2.2062 -0.9812 4.2122 3.9916 0.3887 0.2979 0.1860 5.4751 1.6637
+#&gt; 480: 93.7338 -6.0619 -0.1543 2.2061 -0.9812 4.2084 3.9932 0.3885 0.2980 0.1860 5.4753 1.6635
+#&gt; 481: 93.7336 -6.0618 -0.1544 2.2060 -0.9812 4.2066 3.9945 0.3883 0.2981 0.1860 5.4748 1.6637
+#&gt; 482: 93.7340 -6.0622 -0.1545 2.2058 -0.9812 4.2069 3.9969 0.3882 0.2983 0.1860 5.4741 1.6636
+#&gt; 483: 93.7328 -6.0627 -0.1547 2.2057 -0.9813 4.2062 3.9992 0.3879 0.2985 0.1861 5.4739 1.6636
+#&gt; 484: 93.7323 -6.0629 -0.1547 2.2056 -0.9813 4.2075 3.9995 0.3877 0.2987 0.1861 5.4730 1.6638
+#&gt; 485: 93.7326 -6.0634 -0.1548 2.2055 -0.9814 4.2045 4.0013 0.3875 0.2989 0.1862 5.4727 1.6637
+#&gt; 486: 93.7320 -6.0632 -0.1549 2.2055 -0.9814 4.2084 3.9989 0.3872 0.2991 0.1863 5.4718 1.6635
+#&gt; 487: 93.7321 -6.0625 -0.1549 2.2054 -0.9814 4.2105 3.9949 0.3870 0.2993 0.1864 5.4712 1.6634
+#&gt; 488: 93.7326 -6.0623 -0.1550 2.2054 -0.9814 4.2104 3.9935 0.3868 0.2996 0.1865 5.4721 1.6635
+#&gt; 489: 93.7342 -6.0615 -0.1551 2.2054 -0.9815 4.2103 3.9893 0.3866 0.2998 0.1866 5.4725 1.6635
+#&gt; 490: 93.7360 -6.0610 -0.1551 2.2053 -0.9815 4.2116 3.9857 0.3864 0.3001 0.1867 5.4730 1.6636
+#&gt; 491: 93.7374 -6.0601 -0.1551 2.2052 -0.9815 4.2128 3.9804 0.3862 0.3003 0.1868 5.4722 1.6638
+#&gt; 492: 93.7386 -6.0597 -0.1552 2.2050 -0.9816 4.2171 3.9774 0.3861 0.3006 0.1869 5.4714 1.6642
+#&gt; 493: 93.7399 -6.0597 -0.1553 2.2049 -0.9816 4.2262 3.9766 0.3859 0.3008 0.1869 5.4712 1.6643
+#&gt; 494: 93.7404 -6.0596 -0.1553 2.2047 -0.9816 4.2347 3.9746 0.3857 0.3011 0.1870 5.4711 1.6646
+#&gt; 495: 93.7406 -6.0590 -0.1554 2.2046 -0.9817 4.2395 3.9711 0.3855 0.3014 0.1871 5.4705 1.6650
+#&gt; 496: 93.7416 -6.0582 -0.1554 2.2045 -0.9817 4.2456 3.9660 0.3853 0.3017 0.1871 5.4707 1.6656
+#&gt; 497: 93.7433 -6.0575 -0.1555 2.2044 -0.9818 4.2511 3.9631 0.3851 0.3020 0.1871 5.4714 1.6658
+#&gt; 498: 93.7444 -6.0574 -0.1556 2.2042 -0.9817 4.2516 3.9632 0.3848 0.3023 0.1871 5.4721 1.6660
+#&gt; 499: 93.7457 -6.0576 -0.1557 2.2041 -0.9817 4.2518 3.9660 0.3846 0.3025 0.1871 5.4728 1.6660
+#&gt; 500: 93.7469 -6.0586 -0.1557 2.2040 -0.9817 4.2481 3.9757 0.3844 0.3028 0.1871 5.4738 1.6661</div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
+#&gt; |.....................| log_beta |sigma_parent | sigma_A1 | o1 |
+#&gt; |.....................| o2 | o3 | o4 | o5 |
+#&gt; |<span style='font-weight: bold;'> 1</span>| 468.02617 | 1.000 | -1.000 | -0.9113 | -0.8954 |
+#&gt; |.....................| -0.8491 | -0.8511 | -0.8672 | -0.8762 |
+#&gt; |.....................| -0.8737 | -0.8674 | -0.8694 | -0.8687 |
+#&gt; | U| 468.02617 | 94.00 | -5.400 | -0.9900 | -0.2000 |
+#&gt; |.....................| 2.100 | 2.000 | 1.200 | 0.7536 |
+#&gt; |.....................| 0.8758 | 1.189 | 1.093 | 1.127 |
+#&gt; | X|<span style='font-weight: bold;'> 468.02617</span> | 94.00 | 0.004517 | 0.2709 | 0.8187 |
+#&gt; |.....................| 8.166 | 2.000 | 1.200 | 0.7536 |
+#&gt; |.....................| 0.8758 | 1.189 | 1.093 | 1.127 |
+#&gt; | G| Gill Diff. | 49.30 | 2.016 | -0.2473 | -0.3737 |
+#&gt; |.....................| -1.227 | -27.89 | -10.29 | 8.753 |
+#&gt; |.....................| 11.17 | -12.52 | -9.819 | -8.910 |
+#&gt; |<span style='font-weight: bold;'> 2</span>| 4021.4865 | 0.2059 | -1.032 | -0.9073 | -0.8894 |
+#&gt; |.....................| -0.8293 | -0.4019 | -0.7014 | -1.017 |
+#&gt; |.....................| -1.054 | -0.6658 | -0.7112 | -0.7251 |
+#&gt; | U| 4021.4865 | 19.35 | -5.432 | -0.9861 | -0.1940 |
+#&gt; |.....................| 2.120 | 2.449 | 1.299 | 0.6474 |
+#&gt; |.....................| 0.7182 | 1.429 | 1.266 | 1.289 |
+#&gt; | X|<span style='font-weight: bold;'> 4021.4865</span> | 19.35 | 0.004372 | 0.2717 | 0.8237 |
+#&gt; |.....................| 8.329 | 2.449 | 1.299 | 0.6474 |
+#&gt; |.....................| 0.7182 | 1.429 | 1.266 | 1.289 |
+#&gt; |<span style='font-weight: bold;'> 3</span>| 518.20369 | 0.9206 | -1.003 | -0.9109 | -0.8948 |
+#&gt; |.....................| -0.8471 | -0.8062 | -0.8506 | -0.8903 |
+#&gt; |.....................| -0.8917 | -0.8473 | -0.8535 | -0.8543 |
+#&gt; | U| 518.20369 | 86.53 | -5.403 | -0.9896 | -0.1994 |
+#&gt; |.....................| 2.102 | 2.045 | 1.210 | 0.7430 |
+#&gt; |.....................| 0.8600 | 1.213 | 1.111 | 1.143 |
+#&gt; | X|<span style='font-weight: bold;'> 518.20369</span> | 86.53 | 0.004502 | 0.2710 | 0.8192 |
+#&gt; |.....................| 8.182 | 2.045 | 1.210 | 0.7430 |
+#&gt; |.....................| 0.8600 | 1.213 | 1.111 | 1.143 |
+#&gt; |<span style='font-weight: bold;'> 4</span>| 467.99742 | 0.9921 | -1.000 | -0.9112 | -0.8953 |
+#&gt; |.....................| -0.8489 | -0.8466 | -0.8655 | -0.8776 |
+#&gt; |.....................| -0.8755 | -0.8654 | -0.8678 | -0.8672 |
+#&gt; | U| 467.99742 | 93.25 | -5.400 | -0.9900 | -0.1999 |
+#&gt; |.....................| 2.100 | 2.004 | 1.201 | 0.7526 |
+#&gt; |.....................| 0.8742 | 1.192 | 1.095 | 1.129 |
+#&gt; | X|<span style='font-weight: bold;'> 467.99742</span> | 93.25 | 0.004515 | 0.2709 | 0.8188 |
+#&gt; |.....................| 8.168 | 2.004 | 1.201 | 0.7526 |
+#&gt; |.....................| 0.8742 | 1.192 | 1.095 | 1.129 |
+#&gt; | F| Forward Diff. | -98.28 | 1.929 | -0.4044 | -0.4503 |
+#&gt; |.....................| -1.484 | -29.27 | -9.987 | 8.922 |
+#&gt; |.....................| 9.417 | -11.79 | -9.521 | -8.343 |
+#&gt; |<span style='font-weight: bold;'> 5</span>| 467.67344 | 0.9967 | -1.000 | -0.9112 | -0.8953 |
+#&gt; |.....................| -0.8488 | -0.8452 | -0.8651 | -0.8780 |
+#&gt; |.....................| -0.8760 | -0.8648 | -0.8673 | -0.8668 |
+#&gt; | U| 467.67344 | 93.69 | -5.400 | -0.9899 | -0.1999 |
+#&gt; |.....................| 2.100 | 2.006 | 1.201 | 0.7523 |
+#&gt; |.....................| 0.8738 | 1.192 | 1.095 | 1.129 |
+#&gt; | X|<span style='font-weight: bold;'> 467.67344</span> | 93.69 | 0.004515 | 0.2709 | 0.8188 |
+#&gt; |.....................| 8.168 | 2.006 | 1.201 | 0.7523 |
+#&gt; |.....................| 0.8738 | 1.192 | 1.095 | 1.129 |
+#&gt; | F| Forward Diff. | -11.92 | 1.963 | -0.3242 | -0.4184 |
+#&gt; |.....................| -1.350 | -28.16 | -10.02 | 8.541 |
+#&gt; |.....................| 8.305 | -11.80 | -9.512 | -8.408 |
+#&gt; |<span style='font-weight: bold;'> 6</span>| 467.50396 | 0.9983 | -1.001 | -0.9112 | -0.8952 |
+#&gt; |.....................| -0.8487 | -0.8416 | -0.8638 | -0.8791 |
+#&gt; |.....................| -0.8771 | -0.8633 | -0.8661 | -0.8658 |
+#&gt; | U| 467.50396 | 93.84 | -5.401 | -0.9899 | -0.1999 |
+#&gt; |.....................| 2.100 | 2.010 | 1.202 | 0.7514 |
+#&gt; |.....................| 0.8729 | 1.194 | 1.097 | 1.130 |
+#&gt; | X|<span style='font-weight: bold;'> 467.50396</span> | 93.84 | 0.004514 | 0.2709 | 0.8188 |
+#&gt; |.....................| 8.170 | 2.010 | 1.202 | 0.7514 |
+#&gt; |.....................| 0.8729 | 1.194 | 1.097 | 1.130 |
+#&gt; |<span style='font-weight: bold;'> 7</span>| 467.27231 | 1.003 | -1.001 | -0.9110 | -0.8951 |
+#&gt; |.....................| -0.8481 | -0.8306 | -0.8599 | -0.8825 |
+#&gt; |.....................| -0.8803 | -0.8587 | -0.8624 | -0.8625 |
+#&gt; | U| 467.27231 | 94.27 | -5.401 | -0.9898 | -0.1997 |
+#&gt; |.....................| 2.101 | 2.021 | 1.204 | 0.7489 |
+#&gt; |.....................| 0.8700 | 1.200 | 1.101 | 1.134 |
+#&gt; | X|<span style='font-weight: bold;'> 467.27231</span> | 94.27 | 0.004510 | 0.2710 | 0.8190 |
+#&gt; |.....................| 8.174 | 2.021 | 1.204 | 0.7489 |
+#&gt; |.....................| 0.8700 | 1.200 | 1.101 | 1.134 |
+#&gt; | F| Forward Diff. | 101.6 | 1.991 | -0.1997 | -0.3688 |
+#&gt; |.....................| -1.177 | -25.72 | -9.853 | 9.249 |
+#&gt; |.....................| 8.335 | -11.58 | -9.288 | -8.277 |
+#&gt; |<span style='font-weight: bold;'> 8</span>| 466.36087 | 0.9961 | -1.002 | -0.9109 | -0.8949 |
+#&gt; |.....................| -0.8474 | -0.8165 | -0.8547 | -0.8873 |
+#&gt; |.....................| -0.8853 | -0.8526 | -0.8575 | -0.8582 |
+#&gt; | U| 466.36087 | 93.63 | -5.402 | -0.9896 | -0.1995 |
+#&gt; |.....................| 2.102 | 2.035 | 1.207 | 0.7453 |
+#&gt; |.....................| 0.8657 | 1.207 | 1.106 | 1.139 |
+#&gt; | X|<span style='font-weight: bold;'> 466.36087</span> | 93.63 | 0.004506 | 0.2710 | 0.8191 |
+#&gt; |.....................| 8.180 | 2.035 | 1.207 | 0.7453 |
+#&gt; |.....................| 0.8657 | 1.207 | 1.106 | 1.139 |
+#&gt; | F| Forward Diff. | -21.78 | 1.909 | -0.3215 | -0.4291 |
+#&gt; |.....................| -1.401 | -25.38 | -9.315 | 7.655 |
+#&gt; |.....................| 10.17 | -11.26 | -9.035 | -7.894 |
+#&gt; |<span style='font-weight: bold;'> 9</span>| 465.79764 | 1.000 | -1.004 | -0.9107 | -0.8946 |
+#&gt; |.....................| -0.8467 | -0.8024 | -0.8495 | -0.8920 |
+#&gt; |.....................| -0.8917 | -0.8462 | -0.8524 | -0.8537 |
+#&gt; | U| 465.79764 | 94.04 | -5.404 | -0.9895 | -0.1993 |
+#&gt; |.....................| 2.102 | 2.049 | 1.211 | 0.7417 |
+#&gt; |.....................| 0.8600 | 1.214 | 1.112 | 1.144 |
+#&gt; | X|<span style='font-weight: bold;'> 465.79764</span> | 94.04 | 0.004501 | 0.2710 | 0.8193 |
+#&gt; |.....................| 8.186 | 2.049 | 1.211 | 0.7417 |
+#&gt; |.....................| 0.8600 | 1.214 | 1.112 | 1.144 |
+#&gt; | F| Forward Diff. | 54.81 | 1.910 | -0.2489 | -0.4009 |
+#&gt; |.....................| -1.285 | -22.17 | -8.389 | 8.020 |
+#&gt; |.....................| 7.340 | -11.02 | -8.786 | -7.720 |
+#&gt; |<span style='font-weight: bold;'> 10</span>| 465.18897 | 0.9945 | -1.005 | -0.9105 | -0.8943 |
+#&gt; |.....................| -0.8457 | -0.7893 | -0.8445 | -0.8971 |
+#&gt; |.....................| -0.8975 | -0.8390 | -0.8467 | -0.8487 |
+#&gt; | U| 465.18897 | 93.48 | -5.405 | -0.9893 | -0.1990 |
+#&gt; |.....................| 2.103 | 2.062 | 1.214 | 0.7379 |
+#&gt; |.....................| 0.8549 | 1.223 | 1.118 | 1.149 |
+#&gt; | X|<span style='font-weight: bold;'> 465.18897</span> | 93.48 | 0.004495 | 0.2711 | 0.8196 |
+#&gt; |.....................| 8.194 | 2.062 | 1.214 | 0.7379 |
+#&gt; |.....................| 0.8549 | 1.223 | 1.118 | 1.149 |
+#&gt; | F| Forward Diff. | -47.52 | 1.834 | -0.3684 | -0.4503 |
+#&gt; |.....................| -1.489 | -22.39 | -7.996 | 7.294 |
+#&gt; |.....................| 9.249 | -10.90 | -8.741 | -7.575 |
+#&gt; |<span style='font-weight: bold;'> 11</span>| 464.56229 | 0.9983 | -1.006 | -0.9102 | -0.8940 |
+#&gt; |.....................| -0.8445 | -0.7772 | -0.8401 | -0.9030 |
+#&gt; |.....................| -0.9029 | -0.8305 | -0.8400 | -0.8430 |
+#&gt; | U| 464.56229 | 93.84 | -5.406 | -0.9890 | -0.1986 |
+#&gt; |.....................| 2.105 | 2.074 | 1.216 | 0.7334 |
+#&gt; |.....................| 0.8503 | 1.233 | 1.125 | 1.156 |
+#&gt; | X|<span style='font-weight: bold;'> 464.56229</span> | 93.84 | 0.004488 | 0.2711 | 0.8199 |
+#&gt; |.....................| 8.204 | 2.074 | 1.216 | 0.7334 |
+#&gt; |.....................| 0.8503 | 1.233 | 1.125 | 1.156 |
+#&gt; |<span style='font-weight: bold;'> 12</span>| 463.71730 | 0.9982 | -1.009 | -0.9098 | -0.8933 |
+#&gt; |.....................| -0.8424 | -0.7583 | -0.8332 | -0.9128 |
+#&gt; |.....................| -0.9112 | -0.8167 | -0.8291 | -0.8337 |
+#&gt; | U| 463.7173 | 93.83 | -5.409 | -0.9885 | -0.1980 |
+#&gt; |.....................| 2.107 | 2.093 | 1.220 | 0.7260 |
+#&gt; |.....................| 0.8430 | 1.249 | 1.137 | 1.166 |
+#&gt; | X|<span style='font-weight: bold;'> 463.7173</span> | 93.83 | 0.004478 | 0.2712 | 0.8204 |
+#&gt; |.....................| 8.221 | 2.093 | 1.220 | 0.7260 |
+#&gt; |.....................| 0.8430 | 1.249 | 1.137 | 1.166 |
+#&gt; |<span style='font-weight: bold;'> 13</span>| 461.03699 | 0.9978 | -1.018 | -0.9080 | -0.8909 |
+#&gt; |.....................| -0.8343 | -0.6839 | -0.8059 | -0.9516 |
+#&gt; |.....................| -0.9441 | -0.7622 | -0.7862 | -0.7969 |
+#&gt; | U| 461.03699 | 93.79 | -5.418 | -0.9868 | -0.1955 |
+#&gt; |.....................| 2.115 | 2.167 | 1.237 | 0.6968 |
+#&gt; |.....................| 0.8141 | 1.314 | 1.184 | 1.208 |
+#&gt; | X|<span style='font-weight: bold;'> 461.03699</span> | 93.79 | 0.004435 | 0.2716 | 0.8224 |
+#&gt; |.....................| 8.288 | 2.167 | 1.237 | 0.6968 |
+#&gt; |.....................| 0.8141 | 1.314 | 1.184 | 1.208 |
+#&gt; |<span style='font-weight: bold;'> 14</span>| 458.83693 | 0.9972 | -1.033 | -0.9052 | -0.8871 |
+#&gt; |.....................| -0.8218 | -0.5692 | -0.7639 | -1.011 |
+#&gt; |.....................| -0.9948 | -0.6782 | -0.7201 | -0.7403 |
+#&gt; | U| 458.83693 | 93.74 | -5.433 | -0.9840 | -0.1917 |
+#&gt; |.....................| 2.127 | 2.282 | 1.262 | 0.6519 |
+#&gt; |.....................| 0.7697 | 1.414 | 1.256 | 1.272 |
+#&gt; | X|<span style='font-weight: bold;'> 458.83693</span> | 93.74 | 0.004371 | 0.2721 | 0.8255 |
+#&gt; |.....................| 8.393 | 2.282 | 1.262 | 0.6519 |
+#&gt; |.....................| 0.7697 | 1.414 | 1.256 | 1.272 |
+#&gt; | F| Forward Diff. | 0.05416 | 1.397 | -0.2200 | -0.5344 |
+#&gt; |.....................| -1.585 | -3.387 | -1.306 | -0.2250 |
+#&gt; |.....................| 1.392 | -3.452 | -2.065 | -1.405 |
+#&gt; |<span style='font-weight: bold;'> 15</span>| 459.30045 | 0.9957 | -1.166 | -0.8845 | -0.8313 |
+#&gt; |.....................| -0.6584 | -0.5528 | -0.7505 | -0.8569 |
+#&gt; |.....................| -1.017 | -0.4560 | -0.6245 | -0.7036 |
+#&gt; | U| 459.30045 | 93.60 | -5.566 | -0.9635 | -0.1360 |
+#&gt; |.....................| 2.291 | 2.298 | 1.270 | 0.7682 |
+#&gt; |.....................| 0.7505 | 1.678 | 1.361 | 1.313 |
+#&gt; | X|<span style='font-weight: bold;'> 459.30045</span> | 93.60 | 0.003827 | 0.2762 | 0.8729 |
+#&gt; |.....................| 9.881 | 2.298 | 1.270 | 0.7682 |
+#&gt; |.....................| 0.7505 | 1.678 | 1.361 | 1.313 |
+#&gt; |<span style='font-weight: bold;'> 16</span>| 458.36319 | 0.9960 | -1.071 | -0.8992 | -0.8719 |
+#&gt; |.....................| -0.7770 | -0.5045 | -0.7383 | -0.9927 |
+#&gt; |.....................| -1.023 | -0.5931 | -0.6727 | -0.7107 |
+#&gt; | U| 458.36319 | 93.63 | -5.471 | -0.9780 | -0.1766 |
+#&gt; |.....................| 2.172 | 2.347 | 1.277 | 0.6658 |
+#&gt; |.....................| 0.7452 | 1.515 | 1.308 | 1.305 |
+#&gt; | X|<span style='font-weight: bold;'> 458.36319</span> | 93.63 | 0.004206 | 0.2733 | 0.8381 |
+#&gt; |.....................| 8.777 | 2.347 | 1.277 | 0.6658 |
+#&gt; |.....................| 0.7452 | 1.515 | 1.308 | 1.305 |
+#&gt; | F| Forward Diff. | -12.30 | 1.214 | 0.06343 | -0.2616 |
+#&gt; |.....................| -0.6069 | 0.08029 | 0.4273 | 0.07297 |
+#&gt; |.....................| -0.3937 | 0.3470 | 0.5201 | 0.09241 |
+#&gt; |<span style='font-weight: bold;'> 17</span>| 458.37724 | 0.9977 | -1.183 | -0.9046 | -0.8476 |
+#&gt; |.....................| -0.7196 | -0.4765 | -0.7567 | -1.014 |
+#&gt; |.....................| -0.9850 | -0.5955 | -0.6985 | -0.7030 |
+#&gt; | U| 458.37724 | 93.79 | -5.583 | -0.9834 | -0.1522 |
+#&gt; |.....................| 2.229 | 2.375 | 1.266 | 0.6497 |
+#&gt; |.....................| 0.7783 | 1.513 | 1.280 | 1.314 |
+#&gt; | X|<span style='font-weight: bold;'> 458.37724</span> | 93.79 | 0.003762 | 0.2722 | 0.8588 |
+#&gt; |.....................| 9.295 | 2.375 | 1.266 | 0.6497 |
+#&gt; |.....................| 0.7783 | 1.513 | 1.280 | 1.314 |
+#&gt; |<span style='font-weight: bold;'> 18</span>| 458.32800 | 0.9976 | -1.124 | -0.9017 | -0.8605 |
+#&gt; |.....................| -0.7499 | -0.4913 | -0.7470 | -1.003 |
+#&gt; |.....................| -1.005 | -0.5943 | -0.6849 | -0.7071 |
+#&gt; | U| 458.328 | 93.78 | -5.524 | -0.9806 | -0.1651 |
+#&gt; |.....................| 2.199 | 2.360 | 1.272 | 0.6583 |
+#&gt; |.....................| 0.7608 | 1.514 | 1.295 | 1.309 |
+#&gt; | X|<span style='font-weight: bold;'> 458.328</span> | 93.78 | 0.003990 | 0.2728 | 0.8478 |
+#&gt; |.....................| 9.017 | 2.360 | 1.272 | 0.6583 |
+#&gt; |.....................| 0.7608 | 1.514 | 1.295 | 1.309 |
+#&gt; | F| Forward Diff. | 9.757 | 1.093 | -0.06310 | 0.02237 |
+#&gt; |.....................| 0.09811 | 0.3115 | -0.3381 | -0.2098 |
+#&gt; |.....................| 0.8196 | 0.7052 | 0.04425 | 0.2610 |
+#&gt; |<span style='font-weight: bold;'> 19</span>| 458.25889 | 0.9968 | -1.183 | -0.9011 | -0.8543 |
+#&gt; |.....................| -0.7363 | -0.4871 | -0.7422 | -1.003 |
+#&gt; |.....................| -1.023 | -0.6115 | -0.6911 | -0.7106 |
+#&gt; | U| 458.25889 | 93.70 | -5.583 | -0.9799 | -0.1589 |
+#&gt; |.....................| 2.213 | 2.364 | 1.275 | 0.6583 |
+#&gt; |.....................| 0.7450 | 1.494 | 1.288 | 1.305 |
+#&gt; | X|<span style='font-weight: bold;'> 458.25889</span> | 93.70 | 0.003760 | 0.2729 | 0.8531 |
+#&gt; |.....................| 9.141 | 2.364 | 1.275 | 0.6583 |
+#&gt; |.....................| 0.7450 | 1.494 | 1.288 | 1.305 |
+#&gt; | F| Forward Diff. | -0.6125 | 0.8824 | -0.01905 | 0.1697 |
+#&gt; |.....................| 0.4368 | 0.4743 | 0.05191 | -0.6440 |
+#&gt; |.....................| -0.4868 | -0.9136 | -0.3225 | -0.06220 |
+#&gt; |<span style='font-weight: bold;'> 20</span>| 458.18570 | 0.9978 | -1.246 | -0.9006 | -0.8585 |
+#&gt; |.....................| -0.7495 | -0.4978 | -0.7385 | -0.9895 |
+#&gt; |.....................| -1.024 | -0.6046 | -0.6874 | -0.7124 |
+#&gt; | U| 458.1857 | 93.79 | -5.646 | -0.9794 | -0.1632 |
+#&gt; |.....................| 2.200 | 2.353 | 1.277 | 0.6683 |
+#&gt; |.....................| 0.7440 | 1.502 | 1.292 | 1.303 |
+#&gt; | X|<span style='font-weight: bold;'> 458.1857</span> | 93.79 | 0.003532 | 0.2730 | 0.8495 |
+#&gt; |.....................| 9.022 | 2.353 | 1.277 | 0.6683 |
+#&gt; |.....................| 0.7440 | 1.502 | 1.292 | 1.303 |
+#&gt; |<span style='font-weight: bold;'> 21</span>| 458.13464 | 0.9963 | -1.435 | -0.8992 | -0.8705 |
+#&gt; |.....................| -0.7875 | -0.5278 | -0.7264 | -0.9531 |
+#&gt; |.....................| -1.031 | -0.5901 | -0.6784 | -0.7184 |
+#&gt; | U| 458.13464 | 93.65 | -5.835 | -0.9781 | -0.1751 |
+#&gt; |.....................| 2.162 | 2.323 | 1.284 | 0.6957 |
+#&gt; |.....................| 0.7378 | 1.519 | 1.302 | 1.296 |
+#&gt; | X|<span style='font-weight: bold;'> 458.13464</span> | 93.65 | 0.002922 | 0.2733 | 0.8394 |
+#&gt; |.....................| 8.685 | 2.323 | 1.284 | 0.6957 |
+#&gt; |.....................| 0.7378 | 1.519 | 1.302 | 1.296 |
+#&gt; | F| Forward Diff. | -15.15 | 0.2290 | 0.2476 | -0.1455 |
+#&gt; |.....................| -0.7111 | -1.138 | 0.8895 | 1.880 |
+#&gt; |.....................| -1.837 | 0.2029 | 0.3485 | -0.6531 |
+#&gt; |<span style='font-weight: bold;'> 22</span>| 458.67841 | 0.9992 | -1.651 | -0.9027 | -0.9245 |
+#&gt; |.....................| -0.8733 | -0.5209 | -0.7232 | -1.036 |
+#&gt; |.....................| -1.001 | -0.6164 | -0.6125 | -0.6771 |
+#&gt; | U| 458.67841 | 93.92 | -6.051 | -0.9815 | -0.2291 |
+#&gt; |.....................| 2.076 | 2.330 | 1.286 | 0.6333 |
+#&gt; |.....................| 0.7647 | 1.488 | 1.374 | 1.343 |
+#&gt; | X|<span style='font-weight: bold;'> 458.67841</span> | 93.92 | 0.002355 | 0.2726 | 0.7952 |
+#&gt; |.....................| 7.971 | 2.330 | 1.286 | 0.6333 |
+#&gt; |.....................| 0.7647 | 1.488 | 1.374 | 1.343 |
+#&gt; |<span style='font-weight: bold;'> 23</span>| 458.25487 | 1.002 | -1.469 | -0.8998 | -0.8789 |
+#&gt; |.....................| -0.8006 | -0.5263 | -0.7262 | -0.9666 |
+#&gt; |.....................| -1.026 | -0.5942 | -0.6683 | -0.7117 |
+#&gt; | U| 458.25487 | 94.17 | -5.869 | -0.9787 | -0.1835 |
+#&gt; |.....................| 2.148 | 2.325 | 1.285 | 0.6855 |
+#&gt; |.....................| 0.7425 | 1.514 | 1.313 | 1.304 |
+#&gt; | X|<span style='font-weight: bold;'> 458.25487</span> | 94.17 | 0.002825 | 0.2732 | 0.8324 |
+#&gt; |.....................| 8.572 | 2.325 | 1.285 | 0.6855 |
+#&gt; |.....................| 0.7425 | 1.514 | 1.313 | 1.304 |
+#&gt; |<span style='font-weight: bold;'> 24</span>| 458.28425 | 1.002 | -1.442 | -0.8994 | -0.8721 |
+#&gt; |.....................| -0.7899 | -0.5271 | -0.7267 | -0.9564 |
+#&gt; |.....................| -1.030 | -0.5910 | -0.6765 | -0.7168 |
+#&gt; | U| 458.28425 | 94.21 | -5.842 | -0.9783 | -0.1768 |
+#&gt; |.....................| 2.159 | 2.324 | 1.284 | 0.6932 |
+#&gt; |.....................| 0.7392 | 1.518 | 1.304 | 1.298 |
+#&gt; | X|<span style='font-weight: bold;'> 458.28425</span> | 94.21 | 0.002902 | 0.2732 | 0.8380 |
+#&gt; |.....................| 8.664 | 2.324 | 1.284 | 0.6932 |
+#&gt; |.....................| 0.7392 | 1.518 | 1.304 | 1.298 |
+#&gt; |<span style='font-weight: bold;'> 25</span>| 458.13208 | 0.9983 | -1.435 | -0.8993 | -0.8705 |
+#&gt; |.....................| -0.7874 | -0.5276 | -0.7266 | -0.9533 |
+#&gt; |.....................| -1.031 | -0.5901 | -0.6785 | -0.7183 |
+#&gt; | U| 458.13208 | 93.84 | -5.835 | -0.9781 | -0.1751 |
+#&gt; |.....................| 2.162 | 2.323 | 1.284 | 0.6955 |
+#&gt; |.....................| 0.7380 | 1.519 | 1.302 | 1.296 |
+#&gt; | X|<span style='font-weight: bold;'> 458.13208</span> | 93.84 | 0.002922 | 0.2733 | 0.8394 |
+#&gt; |.....................| 8.686 | 2.323 | 1.284 | 0.6955 |
+#&gt; |.....................| 0.7380 | 1.519 | 1.302 | 1.296 |
+#&gt; | F| Forward Diff. | 13.75 | 0.2391 | 0.3431 | -0.1129 |
+#&gt; |.....................| -0.6079 | -1.684 | 0.2301 | 1.587 |
+#&gt; |.....................| 0.9924 | -0.4675 | 0.3927 | -0.7567 |
+#&gt; |<span style='font-weight: bold;'> 26</span>| 458.12484 | 0.9973 | -1.435 | -0.8993 | -0.8705 |
+#&gt; |.....................| -0.7874 | -0.5275 | -0.7266 | -0.9535 |
+#&gt; |.....................| -1.031 | -0.5900 | -0.6785 | -0.7182 |
+#&gt; | U| 458.12484 | 93.75 | -5.835 | -0.9782 | -0.1751 |
+#&gt; |.....................| 2.162 | 2.324 | 1.284 | 0.6954 |
+#&gt; |.....................| 0.7379 | 1.519 | 1.302 | 1.297 |
+#&gt; | X|<span style='font-weight: bold;'> 458.12484</span> | 93.75 | 0.002922 | 0.2733 | 0.8394 |
+#&gt; |.....................| 8.686 | 2.324 | 1.284 | 0.6954 |
+#&gt; |.....................| 0.7379 | 1.519 | 1.302 | 1.297 |
+#&gt; | F| Forward Diff. | -0.4576 | 0.2336 | 0.2904 | -0.1274 |
+#&gt; |.....................| -0.6585 | -1.014 | 0.9040 | 1.932 |
+#&gt; |.....................| -1.695 | 0.2950 | 0.3980 | -0.7211 |
+#&gt; |<span style='font-weight: bold;'> 27</span>| 458.12349 | 0.9975 | -1.436 | -0.8994 | -0.8704 |
+#&gt; |.....................| -0.7872 | -0.5272 | -0.7269 | -0.9542 |
+#&gt; |.....................| -1.031 | -0.5901 | -0.6787 | -0.7180 |
+#&gt; | U| 458.12349 | 93.76 | -5.836 | -0.9783 | -0.1751 |
+#&gt; |.....................| 2.162 | 2.324 | 1.284 | 0.6949 |
+#&gt; |.....................| 0.7384 | 1.519 | 1.302 | 1.297 |
+#&gt; | X|<span style='font-weight: bold;'> 458.12349</span> | 93.76 | 0.002922 | 0.2732 | 0.8394 |
+#&gt; |.....................| 8.688 | 2.324 | 1.284 | 0.6949 |
+#&gt; |.....................| 0.7384 | 1.519 | 1.302 | 1.297 |
+#&gt; | F| Forward Diff. | 1.734 | 0.2328 | 0.2907 | -0.1244 |
+#&gt; |.....................| -0.6480 | -0.5259 | 1.203 | 2.086 |
+#&gt; |.....................| -1.687 | 0.2714 | 0.3976 | -0.7167 |
+#&gt; |<span style='font-weight: bold;'> 28</span>| 458.12069 | 0.9972 | -1.436 | -0.8995 | -0.8704 |
+#&gt; |.....................| -0.7868 | -0.5270 | -0.7278 | -0.9557 |
+#&gt; |.....................| -1.030 | -0.5902 | -0.6785 | -0.7174 |
+#&gt; | U| 458.12069 | 93.74 | -5.836 | -0.9784 | -0.1750 |
+#&gt; |.....................| 2.162 | 2.324 | 1.284 | 0.6937 |
+#&gt; |.....................| 0.7392 | 1.519 | 1.302 | 1.297 |
+#&gt; | X|<span style='font-weight: bold;'> 458.12069</span> | 93.74 | 0.002921 | 0.2732 | 0.8394 |
+#&gt; |.....................| 8.691 | 2.324 | 1.284 | 0.6937 |
+#&gt; |.....................| 0.7392 | 1.519 | 1.302 | 1.297 |
+#&gt; | F| Forward Diff. | -1.995 | 0.2265 | 0.2648 | -0.1319 |
+#&gt; |.....................| -0.6577 | -1.056 | 0.5532 | 1.629 |
+#&gt; |.....................| -0.4851 | 0.2582 | 0.3806 | -0.6784 |
+#&gt; |<span style='font-weight: bold;'> 29</span>| 458.12793 | 0.9986 | -1.436 | -0.8997 | -0.8703 |
+#&gt; |.....................| -0.7863 | -0.5263 | -0.7282 | -0.9568 |
+#&gt; |.....................| -1.029 | -0.5904 | -0.6788 | -0.7169 |
+#&gt; | U| 458.12793 | 93.87 | -5.836 | -0.9785 | -0.1749 |
+#&gt; |.....................| 2.163 | 2.325 | 1.283 | 0.6929 |
+#&gt; |.....................| 0.7395 | 1.519 | 1.302 | 1.298 |
+#&gt; | X|<span style='font-weight: bold;'> 458.12793</span> | 93.87 | 0.002920 | 0.2732 | 0.8395 |
+#&gt; |.....................| 8.695 | 2.325 | 1.283 | 0.6929 |
+#&gt; |.....................| 0.7395 | 1.519 | 1.302 | 1.298 |
+#&gt; |<span style='font-weight: bold;'> 30</span>| 458.12002 | 0.9975 | -1.436 | -0.8996 | -0.8704 |
+#&gt; |.....................| -0.7866 | -0.5269 | -0.7279 | -0.9559 |
+#&gt; |.....................| -1.030 | -0.5903 | -0.6786 | -0.7173 |
+#&gt; | U| 458.12002 | 93.77 | -5.836 | -0.9784 | -0.1750 |
+#&gt; |.....................| 2.162 | 2.324 | 1.284 | 0.6935 |
+#&gt; |.....................| 0.7392 | 1.519 | 1.302 | 1.298 |
+#&gt; | X|<span style='font-weight: bold;'> 458.12002</span> | 93.77 | 0.002921 | 0.2732 | 0.8395 |
+#&gt; |.....................| 8.692 | 2.324 | 1.284 | 0.6935 |
+#&gt; |.....................| 0.7392 | 1.519 | 1.302 | 1.298 |
+#&gt; | F| Forward Diff. | 2.647 | 0.2293 | 0.2815 | -0.1267 |
+#&gt; |.....................| -0.6372 | -0.9129 | 0.8290 | 1.823 |
+#&gt; |.....................| -1.624 | 0.2659 | 0.4184 | -0.6478 |
+#&gt; |<span style='font-weight: bold;'> 31</span>| 458.11922 | 0.9973 | -1.436 | -0.8996 | -0.8704 |
+#&gt; |.....................| -0.7866 | -0.5268 | -0.7280 | -0.9563 |
+#&gt; |.....................| -1.029 | -0.5903 | -0.6786 | -0.7171 |
+#&gt; | U| 458.11922 | 93.74 | -5.836 | -0.9784 | -0.1750 |
+#&gt; |.....................| 2.163 | 2.324 | 1.284 | 0.6933 |
+#&gt; |.....................| 0.7394 | 1.519 | 1.302 | 1.298 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11922</span> | 93.74 | 0.002920 | 0.2732 | 0.8395 |
+#&gt; |.....................| 8.693 | 2.324 | 1.284 | 0.6933 |
+#&gt; |.....................| 0.7394 | 1.519 | 1.302 | 1.298 |
+#&gt; | F| Forward Diff. | -0.8024 | 0.2274 | 0.2665 | -0.1307 |
+#&gt; |.....................| -0.6475 | -1.019 | 0.5594 | 1.618 |
+#&gt; |.....................| -1.681 | 0.3232 | 0.3907 | -0.6658 |
+#&gt; |<span style='font-weight: bold;'> 32</span>| 458.11869 | 0.9974 | -1.436 | -0.8996 | -0.8703 |
+#&gt; |.....................| -0.7864 | -0.5266 | -0.7281 | -0.9565 |
+#&gt; |.....................| -1.029 | -0.5904 | -0.6787 | -0.7170 |
+#&gt; | U| 458.11869 | 93.76 | -5.836 | -0.9785 | -0.1750 |
+#&gt; |.....................| 2.163 | 2.324 | 1.283 | 0.6931 |
+#&gt; |.....................| 0.7397 | 1.519 | 1.302 | 1.298 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11869</span> | 93.76 | 0.002920 | 0.2732 | 0.8395 |
+#&gt; |.....................| 8.694 | 2.324 | 1.283 | 0.6931 |
+#&gt; |.....................| 0.7397 | 1.519 | 1.302 | 1.298 |
+#&gt; | F| Forward Diff. | 1.112 | 0.2271 | 0.2694 | -0.1286 |
+#&gt; |.....................| -0.6401 | -1.529 | 0.3516 | 1.832 |
+#&gt; |.....................| -0.3653 | 0.2635 | 0.3774 | -0.6589 |
+#&gt; |<span style='font-weight: bold;'> 33</span>| 458.11797 | 0.9972 | -1.436 | -0.8997 | -0.8703 |
+#&gt; |.....................| -0.7863 | -0.5263 | -0.7282 | -0.9569 |
+#&gt; |.....................| -1.029 | -0.5904 | -0.6788 | -0.7169 |
+#&gt; | U| 458.11797 | 93.74 | -5.836 | -0.9785 | -0.1749 |
+#&gt; |.....................| 2.163 | 2.325 | 1.283 | 0.6928 |
+#&gt; |.....................| 0.7397 | 1.519 | 1.302 | 1.298 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11797</span> | 93.74 | 0.002920 | 0.2732 | 0.8395 |
+#&gt; |.....................| 8.695 | 2.325 | 1.283 | 0.6928 |
+#&gt; |.....................| 0.7397 | 1.519 | 1.302 | 1.298 |
+#&gt; | F| Forward Diff. | -1.528 | 0.2260 | 0.2581 | -0.1311 |
+#&gt; |.....................| -0.6478 | -1.074 | 0.7096 | 1.705 |
+#&gt; |.....................| -1.609 | 0.2690 | 0.3809 | -0.6419 |
+#&gt; |<span style='font-weight: bold;'> 34</span>| 458.11744 | 0.9975 | -1.436 | -0.8997 | -0.8703 |
+#&gt; |.....................| -0.7862 | -0.5262 | -0.7283 | -0.9571 |
+#&gt; |.....................| -1.029 | -0.5904 | -0.6788 | -0.7168 |
+#&gt; | U| 458.11744 | 93.76 | -5.836 | -0.9786 | -0.1749 |
+#&gt; |.....................| 2.163 | 2.325 | 1.283 | 0.6926 |
+#&gt; |.....................| 0.7399 | 1.519 | 1.302 | 1.298 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11744</span> | 93.76 | 0.002920 | 0.2732 | 0.8395 |
+#&gt; |.....................| 8.696 | 2.325 | 1.283 | 0.6926 |
+#&gt; |.....................| 0.7399 | 1.519 | 1.302 | 1.298 |
+#&gt; | F| Forward Diff. | 1.737 | 0.2262 | 0.2659 | -0.1276 |
+#&gt; |.....................| -0.6346 | -0.9458 | 0.5100 | 1.567 |
+#&gt; |.....................| -1.640 | 0.3111 | 0.3526 | -0.6225 |
+#&gt; |<span style='font-weight: bold;'> 35</span>| 458.11714 | 0.9972 | -1.436 | -0.8998 | -0.8703 |
+#&gt; |.....................| -0.7861 | -0.5260 | -0.7284 | -0.9574 |
+#&gt; |.....................| -1.029 | -0.5905 | -0.6789 | -0.7167 |
+#&gt; | U| 458.11714 | 93.74 | -5.836 | -0.9786 | -0.1749 |
+#&gt; |.....................| 2.163 | 2.325 | 1.283 | 0.6924 |
+#&gt; |.....................| 0.7402 | 1.519 | 1.302 | 1.298 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11714</span> | 93.74 | 0.002920 | 0.2732 | 0.8395 |
+#&gt; |.....................| 8.697 | 2.325 | 1.283 | 0.6924 |
+#&gt; |.....................| 0.7402 | 1.519 | 1.302 | 1.298 |
+#&gt; | F| Forward Diff. | -1.976 | 0.2241 | 0.2491 | -0.1309 |
+#&gt; |.....................| -0.6467 | -0.8649 | 0.8521 | 1.757 |
+#&gt; |.....................| -1.585 | 0.2641 | 0.3618 | -0.6092 |
+#&gt; |<span style='font-weight: bold;'> 36</span>| 458.11663 | 0.9975 | -1.436 | -0.8998 | -0.8703 |
+#&gt; |.....................| -0.7860 | -0.5259 | -0.7285 | -0.9576 |
+#&gt; |.....................| -1.028 | -0.5905 | -0.6789 | -0.7166 |
+#&gt; | U| 458.11663 | 93.76 | -5.836 | -0.9787 | -0.1749 |
+#&gt; |.....................| 2.163 | 2.325 | 1.283 | 0.6923 |
+#&gt; |.....................| 0.7404 | 1.518 | 1.301 | 1.298 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11663</span> | 93.76 | 0.002920 | 0.2732 | 0.8396 |
+#&gt; |.....................| 8.698 | 2.325 | 1.283 | 0.6923 |
+#&gt; |.....................| 0.7404 | 1.518 | 1.301 | 1.298 |
+#&gt; | F| Forward Diff. | 2.001 | 0.2249 | 0.2609 | -0.1271 |
+#&gt; |.....................| -0.6310 | -0.8317 | 0.8110 | 1.745 |
+#&gt; |.....................| -0.3162 | 0.2564 | 0.3586 | -0.6097 |
+#&gt; |<span style='font-weight: bold;'> 37</span>| 458.11610 | 0.9971 | -1.436 | -0.8999 | -0.8702 |
+#&gt; |.....................| -0.7859 | -0.5258 | -0.7286 | -0.9579 |
+#&gt; |.....................| -1.028 | -0.5906 | -0.6790 | -0.7165 |
+#&gt; | U| 458.1161 | 93.73 | -5.836 | -0.9787 | -0.1749 |
+#&gt; |.....................| 2.163 | 2.325 | 1.283 | 0.6920 |
+#&gt; |.....................| 0.7404 | 1.518 | 1.301 | 1.298 |
+#&gt; | X|<span style='font-weight: bold;'> 458.1161</span> | 93.73 | 0.002920 | 0.2732 | 0.8396 |
+#&gt; |.....................| 8.699 | 2.325 | 1.283 | 0.6920 |
+#&gt; |.....................| 0.7404 | 1.518 | 1.301 | 1.298 |
+#&gt; | F| Forward Diff. | -2.471 | 0.2228 | 0.2417 | -0.1310 |
+#&gt; |.....................| -0.6447 | -1.605 | 0.009434 | 1.531 |
+#&gt; |.....................| -1.615 | 0.2909 | 0.3664 | -0.6093 |
+#&gt; |<span style='font-weight: bold;'> 38</span>| 458.11531 | 0.9974 | -1.436 | -0.8999 | -0.8702 |
+#&gt; |.....................| -0.7859 | -0.5256 | -0.7287 | -0.9582 |
+#&gt; |.....................| -1.028 | -0.5905 | -0.6791 | -0.7164 |
+#&gt; | U| 458.11531 | 93.76 | -5.836 | -0.9788 | -0.1749 |
+#&gt; |.....................| 2.163 | 2.326 | 1.283 | 0.6918 |
+#&gt; |.....................| 0.7405 | 1.518 | 1.301 | 1.299 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11531</span> | 93.76 | 0.002919 | 0.2731 | 0.8396 |
+#&gt; |.....................| 8.699 | 2.326 | 1.283 | 0.6918 |
+#&gt; |.....................| 0.7405 | 1.518 | 1.301 | 1.299 |
+#&gt; | F| Forward Diff. | 1.540 | 0.2236 | 0.2522 | -0.1268 |
+#&gt; |.....................| -0.6308 | -0.9638 | 0.7239 | 1.714 |
+#&gt; |.....................| -1.540 | 0.2567 | 0.3599 | -0.5942 |
+#&gt; |<span style='font-weight: bold;'> 39</span>| 458.11496 | 0.9972 | -1.436 | -0.8999 | -0.8702 |
+#&gt; |.....................| -0.7858 | -0.5254 | -0.7288 | -0.9585 |
+#&gt; |.....................| -1.028 | -0.5906 | -0.6791 | -0.7163 |
+#&gt; | U| 458.11496 | 93.74 | -5.836 | -0.9788 | -0.1748 |
+#&gt; |.....................| 2.163 | 2.326 | 1.283 | 0.6916 |
+#&gt; |.....................| 0.7408 | 1.518 | 1.301 | 1.299 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11496</span> | 93.74 | 0.002919 | 0.2731 | 0.8396 |
+#&gt; |.....................| 8.700 | 2.326 | 1.283 | 0.6916 |
+#&gt; |.....................| 0.7408 | 1.518 | 1.301 | 1.299 |
+#&gt; | F| Forward Diff. | -1.772 | 0.2217 | 0.2376 | -0.1305 |
+#&gt; |.....................| -0.6412 | -1.736 | 0.1210 | 1.307 |
+#&gt; |.....................| -1.540 | 0.2780 | 0.3483 | -0.5916 |
+#&gt; |<span style='font-weight: bold;'> 40</span>| 458.11458 | 0.9975 | -1.436 | -0.9000 | -0.8702 |
+#&gt; |.....................| -0.7857 | -0.5252 | -0.7289 | -0.9587 |
+#&gt; |.....................| -1.028 | -0.5906 | -0.6792 | -0.7163 |
+#&gt; | U| 458.11458 | 93.76 | -5.836 | -0.9788 | -0.1748 |
+#&gt; |.....................| 2.163 | 2.326 | 1.283 | 0.6915 |
+#&gt; |.....................| 0.7410 | 1.518 | 1.301 | 1.299 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11458</span> | 93.76 | 0.002919 | 0.2731 | 0.8396 |
+#&gt; |.....................| 8.701 | 2.326 | 1.283 | 0.6915 |
+#&gt; |.....................| 0.7410 | 1.518 | 1.301 | 1.299 |
+#&gt; | F| Forward Diff. | 1.896 | 0.2223 | 0.2476 | -0.1262 |
+#&gt; |.....................| -0.6268 | -0.4531 | 0.7600 | 1.698 |
+#&gt; |.....................| -1.483 | 0.2984 | 0.3374 | -0.6006 |
+#&gt; |<span style='font-weight: bold;'> 41</span>| 458.11430 | 0.9972 | -1.436 | -0.9000 | -0.8702 |
+#&gt; |.....................| -0.7856 | -0.5251 | -0.7290 | -0.9589 |
+#&gt; |.....................| -1.027 | -0.5907 | -0.6792 | -0.7162 |
+#&gt; | U| 458.1143 | 93.73 | -5.836 | -0.9789 | -0.1748 |
+#&gt; |.....................| 2.164 | 2.326 | 1.283 | 0.6913 |
+#&gt; |.....................| 0.7412 | 1.518 | 1.301 | 1.299 |
+#&gt; | X|<span style='font-weight: bold;'> 458.1143</span> | 93.73 | 0.002919 | 0.2731 | 0.8396 |
+#&gt; |.....................| 8.702 | 2.326 | 1.283 | 0.6913 |
+#&gt; |.....................| 0.7412 | 1.518 | 1.301 | 1.299 |
+#&gt; | F| Forward Diff. | -2.121 | 0.2201 | 0.2306 | -0.1307 |
+#&gt; |.....................| -0.6392 | -0.8820 | 0.4853 | 1.475 |
+#&gt; |.....................| -1.568 | 0.2856 | 0.3442 | -0.5942 |
+#&gt; |<span style='font-weight: bold;'> 42</span>| 458.11392 | 0.9975 | -1.437 | -0.9001 | -0.8702 |
+#&gt; |.....................| -0.7855 | -0.5250 | -0.7290 | -0.9592 |
+#&gt; |.....................| -1.027 | -0.5907 | -0.6793 | -0.7161 |
+#&gt; | U| 458.11392 | 93.76 | -5.837 | -0.9789 | -0.1748 |
+#&gt; |.....................| 2.164 | 2.326 | 1.283 | 0.6911 |
+#&gt; |.....................| 0.7414 | 1.518 | 1.301 | 1.299 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11392</span> | 93.76 | 0.002919 | 0.2731 | 0.8396 |
+#&gt; |.....................| 8.702 | 2.326 | 1.283 | 0.6911 |
+#&gt; |.....................| 0.7414 | 1.518 | 1.301 | 1.299 |
+#&gt; | F| Forward Diff. | 2.218 | 0.2203 | 0.2415 | -0.1269 |
+#&gt; |.....................| -0.6242 | -1.700 | -0.1298 | 1.090 |
+#&gt; |.....................| 1.097 | -0.4639 | 0.3406 | -0.5940 |
+#&gt; |<span style='font-weight: bold;'> 43</span>| 458.11292 | 0.9972 | -1.437 | -0.9001 | -0.8702 |
+#&gt; |.....................| -0.7854 | -0.5247 | -0.7291 | -0.9594 |
+#&gt; |.....................| -1.027 | -0.5906 | -0.6794 | -0.7160 |
+#&gt; | U| 458.11292 | 93.74 | -5.837 | -0.9790 | -0.1748 |
+#&gt; |.....................| 2.164 | 2.326 | 1.283 | 0.6909 |
+#&gt; |.....................| 0.7412 | 1.518 | 1.301 | 1.299 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11292</span> | 93.74 | 0.002919 | 0.2731 | 0.8396 |
+#&gt; |.....................| 8.703 | 2.326 | 1.283 | 0.6909 |
+#&gt; |.....................| 0.7412 | 1.518 | 1.301 | 1.299 |
+#&gt; | F| Forward Diff. | -1.114 | 0.2202 | 0.2288 | -0.1307 |
+#&gt; |.....................| -0.6328 | -0.7727 | 0.7964 | 1.664 |
+#&gt; |.....................| -0.2569 | 0.2827 | 0.3132 | -0.5835 |
+#&gt; |<span style='font-weight: bold;'> 44</span>| 458.11219 | 0.9975 | -1.437 | -0.9002 | -0.8701 |
+#&gt; |.....................| -0.7853 | -0.5246 | -0.7293 | -0.9597 |
+#&gt; |.....................| -1.027 | -0.5907 | -0.6795 | -0.7158 |
+#&gt; | U| 458.11219 | 93.76 | -5.837 | -0.9790 | -0.1748 |
+#&gt; |.....................| 2.164 | 2.327 | 1.283 | 0.6907 |
+#&gt; |.....................| 0.7413 | 1.518 | 1.301 | 1.299 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11219</span> | 93.76 | 0.002919 | 0.2731 | 0.8397 |
+#&gt; |.....................| 8.704 | 2.327 | 1.283 | 0.6907 |
+#&gt; |.....................| 0.7413 | 1.518 | 1.301 | 1.299 |
+#&gt; | F| Forward Diff. | 1.924 | 0.2207 | 0.2357 | -0.1254 |
+#&gt; |.....................| -0.6202 | -0.4451 | 0.8288 | 1.643 |
+#&gt; |.....................| -1.561 | 0.2786 | 0.3167 | -0.5797 |
+#&gt; |<span style='font-weight: bold;'> 45</span>| 458.11161 | 0.9972 | -1.437 | -0.9002 | -0.8701 |
+#&gt; |.....................| -0.7852 | -0.5246 | -0.7295 | -0.9601 |
+#&gt; |.....................| -1.027 | -0.5907 | -0.6795 | -0.7157 |
+#&gt; | U| 458.11161 | 93.74 | -5.837 | -0.9791 | -0.1747 |
+#&gt; |.....................| 2.164 | 2.327 | 1.283 | 0.6904 |
+#&gt; |.....................| 0.7414 | 1.518 | 1.301 | 1.299 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11161</span> | 93.74 | 0.002918 | 0.2731 | 0.8397 |
+#&gt; |.....................| 8.705 | 2.327 | 1.283 | 0.6904 |
+#&gt; |.....................| 0.7414 | 1.518 | 1.301 | 1.299 |
+#&gt; | F| Forward Diff. | -1.221 | 0.2188 | 0.2217 | -0.1291 |
+#&gt; |.....................| -0.6301 | -1.629 | 0.1332 | 1.223 |
+#&gt; |.....................| -1.491 | 0.2969 | 0.3215 | -0.5516 |
+#&gt; |<span style='font-weight: bold;'> 46</span>| 458.11130 | 0.9974 | -1.437 | -0.9003 | -0.8701 |
+#&gt; |.....................| -0.7851 | -0.5243 | -0.7295 | -0.9603 |
+#&gt; |.....................| -1.027 | -0.5907 | -0.6796 | -0.7156 |
+#&gt; | U| 458.1113 | 93.76 | -5.837 | -0.9791 | -0.1747 |
+#&gt; |.....................| 2.164 | 2.327 | 1.283 | 0.6902 |
+#&gt; |.....................| 0.7416 | 1.518 | 1.301 | 1.299 |
+#&gt; | X|<span style='font-weight: bold;'> 458.1113</span> | 93.76 | 0.002918 | 0.2731 | 0.8397 |
+#&gt; |.....................| 8.706 | 2.327 | 1.283 | 0.6902 |
+#&gt; |.....................| 0.7416 | 1.518 | 1.301 | 1.299 |
+#&gt; | F| Forward Diff. | 1.605 | 0.2188 | 0.2279 | -0.1262 |
+#&gt; |.....................| -0.6191 | -1.596 | 0.1216 | 1.254 |
+#&gt; |.....................| 1.158 | -0.4084 | 0.3005 | -0.5648 |
+#&gt; |<span style='font-weight: bold;'> 47</span>| 458.11059 | 0.9972 | -1.437 | -0.9003 | -0.8701 |
+#&gt; |.....................| -0.7850 | -0.5240 | -0.7295 | -0.9605 |
+#&gt; |.....................| -1.027 | -0.5906 | -0.6796 | -0.7155 |
+#&gt; | U| 458.11059 | 93.73 | -5.837 | -0.9791 | -0.1747 |
+#&gt; |.....................| 2.164 | 2.327 | 1.283 | 0.6901 |
+#&gt; |.....................| 0.7415 | 1.518 | 1.301 | 1.300 |
+#&gt; | X|<span style='font-weight: bold;'> 458.11059</span> | 93.73 | 0.002918 | 0.2731 | 0.8397 |
+#&gt; |.....................| 8.707 | 2.327 | 1.283 | 0.6901 |
+#&gt; |.....................| 0.7415 | 1.518 | 1.301 | 1.300 |
+#&gt; | F| Forward Diff. | -2.022 | 0.2179 | 0.2140 | -0.1317 |
+#&gt; |.....................| -0.6294 | -0.4112 | 0.8588 | 1.629 |
+#&gt; |.....................| -1.524 | 0.3410 | 0.3226 | -0.5400 |
+#&gt; |<span style='font-weight: bold;'> 48</span>| 458.10995 | 0.9975 | -1.437 | -0.9003 | -0.8701 |
+#&gt; |.....................| -0.7849 | -0.5239 | -0.7297 | -0.9608 |
+#&gt; |.....................| -1.027 | -0.5906 | -0.6797 | -0.7154 |
+#&gt; | U| 458.10995 | 93.76 | -5.837 | -0.9792 | -0.1747 |
+#&gt; |.....................| 2.164 | 2.327 | 1.283 | 0.6899 |
+#&gt; |.....................| 0.7416 | 1.518 | 1.301 | 1.300 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10995</span> | 93.76 | 0.002918 | 0.2731 | 0.8397 |
+#&gt; |.....................| 8.708 | 2.327 | 1.283 | 0.6899 |
+#&gt; |.....................| 0.7416 | 1.518 | 1.301 | 1.300 |
+#&gt; | F| Forward Diff. | 1.872 | 0.2188 | 0.2245 | -0.1278 |
+#&gt; |.....................| -0.6141 | -1.055 | 0.5121 | 1.433 |
+#&gt; |.....................| -1.504 | 0.3641 | 0.3235 | -0.5302 |
+#&gt; |<span style='font-weight: bold;'> 49</span>| 458.10978 | 0.9972 | -1.437 | -0.9004 | -0.8700 |
+#&gt; |.....................| -0.7848 | -0.5238 | -0.7297 | -0.9610 |
+#&gt; |.....................| -1.027 | -0.5907 | -0.6797 | -0.7153 |
+#&gt; | U| 458.10978 | 93.73 | -5.837 | -0.9792 | -0.1747 |
+#&gt; |.....................| 2.164 | 2.327 | 1.282 | 0.6897 |
+#&gt; |.....................| 0.7418 | 1.518 | 1.301 | 1.300 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10978</span> | 93.73 | 0.002918 | 0.2730 | 0.8397 |
+#&gt; |.....................| 8.709 | 2.327 | 1.282 | 0.6897 |
+#&gt; |.....................| 0.7418 | 1.518 | 1.301 | 1.300 |
+#&gt; | C| Central Diff. | -2.410 | 0.2142 | 0.1743 | -0.1457 |
+#&gt; |.....................| -0.6441 | -0.7806 | 0.7426 | 1.188 |
+#&gt; |.....................| -0.06181 | -0.3659 | 0.5158 | -0.5913 |
+#&gt; |<span style='font-weight: bold;'> 50</span>| 458.10914 | 0.9975 | -1.437 | -0.9004 | -0.8700 |
+#&gt; |.....................| -0.7847 | -0.5236 | -0.7299 | -0.9612 |
+#&gt; |.....................| -1.027 | -0.5906 | -0.6798 | -0.7152 |
+#&gt; | U| 458.10914 | 93.77 | -5.837 | -0.9792 | -0.1747 |
+#&gt; |.....................| 2.164 | 2.327 | 1.282 | 0.6895 |
+#&gt; |.....................| 0.7418 | 1.518 | 1.300 | 1.300 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10914</span> | 93.77 | 0.002918 | 0.2730 | 0.8397 |
+#&gt; |.....................| 8.709 | 2.327 | 1.282 | 0.6895 |
+#&gt; |.....................| 0.7418 | 1.518 | 1.300 | 1.300 |
+#&gt; | F| Forward Diff. | 2.690 | 0.2171 | 0.2203 | -0.1291 |
+#&gt; |.....................| -0.6099 | -0.7940 | 0.4528 | 1.377 |
+#&gt; |.....................| -1.452 | 0.2831 | 0.2911 | -0.5300 |
+#&gt; |<span style='font-weight: bold;'> 51</span>| 458.10832 | 0.9972 | -1.437 | -0.9004 | -0.8700 |
+#&gt; |.....................| -0.7846 | -0.5235 | -0.7300 | -0.9615 |
+#&gt; |.....................| -1.027 | -0.5905 | -0.6799 | -0.7151 |
+#&gt; | U| 458.10832 | 93.74 | -5.837 | -0.9793 | -0.1747 |
+#&gt; |.....................| 2.164 | 2.328 | 1.282 | 0.6893 |
+#&gt; |.....................| 0.7418 | 1.518 | 1.300 | 1.300 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10832</span> | 93.74 | 0.002918 | 0.2730 | 0.8397 |
+#&gt; |.....................| 8.710 | 2.328 | 1.282 | 0.6893 |
+#&gt; |.....................| 0.7418 | 1.518 | 1.300 | 1.300 |
+#&gt; | F| Forward Diff. | -1.386 | 0.2164 | 0.2066 | -0.1317 |
+#&gt; |.....................| -0.6210 | -0.6390 | 0.8493 | 1.598 |
+#&gt; |.....................| -1.491 | 0.2964 | 0.2278 | -0.4988 |
+#&gt; |<span style='font-weight: bold;'> 52</span>| 458.10801 | 0.9974 | -1.437 | -0.9005 | -0.8700 |
+#&gt; |.....................| -0.7845 | -0.5234 | -0.7302 | -0.9618 |
+#&gt; |.....................| -1.026 | -0.5906 | -0.6800 | -0.7150 |
+#&gt; | U| 458.10801 | 93.76 | -5.837 | -0.9793 | -0.1746 |
+#&gt; |.....................| 2.165 | 2.328 | 1.282 | 0.6891 |
+#&gt; |.....................| 0.7421 | 1.518 | 1.300 | 1.300 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10801</span> | 93.76 | 0.002918 | 0.2730 | 0.8398 |
+#&gt; |.....................| 8.711 | 2.328 | 1.282 | 0.6891 |
+#&gt; |.....................| 0.7421 | 1.518 | 1.300 | 1.300 |
+#&gt; | F| Forward Diff. | 1.854 | 0.2167 | 0.2150 | -0.1282 |
+#&gt; |.....................| -0.6083 | -0.7461 | 0.7029 | 1.539 |
+#&gt; |.....................| -0.1981 | 0.2733 | 0.2717 | -0.5257 |
+#&gt; |<span style='font-weight: bold;'> 53</span>| 458.10765 | 0.9971 | -1.437 | -0.9005 | -0.8700 |
+#&gt; |.....................| -0.7844 | -0.5232 | -0.7303 | -0.9621 |
+#&gt; |.....................| -1.026 | -0.5906 | -0.6800 | -0.7149 |
+#&gt; | U| 458.10765 | 93.73 | -5.837 | -0.9794 | -0.1746 |
+#&gt; |.....................| 2.165 | 2.328 | 1.282 | 0.6889 |
+#&gt; |.....................| 0.7421 | 1.518 | 1.300 | 1.300 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10765</span> | 93.73 | 0.002917 | 0.2730 | 0.8398 |
+#&gt; |.....................| 8.712 | 2.328 | 1.282 | 0.6889 |
+#&gt; |.....................| 0.7421 | 1.518 | 1.300 | 1.300 |
+#&gt; | F| Forward Diff. | -2.678 | 0.2148 | 0.1964 | -0.1329 |
+#&gt; |.....................| -0.6222 | -0.7140 | 0.5004 | 1.353 |
+#&gt; |.....................| -0.2647 | 0.3470 | 0.3026 | -0.5041 |
+#&gt; |<span style='font-weight: bold;'> 54</span>| 458.10677 | 0.9974 | -1.437 | -0.9006 | -0.8700 |
+#&gt; |.....................| -0.7843 | -0.5231 | -0.7305 | -0.9624 |
+#&gt; |.....................| -1.026 | -0.5907 | -0.6801 | -0.7148 |
+#&gt; | U| 458.10677 | 93.76 | -5.837 | -0.9794 | -0.1746 |
+#&gt; |.....................| 2.165 | 2.328 | 1.282 | 0.6887 |
+#&gt; |.....................| 0.7421 | 1.518 | 1.300 | 1.300 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10677</span> | 93.76 | 0.002917 | 0.2730 | 0.8398 |
+#&gt; |.....................| 8.713 | 2.328 | 1.282 | 0.6887 |
+#&gt; |.....................| 0.7421 | 1.518 | 1.300 | 1.300 |
+#&gt; | F| Forward Diff. | 1.911 | 0.2164 | 0.2105 | -0.1281 |
+#&gt; |.....................| -0.6034 | -0.7920 | 0.6471 | 1.488 |
+#&gt; |.....................| -0.2445 | 0.2110 | 0.2380 | -0.4469 |
+#&gt; |<span style='font-weight: bold;'> 55</span>| 458.10609 | 0.9972 | -1.437 | -0.9006 | -0.8700 |
+#&gt; |.....................| -0.7842 | -0.5230 | -0.7306 | -0.9627 |
+#&gt; |.....................| -1.026 | -0.5907 | -0.6801 | -0.7147 |
+#&gt; | U| 458.10609 | 93.74 | -5.837 | -0.9794 | -0.1746 |
+#&gt; |.....................| 2.165 | 2.328 | 1.282 | 0.6884 |
+#&gt; |.....................| 0.7421 | 1.518 | 1.300 | 1.300 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10609</span> | 93.74 | 0.002917 | 0.2730 | 0.8398 |
+#&gt; |.....................| 8.714 | 2.328 | 1.282 | 0.6884 |
+#&gt; |.....................| 0.7421 | 1.518 | 1.300 | 1.300 |
+#&gt; | F| Forward Diff. | -1.589 | 0.2148 | 0.1951 | -0.1322 |
+#&gt; |.....................| -0.6145 | -0.8575 | 0.5942 | 1.427 |
+#&gt; |.....................| -1.492 | 0.2699 | 0.1872 | -0.4796 |
+#&gt; |<span style='font-weight: bold;'> 56</span>| 458.10567 | 0.9974 | -1.437 | -0.9006 | -0.8699 |
+#&gt; |.....................| -0.7841 | -0.5228 | -0.7308 | -0.9630 |
+#&gt; |.....................| -1.026 | -0.5907 | -0.6801 | -0.7146 |
+#&gt; | U| 458.10567 | 93.76 | -5.837 | -0.9795 | -0.1746 |
+#&gt; |.....................| 2.165 | 2.328 | 1.282 | 0.6882 |
+#&gt; |.....................| 0.7422 | 1.518 | 1.300 | 1.301 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10567</span> | 93.76 | 0.002917 | 0.2730 | 0.8398 |
+#&gt; |.....................| 8.715 | 2.328 | 1.282 | 0.6882 |
+#&gt; |.....................| 0.7422 | 1.518 | 1.300 | 1.301 |
+#&gt; | F| Forward Diff. | 1.760 | 0.2153 | 0.2043 | -0.1283 |
+#&gt; |.....................| -0.6005 | -0.7529 | 0.6292 | 1.454 |
+#&gt; |.....................| -0.2107 | 0.2534 | 0.2280 | -0.4318 |
+#&gt; |<span style='font-weight: bold;'> 57</span>| 458.10540 | 0.9971 | -1.437 | -0.9007 | -0.8699 |
+#&gt; |.....................| -0.7840 | -0.5227 | -0.7309 | -0.9633 |
+#&gt; |.....................| -1.026 | -0.5907 | -0.6801 | -0.7146 |
+#&gt; | U| 458.1054 | 93.73 | -5.837 | -0.9795 | -0.1745 |
+#&gt; |.....................| 2.165 | 2.328 | 1.282 | 0.6880 |
+#&gt; |.....................| 0.7423 | 1.518 | 1.300 | 1.301 |
+#&gt; | X|<span style='font-weight: bold;'> 458.1054</span> | 93.73 | 0.002917 | 0.2730 | 0.8398 |
+#&gt; |.....................| 8.716 | 2.328 | 1.282 | 0.6880 |
+#&gt; |.....................| 0.7423 | 1.518 | 1.300 | 1.301 |
+#&gt; | F| Forward Diff. | -2.789 | 0.2130 | 0.1850 | -0.1339 |
+#&gt; |.....................| -0.6160 | -0.6903 | 0.7130 | 1.481 |
+#&gt; |.....................| -0.1975 | 0.2824 | 0.2646 | -0.4868 |
+#&gt; |<span style='font-weight: bold;'> 58</span>| 458.10444 | 0.9974 | -1.437 | -0.9007 | -0.8699 |
+#&gt; |.....................| -0.7839 | -0.5226 | -0.7311 | -0.9636 |
+#&gt; |.....................| -1.026 | -0.5907 | -0.6801 | -0.7145 |
+#&gt; | U| 458.10444 | 93.76 | -5.837 | -0.9796 | -0.1745 |
+#&gt; |.....................| 2.165 | 2.329 | 1.282 | 0.6878 |
+#&gt; |.....................| 0.7423 | 1.518 | 1.300 | 1.301 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10444</span> | 93.76 | 0.002916 | 0.2730 | 0.8398 |
+#&gt; |.....................| 8.717 | 2.329 | 1.282 | 0.6878 |
+#&gt; |.....................| 0.7423 | 1.518 | 1.300 | 1.301 |
+#&gt; | F| Forward Diff. | 1.285 | 0.2143 | 0.1972 | -0.1290 |
+#&gt; |.....................| -0.5987 | -0.7355 | 0.6064 | 1.421 |
+#&gt; |.....................| -1.460 | 0.2526 | 0.2188 | -0.4206 |
+#&gt; |<span style='font-weight: bold;'> 59</span>| 458.10435 | 0.9972 | -1.437 | -0.9008 | -0.8699 |
+#&gt; |.....................| -0.7838 | -0.5224 | -0.7312 | -0.9638 |
+#&gt; |.....................| -1.026 | -0.5908 | -0.6802 | -0.7144 |
+#&gt; | U| 458.10435 | 93.73 | -5.837 | -0.9796 | -0.1745 |
+#&gt; |.....................| 2.165 | 2.329 | 1.282 | 0.6876 |
+#&gt; |.....................| 0.7425 | 1.518 | 1.300 | 1.301 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10435</span> | 93.73 | 0.002916 | 0.2730 | 0.8399 |
+#&gt; |.....................| 8.718 | 2.329 | 1.282 | 0.6876 |
+#&gt; |.....................| 0.7425 | 1.518 | 1.300 | 1.301 |
+#&gt; | C| Central Diff. | -2.184 | 0.2097 | 0.1486 | -0.1446 |
+#&gt; |.....................| -0.6255 | -0.7028 | 0.6444 | 1.495 |
+#&gt; |.....................| -1.416 | 0.3010 | 0.4942 | -0.5303 |
+#&gt; |<span style='font-weight: bold;'> 60</span>| 458.10393 | 0.9975 | -1.438 | -0.9008 | -0.8699 |
+#&gt; |.....................| -0.7837 | -0.5223 | -0.7313 | -0.9641 |
+#&gt; |.....................| -1.026 | -0.5908 | -0.6802 | -0.7143 |
+#&gt; | U| 458.10393 | 93.76 | -5.838 | -0.9796 | -0.1745 |
+#&gt; |.....................| 2.165 | 2.329 | 1.282 | 0.6873 |
+#&gt; |.....................| 0.7426 | 1.518 | 1.300 | 1.301 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10393</span> | 93.76 | 0.002916 | 0.2730 | 0.8399 |
+#&gt; |.....................| 8.718 | 2.329 | 1.282 | 0.6873 |
+#&gt; |.....................| 0.7426 | 1.518 | 1.300 | 1.301 |
+#&gt; | F| Forward Diff. | 2.045 | 0.2119 | 0.1940 | -0.1305 |
+#&gt; |.....................| -0.5955 | -0.7252 | 0.6285 | 1.413 |
+#&gt; |.....................| -0.2070 | 0.2194 | 0.2208 | -0.3980 |
+#&gt; |<span style='font-weight: bold;'> 61</span>| 458.10364 | 0.9971 | -1.438 | -0.9008 | -0.8699 |
+#&gt; |.....................| -0.7836 | -0.5222 | -0.7314 | -0.9644 |
+#&gt; |.....................| -1.026 | -0.5908 | -0.6803 | -0.7142 |
+#&gt; | U| 458.10364 | 93.73 | -5.838 | -0.9796 | -0.1745 |
+#&gt; |.....................| 2.166 | 2.329 | 1.281 | 0.6871 |
+#&gt; |.....................| 0.7427 | 1.518 | 1.300 | 1.301 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10364</span> | 93.73 | 0.002916 | 0.2730 | 0.8399 |
+#&gt; |.....................| 8.719 | 2.329 | 1.281 | 0.6871 |
+#&gt; |.....................| 0.7427 | 1.518 | 1.300 | 1.301 |
+#&gt; | F| Forward Diff. | -2.727 | 0.2108 | 0.1771 | -0.1339 |
+#&gt; |.....................| -0.6094 | -0.7304 | 0.6317 | 1.376 |
+#&gt; |.....................| -1.443 | 0.2644 | 0.2580 | -0.4629 |
+#&gt; |<span style='font-weight: bold;'> 62</span>| 458.10286 | 0.9974 | -1.438 | -0.9008 | -0.8699 |
+#&gt; |.....................| -0.7835 | -0.5221 | -0.7316 | -0.9647 |
+#&gt; |.....................| -1.026 | -0.5908 | -0.6803 | -0.7141 |
+#&gt; | U| 458.10286 | 93.75 | -5.838 | -0.9796 | -0.1745 |
+#&gt; |.....................| 2.166 | 2.329 | 1.281 | 0.6869 |
+#&gt; |.....................| 0.7427 | 1.518 | 1.300 | 1.301 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10286</span> | 93.75 | 0.002915 | 0.2730 | 0.8399 |
+#&gt; |.....................| 8.720 | 2.329 | 1.281 | 0.6869 |
+#&gt; |.....................| 0.7427 | 1.518 | 1.300 | 1.301 |
+#&gt; | F| Forward Diff. | 1.225 | 0.2118 | 0.1898 | -0.1294 |
+#&gt; |.....................| -0.5932 | -0.6493 | 0.6517 | 1.411 |
+#&gt; |.....................| -0.1402 | 0.3233 | 0.2428 | -0.3732 |
+#&gt; |<span style='font-weight: bold;'> 63</span>| 458.10253 | 0.9971 | -1.438 | -0.9009 | -0.8698 |
+#&gt; |.....................| -0.7834 | -0.5219 | -0.7318 | -0.9650 |
+#&gt; |.....................| -1.026 | -0.5909 | -0.6803 | -0.7141 |
+#&gt; | U| 458.10253 | 93.73 | -5.838 | -0.9797 | -0.1745 |
+#&gt; |.....................| 2.166 | 2.329 | 1.281 | 0.6867 |
+#&gt; |.....................| 0.7428 | 1.518 | 1.300 | 1.301 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10253</span> | 93.73 | 0.002915 | 0.2730 | 0.8399 |
+#&gt; |.....................| 8.721 | 2.329 | 1.281 | 0.6867 |
+#&gt; |.....................| 0.7428 | 1.518 | 1.300 | 1.301 |
+#&gt; | F| Forward Diff. | -2.449 | 0.2099 | 0.1736 | -0.1338 |
+#&gt; |.....................| -0.6049 | -0.7015 | 0.6330 | 1.384 |
+#&gt; |.....................| -0.1863 | 0.2615 | 0.2563 | -0.4532 |
+#&gt; |<span style='font-weight: bold;'> 64</span>| 458.10167 | 0.9974 | -1.438 | -0.9009 | -0.8698 |
+#&gt; |.....................| -0.7832 | -0.5218 | -0.7320 | -0.9653 |
+#&gt; |.....................| -1.026 | -0.5909 | -0.6804 | -0.7140 |
+#&gt; | U| 458.10167 | 93.76 | -5.838 | -0.9797 | -0.1744 |
+#&gt; |.....................| 2.166 | 2.329 | 1.281 | 0.6864 |
+#&gt; |.....................| 0.7427 | 1.518 | 1.300 | 1.301 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10167</span> | 93.76 | 0.002915 | 0.2729 | 0.8399 |
+#&gt; |.....................| 8.722 | 2.329 | 1.281 | 0.6864 |
+#&gt; |.....................| 0.7427 | 1.518 | 1.300 | 1.301 |
+#&gt; | F| Forward Diff. | 1.422 | 0.2110 | 0.1849 | -0.1293 |
+#&gt; |.....................| -0.5889 | -0.5964 | 0.6731 | 1.405 |
+#&gt; |.....................| -0.1535 | 0.3114 | 0.2496 | -0.4521 |
+#&gt; |<span style='font-weight: bold;'> 65</span>| 458.10133 | 0.9971 | -1.438 | -0.9009 | -0.8698 |
+#&gt; |.....................| -0.7831 | -0.5217 | -0.7321 | -0.9657 |
+#&gt; |.....................| -1.026 | -0.5909 | -0.6804 | -0.7139 |
+#&gt; | U| 458.10133 | 93.73 | -5.838 | -0.9798 | -0.1744 |
+#&gt; |.....................| 2.166 | 2.329 | 1.281 | 0.6862 |
+#&gt; |.....................| 0.7428 | 1.518 | 1.300 | 1.301 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10133</span> | 93.73 | 0.002915 | 0.2729 | 0.8400 |
+#&gt; |.....................| 8.723 | 2.329 | 1.281 | 0.6862 |
+#&gt; |.....................| 0.7428 | 1.518 | 1.300 | 1.301 |
+#&gt; | F| Forward Diff. | -2.461 | 0.2094 | 0.1688 | -0.1332 |
+#&gt; |.....................| -0.6003 | -0.7109 | 0.5914 | 1.349 |
+#&gt; |.....................| -1.404 | 0.2951 | 0.2552 | -0.4331 |
+#&gt; |<span style='font-weight: bold;'> 66</span>| 458.10059 | 0.9974 | -1.438 | -0.9009 | -0.8698 |
+#&gt; |.....................| -0.7830 | -0.5215 | -0.7323 | -0.9660 |
+#&gt; |.....................| -1.026 | -0.5909 | -0.6804 | -0.7138 |
+#&gt; | U| 458.10059 | 93.75 | -5.838 | -0.9798 | -0.1744 |
+#&gt; |.....................| 2.166 | 2.330 | 1.281 | 0.6860 |
+#&gt; |.....................| 0.7428 | 1.518 | 1.300 | 1.302 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10059</span> | 93.75 | 0.002915 | 0.2729 | 0.8400 |
+#&gt; |.....................| 8.724 | 2.330 | 1.281 | 0.6860 |
+#&gt; |.....................| 0.7428 | 1.518 | 1.300 | 1.302 |
+#&gt; | F| Forward Diff. | 1.228 | 0.2101 | 0.1802 | -0.1294 |
+#&gt; |.....................| -0.5857 | -0.2287 | 0.9339 | 1.558 |
+#&gt; |.....................| -1.376 | 0.3488 | 0.2665 | -0.4324 |
+#&gt; |<span style='font-weight: bold;'> 67</span>| 458.10050 | 0.9972 | -1.438 | -0.9010 | -0.8697 |
+#&gt; |.....................| -0.7829 | -0.5215 | -0.7325 | -0.9663 |
+#&gt; |.....................| -1.025 | -0.5910 | -0.6804 | -0.7137 |
+#&gt; | U| 458.1005 | 93.73 | -5.838 | -0.9798 | -0.1744 |
+#&gt; |.....................| 2.166 | 2.330 | 1.281 | 0.6857 |
+#&gt; |.....................| 0.7430 | 1.518 | 1.300 | 1.302 |
+#&gt; | X|<span style='font-weight: bold;'> 458.1005</span> | 93.73 | 0.002915 | 0.2729 | 0.8400 |
+#&gt; |.....................| 8.725 | 2.330 | 1.281 | 0.6857 |
+#&gt; |.....................| 0.7430 | 1.518 | 1.300 | 1.302 |
+#&gt; | C| Central Diff. | -2.045 | 0.2058 | 0.1327 | -0.1461 |
+#&gt; |.....................| -0.6105 | -0.6040 | 0.6130 | 0.9518 |
+#&gt; |.....................| 0.01902 | 0.3702 | 0.4676 | -0.4886 |
+#&gt; |<span style='font-weight: bold;'> 68</span>| 458.10013 | 0.9974 | -1.438 | -0.9010 | -0.8697 |
+#&gt; |.....................| -0.7829 | -0.5214 | -0.7325 | -0.9664 |
+#&gt; |.....................| -1.025 | -0.5910 | -0.6805 | -0.7136 |
+#&gt; | U| 458.10013 | 93.75 | -5.838 | -0.9798 | -0.1744 |
+#&gt; |.....................| 2.166 | 2.330 | 1.281 | 0.6857 |
+#&gt; |.....................| 0.7430 | 1.518 | 1.300 | 1.302 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10013</span> | 93.75 | 0.002914 | 0.2729 | 0.8400 |
+#&gt; |.....................| 8.725 | 2.330 | 1.281 | 0.6857 |
+#&gt; |.....................| 0.7430 | 1.518 | 1.300 | 1.302 |
+#&gt; | F| Forward Diff. | 0.8557 | 0.2088 | 0.1747 | -0.1300 |
+#&gt; |.....................| -0.5847 | -0.2393 | 0.9114 | 1.536 |
+#&gt; |.....................| -1.367 | 0.3016 | 0.2557 | -0.4123 |
+#&gt; |<span style='font-weight: bold;'> 69</span>| 458.10002 | 0.9973 | -1.438 | -0.9010 | -0.8697 |
+#&gt; |.....................| -0.7828 | -0.5214 | -0.7326 | -0.9665 |
+#&gt; |.....................| -1.025 | -0.5911 | -0.6805 | -0.7136 |
+#&gt; | U| 458.10002 | 93.74 | -5.838 | -0.9798 | -0.1744 |
+#&gt; |.....................| 2.166 | 2.330 | 1.281 | 0.6856 |
+#&gt; |.....................| 0.7432 | 1.518 | 1.300 | 1.302 |
+#&gt; | X|<span style='font-weight: bold;'> 458.10002</span> | 93.74 | 0.002914 | 0.2729 | 0.8400 |
+#&gt; |.....................| 8.726 | 2.330 | 1.281 | 0.6856 |
+#&gt; |.....................| 0.7432 | 1.518 | 1.300 | 1.302 |
+#&gt; | C| Central Diff. | -0.5131 | 0.2058 | 0.1358 | -0.1441 |
+#&gt; |.....................| -0.6029 | -0.6262 | 0.5998 | 1.158 |
+#&gt; |.....................| -1.373 | 0.3470 | 0.4566 | -0.4872 |
+#&gt; |<span style='font-weight: bold;'> 70</span>| 458.09992 | 0.9973 | -1.438 | -0.9010 | -0.8697 |
+#&gt; |.....................| -0.7827 | -0.5214 | -0.7327 | -0.9666 |
+#&gt; |.....................| -1.025 | -0.5911 | -0.6806 | -0.7135 |
+#&gt; | U| 458.09992 | 93.75 | -5.838 | -0.9799 | -0.1743 |
+#&gt; |.....................| 2.166 | 2.330 | 1.281 | 0.6855 |
+#&gt; |.....................| 0.7433 | 1.518 | 1.300 | 1.302 |
+#&gt; | X|<span style='font-weight: bold;'> 458.09992</span> | 93.75 | 0.002914 | 0.2729 | 0.8400 |
+#&gt; |.....................| 8.726 | 2.330 | 1.281 | 0.6855 |
+#&gt; |.....................| 0.7433 | 1.518 | 1.300 | 1.302 |
+#&gt; | C| Central Diff. | 0.2584 | 0.2056 | 0.1371 | -0.1438 |
+#&gt; |.....................| -0.5991 | -0.6198 | 0.6082 | 0.9676 |
+#&gt; |.....................| 1.295 | 0.3221 | 0.4533 | -0.4750 |
+#&gt; |<span style='font-weight: bold;'> 71</span>| 458.09944 | 0.9973 | -1.438 | -0.9010 | -0.8697 |
+#&gt; |.....................| -0.7827 | -0.5213 | -0.7328 | -0.9668 |
+#&gt; |.....................| -1.025 | -0.5911 | -0.6806 | -0.7135 |
+#&gt; | U| 458.09944 | 93.75 | -5.838 | -0.9799 | -0.1743 |
+#&gt; |.....................| 2.166 | 2.330 | 1.281 | 0.6854 |
+#&gt; |.....................| 0.7431 | 1.518 | 1.300 | 1.302 |
+#&gt; | X|<span style='font-weight: bold;'> 458.09944</span> | 93.75 | 0.002914 | 0.2729 | 0.8400 |
+#&gt; |.....................| 8.727 | 2.330 | 1.281 | 0.6854 |
+#&gt; |.....................| 0.7431 | 1.518 | 1.300 | 1.302 |
+#&gt; |<span style='font-weight: bold;'> 72</span>| 458.09825 | 0.9974 | -1.438 | -0.9011 | -0.8697 |
+#&gt; |.....................| -0.7824 | -0.5210 | -0.7332 | -0.9672 |
+#&gt; |.....................| -1.025 | -0.5911 | -0.6808 | -0.7131 |
+#&gt; | U| 458.09825 | 93.76 | -5.838 | -0.9799 | -0.1743 |
+#&gt; |.....................| 2.167 | 2.330 | 1.280 | 0.6851 |
+#&gt; |.....................| 0.7430 | 1.518 | 1.299 | 1.302 |
+#&gt; | X|<span style='font-weight: bold;'> 458.09825</span> | 93.76 | 0.002914 | 0.2729 | 0.8401 |
+#&gt; |.....................| 8.729 | 2.330 | 1.280 | 0.6851 |
+#&gt; |.....................| 0.7430 | 1.518 | 1.299 | 1.302 |
+#&gt; |<span style='font-weight: bold;'> 73</span>| 458.09793 | 0.9981 | -1.438 | -0.9013 | -0.8695 |
+#&gt; |.....................| -0.7815 | -0.5202 | -0.7349 | -0.9686 |
+#&gt; |.....................| -1.026 | -0.5909 | -0.6812 | -0.7117 |
+#&gt; | U| 458.09793 | 93.82 | -5.838 | -0.9801 | -0.1741 |
+#&gt; |.....................| 2.168 | 2.331 | 1.279 | 0.6840 |
+#&gt; |.....................| 0.7428 | 1.518 | 1.299 | 1.304 |
+#&gt; | X|<span style='font-weight: bold;'> 458.09793</span> | 93.82 | 0.002913 | 0.2729 | 0.8402 |
+#&gt; |.....................| 8.737 | 2.331 | 1.279 | 0.6840 |
+#&gt; |.....................| 0.7428 | 1.518 | 1.299 | 1.304 |
+#&gt; | F| Forward Diff. | 10.76 | 0.2116 | 0.1923 | -0.1162 |
+#&gt; |.....................| -0.5255 | -0.5796 | 0.3777 | 1.210 |
+#&gt; |.....................| -1.409 | 0.2855 | 0.1875 | -0.3085 |
+#&gt; |<span style='font-weight: bold;'> 74</span>| 458.08987 | 0.9971 | -1.438 | -0.9013 | -0.8695 |
+#&gt; |.....................| -0.7808 | -0.5187 | -0.7369 | -0.9692 |
+#&gt; |.....................| -1.026 | -0.5907 | -0.6832 | -0.7095 |
+#&gt; | U| 458.08987 | 93.72 | -5.838 | -0.9802 | -0.1741 |
+#&gt; |.....................| 2.168 | 2.332 | 1.278 | 0.6836 |
+#&gt; |.....................| 0.7427 | 1.518 | 1.297 | 1.306 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08987</span> | 93.72 | 0.002914 | 0.2729 | 0.8402 |
+#&gt; |.....................| 8.743 | 2.332 | 1.278 | 0.6836 |
+#&gt; |.....................| 0.7427 | 1.518 | 1.297 | 1.306 |
+#&gt; | F| Forward Diff. | -2.512 | 0.2078 | 0.1434 | -0.1372 |
+#&gt; |.....................| -0.5667 | -0.8061 | 0.1467 | 1.033 |
+#&gt; |.....................| 1.202 | -0.4065 | 0.09417 | -0.1935 |
+#&gt; |<span style='font-weight: bold;'> 75</span>| 458.08564 | 0.9973 | -1.438 | -0.9016 | -0.8695 |
+#&gt; |.....................| -0.7801 | -0.5170 | -0.7384 | -0.9704 |
+#&gt; |.....................| -1.026 | -0.5898 | -0.6859 | -0.7082 |
+#&gt; | U| 458.08564 | 93.74 | -5.838 | -0.9804 | -0.1741 |
+#&gt; |.....................| 2.169 | 2.334 | 1.277 | 0.6827 |
+#&gt; |.....................| 0.7424 | 1.519 | 1.294 | 1.308 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08564</span> | 93.74 | 0.002914 | 0.2728 | 0.8402 |
+#&gt; |.....................| 8.749 | 2.334 | 1.277 | 0.6827 |
+#&gt; |.....................| 0.7424 | 1.519 | 1.294 | 1.308 |
+#&gt; |<span style='font-weight: bold;'> 76</span>| 458.08078 | 0.9972 | -1.438 | -0.9021 | -0.8695 |
+#&gt; |.....................| -0.7788 | -0.5136 | -0.7416 | -0.9727 |
+#&gt; |.....................| -1.027 | -0.5879 | -0.6916 | -0.7053 |
+#&gt; | U| 458.08078 | 93.73 | -5.838 | -0.9809 | -0.1742 |
+#&gt; |.....................| 2.170 | 2.338 | 1.275 | 0.6809 |
+#&gt; |.....................| 0.7420 | 1.522 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08078</span> | 93.73 | 0.002915 | 0.2727 | 0.8402 |
+#&gt; |.....................| 8.761 | 2.338 | 1.275 | 0.6809 |
+#&gt; |.....................| 0.7420 | 1.522 | 1.288 | 1.311 |
+#&gt; | F| Forward Diff. | -0.8456 | 0.2109 | 0.1052 | -0.1453 |
+#&gt; |.....................| -0.5381 | -0.2225 | -0.1274 | 0.8336 |
+#&gt; |.....................| -0.2653 | 0.4698 | -0.4321 | 0.07917 |
+#&gt; |<span style='font-weight: bold;'> 77</span>| 458.08109 | 0.9983 | -1.445 | -0.9066 | -0.8702 |
+#&gt; |.....................| -0.7727 | -0.5143 | -0.7362 | -0.9770 |
+#&gt; |.....................| -1.027 | -0.5885 | -0.6915 | -0.7058 |
+#&gt; | U| 458.08109 | 93.84 | -5.845 | -0.9853 | -0.1748 |
+#&gt; |.....................| 2.176 | 2.337 | 1.279 | 0.6777 |
+#&gt; |.....................| 0.7418 | 1.521 | 1.288 | 1.310 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08109</span> | 93.84 | 0.002894 | 0.2718 | 0.8396 |
+#&gt; |.....................| 8.815 | 2.337 | 1.279 | 0.6777 |
+#&gt; |.....................| 0.7418 | 1.521 | 1.288 | 1.310 |
+#&gt; |<span style='font-weight: bold;'> 78</span>| 458.08775 | 0.9985 | -1.441 | -0.9040 | -0.8696 |
+#&gt; |.....................| -0.7757 | -0.5136 | -0.7393 | -0.9753 |
+#&gt; |.....................| -1.026 | -0.5887 | -0.6911 | -0.7056 |
+#&gt; | U| 458.08775 | 93.86 | -5.841 | -0.9828 | -0.1743 |
+#&gt; |.....................| 2.173 | 2.338 | 1.277 | 0.6789 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08775</span> | 93.86 | 0.002906 | 0.2723 | 0.8401 |
+#&gt; |.....................| 8.788 | 2.338 | 1.277 | 0.6789 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 79</span>| 458.08407 | 0.9980 | -1.438 | -0.9022 | -0.8694 |
+#&gt; |.....................| -0.7783 | -0.5133 | -0.7415 | -0.9736 |
+#&gt; |.....................| -1.026 | -0.5884 | -0.6912 | -0.7054 |
+#&gt; | U| 458.08407 | 93.81 | -5.838 | -0.9810 | -0.1740 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6802 |
+#&gt; |.....................| 0.7422 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08407</span> | 93.81 | 0.002915 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.766 | 2.338 | 1.275 | 0.6802 |
+#&gt; |.....................| 0.7422 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 80</span>| 458.08069 | 0.9973 | -1.438 | -0.9021 | -0.8695 |
+#&gt; |.....................| -0.7787 | -0.5135 | -0.7416 | -0.9729 |
+#&gt; |.....................| -1.026 | -0.5880 | -0.6915 | -0.7053 |
+#&gt; | U| 458.08069 | 93.75 | -5.838 | -0.9809 | -0.1741 |
+#&gt; |.....................| 2.170 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7420 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08069</span> | 93.75 | 0.002915 | 0.2727 | 0.8402 |
+#&gt; |.....................| 8.762 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7420 | 1.521 | 1.288 | 1.311 |
+#&gt; | F| Forward Diff. | 1.424 | 0.2112 | 0.1114 | -0.1426 |
+#&gt; |.....................| -0.5267 | -0.3290 | -0.02249 | 0.9218 |
+#&gt; |.....................| -1.516 | 0.4273 | -0.4325 | 0.09748 |
+#&gt; |<span style='font-weight: bold;'> 81</span>| 458.08076 | 0.9972 | -1.438 | -0.9021 | -0.8695 |
+#&gt; |.....................| -0.7786 | -0.5134 | -0.7416 | -0.9730 |
+#&gt; |.....................| -1.026 | -0.5880 | -0.6914 | -0.7055 |
+#&gt; | U| 458.08076 | 93.74 | -5.838 | -0.9810 | -0.1741 |
+#&gt; |.....................| 2.170 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08076</span> | 93.74 | 0.002915 | 0.2727 | 0.8402 |
+#&gt; |.....................| 8.763 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 82</span>| 458.08078 | 0.9973 | -1.438 | -0.9021 | -0.8695 |
+#&gt; |.....................| -0.7787 | -0.5135 | -0.7416 | -0.9730 |
+#&gt; |.....................| -1.026 | -0.5880 | -0.6915 | -0.7053 |
+#&gt; | U| 458.08078 | 93.74 | -5.838 | -0.9809 | -0.1741 |
+#&gt; |.....................| 2.170 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08078</span> | 93.74 | 0.002915 | 0.2727 | 0.8402 |
+#&gt; |.....................| 8.762 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 83</span>| 458.08068 | 0.9973 | -1.438 | -0.9021 | -0.8695 |
+#&gt; |.....................| -0.7787 | -0.5135 | -0.7416 | -0.9729 |
+#&gt; |.....................| -1.026 | -0.5880 | -0.6915 | -0.7053 |
+#&gt; | U| 458.08068 | 93.75 | -5.838 | -0.9809 | -0.1741 |
+#&gt; |.....................| 2.170 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7420 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08068</span> | 93.75 | 0.002915 | 0.2727 | 0.8402 |
+#&gt; |.....................| 8.762 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7420 | 1.521 | 1.288 | 1.311 |
+#&gt; | C| Central Diff. | 0.7458 | 0.2086 | 0.07146 | -0.1568 |
+#&gt; |.....................| -0.5453 | -0.1723 | 0.1066 | 0.6006 |
+#&gt; |.....................| -0.05957 | 0.1717 | -0.3314 | 0.06442 |
+#&gt; |<span style='font-weight: bold;'> 84</span>| 458.08065 | 0.9973 | -1.438 | -0.9021 | -0.8695 |
+#&gt; |.....................| -0.7787 | -0.5135 | -0.7416 | -0.9729 |
+#&gt; |.....................| -1.026 | -0.5880 | -0.6915 | -0.7053 |
+#&gt; | U| 458.08065 | 93.74 | -5.838 | -0.9809 | -0.1741 |
+#&gt; |.....................| 2.170 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7420 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08065</span> | 93.74 | 0.002915 | 0.2727 | 0.8402 |
+#&gt; |.....................| 8.762 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7420 | 1.521 | 1.288 | 1.311 |
+#&gt; | C| Central Diff. | 0.5271 | 0.2085 | 0.07055 | -0.1570 |
+#&gt; |.....................| -0.5454 | -0.3138 | 0.09492 | 0.7765 |
+#&gt; |.....................| 1.192 | 0.4934 | -0.3382 | 0.1071 |
+#&gt; |<span style='font-weight: bold;'> 85</span>| 458.08062 | 0.9973 | -1.438 | -0.9021 | -0.8695 |
+#&gt; |.....................| -0.7786 | -0.5135 | -0.7416 | -0.9730 |
+#&gt; |.....................| -1.026 | -0.5880 | -0.6915 | -0.7054 |
+#&gt; | U| 458.08062 | 93.74 | -5.838 | -0.9809 | -0.1741 |
+#&gt; |.....................| 2.170 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7420 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08062</span> | 93.74 | 0.002915 | 0.2727 | 0.8402 |
+#&gt; |.....................| 8.762 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7420 | 1.521 | 1.288 | 1.311 |
+#&gt; | C| Central Diff. | 0.1077 | 0.2083 | 0.06880 | -0.1572 |
+#&gt; |.....................| -0.5469 | -0.1727 | 0.1219 | 0.9565 |
+#&gt; |.....................| -1.457 | 0.5128 | -0.3399 | 0.1022 |
+#&gt; |<span style='font-weight: bold;'> 86</span>| 458.08061 | 0.9972 | -1.438 | -0.9021 | -0.8695 |
+#&gt; |.....................| -0.7786 | -0.5135 | -0.7416 | -0.9730 |
+#&gt; |.....................| -1.026 | -0.5881 | -0.6914 | -0.7054 |
+#&gt; | U| 458.08061 | 93.74 | -5.838 | -0.9809 | -0.1741 |
+#&gt; |.....................| 2.170 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08061</span> | 93.74 | 0.002915 | 0.2727 | 0.8402 |
+#&gt; |.....................| 8.763 | 2.338 | 1.275 | 0.6807 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; | C| Central Diff. | -0.6930 | 0.2078 | 0.06712 | -0.1577 |
+#&gt; |.....................| -0.5484 | -0.1767 | 0.1148 | 0.9863 |
+#&gt; |.....................| -0.2038 | 0.5855 | -0.3296 | 0.1002 |
+#&gt; |<span style='font-weight: bold;'> 87</span>| 458.08058 | 0.9972 | -1.438 | -0.9021 | -0.8695 |
+#&gt; |.....................| -0.7786 | -0.5135 | -0.7416 | -0.9731 |
+#&gt; |.....................| -1.026 | -0.5881 | -0.6914 | -0.7054 |
+#&gt; | U| 458.08058 | 93.74 | -5.838 | -0.9809 | -0.1741 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6806 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08058</span> | 93.74 | 0.002915 | 0.2727 | 0.8402 |
+#&gt; |.....................| 8.763 | 2.338 | 1.275 | 0.6806 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; | C| Central Diff. | -0.3701 | 0.2079 | 0.06808 | -0.1573 |
+#&gt; |.....................| -0.5470 | -0.1729 | 0.005725 | 0.9526 |
+#&gt; |.....................| -1.465 | 0.5101 | -0.1466 | -0.02770 |
+#&gt; |<span style='font-weight: bold;'> 88</span>| 458.08052 | 0.9973 | -1.438 | -0.9021 | -0.8695 |
+#&gt; |.....................| -0.7785 | -0.5135 | -0.7416 | -0.9731 |
+#&gt; |.....................| -1.026 | -0.5881 | -0.6914 | -0.7053 |
+#&gt; | U| 458.08052 | 93.74 | -5.838 | -0.9809 | -0.1741 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6806 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08052</span> | 93.74 | 0.002915 | 0.2727 | 0.8402 |
+#&gt; |.....................| 8.763 | 2.338 | 1.275 | 0.6806 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; | C| Central Diff. | 0.2062 | 0.2080 | 0.06837 | -0.1566 |
+#&gt; |.....................| -0.5439 | -0.1704 | 0.09858 | 0.5928 |
+#&gt; |.....................| -0.05984 | 0.5131 | -0.3447 | 0.06046 |
+#&gt; |<span style='font-weight: bold;'> 89</span>| 458.08047 | 0.9972 | -1.438 | -0.9021 | -0.8694 |
+#&gt; |.....................| -0.7785 | -0.5134 | -0.7416 | -0.9732 |
+#&gt; |.....................| -1.026 | -0.5882 | -0.6914 | -0.7054 |
+#&gt; | U| 458.08047 | 93.74 | -5.838 | -0.9809 | -0.1741 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6805 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08047</span> | 93.74 | 0.002915 | 0.2727 | 0.8402 |
+#&gt; |.....................| 8.764 | 2.338 | 1.275 | 0.6805 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; | C| Central Diff. | -0.06148 | 0.2077 | 0.06828 | -0.1566 |
+#&gt; |.....................| -0.5434 | -0.1748 | 0.1045 | 0.7316 |
+#&gt; |.....................| -0.7607 | 0.4924 | -0.3350 | 0.1046 |
+#&gt; |<span style='font-weight: bold;'> 90</span>| 458.08041 | 0.9972 | -1.438 | -0.9021 | -0.8694 |
+#&gt; |.....................| -0.7784 | -0.5134 | -0.7417 | -0.9733 |
+#&gt; |.....................| -1.026 | -0.5883 | -0.6913 | -0.7054 |
+#&gt; | U| 458.08041 | 93.74 | -5.838 | -0.9810 | -0.1740 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6804 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08041</span> | 93.74 | 0.002915 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.765 | 2.338 | 1.275 | 0.6804 |
+#&gt; |.....................| 0.7421 | 1.521 | 1.288 | 1.311 |
+#&gt; | C| Central Diff. | -0.5076 | 0.2073 | 0.06528 | -0.1564 |
+#&gt; |.....................| -0.5454 | -0.1802 | 0.1061 | 0.9740 |
+#&gt; |.....................| -0.1992 | 0.5430 | -0.2714 | 0.1031 |
+#&gt; |<span style='font-weight: bold;'> 91</span>| 458.08026 | 0.9972 | -1.438 | -0.9022 | -0.8694 |
+#&gt; |.....................| -0.7782 | -0.5133 | -0.7417 | -0.9736 |
+#&gt; |.....................| -1.026 | -0.5884 | -0.6912 | -0.7055 |
+#&gt; | U| 458.08026 | 93.74 | -5.838 | -0.9810 | -0.1740 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6802 |
+#&gt; |.....................| 0.7422 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08026</span> | 93.74 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.766 | 2.338 | 1.275 | 0.6802 |
+#&gt; |.....................| 0.7422 | 1.521 | 1.288 | 1.311 |
+#&gt; | C| Central Diff. | -0.3779 | 0.2092 | 0.07455 | -0.1547 |
+#&gt; |.....................| -0.5349 | 0.4172 | -0.5362 | 0.7903 |
+#&gt; |.....................| -1.451 | 0.5182 | -0.2163 | -0.4361 |
+#&gt; |<span style='font-weight: bold;'> 92</span>| 458.08039 | 0.9975 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7778 | -0.5133 | -0.7416 | -0.9742 |
+#&gt; |.....................| -1.026 | -0.5887 | -0.6910 | -0.7056 |
+#&gt; | U| 458.08039 | 93.76 | -5.838 | -0.9811 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6798 |
+#&gt; |.....................| 0.7424 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08039</span> | 93.76 | 0.002914 | 0.2727 | 0.8404 |
+#&gt; |.....................| 8.769 | 2.338 | 1.275 | 0.6798 |
+#&gt; |.....................| 0.7424 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 93</span>| 458.08025 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08025 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08025</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | C| Central Diff. | 1.019 | 0.2066 | 0.06601 | -0.1530 |
+#&gt; |.....................| -0.5270 | -0.1637 | 0.1163 | 0.9184 |
+#&gt; |.....................| -1.439 | 0.4715 | -0.2217 | 0.03756 |
+#&gt; |<span style='font-weight: bold;'> 94</span>| 458.08029 | 0.9972 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08029 | 93.74 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7424 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08029</span> | 93.74 | 0.002914 | 0.2727 | 0.8404 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7424 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 95</span>| 458.08025 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08025 | 93.74 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7424 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08025</span> | 93.74 | 0.002914 | 0.2727 | 0.8404 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7424 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 96</span>| 458.08029 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08029 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08029</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 97</span>| 458.08024 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08024 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08024</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | C| Central Diff. | 0.9275 | 0.2065 | 0.06562 | -0.1530 |
+#&gt; |.....................| -0.5278 | -0.1682 | 0.1168 | 0.9523 |
+#&gt; |.....................| -0.1838 | 0.4888 | -0.3154 | 0.09539 |
+#&gt; |<span style='font-weight: bold;'> 98</span>| 458.08024 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08024 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08024</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | C| Central Diff. | 0.8715 | 0.2065 | 0.06540 | -0.1531 |
+#&gt; |.....................| -0.5308 | -0.07756 | 0.1164 | 0.5595 |
+#&gt; |.....................| -0.04465 | -0.2577 | -0.3240 | 0.1066 |
+#&gt; |<span style='font-weight: bold;'> 99</span>| 458.08023 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08023 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08023</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 100</span>| 458.08013 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08013 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08013</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | C| Central Diff. | 0.7255 | 0.2064 | 0.06482 | -0.1531 |
+#&gt; |.....................| -0.5283 | -0.1617 | 0.1081 | 0.9192 |
+#&gt; |.....................| -1.441 | 0.4906 | -0.2900 | 0.1161 |
+#&gt; |<span style='font-weight: bold;'> 101</span>| 458.08017 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5885 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08017 | 93.74 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08017</span> | 93.74 | 0.002914 | 0.2727 | 0.8404 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 102</span>| 458.08021 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08021 | 93.74 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08021</span> | 93.74 | 0.002914 | 0.2727 | 0.8404 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 103</span>| 458.08029 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08029 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08029</span> | 93.75 | 0.002914 | 0.2727 | 0.8404 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 104</span>| 458.08032 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08032 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08032</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 105</span>| 458.08033 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08033 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08033</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 106</span>| 458.08032 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08032 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08032</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 107</span>| 458.08032 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08032 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08032</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 108</span>| 458.08032 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08032 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08032</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 109</span>| 458.08032 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08032 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08032</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 110</span>| 458.08032 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08032 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08032</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 111</span>| 458.08032 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08032 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08032</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; |<span style='font-weight: bold;'> 112</span>| 458.08032 | 0.9973 | -1.438 | -0.9022 | -0.8693 |
+#&gt; |.....................| -0.7780 | -0.5133 | -0.7416 | -0.9739 |
+#&gt; |.....................| -1.026 | -0.5886 | -0.6911 | -0.7055 |
+#&gt; | U| 458.08032 | 93.75 | -5.838 | -0.9810 | -0.1739 |
+#&gt; |.....................| 2.171 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; | X|<span style='font-weight: bold;'> 458.08032</span> | 93.75 | 0.002914 | 0.2727 | 0.8403 |
+#&gt; |.....................| 8.768 | 2.338 | 1.275 | 0.6800 |
+#&gt; |.....................| 0.7423 | 1.521 | 1.288 | 1.311 |
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; 1: 93.0952 -5.6337 -1.8988 -4.1294 -1.2035 0.1038 5.2152 1.6150 1.0450 2.6377 0.5035 0.5225 20.0768 11.4566
+#&gt; 2: 93.1464 -5.6948 -1.8729 -4.2029 -1.1302 0.1295 5.5478 1.5342 0.9927 2.5059 0.4783 0.5147 11.2089 8.1577
+#&gt; 3: 93.1719 -5.7029 -1.8810 -4.2024 -1.0686 0.1063 5.2764 1.5217 0.9431 2.3806 0.4544 0.5587 9.3753 5.7166
+#&gt; 4: 92.8647 -5.8139 -1.8979 -4.1992 -1.0168 0.1122 5.4892 1.7893 0.8960 2.2615 0.4317 0.5307 9.4134 4.7166
+#&gt; 5: 92.7759 -5.8627 -1.8873 -4.1402 -1.0347 0.1243 6.2028 2.1819 0.8795 2.1485 0.4101 0.5042 9.5964 4.7340
+#&gt; 6: 92.8080 -5.8954 -1.9186 -4.1772 -0.9727 0.1311 5.8926 2.0728 0.8633 2.0410 0.3896 0.4790 8.7334 4.1957
+#&gt; 7: 92.9042 -5.9034 -1.9603 -4.1854 -0.9717 0.1630 5.5980 2.2068 0.8672 1.9390 0.3701 0.4550 8.7213 3.3409
+#&gt; 8: 92.9302 -5.8545 -1.9240 -4.2343 -0.9748 0.1686 5.3181 2.3934 0.8239 1.9533 0.3516 0.4323 7.6950 2.9174
+#&gt; 9: 92.9518 -5.5561 -1.9734 -4.1856 -0.9322 0.2129 5.0522 2.2738 0.7830 2.0138 0.3340 0.4689 7.9230 2.1930
+#&gt; 10: 93.0672 -5.5564 -1.9633 -4.1456 -0.9343 0.2049 4.7996 2.1601 0.7438 2.0517 0.3173 0.4771 8.0644 2.0682
+#&gt; 11: 92.6849 -5.6187 -1.9773 -4.1793 -0.9342 0.2290 4.5596 2.0521 0.7123 2.0774 0.3015 0.5052 8.2355 1.9349
+#&gt; 12: 92.6425 -5.6989 -2.0144 -4.1395 -0.9342 0.2669 4.3316 2.2634 0.7142 2.3008 0.2864 0.5728 7.5188 1.8028
+#&gt; 13: 92.2996 -5.6700 -1.9885 -4.0443 -0.9202 0.2750 4.5787 2.1608 0.7019 2.7515 0.2721 0.6641 7.0744 1.8958
+#&gt; 14: 92.2457 -5.5825 -2.0314 -3.9788 -0.9142 0.2908 6.3744 2.0527 0.7018 3.2703 0.2585 0.6387 6.9499 1.8421
+#&gt; 15: 92.1741 -5.5333 -2.0318 -3.9664 -0.9059 0.2894 6.0557 1.9501 0.7179 3.2869 0.2455 0.6068 7.0951 1.6824
+#&gt; 16: 92.5772 -5.4982 -2.0352 -3.9471 -0.9063 0.2930 5.7529 1.8526 0.7244 3.6994 0.2333 0.5764 7.2138 1.7042
+#&gt; 17: 92.7024 -5.4902 -2.0438 -4.0347 -0.9079 0.2959 5.4652 1.7600 0.7393 3.5144 0.2216 0.5765 7.0258 1.6793
+#&gt; 18: 92.0240 -5.5539 -2.0520 -3.9601 -0.9079 0.2884 6.5142 1.9232 0.7320 3.9052 0.2157 0.5521 7.2568 1.6151
+#&gt; 19: 92.6532 -5.6325 -2.0456 -3.9091 -0.9179 0.3047 6.5743 2.3363 0.7405 4.5825 0.2049 0.5425 7.6201 1.6565
+#&gt; 20: 92.3488 -5.6617 -2.0554 -3.9501 -0.9216 0.3056 6.7080 2.7562 0.7218 4.7569 0.2083 0.5432 7.3481 1.8059
+#&gt; 21: 92.5679 -5.7469 -2.0614 -4.0829 -0.8890 0.3158 6.6510 3.1993 0.7136 4.5191 0.1978 0.5281 7.3723 1.7461
+#&gt; 22: 92.4785 -5.9527 -2.0657 -4.0580 -0.8971 0.3084 6.3184 4.1791 0.7144 4.2931 0.1929 0.5157 7.1922 1.6984
+#&gt; 23: 92.5594 -5.8590 -2.0723 -4.0580 -0.9020 0.2952 6.0025 3.9702 0.7335 4.0784 0.1833 0.5129 7.7560 1.6302
+#&gt; 24: 92.6152 -5.9488 -2.0658 -4.1187 -0.9050 0.2997 5.7024 4.5381 0.7215 3.8745 0.1875 0.5129 7.6182 1.6362
+#&gt; 25: 92.4658 -5.8715 -2.0791 -4.0949 -0.8922 0.3074 6.1428 4.3112 0.7353 3.6808 0.1896 0.5157 7.2703 1.5633
+#&gt; 26: 92.2507 -5.9797 -2.0707 -4.0834 -0.8868 0.3266 6.4124 4.7125 0.7334 3.5368 0.1851 0.5217 7.3085 1.5828
+#&gt; 27: 92.7055 -5.9792 -2.0779 -4.2066 -0.8887 0.2993 6.0918 4.8624 0.7659 3.7456 0.1841 0.4956 7.3534 1.5240
+#&gt; 28: 92.3971 -6.0253 -2.0648 -4.1406 -0.9042 0.2897 5.7872 4.7690 0.7449 3.5583 0.1823 0.4709 7.2479 1.5008
+#&gt; 29: 92.4045 -5.9045 -2.0730 -4.1407 -0.8969 0.3103 5.6683 4.5306 0.7349 3.3816 0.1849 0.5054 7.1719 1.6004
+#&gt; 30: 92.1714 -5.8598 -2.0645 -4.0913 -0.8964 0.2743 5.3849 4.3040 0.7538 3.3509 0.1757 0.4801 7.3739 1.5736
+#&gt; 31: 91.9134 -5.7867 -2.0367 -4.0563 -0.8957 0.2280 5.1156 4.0888 0.7299 3.3452 0.1749 0.4673 6.5991 1.5909
+#&gt; 32: 92.3743 -5.9967 -2.0255 -4.0668 -0.9025 0.2247 4.8599 4.6666 0.7256 3.3271 0.1714 0.5008 6.4693 1.5458
+#&gt; 33: 92.5239 -5.9301 -2.0387 -4.0365 -0.9033 0.2558 4.6169 4.4333 0.7492 3.6109 0.1688 0.5424 6.7730 1.5771
+#&gt; 34: 92.6892 -6.1135 -2.0587 -4.0280 -0.8993 0.2430 4.3860 6.0227 0.7798 3.5725 0.1672 0.5153 6.8110 1.5417
+#&gt; 35: 92.7276 -6.0815 -2.0629 -4.0833 -0.8943 0.2375 4.6811 5.7216 0.8010 3.3939 0.1715 0.4895 6.6812 1.5478
+#&gt; 36: 92.7316 -6.0691 -2.0882 -4.0626 -0.9030 0.2405 4.4614 5.4355 0.8355 3.2242 0.1789 0.4650 6.8443 1.4806
+#&gt; 37: 92.6685 -5.7905 -2.0666 -4.0663 -0.8998 0.2784 5.1916 5.1637 0.7937 3.0641 0.1823 0.4418 6.5421 1.6284
+#&gt; 38: 93.0325 -5.6829 -2.0674 -4.0772 -0.9167 0.2499 4.9320 4.9055 0.7768 3.1213 0.1887 0.4290 6.8220 1.5224
+#&gt; 39: 93.0378 -5.5554 -2.0743 -4.0772 -0.9189 0.2361 4.6854 4.6603 0.7822 3.1213 0.1813 0.4242 7.1137 1.5021
+#&gt; 40: 93.3297 -5.6270 -2.0591 -4.1200 -0.9167 0.2035 4.4511 4.4272 0.8128 2.9653 0.1829 0.4030 7.3894 1.5064
+#&gt; 41: 93.3408 -5.5437 -2.0344 -4.1042 -0.9078 0.1744 4.2286 4.2059 0.8228 2.8170 0.1881 0.3829 7.2734 1.5519
+#&gt; 42: 93.1691 -5.4436 -2.0551 -4.1048 -0.8984 0.1732 4.0172 3.9956 0.7816 2.6762 0.1853 0.3637 6.9712 1.5332
+#&gt; 43: 93.2443 -5.5247 -2.0722 -4.0980 -0.8992 0.1756 3.8163 3.7958 0.7781 2.7200 0.1956 0.3455 6.7012 1.5344
+#&gt; 44: 92.9509 -5.5020 -2.0495 -4.0961 -0.8964 0.1777 3.6255 3.6060 0.7555 2.8172 0.1994 0.3283 6.2180 1.6137
+#&gt; 45: 92.8898 -5.4913 -2.0462 -4.1079 -0.9003 0.1701 4.1177 3.4257 0.7491 2.8491 0.1989 0.3372 6.2876 1.6205
+#&gt; 46: 92.6044 -5.6429 -2.0499 -4.1079 -0.9069 0.1999 4.2103 3.2544 0.7657 2.8491 0.1921 0.3532 6.2261 1.6435
+#&gt; 47: 92.7740 -5.6128 -2.0804 -4.1186 -0.8976 0.1864 5.2188 3.0917 0.7381 2.9036 0.2030 0.3391 6.6803 1.6177
+#&gt; 48: 92.4691 -5.6645 -2.0600 -4.1288 -0.8796 0.1913 6.2045 2.9371 0.7774 2.9223 0.1966 0.3396 6.7169 1.6215
+#&gt; 49: 92.4128 -5.7079 -2.0802 -4.1166 -0.8798 0.1741 5.8943 3.1446 0.7854 2.8715 0.1935 0.3369 6.9151 1.4834
+#&gt; 50: 91.8883 -5.7713 -2.0932 -4.0899 -0.8886 0.1758 5.5996 3.5478 0.8033 2.8192 0.2014 0.3201 7.0775 1.4635
+#&gt; 51: 92.1187 -5.7306 -2.0903 -4.0878 -0.8923 0.2024 5.3196 3.6534 0.7823 2.7891 0.1969 0.3140 6.9879 1.5430
+#&gt; 52: 92.3209 -5.7897 -2.0903 -4.1622 -0.9072 0.2261 5.3781 3.4707 0.8001 3.0801 0.2063 0.3088 6.7047 1.4499
+#&gt; 53: 92.4318 -5.6954 -2.0950 -4.1866 -0.9082 0.2131 7.1200 3.2972 0.7711 3.3398 0.2034 0.3186 6.6152 1.5123
+#&gt; 54: 92.5380 -5.6975 -2.0782 -4.2394 -0.8976 0.2118 6.7640 3.1323 0.7744 3.5385 0.2175 0.3296 6.4402 1.5403
+#&gt; 55: 92.7213 -5.6663 -2.0427 -4.3288 -0.9028 0.2032 8.1796 2.9757 0.7748 4.4495 0.2142 0.3316 6.4111 1.5369
+#&gt; 56: 92.7219 -5.6865 -2.0557 -4.3434 -0.9084 0.2021 7.7706 2.8269 0.7989 4.6691 0.2174 0.3433 6.4256 1.4639
+#&gt; 57: 92.8932 -5.5736 -2.0497 -4.3955 -0.9216 0.1694 7.3821 2.6856 0.8205 4.9791 0.2142 0.3500 6.5378 1.5406
+#&gt; 58: 92.9219 -5.5789 -2.0547 -4.3094 -0.9183 0.1838 7.0130 2.5513 0.7958 4.7302 0.2193 0.3495 6.2662 1.4940
+#&gt; 59: 93.0432 -5.6201 -2.0395 -4.2527 -0.9199 0.2302 6.6623 2.4237 0.8241 4.4937 0.2241 0.3321 5.8693 1.6176
+#&gt; 60: 92.9724 -5.5971 -2.0537 -4.3509 -0.9219 0.2118 7.5905 2.3026 0.8418 4.4546 0.2177 0.3155 5.5960 1.5040
+#&gt; 61: 93.1235 -5.6332 -2.0671 -4.3572 -0.9219 0.1917 7.2521 2.3037 0.8527 4.5707 0.2230 0.2997 5.8136 1.4516
+#&gt; 62: 93.5431 -5.6373 -2.0371 -4.3384 -0.9276 0.1997 8.5187 2.3895 0.8575 4.4378 0.2258 0.3041 5.5746 1.4572
+#&gt; 63: 93.5009 -5.5634 -2.0224 -4.3560 -0.9339 0.2167 8.0927 2.2700 0.8462 4.4449 0.2266 0.3162 5.4922 1.5233
+#&gt; 64: 93.7369 -5.6032 -2.0362 -4.2323 -0.9355 0.2159 9.6684 2.1949 0.8514 4.2227 0.2300 0.3318 5.7597 1.4866
+#&gt; 65: 93.5021 -5.5769 -2.0311 -4.3204 -0.9375 0.1927 9.5537 2.0852 0.8559 4.6151 0.2208 0.3550 5.6975 1.5031
+#&gt; 66: 93.4211 -5.7184 -2.0384 -4.3041 -0.9228 0.2121 9.0760 2.6390 0.8430 4.3843 0.2098 0.3755 5.8990 1.5133
+#&gt; 67: 93.3435 -5.6579 -2.0456 -4.2222 -0.9183 0.1825 8.6222 2.5071 0.8719 4.1651 0.2152 0.3567 5.9004 1.4874
+#&gt; 68: 93.3914 -5.6554 -2.0420 -4.1618 -0.9303 0.1714 8.1911 2.3817 0.8856 3.9569 0.2272 0.3388 6.1793 1.4917
+#&gt; 69: 93.5112 -5.6834 -2.0349 -4.1591 -0.9331 0.1759 8.9900 2.5191 0.9184 3.7590 0.2236 0.3219 6.1618 1.4697
+#&gt; 70: 93.4289 -5.6576 -2.0273 -4.1763 -0.9399 0.1738 8.5405 2.4302 0.8725 3.5711 0.2149 0.3288 6.5324 1.5410
+#&gt; 71: 93.2936 -5.6699 -2.0256 -4.1405 -0.9370 0.1922 8.1134 2.3831 0.8289 3.3925 0.2080 0.3548 5.9794 1.5904
+#&gt; 72: 92.9152 -5.6742 -2.0382 -4.1523 -0.9411 0.1991 7.7078 2.4322 0.7875 3.2916 0.2007 0.3456 6.0999 1.6022
+#&gt; 73: 92.8129 -5.8099 -2.0372 -4.1735 -0.9377 0.1605 8.2752 2.8931 0.7737 3.4015 0.2057 0.3283 6.0140 1.5472
+#&gt; 74: 92.7806 -5.7269 -2.0315 -4.1877 -0.9399 0.1675 8.4688 2.7484 0.7773 3.4620 0.2174 0.3249 5.8495 1.5779
+#&gt; 75: 92.9128 -5.8680 -2.0304 -4.1459 -0.9387 0.1567 8.0454 3.2365 0.7681 3.2935 0.2198 0.3187 5.8539 1.5815
+#&gt; 76: 92.8931 -5.8483 -2.0253 -4.1815 -0.9387 0.1540 9.6800 3.0747 0.8007 3.5838 0.2198 0.3291 5.9005 1.5053
+#&gt; 77: 92.7474 -5.7995 -2.0202 -4.1904 -0.9333 0.1724 10.0488 2.9210 0.7841 3.7255 0.2148 0.3465 5.9418 1.5569
+#&gt; 78: 92.8150 -5.9608 -2.0025 -4.1583 -0.9511 0.1566 9.5464 3.5249 0.7858 3.6988 0.2246 0.3292 5.7737 1.5904
+#&gt; 79: 92.6663 -6.0485 -2.0245 -4.1437 -0.9446 0.1786 9.0690 4.1252 0.7803 3.6526 0.2155 0.3335 5.9109 1.5521
+#&gt; 80: 92.5932 -6.1001 -2.0304 -4.1969 -0.9409 0.1424 8.6156 4.6478 0.8007 4.0379 0.2114 0.3168 6.1732 1.5544
+#&gt; 81: 92.6789 -6.3510 -2.0062 -4.2272 -0.9541 0.1360 8.3363 5.9861 0.7719 3.8800 0.2202 0.3010 5.6841 1.6317
+#&gt; 82: 92.9996 -6.5680 -2.0048 -4.1609 -0.9578 0.1367 10.6901 7.4391 0.7962 3.6860 0.2092 0.2859 5.7335 1.6391
+#&gt; 83: 93.1087 -6.5298 -1.9757 -4.1694 -0.9596 0.1323 10.5524 7.4660 0.8237 3.8009 0.2134 0.2716 5.9664 1.6316
+#&gt; 84: 93.1929 -6.5844 -2.0191 -4.2021 -0.9616 0.1384 10.0248 7.7313 0.8230 3.6109 0.2110 0.2580 5.7854 1.5609
+#&gt; 85: 92.9161 -6.4934 -2.0281 -4.2008 -0.9600 0.1107 9.5236 7.4269 0.8448 3.5630 0.2110 0.2451 5.6111 1.5333
+#&gt; 86: 92.9816 -6.5397 -2.0234 -4.1830 -0.9694 0.1111 9.1945 7.4382 0.8481 3.3849 0.2166 0.2329 5.8375 1.5263
+#&gt; 87: 93.0930 -6.5749 -2.0168 -4.1986 -0.9816 0.0926 8.7348 8.4431 0.8646 3.3032 0.2155 0.2212 5.7542 1.5736
+#&gt; 88: 93.0765 -6.4914 -2.0274 -4.2274 -0.9870 0.1148 8.4666 8.0209 0.8666 3.5292 0.2048 0.2102 5.8988 1.5329
+#&gt; 89: 92.8699 -6.6431 -2.0199 -4.2175 -0.9463 0.1011 8.4648 7.7973 0.8908 3.3980 0.1945 0.2102 5.6876 1.5177
+#&gt; 90: 92.8225 -6.6932 -2.0211 -4.2175 -0.9505 0.0887 10.1862 8.7787 0.8730 3.3980 0.1877 0.1997 5.9135 1.4821
+#&gt; 91: 92.7874 -6.7007 -2.0420 -4.2936 -0.9468 0.0927 11.2275 8.3397 0.8600 3.9490 0.1885 0.2147 6.1108 1.4315
+#&gt; 92: 93.2320 -6.8088 -2.0341 -4.2817 -0.9582 0.1270 12.4029 9.6204 0.8503 3.7516 0.1950 0.2070 5.9434 1.5251
+#&gt; 93: 93.8996 -6.5471 -2.0440 -4.2123 -0.9543 0.1140 11.7828 9.1394 0.8493 3.5640 0.1988 0.2017 6.1302 1.5568
+#&gt; 94: 93.4416 -6.4623 -2.0448 -4.2188 -0.9595 0.1174 12.1277 8.6824 0.8568 3.3858 0.1975 0.1938 5.9173 1.5204
+#&gt; 95: 93.2953 -6.1521 -2.0477 -4.2216 -0.9551 0.1152 11.5213 8.2483 0.8356 3.2165 0.1979 0.1855 5.8298 1.5357
+#&gt; 96: 92.9577 -6.0477 -2.0579 -4.2534 -0.9465 0.1284 10.9452 7.8359 0.8202 3.3357 0.1937 0.1917 5.8590 1.5738
+#&gt; 97: 92.8703 -6.1037 -2.0745 -4.1960 -0.9405 0.1417 10.4858 7.4441 0.8488 3.1690 0.1969 0.2016 5.7948 1.4759
+#&gt; 98: 92.9728 -6.3534 -2.0868 -4.2155 -0.9444 0.1069 9.9615 7.1788 0.8736 3.1913 0.1998 0.2114 5.6533 1.4322
+#&gt; 99: 93.4116 -6.1712 -2.0837 -4.2280 -0.9473 0.1197 9.4634 6.8198 0.8959 3.1806 0.1899 0.2167 5.9149 1.3768
+#&gt; 100: 93.2598 -6.1345 -2.0645 -4.2237 -0.9575 0.1099 8.9903 6.4788 0.9204 3.2429 0.1903 0.2058 5.7085 1.4133
+#&gt; 101: 93.3082 -6.1574 -2.0474 -4.2315 -0.9619 0.1161 9.0819 6.1549 0.8744 3.2049 0.1891 0.2278 5.6493 1.4894
+#&gt; 102: 93.5741 -6.2923 -2.0484 -4.2853 -0.9665 0.1325 10.4108 5.8522 0.8804 3.5370 0.2024 0.2324 5.6995 1.4594
+#&gt; 103: 92.9199 -6.1797 -2.0522 -4.2940 -0.9568 0.1289 9.8903 5.5596 0.8722 3.6682 0.1975 0.2398 5.5536 1.4510
+#&gt; 104: 93.1139 -6.1630 -2.0546 -4.2912 -0.9613 0.1115 9.3958 5.2816 0.8648 3.6673 0.2010 0.2278 5.5768 1.4812
+#&gt; 105: 93.4085 -6.0359 -2.0450 -4.2889 -0.9591 0.1258 8.9260 5.0175 0.8412 3.7286 0.1917 0.2171 5.6780 1.5203
+#&gt; 106: 93.3103 -6.1029 -2.0425 -4.2948 -0.9579 0.0934 8.4797 4.7667 0.8539 3.6947 0.1947 0.2234 5.7210 1.4760
+#&gt; 107: 93.6389 -5.9750 -2.0309 -4.2630 -0.9660 0.1110 8.0557 4.5283 0.8470 3.5100 0.2044 0.2299 5.6280 1.5525
+#&gt; 108: 93.8641 -5.8551 -2.0360 -4.2311 -0.9629 0.0900 7.6529 4.3019 0.8567 3.3345 0.2014 0.2302 5.7841 1.5978
+#&gt; 109: 93.6274 -6.0268 -2.0445 -4.3047 -0.9488 0.0979 7.2703 4.7807 0.8565 3.7665 0.1929 0.2271 5.7941 1.5580
+#&gt; 110: 93.6320 -5.8321 -2.0413 -4.2855 -0.9477 0.1143 6.9068 4.5417 0.8412 3.6165 0.1901 0.2199 5.8169 1.5477
+#&gt; 111: 93.6245 -5.8256 -2.0157 -4.2797 -0.9612 0.0940 6.5774 4.3146 0.8460 3.5782 0.1837 0.2182 5.6157 1.6424
+#&gt; 112: 93.8512 -5.9045 -2.0116 -4.2409 -0.9708 0.0883 6.2486 4.0989 0.8658 3.5059 0.1761 0.2073 5.8852 1.6073
+#&gt; 113: 93.7080 -5.9935 -2.0306 -4.1884 -0.9690 0.0740 5.9361 4.0088 0.9072 3.3400 0.1957 0.2169 6.3792 1.4770
+#&gt; 114: 93.8574 -5.9185 -2.0233 -4.2030 -0.9588 0.1137 5.6393 3.8084 0.9322 3.2878 0.1939 0.2098 5.8891 1.5325
+#&gt; 115: 93.7414 -5.8789 -2.0183 -4.2256 -0.9701 0.1105 5.6148 3.6180 0.9222 3.5507 0.1921 0.1993 5.6441 1.5458
+#&gt; 116: 93.4104 -5.9704 -2.0428 -4.2091 -0.9807 0.1099 5.3341 4.1157 0.9363 3.4004 0.1968 0.2134 5.7764 1.4617
+#&gt; 117: 93.5239 -5.9057 -2.0518 -4.2494 -0.9812 0.1127 6.8839 3.9099 0.9151 3.6604 0.1921 0.2095 5.4753 1.4249
+#&gt; 118: 93.7599 -5.9418 -2.0482 -4.2272 -0.9822 0.1094 6.8133 3.7144 0.9198 3.5160 0.1971 0.2039 5.6467 1.4116
+#&gt; 119: 93.6617 -6.0020 -2.0483 -4.2146 -0.9816 0.1003 6.4727 3.8251 0.9103 3.4716 0.1950 0.2109 5.8513 1.4268
+#&gt; 120: 93.5436 -5.9804 -2.0458 -4.1906 -0.9819 0.1065 6.1490 3.6756 0.9088 3.2980 0.1989 0.2123 5.8268 1.4689
+#&gt; 121: 93.4880 -5.9047 -2.0452 -4.1957 -0.9640 0.1349 5.8416 3.4918 0.8824 3.2437 0.1889 0.2017 5.7152 1.4382
+#&gt; 122: 93.7406 -5.9844 -2.0596 -4.2328 -0.9558 0.1563 5.5495 3.7606 0.8489 3.3043 0.1795 0.2015 5.5095 1.5112
+#&gt; 123: 93.6728 -6.0394 -2.0372 -4.2812 -0.9592 0.1507 5.2720 4.2004 0.8341 3.5274 0.1817 0.2008 5.6936 1.6011
+#&gt; 124: 93.9591 -6.0483 -2.0280 -4.2613 -0.9594 0.1463 5.3846 4.1913 0.8351 3.4341 0.1870 0.2193 5.5694 1.5684
+#&gt; 125: 94.0201 -5.9102 -2.0507 -4.2686 -0.9697 0.1455 5.1154 3.9818 0.8512 3.3475 0.1859 0.2165 5.6224 1.5643
+#&gt; 126: 93.8825 -5.8970 -2.0543 -4.2569 -0.9663 0.1493 4.9144 3.7827 0.8907 3.3030 0.1876 0.2180 5.7351 1.4722
+#&gt; 127: 93.9893 -5.8955 -2.0624 -4.2430 -0.9802 0.1476 7.2413 3.5935 0.8915 3.2740 0.1851 0.2110 5.7614 1.4305
+#&gt; 128: 94.1849 -5.9123 -2.0624 -4.2385 -0.9786 0.1523 7.9575 3.4139 0.9094 3.2656 0.1807 0.2198 5.7366 1.4264
+#&gt; 129: 94.0812 -6.0044 -2.0696 -4.3056 -0.9770 0.1693 8.7809 3.7526 0.9111 3.6172 0.1859 0.2255 5.8064 1.4718
+#&gt; 130: 93.6046 -6.1387 -2.0718 -4.3056 -0.9821 0.1477 8.3419 4.3029 0.9177 3.6172 0.1867 0.2143 5.8893 1.4447
+#&gt; 131: 93.5216 -6.1347 -2.0740 -4.3114 -0.9766 0.1288 8.2937 4.3407 0.9250 3.5298 0.1881 0.2293 5.8054 1.4219
+#&gt; 132: 93.6142 -6.2789 -2.0786 -4.3297 -0.9716 0.1288 8.3731 5.1225 0.9236 3.6683 0.1929 0.2295 5.8064 1.4194
+#&gt; 133: 93.4410 -5.9177 -2.0916 -4.3557 -0.9798 0.1066 7.9544 4.8663 0.9537 3.7076 0.1937 0.2279 5.9844 1.4297
+#&gt; 134: 93.4716 -5.9152 -2.0838 -4.3611 -0.9818 0.1332 7.5567 4.6230 0.9161 3.7833 0.2017 0.2308 6.0611 1.5717
+#&gt; 135: 93.3787 -6.0381 -2.0728 -4.2627 -0.9719 0.1051 7.2396 4.3919 0.8970 3.5941 0.1916 0.2193 5.8837 1.6057
+#&gt; 136: 93.4339 -5.9876 -2.0801 -4.3002 -0.9690 0.1214 6.8776 4.1723 0.8888 3.4144 0.2002 0.2227 6.0141 1.5231
+#&gt; 137: 93.7639 -6.0411 -2.0803 -4.2799 -0.9646 0.1484 6.5337 3.9765 0.8969 3.2437 0.1995 0.2115 5.9404 1.6402
+#&gt; 138: 93.6414 -6.0122 -2.0714 -4.2666 -0.9755 0.1506 7.4057 3.7962 0.9242 3.1524 0.1934 0.2010 6.0666 1.5001
+#&gt; 139: 93.7743 -5.7966 -2.0613 -4.2289 -0.9722 0.1383 7.9358 3.6064 0.9015 2.9948 0.1946 0.2029 5.9655 1.5250
+#&gt; 140: 93.1082 -5.7994 -2.0388 -4.2289 -0.9659 0.1382 8.0282 3.4261 0.9053 2.9079 0.1909 0.2138 5.9183 1.5191
+#&gt; 141: 93.2122 -6.0181 -2.0396 -4.2398 -0.9587 0.1016 8.9769 3.9426 0.9028 2.9136 0.1941 0.2195 6.1560 1.4902
+#&gt; 142: 93.4684 -6.1438 -2.0273 -4.2541 -0.9508 0.0848 8.5281 4.8727 0.9056 2.9875 0.1901 0.2233 6.2546 1.4695
+#&gt; 143: 93.0059 -6.0964 -2.0145 -4.2760 -0.9563 0.0826 8.1017 4.6291 0.9312 3.1063 0.1850 0.2138 6.5768 1.4391
+#&gt; 144: 93.0612 -6.1127 -1.9951 -4.2589 -0.9539 0.0904 7.6966 4.6160 0.9623 3.1681 0.1824 0.2032 6.1506 1.4497
+#&gt; 145: 93.5170 -6.1066 -1.9951 -4.3574 -0.9478 0.1040 7.3118 4.6263 0.9639 3.6914 0.1986 0.2292 5.9389 1.4867
+#&gt; 146: 93.4915 -6.3235 -2.0006 -4.3866 -0.9579 0.1202 6.9462 6.0529 0.9514 3.9899 0.1887 0.2335 5.9265 1.4978
+#&gt; 147: 93.8963 -6.1119 -2.0055 -4.3446 -0.9682 0.1242 7.1711 5.7503 0.9315 3.7904 0.1923 0.2332 5.9346 1.5021
+#&gt; 148: 93.6758 -5.9705 -2.0137 -4.2906 -0.9614 0.1125 6.8125 5.4628 0.9506 3.6009 0.1913 0.2371 6.2579 1.4384
+#&gt; 149: 93.6499 -6.0049 -2.0246 -4.2730 -0.9776 0.0996 6.4719 5.1896 0.9736 3.4209 0.1817 0.2252 6.3224 1.3878
+#&gt; 150: 94.0242 -5.9760 -2.0176 -4.2182 -0.9773 0.1032 6.1483 4.9301 0.9944 3.2498 0.1807 0.2290 6.5662 1.3618
+#&gt; 151: 93.9234 -5.8772 -2.0132 -4.2362 -0.9651 0.1058 7.2453 4.6836 0.9824 3.4860 0.1806 0.2175 6.2575 1.4370
+#&gt; 152: 94.2513 -5.9391 -2.0814 -4.2278 -0.9753 0.1221 4.9753 3.4013 0.9808 3.3265 0.1836 0.1897 6.6966 1.3457
+#&gt; 153: 93.9434 -6.1294 -2.0570 -4.2447 -0.9761 0.1527 5.0454 4.3115 0.9494 3.3663 0.1684 0.1680 5.9106 1.4777
+#&gt; 154: 93.8141 -6.2749 -2.0366 -4.2383 -0.9835 0.1440 5.5466 5.3351 0.9320 3.3337 0.1731 0.1913 5.8842 1.4325
+#&gt; 155: 94.1987 -6.1029 -2.0252 -4.2520 -0.9780 0.1132 7.1508 4.2713 0.9457 3.3428 0.1727 0.1691 6.1632 1.4658
+#&gt; 156: 94.0626 -6.2640 -2.0263 -4.2461 -0.9854 0.1346 5.6296 5.1645 0.9423 3.3987 0.1697 0.1778 5.9631 1.4483
+#&gt; 157: 93.9319 -6.1392 -2.0388 -4.2294 -0.9921 0.1265 5.6768 4.7366 0.9210 3.3673 0.1733 0.1789 5.9114 1.4976
+#&gt; 158: 93.9123 -6.1970 -2.0165 -4.2241 -0.9924 0.1540 7.2552 4.7537 0.9369 3.2727 0.1805 0.1923 5.9324 1.5351
+#&gt; 159: 93.9704 -6.4018 -2.0455 -4.2127 -0.9919 0.1413 7.7561 6.0732 0.9802 3.3376 0.1806 0.2260 6.4511 1.4227
+#&gt; 160: 94.1967 -6.2985 -2.0412 -4.2264 -0.9795 0.1206 8.3836 6.1319 0.9689 3.4685 0.1792 0.2150 6.5116 1.4706
+#&gt; 161: 94.3500 -6.1427 -2.0189 -4.2242 -1.0022 0.0837 8.0282 4.5505 0.9524 3.3269 0.1859 0.1816 6.0642 1.4746
+#&gt; 162: 94.2711 -5.9578 -2.0215 -4.2078 -1.0110 0.0946 7.8634 3.3072 0.9559 3.2374 0.1876 0.1791 6.0798 1.4903
+#&gt; 163: 93.9824 -5.8794 -2.0409 -4.2367 -0.9970 0.1150 9.3872 3.0498 0.9830 3.3179 0.1880 0.1828 5.8091 1.4852
+#&gt; 164: 94.2013 -5.8651 -2.0122 -4.2257 -0.9906 0.1267 7.1953 3.0510 0.9697 3.2713 0.1871 0.1832 5.8741 1.5313
+#&gt; 165: 94.1804 -5.7868 -2.0200 -4.2053 -0.9812 0.1219 6.7375 2.4769 0.9688 3.2706 0.1910 0.1859 5.7890 1.5188
+#&gt; 166: 93.9790 -5.8156 -2.0311 -4.2438 -0.9784 0.1247 5.7617 2.6907 0.9533 3.5342 0.1953 0.1872 5.8816 1.5243
+#&gt; 167: 93.2524 -5.8603 -2.0497 -4.2594 -0.9787 0.1265 4.7086 2.9121 0.9117 3.4696 0.1943 0.1832 5.9672 1.4567
+#&gt; 168: 93.2924 -6.0371 -2.0528 -4.2607 -0.9727 0.1201 5.5273 4.0286 0.9177 3.4501 0.1918 0.1908 5.7790 1.4701
+#&gt; 169: 93.4838 -6.1497 -2.0389 -4.2716 -0.9639 0.1127 5.4524 4.2700 0.9544 3.4329 0.1940 0.1871 5.7795 1.4575
+#&gt; 170: 93.3951 -6.2298 -2.0438 -4.4133 -0.9939 0.1088 6.1460 4.6552 0.9645 4.5240 0.1978 0.2091 5.7549 1.5233
+#&gt; 171: 93.4113 -6.1187 -2.0536 -4.4019 -0.9771 0.0899 6.8123 4.0073 0.9531 4.4290 0.1878 0.1970 5.9067 1.4857
+#&gt; 172: 93.1140 -5.9515 -2.0530 -4.3250 -0.9723 0.1094 5.1247 3.4502 0.9572 3.8504 0.1954 0.1944 5.8583 1.4867
+#&gt; 173: 92.9782 -6.0415 -2.0633 -4.2887 -0.9608 0.1081 4.1020 3.8967 0.9478 3.7222 0.1890 0.1812 5.9473 1.4583
+#&gt; 174: 92.9661 -5.9295 -2.0457 -4.2907 -0.9626 0.0991 5.7954 3.3581 0.9785 3.7311 0.1867 0.2026 5.8087 1.4797
+#&gt; 175: 93.2577 -5.8895 -2.0281 -4.2845 -0.9560 0.0829 7.3434 3.1501 0.9975 3.6334 0.1920 0.2151 5.4717 1.4832
+#&gt; 176: 93.1210 -5.9567 -2.0370 -4.2848 -0.9488 0.0787 6.8946 3.4999 0.9983 3.6159 0.1922 0.2233 5.8426 1.4096
+#&gt; 177: 92.5456 -6.1797 -2.0319 -4.2684 -0.9401 0.0873 6.9744 5.2939 0.9928 3.4880 0.1989 0.2213 5.9613 1.4367
+#&gt; 178: 92.6854 -6.1483 -2.0278 -4.2705 -0.9504 0.0630 5.0582 5.0622 0.9953 3.4915 0.1930 0.2238 5.9775 1.4263
+#&gt; 179: 93.1323 -6.1739 -2.0353 -4.2590 -0.9455 0.0584 4.9914 4.7898 0.9817 3.4163 0.1899 0.2124 5.9579 1.4242
+#&gt; 180: 93.0611 -6.2228 -2.0441 -4.2977 -0.9387 0.0320 4.0323 5.5685 0.9890 3.7202 0.1940 0.2335 6.2224 1.4194
+#&gt; 181: 92.7741 -6.1462 -2.0477 -4.3335 -0.9454 0.1011 3.7007 5.1590 0.9807 3.8469 0.1939 0.2463 5.9703 1.4343
+#&gt; 182: 93.0775 -6.0640 -2.0496 -4.3171 -0.9444 0.0897 5.0266 4.5597 0.9792 3.7741 0.1931 0.2186 5.6727 1.4858
+#&gt; 183: 93.2566 -6.1757 -2.0368 -4.2888 -0.9560 0.0809 5.8284 5.2504 0.9636 3.7078 0.1939 0.2262 5.5170 1.4560
+#&gt; 184: 93.0357 -6.1158 -2.0217 -4.3111 -0.9453 0.0901 6.7209 5.4048 0.9503 3.8949 0.1967 0.2209 5.3578 1.4704
+#&gt; 185: 93.0173 -6.1998 -2.0371 -4.3713 -0.9451 0.0752 6.1040 5.8272 0.9333 4.4038 0.1951 0.2238 5.5896 1.4202
+#&gt; 186: 93.2835 -6.1217 -2.0383 -4.3308 -0.9574 0.1110 6.0519 4.7669 0.9400 4.0265 0.1972 0.2274 5.4560 1.4602
+#&gt; 187: 93.5312 -6.3356 -2.0253 -4.3418 -0.9583 0.1166 6.7561 5.8784 0.9346 4.0264 0.2038 0.2281 5.5024 1.4994
+#&gt; 188: 93.6460 -5.8426 -2.0237 -4.4519 -0.9594 0.1283 6.3492 3.4189 0.9091 4.9358 0.2086 0.2348 5.4301 1.5893
+#&gt; 189: 93.8538 -6.0183 -2.0178 -4.3911 -0.9797 0.1262 8.7939 3.7358 0.9008 4.4894 0.2125 0.2199 5.6613 1.5073
+#&gt; 190: 93.1543 -6.1364 -2.0451 -4.4389 -0.9708 0.1584 9.9803 4.2747 0.8922 4.8507 0.2084 0.2607 5.9136 1.4572
+#&gt; 191: 93.4334 -6.1466 -2.0389 -4.4661 -0.9678 0.1565 7.8390 4.4393 0.9022 4.7857 0.2105 0.2634 5.7161 1.5325
+#&gt; 192: 93.3623 -6.0940 -2.0240 -4.4569 -0.9673 0.1420 8.0856 4.3185 0.8895 4.4721 0.2113 0.2350 5.5282 1.5221
+#&gt; 193: 93.1990 -5.9864 -2.0301 -4.4538 -0.9563 0.1515 8.4425 3.7598 0.8814 4.4376 0.2013 0.2257 5.4205 1.4820
+#&gt; 194: 93.3165 -6.0045 -2.0353 -4.4314 -0.9525 0.1486 8.2370 3.6742 0.8947 4.4594 0.1960 0.2248 5.4579 1.4767
+#&gt; 195: 93.1288 -6.1006 -2.0551 -4.5184 -0.9503 0.1583 9.6259 4.2294 0.9040 5.1981 0.1950 0.1962 5.5602 1.4254
+#&gt; 196: 93.1943 -5.9871 -2.0607 -4.4728 -0.9446 0.1482 9.3401 3.5579 0.8925 4.7901 0.1892 0.1879 5.7296 1.4172
+#&gt; 197: 93.5803 -5.9131 -2.0522 -4.3675 -0.9476 0.1571 7.2599 3.4241 0.8857 3.8551 0.1886 0.1793 5.4832 1.6006
+#&gt; 198: 93.5703 -5.9980 -2.0550 -4.3578 -0.9519 0.1491 7.0416 3.8805 0.8563 3.7930 0.1882 0.1896 5.4355 1.5402
+#&gt; 199: 93.2909 -5.8288 -2.0532 -4.3605 -0.9518 0.1692 8.3926 3.0173 0.8566 3.8610 0.1902 0.2033 5.5735 1.5647
+#&gt; 200: 93.4049 -5.7474 -2.0447 -4.3548 -0.9517 0.1812 7.4977 2.8256 0.8520 3.8236 0.1897 0.2060 5.5092 1.5699
+#&gt; 201: 93.3386 -5.8209 -2.0398 -4.4174 -0.9597 0.1738 6.3555 3.0871 0.8431 4.3211 0.1853 0.2062 5.5460 1.5925
+#&gt; 202: 93.3397 -5.8313 -2.0387 -4.4364 -0.9580 0.1669 6.0946 3.1018 0.8460 4.5093 0.1821 0.2068 5.6622 1.5740
+#&gt; 203: 93.3071 -5.8276 -2.0384 -4.4758 -0.9571 0.1639 5.7815 3.0575 0.8608 4.9441 0.1826 0.2052 5.6855 1.5570
+#&gt; 204: 93.3138 -5.8477 -2.0368 -4.4714 -0.9541 0.1658 5.7526 3.1322 0.8704 4.9129 0.1816 0.2057 5.6642 1.5606
+#&gt; 205: 93.3066 -5.8537 -2.0395 -4.4842 -0.9521 0.1642 5.6045 3.1633 0.8748 5.0053 0.1805 0.2036 5.6633 1.5550
+#&gt; 206: 93.3042 -5.8790 -2.0453 -4.4977 -0.9501 0.1633 5.7219 3.3320 0.8807 5.1121 0.1793 0.1999 5.6888 1.5413
+#&gt; 207: 93.3281 -5.9005 -2.0504 -4.5109 -0.9480 0.1629 5.8004 3.4696 0.8865 5.2248 0.1789 0.1961 5.7206 1.5357
+#&gt; 208: 93.3437 -5.8972 -2.0569 -4.5200 -0.9452 0.1641 5.7523 3.4604 0.8875 5.2848 0.1787 0.1933 5.7450 1.5288
+#&gt; 209: 93.3265 -5.8864 -2.0628 -4.5092 -0.9440 0.1639 5.5355 3.4138 0.8882 5.1586 0.1791 0.1916 5.7744 1.5283
+#&gt; 210: 93.3087 -5.8812 -2.0671 -4.5004 -0.9426 0.1677 5.3488 3.3975 0.8895 5.0589 0.1798 0.1924 5.7781 1.5307
+#&gt; 211: 93.2807 -5.8760 -2.0703 -4.5009 -0.9413 0.1709 5.2654 3.3770 0.8894 5.0377 0.1805 0.1927 5.7808 1.5282
+#&gt; 212: 93.2815 -5.8637 -2.0711 -4.4955 -0.9409 0.1708 5.3028 3.3250 0.8914 4.9702 0.1819 0.1941 5.7827 1.5274
+#&gt; 213: 93.2828 -5.8481 -2.0709 -4.4895 -0.9396 0.1702 5.3840 3.2614 0.8913 4.9108 0.1826 0.1953 5.7744 1.5301
+#&gt; 214: 93.2645 -5.8422 -2.0704 -4.4882 -0.9384 0.1710 5.3939 3.2358 0.8931 4.8944 0.1828 0.1955 5.7797 1.5351
+#&gt; 215: 93.2591 -5.8519 -2.0709 -4.4858 -0.9380 0.1713 5.5142 3.2959 0.8953 4.8587 0.1822 0.1960 5.7853 1.5369
+#&gt; 216: 93.2595 -5.8523 -2.0715 -4.4827 -0.9376 0.1723 5.5563 3.3077 0.8964 4.8306 0.1817 0.1973 5.7975 1.5396
+#&gt; 217: 93.2503 -5.8512 -2.0732 -4.4737 -0.9373 0.1734 5.5036 3.3182 0.8959 4.7582 0.1817 0.1992 5.7940 1.5365
+#&gt; 218: 93.2345 -5.8463 -2.0749 -4.4639 -0.9372 0.1747 5.5046 3.2959 0.8959 4.6771 0.1817 0.2008 5.7889 1.5340
+#&gt; 219: 93.2264 -5.8439 -2.0757 -4.4549 -0.9364 0.1759 5.4970 3.2802 0.8966 4.6015 0.1819 0.2027 5.7804 1.5321
+#&gt; 220: 93.2259 -5.8464 -2.0758 -4.4493 -0.9363 0.1771 5.4793 3.2944 0.8950 4.5498 0.1823 0.2049 5.7745 1.5344
+#&gt; 221: 93.2243 -5.8505 -2.0768 -4.4443 -0.9367 0.1785 5.5360 3.3132 0.8924 4.5028 0.1829 0.2068 5.7556 1.5329
+#&gt; 222: 93.2385 -5.8603 -2.0776 -4.4371 -0.9376 0.1800 5.5401 3.3878 0.8903 4.4416 0.1834 0.2096 5.7522 1.5317
+#&gt; 223: 93.2339 -5.8634 -2.0780 -4.4309 -0.9377 0.1803 5.5522 3.4132 0.8882 4.3844 0.1838 0.2118 5.7457 1.5323
+#&gt; 224: 93.2379 -5.8686 -2.0778 -4.4262 -0.9374 0.1803 5.5469 3.4421 0.8848 4.3375 0.1842 0.2137 5.7429 1.5323
+#&gt; 225: 93.2329 -5.8654 -2.0784 -4.4222 -0.9373 0.1811 5.5553 3.4255 0.8843 4.2952 0.1848 0.2160 5.7452 1.5295
+#&gt; 226: 93.2330 -5.8621 -2.0789 -4.4182 -0.9366 0.1816 5.5838 3.4123 0.8838 4.2565 0.1858 0.2176 5.7453 1.5284
+#&gt; 227: 93.2309 -5.8549 -2.0794 -4.4153 -0.9365 0.1823 5.6720 3.3787 0.8827 4.2227 0.1866 0.2181 5.7339 1.5287
+#&gt; 228: 93.2248 -5.8556 -2.0794 -4.4116 -0.9372 0.1832 5.7344 3.3780 0.8830 4.1863 0.1873 0.2200 5.7232 1.5308
+#&gt; 229: 93.2215 -5.8615 -2.0798 -4.4081 -0.9373 0.1844 5.8478 3.4087 0.8821 4.1558 0.1878 0.2217 5.7174 1.5283
+#&gt; 230: 93.2122 -5.8646 -2.0807 -4.4053 -0.9372 0.1858 5.8987 3.4233 0.8800 4.1288 0.1881 0.2233 5.7073 1.5272
+#&gt; 231: 93.2080 -5.8665 -2.0816 -4.4025 -0.9372 0.1872 5.9544 3.4381 0.8782 4.1008 0.1883 0.2250 5.7006 1.5283
+#&gt; 232: 93.1921 -5.8677 -2.0829 -4.3997 -0.9370 0.1887 5.9768 3.4440 0.8770 4.0748 0.1883 0.2268 5.7012 1.5261
+#&gt; 233: 93.1794 -5.8674 -2.0840 -4.3972 -0.9363 0.1892 6.0074 3.4397 0.8757 4.0495 0.1884 0.2281 5.6997 1.5235
+#&gt; 234: 93.1623 -5.8677 -2.0853 -4.3959 -0.9358 0.1898 5.9759 3.4442 0.8750 4.0330 0.1887 0.2295 5.7000 1.5223
+#&gt; 235: 93.1499 -5.8709 -2.0862 -4.3918 -0.9356 0.1900 5.9951 3.4709 0.8747 4.0020 0.1891 0.2309 5.7002 1.5219
+#&gt; 236: 93.1408 -5.8764 -2.0875 -4.3879 -0.9349 0.1898 6.0359 3.5027 0.8752 3.9720 0.1895 0.2321 5.7098 1.5196
+#&gt; 237: 93.1307 -5.8766 -2.0887 -4.3843 -0.9344 0.1896 6.0589 3.5108 0.8755 3.9437 0.1900 0.2330 5.7176 1.5174
+#&gt; 238: 93.1233 -5.8767 -2.0889 -4.3806 -0.9341 0.1891 6.0959 3.5158 0.8745 3.9173 0.1907 0.2339 5.7198 1.5169
+#&gt; 239: 93.1245 -5.8810 -2.0889 -4.3775 -0.9337 0.1885 6.1196 3.5614 0.8746 3.8935 0.1915 0.2349 5.7177 1.5172
+#&gt; 240: 93.1180 -5.8836 -2.0893 -4.3745 -0.9332 0.1883 6.1647 3.6004 0.8741 3.8709 0.1921 0.2360 5.7150 1.5192
+#&gt; 241: 93.1096 -5.8838 -2.0898 -4.3714 -0.9327 0.1883 6.2283 3.6196 0.8743 3.8487 0.1927 0.2366 5.7177 1.5202
+#&gt; 242: 93.1058 -5.8804 -2.0912 -4.3684 -0.9320 0.1888 6.2553 3.6018 0.8723 3.8274 0.1933 0.2378 5.7265 1.5198
+#&gt; 243: 93.0953 -5.8762 -2.0924 -4.3668 -0.9315 0.1892 6.2692 3.5785 0.8705 3.8130 0.1940 0.2391 5.7353 1.5205
+#&gt; 244: 93.0840 -5.8758 -2.0928 -4.3658 -0.9310 0.1889 6.2702 3.5746 0.8695 3.8007 0.1947 0.2401 5.7382 1.5205
+#&gt; 245: 93.0720 -5.8795 -2.0933 -4.3647 -0.9306 0.1895 6.3022 3.5971 0.8685 3.7886 0.1953 0.2407 5.7367 1.5192
+#&gt; 246: 93.0626 -5.8798 -2.0933 -4.3637 -0.9301 0.1898 6.2987 3.5992 0.8680 3.7781 0.1957 0.2410 5.7331 1.5184
+#&gt; 247: 93.0526 -5.8805 -2.0934 -4.3610 -0.9298 0.1903 6.3067 3.6060 0.8682 3.7618 0.1963 0.2414 5.7329 1.5189
+#&gt; 248: 93.0481 -5.8780 -2.0933 -4.3583 -0.9296 0.1911 6.3135 3.6007 0.8683 3.7460 0.1967 0.2420 5.7344 1.5191
+#&gt; 249: 93.0483 -5.8762 -2.0933 -4.3558 -0.9294 0.1913 6.3095 3.5961 0.8685 3.7298 0.1970 0.2422 5.7414 1.5179
+#&gt; 250: 93.0520 -5.8768 -2.0931 -4.3538 -0.9292 0.1912 6.2900 3.6003 0.8692 3.7176 0.1973 0.2424 5.7547 1.5148
+#&gt; 251: 93.0430 -5.8769 -2.0930 -4.3516 -0.9291 0.1905 6.2815 3.6041 0.8704 3.7045 0.1975 0.2427 5.7653 1.5123
+#&gt; 252: 93.0300 -5.8743 -2.0928 -4.3490 -0.9291 0.1901 6.2896 3.5885 0.8716 3.6919 0.1978 0.2428 5.7797 1.5106
+#&gt; 253: 93.0217 -5.8740 -2.0926 -4.3468 -0.9289 0.1898 6.3238 3.5875 0.8731 3.6817 0.1981 0.2429 5.7885 1.5102
+#&gt; 254: 93.0147 -5.8729 -2.0924 -4.3439 -0.9289 0.1892 6.3418 3.5857 0.8732 3.6683 0.1980 0.2426 5.7912 1.5102
+#&gt; 255: 93.0144 -5.8743 -2.0922 -4.3407 -0.9290 0.1885 6.3755 3.5933 0.8735 3.6580 0.1979 0.2420 5.7932 1.5086
+#&gt; 256: 93.0136 -5.8778 -2.0919 -4.3376 -0.9290 0.1876 6.3932 3.6240 0.8741 3.6481 0.1980 0.2418 5.7969 1.5066
+#&gt; 257: 93.0116 -5.8792 -2.0917 -4.3345 -0.9291 0.1862 6.4096 3.6459 0.8744 3.6385 0.1980 0.2414 5.7990 1.5065
+#&gt; 258: 93.0084 -5.8812 -2.0913 -4.3319 -0.9290 0.1842 6.4231 3.6686 0.8753 3.6281 0.1980 0.2414 5.8024 1.5050
+#&gt; 259: 93.0090 -5.8866 -2.0909 -4.3293 -0.9287 0.1825 6.4361 3.7063 0.8762 3.6181 0.1981 0.2413 5.8106 1.5030
+#&gt; 260: 93.0067 -5.8911 -2.0902 -4.3265 -0.9283 0.1811 6.4128 3.7384 0.8765 3.6076 0.1981 0.2412 5.8102 1.5026
+#&gt; 261: 93.0060 -5.8933 -2.0894 -4.3237 -0.9284 0.1799 6.4253 3.7604 0.8765 3.5968 0.1981 0.2410 5.8080 1.5026
+#&gt; 262: 93.0051 -5.8934 -2.0884 -4.3208 -0.9285 0.1789 6.4008 3.7597 0.8762 3.5855 0.1981 0.2412 5.8046 1.5020
+#&gt; 263: 93.0019 -5.8945 -2.0875 -4.3182 -0.9287 0.1781 6.3788 3.7644 0.8758 3.5756 0.1982 0.2411 5.8048 1.5023
+#&gt; 264: 93.0021 -5.8959 -2.0870 -4.3158 -0.9293 0.1773 6.3614 3.7682 0.8749 3.5667 0.1983 0.2410 5.8017 1.5021
+#&gt; 265: 93.0053 -5.8989 -2.0866 -4.3130 -0.9296 0.1766 6.3506 3.7814 0.8739 3.5567 0.1982 0.2409 5.7995 1.5018
+#&gt; 266: 93.0061 -5.8992 -2.0864 -4.3104 -0.9300 0.1757 6.3307 3.7730 0.8733 3.5471 0.1982 0.2408 5.7994 1.5012
+#&gt; 267: 93.0098 -5.9009 -2.0861 -4.3077 -0.9302 0.1749 6.3326 3.7738 0.8730 3.5388 0.1983 0.2407 5.7964 1.5004
+#&gt; 268: 93.0144 -5.9000 -2.0853 -4.3054 -0.9304 0.1740 6.3487 3.7623 0.8729 3.5290 0.1985 0.2405 5.7897 1.5014
+#&gt; 269: 93.0146 -5.8984 -2.0847 -4.3032 -0.9306 0.1731 6.3716 3.7485 0.8735 3.5197 0.1985 0.2402 5.7867 1.5016
+#&gt; 270: 93.0159 -5.8950 -2.0842 -4.3013 -0.9307 0.1722 6.3630 3.7266 0.8743 3.5098 0.1986 0.2400 5.7837 1.5016
+#&gt; 271: 93.0161 -5.8925 -2.0837 -4.2995 -0.9309 0.1715 6.3539 3.7068 0.8744 3.5001 0.1986 0.2400 5.7843 1.5020
+#&gt; 272: 93.0195 -5.8919 -2.0837 -4.2977 -0.9314 0.1710 6.3430 3.6964 0.8744 3.4922 0.1985 0.2400 5.7859 1.5031
+#&gt; 273: 93.0184 -5.8923 -2.0837 -4.2961 -0.9318 0.1705 6.3531 3.6914 0.8743 3.4854 0.1984 0.2402 5.7880 1.5030
+#&gt; 274: 93.0178 -5.8927 -2.0834 -4.2951 -0.9320 0.1701 6.3818 3.6865 0.8749 3.4824 0.1984 0.2403 5.7928 1.5020
+#&gt; 275: 93.0204 -5.8937 -2.0833 -4.2942 -0.9324 0.1700 6.3961 3.6842 0.8754 3.4790 0.1984 0.2402 5.7949 1.5011
+#&gt; 276: 93.0228 -5.8958 -2.0833 -4.2932 -0.9327 0.1699 6.3965 3.6870 0.8760 3.4752 0.1984 0.2402 5.7934 1.5002
+#&gt; 277: 93.0251 -5.9000 -2.0833 -4.2921 -0.9329 0.1695 6.4076 3.7032 0.8766 3.4712 0.1985 0.2400 5.7979 1.4989
+#&gt; 278: 93.0297 -5.9021 -2.0833 -4.2912 -0.9331 0.1690 6.4279 3.7073 0.8771 3.4671 0.1986 0.2399 5.7978 1.4981
+#&gt; 279: 93.0273 -5.9021 -2.0832 -4.2902 -0.9332 0.1684 6.4349 3.7003 0.8779 3.4622 0.1988 0.2400 5.7993 1.4972
+#&gt; 280: 93.0236 -5.9030 -2.0831 -4.2892 -0.9334 0.1674 6.4776 3.6986 0.8787 3.4576 0.1990 0.2401 5.8026 1.4963
+#&gt; 281: 93.0172 -5.9037 -2.0829 -4.2881 -0.9337 0.1665 6.4942 3.6984 0.8797 3.4536 0.1992 0.2402 5.8056 1.4955
+#&gt; 282: 93.0147 -5.9055 -2.0827 -4.2872 -0.9339 0.1656 6.4861 3.7031 0.8810 3.4492 0.1992 0.2403 5.8107 1.4954
+#&gt; 283: 93.0138 -5.9053 -2.0824 -4.2865 -0.9341 0.1646 6.4962 3.6967 0.8822 3.4451 0.1993 0.2406 5.8142 1.4959
+#&gt; 284: 93.0132 -5.9067 -2.0821 -4.2864 -0.9343 0.1636 6.5021 3.7013 0.8838 3.4437 0.1993 0.2406 5.8146 1.4955
+#&gt; 285: 93.0138 -5.9081 -2.0819 -4.2859 -0.9343 0.1628 6.5037 3.7043 0.8851 3.4406 0.1994 0.2406 5.8146 1.4945
+#&gt; 286: 93.0119 -5.9086 -2.0815 -4.2858 -0.9342 0.1620 6.5068 3.7037 0.8864 3.4395 0.1994 0.2404 5.8133 1.4936
+#&gt; 287: 93.0122 -5.9089 -2.0813 -4.2860 -0.9342 0.1614 6.5202 3.7044 0.8872 3.4399 0.1997 0.2401 5.8096 1.4929
+#&gt; 288: 93.0104 -5.9083 -2.0812 -4.2858 -0.9342 0.1609 6.5237 3.6997 0.8876 3.4376 0.1999 0.2398 5.8041 1.4924
+#&gt; 289: 93.0076 -5.9066 -2.0812 -4.2854 -0.9342 0.1604 6.5121 3.6893 0.8881 3.4342 0.1999 0.2394 5.8021 1.4922
+#&gt; 290: 93.0064 -5.9052 -2.0813 -4.2851 -0.9343 0.1602 6.5106 3.6772 0.8886 3.4309 0.2000 0.2389 5.7988 1.4915
+#&gt; 291: 93.0071 -5.9031 -2.0813 -4.2849 -0.9345 0.1601 6.5031 3.6628 0.8891 3.4284 0.2000 0.2384 5.7959 1.4908
+#&gt; 292: 93.0114 -5.9023 -2.0809 -4.2841 -0.9346 0.1594 6.4930 3.6538 0.8894 3.4237 0.2001 0.2383 5.7923 1.4902
+#&gt; 293: 93.0148 -5.9032 -2.0807 -4.2834 -0.9348 0.1589 6.4836 3.6542 0.8898 3.4206 0.2002 0.2380 5.7893 1.4893
+#&gt; 294: 93.0161 -5.9026 -2.0806 -4.2826 -0.9349 0.1582 6.4719 3.6469 0.8901 3.4176 0.2005 0.2375 5.7898 1.4886
+#&gt; 295: 93.0212 -5.9008 -2.0806 -4.2817 -0.9350 0.1576 6.4649 3.6372 0.8904 3.4145 0.2007 0.2370 5.7885 1.4890
+#&gt; 296: 93.0270 -5.8989 -2.0805 -4.2809 -0.9351 0.1569 6.4835 3.6279 0.8911 3.4124 0.2010 0.2366 5.7886 1.4884
+#&gt; 297: 93.0291 -5.8969 -2.0803 -4.2800 -0.9352 0.1560 6.5014 3.6177 0.8915 3.4094 0.2012 0.2364 5.7873 1.4880
+#&gt; 298: 93.0332 -5.8963 -2.0801 -4.2790 -0.9352 0.1551 6.5168 3.6111 0.8919 3.4065 0.2014 0.2361 5.7855 1.4875
+#&gt; 299: 93.0339 -5.8961 -2.0799 -4.2782 -0.9352 0.1542 6.5288 3.6081 0.8927 3.4038 0.2015 0.2358 5.7844 1.4869
+#&gt; 300: 93.0335 -5.8971 -2.0797 -4.2772 -0.9351 0.1533 6.5409 3.6097 0.8937 3.4009 0.2017 0.2356 5.7844 1.4859
+#&gt; 301: 93.0320 -5.8979 -2.0796 -4.2762 -0.9350 0.1522 6.5553 3.6126 0.8945 3.3977 0.2020 0.2354 5.7898 1.4847
+#&gt; 302: 93.0321 -5.8997 -2.0795 -4.2751 -0.9351 0.1513 6.5737 3.6195 0.8956 3.3943 0.2023 0.2351 5.7917 1.4835
+#&gt; 303: 93.0328 -5.8984 -2.0792 -4.2739 -0.9351 0.1504 6.5888 3.6111 0.8964 3.3912 0.2025 0.2350 5.7915 1.4825
+#&gt; 304: 93.0357 -5.8969 -2.0790 -4.2728 -0.9350 0.1494 6.5907 3.6018 0.8975 3.3882 0.2026 0.2348 5.7929 1.4813
+#&gt; 305: 93.0351 -5.8953 -2.0786 -4.2718 -0.9349 0.1484 6.5764 3.5916 0.8986 3.3858 0.2027 0.2345 5.7937 1.4816
+#&gt; 306: 93.0352 -5.8950 -2.0784 -4.2707 -0.9350 0.1475 6.5727 3.5890 0.8999 3.3835 0.2028 0.2341 5.7981 1.4810
+#&gt; 307: 93.0354 -5.8947 -2.0784 -4.2699 -0.9351 0.1466 6.5759 3.5853 0.9010 3.3820 0.2030 0.2339 5.8028 1.4799
+#&gt; 308: 93.0336 -5.8938 -2.0783 -4.2690 -0.9351 0.1459 6.5855 3.5776 0.9022 3.3809 0.2031 0.2333 5.8014 1.4788
+#&gt; 309: 93.0311 -5.8931 -2.0780 -4.2683 -0.9351 0.1452 6.5799 3.5717 0.9038 3.3805 0.2033 0.2328 5.8048 1.4779
+#&gt; 310: 93.0303 -5.8915 -2.0778 -4.2675 -0.9352 0.1447 6.5716 3.5609 0.9046 3.3797 0.2033 0.2323 5.8060 1.4774
+#&gt; 311: 93.0275 -5.8915 -2.0776 -4.2668 -0.9352 0.1441 6.5679 3.5581 0.9052 3.3788 0.2034 0.2319 5.8056 1.4770
+#&gt; 312: 93.0258 -5.8920 -2.0775 -4.2659 -0.9352 0.1435 6.5573 3.5571 0.9058 3.3775 0.2033 0.2314 5.8053 1.4766
+#&gt; 313: 93.0234 -5.8928 -2.0773 -4.2649 -0.9353 0.1431 6.5510 3.5573 0.9065 3.3761 0.2033 0.2309 5.8046 1.4757
+#&gt; 314: 93.0237 -5.8937 -2.0771 -4.2639 -0.9355 0.1425 6.5488 3.5578 0.9074 3.3747 0.2033 0.2303 5.8029 1.4751
+#&gt; 315: 93.0237 -5.8940 -2.0769 -4.2629 -0.9357 0.1420 6.5480 3.5565 0.9081 3.3730 0.2034 0.2299 5.8010 1.4746
+#&gt; 316: 93.0218 -5.8936 -2.0767 -4.2617 -0.9358 0.1413 6.5424 3.5517 0.9087 3.3705 0.2034 0.2296 5.7992 1.4741
+#&gt; 317: 93.0218 -5.8932 -2.0766 -4.2606 -0.9359 0.1406 6.5576 3.5474 0.9091 3.3679 0.2034 0.2292 5.7965 1.4736
+#&gt; 318: 93.0215 -5.8927 -2.0765 -4.2597 -0.9361 0.1402 6.5884 3.5420 0.9096 3.3661 0.2034 0.2288 5.7960 1.4727
+#&gt; 319: 93.0201 -5.8938 -2.0764 -4.2588 -0.9361 0.1397 6.6095 3.5439 0.9101 3.3642 0.2034 0.2283 5.7943 1.4719
+#&gt; 320: 93.0188 -5.8926 -2.0763 -4.2579 -0.9361 0.1392 6.6170 3.5368 0.9103 3.3622 0.2034 0.2282 5.7930 1.4711
+#&gt; 321: 93.0155 -5.8908 -2.0762 -4.2569 -0.9361 0.1385 6.6328 3.5268 0.9105 3.3598 0.2033 0.2282 5.7921 1.4702
+#&gt; 322: 93.0133 -5.8894 -2.0760 -4.2561 -0.9360 0.1378 6.6415 3.5192 0.9110 3.3580 0.2032 0.2282 5.7903 1.4698
+#&gt; 323: 93.0089 -5.8888 -2.0759 -4.2555 -0.9360 0.1372 6.6480 3.5131 0.9107 3.3563 0.2031 0.2285 5.7915 1.4691
+#&gt; 324: 93.0038 -5.8881 -2.0758 -4.2547 -0.9359 0.1364 6.6639 3.5076 0.9106 3.3547 0.2029 0.2287 5.7912 1.4687
+#&gt; 325: 93.0011 -5.8871 -2.0756 -4.2540 -0.9359 0.1361 6.6587 3.5005 0.9102 3.3531 0.2028 0.2289 5.7896 1.4686
+#&gt; 326: 93.0033 -5.8874 -2.0755 -4.2535 -0.9360 0.1360 6.6621 3.4995 0.9098 3.3510 0.2026 0.2294 5.7883 1.4686
+#&gt; 327: 93.0039 -5.8885 -2.0754 -4.2532 -0.9361 0.1359 6.6589 3.5051 0.9093 3.3497 0.2025 0.2297 5.7869 1.4687
+#&gt; 328: 93.0061 -5.8896 -2.0753 -4.2529 -0.9362 0.1355 6.6671 3.5132 0.9088 3.3484 0.2024 0.2299 5.7854 1.4687
+#&gt; 329: 93.0077 -5.8915 -2.0755 -4.2525 -0.9363 0.1352 6.6719 3.5255 0.9085 3.3464 0.2024 0.2301 5.7850 1.4682
+#&gt; 330: 93.0061 -5.8942 -2.0757 -4.2518 -0.9365 0.1351 6.6696 3.5399 0.9083 3.3438 0.2023 0.2302 5.7840 1.4680
+#&gt; 331: 93.0032 -5.8953 -2.0759 -4.2513 -0.9366 0.1348 6.6554 3.5433 0.9080 3.3411 0.2022 0.2302 5.7839 1.4677
+#&gt; 332: 93.0013 -5.8956 -2.0761 -4.2507 -0.9367 0.1347 6.6298 3.5423 0.9079 3.3385 0.2021 0.2302 5.7851 1.4672
+#&gt; 333: 93.0026 -5.8950 -2.0764 -4.2502 -0.9368 0.1346 6.6207 3.5365 0.9078 3.3357 0.2021 0.2303 5.7849 1.4667
+#&gt; 334: 93.0019 -5.8933 -2.0767 -4.2497 -0.9369 0.1348 6.6145 3.5259 0.9077 3.3330 0.2021 0.2302 5.7856 1.4662
+#&gt; 335: 93.0038 -5.8930 -2.0768 -4.2492 -0.9370 0.1348 6.6200 3.5227 0.9078 3.3307 0.2020 0.2303 5.7845 1.4654
+#&gt; 336: 93.0038 -5.8923 -2.0765 -4.2488 -0.9371 0.1348 6.6316 3.5180 0.9081 3.3291 0.2019 0.2304 5.7837 1.4654
+#&gt; 337: 93.0074 -5.8927 -2.0764 -4.2485 -0.9373 0.1349 6.6509 3.5187 0.9083 3.3275 0.2018 0.2304 5.7808 1.4655
+#&gt; 338: 93.0117 -5.8950 -2.0761 -4.2483 -0.9377 0.1349 6.6559 3.5291 0.9087 3.3263 0.2018 0.2303 5.7770 1.4657
+#&gt; 339: 93.0172 -5.8960 -2.0759 -4.2482 -0.9380 0.1349 6.6610 3.5304 0.9090 3.3260 0.2017 0.2302 5.7744 1.4657
+#&gt; 340: 93.0179 -5.8977 -2.0757 -4.2481 -0.9383 0.1349 6.6583 3.5340 0.9093 3.3263 0.2017 0.2301 5.7749 1.4650
+#&gt; 341: 93.0201 -5.8986 -2.0755 -4.2484 -0.9386 0.1348 6.6603 3.5337 0.9092 3.3283 0.2018 0.2300 5.7738 1.4650
+#&gt; 342: 93.0245 -5.8990 -2.0752 -4.2484 -0.9389 0.1348 6.6680 3.5324 0.9093 3.3297 0.2018 0.2300 5.7727 1.4649
+#&gt; 343: 93.0302 -5.9006 -2.0751 -4.2484 -0.9391 0.1347 6.6715 3.5367 0.9093 3.3313 0.2017 0.2300 5.7729 1.4645
+#&gt; 344: 93.0340 -5.9026 -2.0749 -4.2484 -0.9394 0.1346 6.6793 3.5438 0.9093 3.3326 0.2017 0.2301 5.7709 1.4646
+#&gt; 345: 93.0372 -5.9049 -2.0746 -4.2484 -0.9397 0.1347 6.6874 3.5515 0.9090 3.3340 0.2017 0.2301 5.7688 1.4648
+#&gt; 346: 93.0372 -5.9063 -2.0743 -4.2483 -0.9399 0.1348 6.6963 3.5592 0.9090 3.3348 0.2018 0.2299 5.7680 1.4656
+#&gt; 347: 93.0383 -5.9075 -2.0742 -4.2481 -0.9402 0.1350 6.7101 3.5658 0.9093 3.3353 0.2018 0.2299 5.7672 1.4649
+#&gt; 348: 93.0412 -5.9084 -2.0742 -4.2479 -0.9405 0.1351 6.7183 3.5707 0.9095 3.3356 0.2019 0.2297 5.7657 1.4645
+#&gt; 349: 93.0436 -5.9097 -2.0742 -4.2477 -0.9407 0.1351 6.7143 3.5783 0.9098 3.3359 0.2019 0.2295 5.7646 1.4643
+#&gt; 350: 93.0476 -5.9105 -2.0742 -4.2474 -0.9409 0.1351 6.7239 3.5808 0.9100 3.3354 0.2019 0.2294 5.7628 1.4639
+#&gt; 351: 93.0506 -5.9113 -2.0741 -4.2473 -0.9411 0.1352 6.7270 3.5825 0.9103 3.3356 0.2019 0.2292 5.7604 1.4637
+#&gt; 352: 93.0529 -5.9127 -2.0740 -4.2471 -0.9413 0.1353 6.7312 3.5886 0.9107 3.3358 0.2019 0.2290 5.7594 1.4634
+#&gt; 353: 93.0580 -5.9139 -2.0739 -4.2470 -0.9415 0.1354 6.7315 3.5922 0.9111 3.3357 0.2019 0.2288 5.7571 1.4636
+#&gt; 354: 93.0639 -5.9129 -2.0738 -4.2468 -0.9417 0.1354 6.7390 3.5876 0.9112 3.3356 0.2018 0.2286 5.7541 1.4642
+#&gt; 355: 93.0671 -5.9131 -2.0737 -4.2467 -0.9417 0.1353 6.7348 3.5906 0.9113 3.3354 0.2017 0.2284 5.7520 1.4648
+#&gt; 356: 93.0682 -5.9134 -2.0737 -4.2465 -0.9418 0.1352 6.7329 3.5962 0.9113 3.3353 0.2017 0.2283 5.7505 1.4649
+#&gt; 357: 93.0698 -5.9128 -2.0738 -4.2471 -0.9418 0.1354 6.7397 3.5933 0.9115 3.3388 0.2016 0.2280 5.7512 1.4651
+#&gt; 358: 93.0709 -5.9129 -2.0740 -4.2475 -0.9419 0.1355 6.7379 3.5915 0.9119 3.3416 0.2016 0.2278 5.7526 1.4644
+#&gt; 359: 93.0718 -5.9128 -2.0742 -4.2478 -0.9419 0.1358 6.7428 3.5886 0.9123 3.3432 0.2015 0.2275 5.7516 1.4641
+#&gt; 360: 93.0693 -5.9136 -2.0743 -4.2481 -0.9419 0.1360 6.7385 3.5930 0.9125 3.3443 0.2015 0.2272 5.7511 1.4636
+#&gt; 361: 93.0674 -5.9148 -2.0744 -4.2484 -0.9419 0.1361 6.7230 3.6002 0.9127 3.3458 0.2015 0.2270 5.7514 1.4634
+#&gt; 362: 93.0660 -5.9168 -2.0745 -4.2486 -0.9420 0.1361 6.7313 3.6117 0.9130 3.3473 0.2014 0.2270 5.7506 1.4636
+#&gt; 363: 93.0635 -5.9196 -2.0746 -4.2490 -0.9421 0.1360 6.7388 3.6275 0.9132 3.3500 0.2014 0.2269 5.7493 1.4636
+#&gt; 364: 93.0631 -5.9210 -2.0747 -4.2497 -0.9421 0.1361 6.7383 3.6323 0.9135 3.3548 0.2015 0.2268 5.7483 1.4634
+#&gt; 365: 93.0635 -5.9219 -2.0747 -4.2504 -0.9421 0.1361 6.7402 3.6341 0.9137 3.3590 0.2015 0.2268 5.7461 1.4635
+#&gt; 366: 93.0640 -5.9232 -2.0746 -4.2511 -0.9422 0.1362 6.7477 3.6409 0.9142 3.3624 0.2015 0.2267 5.7451 1.4641
+#&gt; 367: 93.0616 -5.9247 -2.0746 -4.2518 -0.9422 0.1364 6.7557 3.6473 0.9148 3.3653 0.2015 0.2269 5.7472 1.4640
+#&gt; 368: 93.0601 -5.9247 -2.0746 -4.2522 -0.9422 0.1366 6.7632 3.6452 0.9150 3.3678 0.2015 0.2270 5.7482 1.4639
+#&gt; 369: 93.0583 -5.9240 -2.0748 -4.2527 -0.9423 0.1369 6.7737 3.6395 0.9148 3.3695 0.2015 0.2273 5.7499 1.4636
+#&gt; 370: 93.0591 -5.9236 -2.0752 -4.2532 -0.9423 0.1373 6.7721 3.6352 0.9145 3.3718 0.2015 0.2276 5.7513 1.4636
+#&gt; 371: 93.0607 -5.9235 -2.0755 -4.2540 -0.9424 0.1378 6.7682 3.6330 0.9143 3.3754 0.2015 0.2280 5.7535 1.4635
+#&gt; 372: 93.0615 -5.9229 -2.0759 -4.2549 -0.9424 0.1382 6.7640 3.6288 0.9142 3.3795 0.2014 0.2284 5.7553 1.4633
+#&gt; 373: 93.0612 -5.9237 -2.0763 -4.2557 -0.9424 0.1385 6.7641 3.6327 0.9140 3.3832 0.2012 0.2288 5.7570 1.4629
+#&gt; 374: 93.0611 -5.9240 -2.0766 -4.2565 -0.9424 0.1389 6.7701 3.6341 0.9137 3.3872 0.2011 0.2293 5.7599 1.4625
+#&gt; 375: 93.0615 -5.9247 -2.0770 -4.2573 -0.9424 0.1393 6.7729 3.6362 0.9134 3.3912 0.2009 0.2296 5.7629 1.4620
+#&gt; 376: 93.0621 -5.9248 -2.0772 -4.2578 -0.9425 0.1397 6.7732 3.6371 0.9132 3.3931 0.2008 0.2298 5.7654 1.4613
+#&gt; 377: 93.0622 -5.9255 -2.0774 -4.2582 -0.9426 0.1401 6.7681 3.6389 0.9130 3.3953 0.2007 0.2300 5.7678 1.4607
+#&gt; 378: 93.0609 -5.9256 -2.0775 -4.2585 -0.9426 0.1402 6.7705 3.6381 0.9128 3.3972 0.2006 0.2301 5.7673 1.4602
+#&gt; 379: 93.0590 -5.9262 -2.0776 -4.2589 -0.9426 0.1404 6.7777 3.6382 0.9127 3.3991 0.2005 0.2303 5.7668 1.4599
+#&gt; 380: 93.0607 -5.9258 -2.0777 -4.2595 -0.9427 0.1407 6.7836 3.6350 0.9127 3.4031 0.2004 0.2305 5.7665 1.4598
+#&gt; 381: 93.0617 -5.9251 -2.0777 -4.2596 -0.9427 0.1410 6.7880 3.6294 0.9125 3.4030 0.2003 0.2307 5.7651 1.4601
+#&gt; 382: 93.0631 -5.9252 -2.0777 -4.2599 -0.9428 0.1413 6.7912 3.6278 0.9123 3.4038 0.2002 0.2310 5.7649 1.4606
+#&gt; 383: 93.0621 -5.9253 -2.0778 -4.2602 -0.9429 0.1415 6.7834 3.6279 0.9119 3.4053 0.2000 0.2312 5.7657 1.4607
+#&gt; 384: 93.0614 -5.9254 -2.0779 -4.2604 -0.9430 0.1416 6.7853 3.6280 0.9115 3.4066 0.1999 0.2313 5.7662 1.4608
+#&gt; 385: 93.0613 -5.9259 -2.0780 -4.2605 -0.9430 0.1418 6.7757 3.6301 0.9112 3.4066 0.1997 0.2315 5.7678 1.4609
+#&gt; 386: 93.0614 -5.9264 -2.0780 -4.2607 -0.9431 0.1418 6.7610 3.6331 0.9110 3.4073 0.1995 0.2317 5.7696 1.4612
+#&gt; 387: 93.0631 -5.9276 -2.0780 -4.2610 -0.9432 0.1420 6.7595 3.6397 0.9108 3.4085 0.1993 0.2318 5.7716 1.4612
+#&gt; 388: 93.0650 -5.9282 -2.0779 -4.2613 -0.9433 0.1421 6.7552 3.6445 0.9106 3.4092 0.1992 0.2318 5.7731 1.4612
+#&gt; 389: 93.0644 -5.9286 -2.0779 -4.2616 -0.9434 0.1422 6.7488 3.6471 0.9104 3.4098 0.1991 0.2317 5.7724 1.4614
+#&gt; 390: 93.0653 -5.9297 -2.0778 -4.2619 -0.9435 0.1423 6.7412 3.6524 0.9101 3.4103 0.1990 0.2317 5.7722 1.4615
+#&gt; 391: 93.0647 -5.9297 -2.0778 -4.2623 -0.9435 0.1425 6.7508 3.6524 0.9101 3.4115 0.1989 0.2317 5.7729 1.4621
+#&gt; 392: 93.0637 -5.9293 -2.0778 -4.2624 -0.9436 0.1427 6.7572 3.6498 0.9102 3.4109 0.1988 0.2317 5.7727 1.4623
+#&gt; 393: 93.0657 -5.9294 -2.0778 -4.2632 -0.9436 0.1429 6.7607 3.6496 0.9104 3.4148 0.1987 0.2318 5.7719 1.4621
+#&gt; 394: 93.0689 -5.9293 -2.0779 -4.2635 -0.9438 0.1431 6.7635 3.6489 0.9108 3.4141 0.1987 0.2318 5.7724 1.4623
+#&gt; 395: 93.0705 -5.9295 -2.0780 -4.2640 -0.9438 0.1433 6.7753 3.6500 0.9110 3.4145 0.1986 0.2319 5.7724 1.4622
+#&gt; 396: 93.0704 -5.9296 -2.0780 -4.2648 -0.9438 0.1435 6.7793 3.6511 0.9112 3.4175 0.1985 0.2319 5.7720 1.4618
+#&gt; 397: 93.0715 -5.9302 -2.0781 -4.2656 -0.9438 0.1437 6.7782 3.6530 0.9114 3.4206 0.1985 0.2320 5.7706 1.4617
+#&gt; 398: 93.0719 -5.9297 -2.0781 -4.2666 -0.9438 0.1439 6.7774 3.6510 0.9120 3.4258 0.1984 0.2319 5.7709 1.4616
+#&gt; 399: 93.0720 -5.9296 -2.0781 -4.2678 -0.9438 0.1441 6.7819 3.6526 0.9126 3.4317 0.1984 0.2319 5.7717 1.4615
+#&gt; 400: 93.0730 -5.9296 -2.0783 -4.2691 -0.9438 0.1443 6.7786 3.6538 0.9129 3.4389 0.1983 0.2319 5.7716 1.4614
+#&gt; 401: 93.0728 -5.9292 -2.0783 -4.2706 -0.9437 0.1445 6.7731 3.6521 0.9133 3.4478 0.1982 0.2319 5.7701 1.4615
+#&gt; 402: 93.0732 -5.9289 -2.0784 -4.2718 -0.9438 0.1447 6.7698 3.6517 0.9137 3.4542 0.1981 0.2319 5.7689 1.4618
+#&gt; 403: 93.0732 -5.9301 -2.0785 -4.2730 -0.9438 0.1450 6.7640 3.6576 0.9142 3.4593 0.1980 0.2320 5.7693 1.4615
+#&gt; 404: 93.0710 -5.9316 -2.0787 -4.2740 -0.9439 0.1453 6.7544 3.6647 0.9147 3.4644 0.1979 0.2320 5.7708 1.4611
+#&gt; 405: 93.0687 -5.9322 -2.0788 -4.2750 -0.9440 0.1454 6.7547 3.6663 0.9153 3.4693 0.1978 0.2322 5.7714 1.4608
+#&gt; 406: 93.0673 -5.9337 -2.0789 -4.2760 -0.9440 0.1456 6.7563 3.6726 0.9163 3.4742 0.1977 0.2324 5.7718 1.4603
+#&gt; 407: 93.0653 -5.9345 -2.0791 -4.2769 -0.9440 0.1456 6.7601 3.6756 0.9169 3.4786 0.1976 0.2327 5.7732 1.4598
+#&gt; 408: 93.0640 -5.9357 -2.0793 -4.2779 -0.9440 0.1455 6.7547 3.6821 0.9177 3.4838 0.1974 0.2329 5.7751 1.4592
+#&gt; 409: 93.0646 -5.9371 -2.0795 -4.2784 -0.9440 0.1456 6.7486 3.6915 0.9184 3.4863 0.1973 0.2330 5.7766 1.4588
+#&gt; 410: 93.0639 -5.9391 -2.0797 -4.2791 -0.9441 0.1457 6.7523 3.7048 0.9192 3.4889 0.1972 0.2329 5.7770 1.4582
+#&gt; 411: 93.0628 -5.9401 -2.0799 -4.2799 -0.9442 0.1457 6.7529 3.7113 0.9199 3.4929 0.1972 0.2329 5.7761 1.4580
+#&gt; 412: 93.0620 -5.9402 -2.0801 -4.2808 -0.9443 0.1458 6.7502 3.7099 0.9207 3.4972 0.1971 0.2328 5.7767 1.4577
+#&gt; 413: 93.0628 -5.9403 -2.0804 -4.2816 -0.9443 0.1461 6.7466 3.7091 0.9214 3.5007 0.1970 0.2326 5.7771 1.4572
+#&gt; 414: 93.0627 -5.9405 -2.0807 -4.2825 -0.9443 0.1463 6.7480 3.7089 0.9221 3.5048 0.1969 0.2325 5.7774 1.4567
+#&gt; 415: 93.0614 -5.9402 -2.0810 -4.2836 -0.9443 0.1465 6.7474 3.7066 0.9226 3.5098 0.1969 0.2323 5.7780 1.4564
+#&gt; 416: 93.0610 -5.9408 -2.0813 -4.2848 -0.9443 0.1469 6.7544 3.7116 0.9229 3.5157 0.1968 0.2321 5.7786 1.4559
+#&gt; 417: 93.0601 -5.9413 -2.0815 -4.2860 -0.9443 0.1471 6.7592 3.7158 0.9234 3.5206 0.1967 0.2319 5.7793 1.4556
+#&gt; 418: 93.0606 -5.9424 -2.0817 -4.2868 -0.9444 0.1473 6.7589 3.7214 0.9238 3.5237 0.1966 0.2318 5.7787 1.4553
+#&gt; 419: 93.0605 -5.9433 -2.0818 -4.2877 -0.9444 0.1476 6.7641 3.7253 0.9242 3.5274 0.1965 0.2316 5.7780 1.4552
+#&gt; 420: 93.0623 -5.9427 -2.0819 -4.2886 -0.9445 0.1478 6.7593 3.7216 0.9246 3.5310 0.1965 0.2314 5.7772 1.4551
+#&gt; 421: 93.0630 -5.9418 -2.0819 -4.2895 -0.9445 0.1480 6.7489 3.7166 0.9250 3.5337 0.1964 0.2312 5.7764 1.4552
+#&gt; 422: 93.0626 -5.9410 -2.0820 -4.2900 -0.9445 0.1482 6.7452 3.7124 0.9253 3.5350 0.1963 0.2311 5.7758 1.4549
+#&gt; 423: 93.0629 -5.9407 -2.0822 -4.2906 -0.9446 0.1484 6.7409 3.7095 0.9256 3.5360 0.1963 0.2309 5.7753 1.4546
+#&gt; 424: 93.0637 -5.9404 -2.0821 -4.2912 -0.9446 0.1485 6.7387 3.7073 0.9258 3.5370 0.1962 0.2308 5.7733 1.4546
+#&gt; 425: 93.0625 -5.9402 -2.0821 -4.2917 -0.9447 0.1486 6.7330 3.7061 0.9258 3.5381 0.1961 0.2306 5.7722 1.4548
+#&gt; 426: 93.0624 -5.9399 -2.0820 -4.2921 -0.9447 0.1487 6.7256 3.7034 0.9259 3.5387 0.1961 0.2304 5.7719 1.4545
+#&gt; 427: 93.0606 -5.9397 -2.0821 -4.2925 -0.9447 0.1488 6.7139 3.7010 0.9257 3.5394 0.1961 0.2301 5.7730 1.4545
+#&gt; 428: 93.0601 -5.9394 -2.0822 -4.2929 -0.9447 0.1489 6.7062 3.6984 0.9256 3.5405 0.1961 0.2298 5.7723 1.4543
+#&gt; 429: 93.0615 -5.9391 -2.0821 -4.2933 -0.9447 0.1490 6.7040 3.6956 0.9254 3.5412 0.1960 0.2297 5.7714 1.4544
+#&gt; 430: 93.0654 -5.9389 -2.0820 -4.2934 -0.9448 0.1491 6.7016 3.6934 0.9253 3.5412 0.1960 0.2295 5.7710 1.4546
+#&gt; 431: 93.0674 -5.9392 -2.0819 -4.2936 -0.9449 0.1491 6.6946 3.6935 0.9252 3.5414 0.1960 0.2294 5.7699 1.4547
+#&gt; 432: 93.0683 -5.9401 -2.0818 -4.2938 -0.9450 0.1491 6.6895 3.6960 0.9250 3.5417 0.1961 0.2292 5.7687 1.4549
+#&gt; 433: 93.0693 -5.9411 -2.0815 -4.2942 -0.9451 0.1491 6.6826 3.7003 0.9254 3.5433 0.1961 0.2291 5.7679 1.4549
+#&gt; 434: 93.0720 -5.9410 -2.0813 -4.2945 -0.9452 0.1491 6.6842 3.6998 0.9258 3.5440 0.1960 0.2290 5.7662 1.4548
+#&gt; 435: 93.0735 -5.9417 -2.0811 -4.2947 -0.9453 0.1490 6.6907 3.7029 0.9261 3.5446 0.1960 0.2290 5.7651 1.4548
+#&gt; 436: 93.0752 -5.9430 -2.0809 -4.2949 -0.9454 0.1489 6.6939 3.7083 0.9266 3.5459 0.1959 0.2290 5.7638 1.4547
+#&gt; 437: 93.0774 -5.9442 -2.0807 -4.2952 -0.9455 0.1487 6.7016 3.7147 0.9270 3.5474 0.1960 0.2290 5.7624 1.4550
+#&gt; 438: 93.0795 -5.9453 -2.0805 -4.2954 -0.9456 0.1485 6.7089 3.7212 0.9275 3.5491 0.1959 0.2291 5.7614 1.4551
+#&gt; 439: 93.0816 -5.9467 -2.0802 -4.2956 -0.9457 0.1484 6.7230 3.7291 0.9281 3.5503 0.1959 0.2293 5.7616 1.4551
+#&gt; 440: 93.0834 -5.9475 -2.0800 -4.2957 -0.9458 0.1480 6.7306 3.7340 0.9287 3.5512 0.1960 0.2295 5.7631 1.4551
+#&gt; 441: 93.0855 -5.9480 -2.0797 -4.2961 -0.9459 0.1478 6.7436 3.7373 0.9292 3.5534 0.1960 0.2299 5.7642 1.4553
+#&gt; 442: 93.0885 -5.9488 -2.0793 -4.2963 -0.9460 0.1474 6.7533 3.7419 0.9297 3.5546 0.1960 0.2304 5.7630 1.4554
+#&gt; 443: 93.0907 -5.9497 -2.0789 -4.2967 -0.9461 0.1471 6.7641 3.7469 0.9304 3.5570 0.1960 0.2308 5.7616 1.4554
+#&gt; 444: 93.0905 -5.9504 -2.0785 -4.2972 -0.9462 0.1467 6.7570 3.7486 0.9312 3.5601 0.1960 0.2311 5.7604 1.4553
+#&gt; 445: 93.0903 -5.9515 -2.0782 -4.2977 -0.9462 0.1462 6.7547 3.7543 0.9319 3.5635 0.1960 0.2314 5.7595 1.4550
+#&gt; 446: 93.0902 -5.9530 -2.0778 -4.2982 -0.9462 0.1459 6.7562 3.7615 0.9325 3.5664 0.1960 0.2316 5.7580 1.4548
+#&gt; 447: 93.0905 -5.9541 -2.0775 -4.2990 -0.9463 0.1455 6.7639 3.7668 0.9333 3.5719 0.1960 0.2318 5.7574 1.4543
+#&gt; 448: 93.0912 -5.9555 -2.0772 -4.2999 -0.9463 0.1452 6.7671 3.7736 0.9340 3.5783 0.1960 0.2322 5.7572 1.4540
+#&gt; 449: 93.0918 -5.9570 -2.0769 -4.3004 -0.9464 0.1448 6.7824 3.7802 0.9345 3.5809 0.1960 0.2326 5.7561 1.4537
+#&gt; 450: 93.0901 -5.9579 -2.0766 -4.3011 -0.9464 0.1444 6.7866 3.7829 0.9351 3.5853 0.1959 0.2329 5.7551 1.4536
+#&gt; 451: 93.0899 -5.9594 -2.0763 -4.3016 -0.9465 0.1439 6.7875 3.7896 0.9356 3.5888 0.1959 0.2332 5.7550 1.4537
+#&gt; 452: 93.0902 -5.9603 -2.0759 -4.3023 -0.9465 0.1435 6.7953 3.7926 0.9363 3.5927 0.1958 0.2335 5.7537 1.4538
+#&gt; 453: 93.0906 -5.9615 -2.0755 -4.3026 -0.9465 0.1430 6.7996 3.7982 0.9372 3.5950 0.1958 0.2338 5.7531 1.4539
+#&gt; 454: 93.0909 -5.9614 -2.0751 -4.3029 -0.9465 0.1425 6.8016 3.7969 0.9381 3.5976 0.1958 0.2340 5.7532 1.4540
+#&gt; 455: 93.0909 -5.9610 -2.0749 -4.3035 -0.9464 0.1420 6.8022 3.7940 0.9391 3.6022 0.1957 0.2342 5.7532 1.4539
+#&gt; 456: 93.0916 -5.9600 -2.0746 -4.3045 -0.9463 0.1416 6.7942 3.7893 0.9398 3.6104 0.1957 0.2344 5.7540 1.4537
+#&gt; 457: 93.0905 -5.9595 -2.0744 -4.3058 -0.9463 0.1411 6.7931 3.7866 0.9407 3.6210 0.1956 0.2345 5.7551 1.4534
+#&gt; 458: 93.0905 -5.9597 -2.0742 -4.3071 -0.9462 0.1407 6.7877 3.7882 0.9416 3.6327 0.1955 0.2347 5.7566 1.4532
+#&gt; 459: 93.0895 -5.9598 -2.0741 -4.3078 -0.9461 0.1402 6.7884 3.7889 0.9425 3.6383 0.1955 0.2349 5.7601 1.4527
+#&gt; 460: 93.0871 -5.9602 -2.0741 -4.3086 -0.9460 0.1398 6.7889 3.7912 0.9434 3.6439 0.1954 0.2350 5.7619 1.4522
+#&gt; 461: 93.0854 -5.9613 -2.0739 -4.3091 -0.9459 0.1393 6.7813 3.7973 0.9440 3.6481 0.1953 0.2351 5.7620 1.4520
+#&gt; 462: 93.0838 -5.9623 -2.0737 -4.3093 -0.9458 0.1388 6.7791 3.8037 0.9445 3.6498 0.1953 0.2353 5.7616 1.4518
+#&gt; 463: 93.0816 -5.9629 -2.0734 -4.3095 -0.9457 0.1384 6.7733 3.8070 0.9451 3.6508 0.1952 0.2355 5.7626 1.4519
+#&gt; 464: 93.0792 -5.9631 -2.0731 -4.3095 -0.9457 0.1379 6.7697 3.8081 0.9460 3.6507 0.1951 0.2358 5.7638 1.4518
+#&gt; 465: 93.0775 -5.9633 -2.0728 -4.3095 -0.9456 0.1374 6.7717 3.8095 0.9466 3.6506 0.1950 0.2361 5.7647 1.4519
+#&gt; 466: 93.0774 -5.9640 -2.0725 -4.3097 -0.9455 0.1368 6.7686 3.8141 0.9473 3.6516 0.1949 0.2363 5.7662 1.4516
+#&gt; 467: 93.0773 -5.9646 -2.0722 -4.3100 -0.9454 0.1364 6.7668 3.8172 0.9480 3.6535 0.1948 0.2366 5.7671 1.4516
+#&gt; 468: 93.0777 -5.9653 -2.0719 -4.3106 -0.9453 0.1358 6.7648 3.8226 0.9487 3.6566 0.1947 0.2371 5.7681 1.4514
+#&gt; 469: 93.0778 -5.9657 -2.0717 -4.3112 -0.9453 0.1353 6.7617 3.8253 0.9495 3.6588 0.1947 0.2375 5.7686 1.4510
+#&gt; 470: 93.0769 -5.9663 -2.0715 -4.3117 -0.9452 0.1347 6.7650 3.8278 0.9503 3.6613 0.1947 0.2379 5.7688 1.4506
+#&gt; 471: 93.0749 -5.9664 -2.0714 -4.3123 -0.9451 0.1342 6.7708 3.8280 0.9510 3.6643 0.1947 0.2383 5.7699 1.4505
+#&gt; 472: 93.0721 -5.9668 -2.0713 -4.3127 -0.9450 0.1337 6.7756 3.8284 0.9517 3.6665 0.1947 0.2386 5.7710 1.4501
+#&gt; 473: 93.0696 -5.9670 -2.0713 -4.3133 -0.9449 0.1333 6.7784 3.8280 0.9522 3.6698 0.1947 0.2388 5.7716 1.4498
+#&gt; 474: 93.0674 -5.9673 -2.0714 -4.3138 -0.9448 0.1329 6.7761 3.8281 0.9527 3.6731 0.1947 0.2390 5.7729 1.4496
+#&gt; 475: 93.0655 -5.9679 -2.0714 -4.3143 -0.9447 0.1324 6.7779 3.8302 0.9531 3.6762 0.1947 0.2391 5.7743 1.4493
+#&gt; 476: 93.0643 -5.9682 -2.0713 -4.3144 -0.9447 0.1321 6.7776 3.8314 0.9536 3.6768 0.1946 0.2391 5.7762 1.4492
+#&gt; 477: 93.0631 -5.9684 -2.0714 -4.3146 -0.9446 0.1317 6.7725 3.8326 0.9540 3.6787 0.1945 0.2392 5.7768 1.4492
+#&gt; 478: 93.0630 -5.9693 -2.0715 -4.3148 -0.9447 0.1314 6.7626 3.8365 0.9543 3.6788 0.1944 0.2395 5.7785 1.4492
+#&gt; 479: 93.0634 -5.9710 -2.0714 -4.3148 -0.9447 0.1310 6.7499 3.8462 0.9547 3.6778 0.1943 0.2399 5.7798 1.4490
+#&gt; 480: 93.0651 -5.9732 -2.0715 -4.3147 -0.9447 0.1307 6.7463 3.8616 0.9548 3.6770 0.1943 0.2403 5.7810 1.4488
+#&gt; 481: 93.0664 -5.9747 -2.0715 -4.3149 -0.9447 0.1304 6.7442 3.8722 0.9550 3.6780 0.1941 0.2409 5.7811 1.4487
+#&gt; 482: 93.0647 -5.9762 -2.0714 -4.3151 -0.9447 0.1300 6.7389 3.8834 0.9554 3.6784 0.1941 0.2414 5.7816 1.4484
+#&gt; 483: 93.0628 -5.9778 -2.0714 -4.3153 -0.9447 0.1295 6.7352 3.8943 0.9557 3.6783 0.1940 0.2419 5.7820 1.4483
+#&gt; 484: 93.0614 -5.9787 -2.0715 -4.3153 -0.9447 0.1291 6.7314 3.8999 0.9559 3.6774 0.1939 0.2424 5.7819 1.4481
+#&gt; 485: 93.0593 -5.9789 -2.0715 -4.3153 -0.9447 0.1288 6.7293 3.9007 0.9561 3.6765 0.1938 0.2430 5.7815 1.4480
+#&gt; 486: 93.0575 -5.9793 -2.0716 -4.3152 -0.9447 0.1284 6.7331 3.9021 0.9563 3.6753 0.1938 0.2434 5.7806 1.4480
+#&gt; 487: 93.0555 -5.9796 -2.0716 -4.3152 -0.9447 0.1281 6.7342 3.9036 0.9566 3.6741 0.1937 0.2439 5.7805 1.4479
+#&gt; 488: 93.0545 -5.9795 -2.0716 -4.3152 -0.9447 0.1277 6.7365 3.9024 0.9569 3.6729 0.1937 0.2444 5.7795 1.4480
+#&gt; 489: 93.0550 -5.9800 -2.0716 -4.3152 -0.9447 0.1274 6.7336 3.9046 0.9571 3.6719 0.1937 0.2448 5.7778 1.4481
+#&gt; 490: 93.0571 -5.9793 -2.0715 -4.3152 -0.9447 0.1272 6.7331 3.9009 0.9573 3.6704 0.1936 0.2450 5.7767 1.4484
+#&gt; 491: 93.0584 -5.9787 -2.0714 -4.3151 -0.9447 0.1270 6.7280 3.8980 0.9575 3.6688 0.1936 0.2452 5.7764 1.4487
+#&gt; 492: 93.0589 -5.9786 -2.0714 -4.3150 -0.9447 0.1267 6.7264 3.8971 0.9578 3.6675 0.1936 0.2455 5.7759 1.4489
+#&gt; 493: 93.0593 -5.9790 -2.0711 -4.3149 -0.9447 0.1265 6.7273 3.8982 0.9584 3.6660 0.1935 0.2456 5.7759 1.4490
+#&gt; 494: 93.0594 -5.9805 -2.0710 -4.3149 -0.9448 0.1263 6.7291 3.9066 0.9590 3.6650 0.1935 0.2457 5.7758 1.4489
+#&gt; 495: 93.0596 -5.9816 -2.0709 -4.3148 -0.9448 0.1261 6.7281 3.9123 0.9593 3.6639 0.1936 0.2459 5.7745 1.4490
+#&gt; 496: 93.0590 -5.9829 -2.0707 -4.3148 -0.9448 0.1259 6.7319 3.9227 0.9597 3.6628 0.1936 0.2461 5.7740 1.4491
+#&gt; 497: 93.0580 -5.9842 -2.0706 -4.3148 -0.9448 0.1257 6.7388 3.9326 0.9600 3.6623 0.1936 0.2463 5.7732 1.4492
+#&gt; 498: 93.0578 -5.9848 -2.0705 -4.3148 -0.9448 0.1255 6.7447 3.9368 0.9605 3.6618 0.1936 0.2464 5.7726 1.4494
+#&gt; 499: 93.0568 -5.9843 -2.0704 -4.3147 -0.9447 0.1253 6.7475 3.9341 0.9609 3.6612 0.1937 0.2467 5.7718 1.4495
+#&gt; 500: 93.0563 -5.9831 -2.0703 -4.3147 -0.9447 0.1251 6.7500 3.9292 0.9614 3.6607 0.1937 0.2469 5.7712 1.4496</div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
+#&gt; |.....................| log_k2 | g_qlogis |sigma_parent | sigma_A1 |
+#&gt; |.....................| o1 | o2 | o3 | o4 |
+#&gt; <span style='text-decoration: underline;'>|.....................| o5 | o6 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 1</span>| 488.98943 | 1.000 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8515 | -0.8698 |
+#&gt; |.....................| -0.8775 | -0.8743 | -0.8683 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8746 | -0.8685 |...........|...........|</span>
+#&gt; | U| 488.98943 | 93.00 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 488.98943</span> | 93.00 | 0.004992 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | G| Gill Diff. | -27.68 | 2.403 | -0.1248 | -0.3242 |
+#&gt; |.....................| -0.3705 | 0.07384 | -31.92 | -15.13 |
+#&gt; |.....................| 14.74 | 13.03 | -12.01 | -2.072 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 5.553 | -10.09 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 2</span>| 1205.4696 | 1.534 | -1.046 | -0.9091 | -0.9266 |
+#&gt; |.....................| -0.9745 | -0.8897 | -0.2358 | -0.5780 |
+#&gt; |.....................| -1.162 | -1.126 | -0.6367 | -0.8323 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.9817 | -0.6738 |...........|...........|</span>
+#&gt; | U| 1205.4696 | 142.6 | -5.346 | -0.9477 | -1.994 |
+#&gt; |.....................| -4.393 | 0.1897 | 2.616 | 1.260 |
+#&gt; |.....................| 0.5160 | 0.6557 | 1.444 | 1.015 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7709 | 1.387 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 1205.4696</span> | 142.6 | 0.004766 | 0.2793 | 0.1362 |
+#&gt; |.....................| 0.01237 | 0.5473 | 2.616 | 1.260 |
+#&gt; |.....................| 0.5160 | 0.6557 | 1.444 | 1.015 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7709 | 1.387 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 3</span>| 510.70816 | 1.053 | -1.005 | -0.9113 | -0.9322 |
+#&gt; |.....................| -0.9810 | -0.8884 | -0.7899 | -0.8406 |
+#&gt; |.....................| -0.9059 | -0.8995 | -0.8452 | -0.8683 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8853 | -0.8491 |...........|...........|</span>
+#&gt; | U| 510.70816 | 97.96 | -5.305 | -0.9498 | -1.999 |
+#&gt; |.....................| -4.399 | 0.1900 | 2.062 | 1.116 |
+#&gt; |.....................| 0.7005 | 0.8538 | 1.199 | 0.9804 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8541 | 1.184 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 510.70816</span> | 97.96 | 0.004969 | 0.2789 | 0.1354 |
+#&gt; |.....................| 0.01229 | 0.5474 | 2.062 | 1.116 |
+#&gt; |.....................| 0.7005 | 0.8538 | 1.199 | 0.9804 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8541 | 1.184 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 4</span>| 494.11470 | 1.005 | -1.000 | -0.9115 | -0.9328 |
+#&gt; |.....................| -0.9816 | -0.8883 | -0.8453 | -0.8669 |
+#&gt; |.....................| -0.8803 | -0.8769 | -0.8660 | -0.8719 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8757 | -0.8666 |...........|...........|</span>
+#&gt; | U| 494.1147 | 93.50 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.006 | 1.102 |
+#&gt; |.....................| 0.7190 | 0.8736 | 1.175 | 0.9768 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8624 | 1.163 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.1147</span> | 93.50 | 0.004989 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.006 | 1.102 |
+#&gt; |.....................| 0.7190 | 0.8736 | 1.175 | 0.9768 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8624 | 1.163 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 5</span>| 494.35784 | 1.001 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8509 | -0.8695 |
+#&gt; |.....................| -0.8778 | -0.8746 | -0.8681 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8747 | -0.8683 |...........|...........|</span>
+#&gt; | U| 494.35784 | 93.05 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.001 | 1.100 |
+#&gt; |.....................| 0.7208 | 0.8755 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8632 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.35784</span> | 93.05 | 0.004991 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.001 | 1.100 |
+#&gt; |.....................| 0.7208 | 0.8755 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8632 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 6</span>| 494.40319 | 1.000 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8514 | -0.8698 |
+#&gt; |.....................| -0.8775 | -0.8744 | -0.8683 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8746 | -0.8685 |...........|...........|</span>
+#&gt; | U| 494.40319 | 93.00 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8757 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.40319</span> | 93.00 | 0.004992 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8757 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 7</span>| 494.40793 | 1.000 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8515 | -0.8698 |
+#&gt; |.....................| -0.8775 | -0.8744 | -0.8683 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8746 | -0.8685 |...........|...........|</span>
+#&gt; | U| 494.40793 | 93.00 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.40793</span> | 93.00 | 0.004992 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 8</span>| 494.40830 | 1.000 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8515 | -0.8698 |
+#&gt; |.....................| -0.8775 | -0.8743 | -0.8683 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8746 | -0.8685 |...........|...........|</span>
+#&gt; | U| 494.4083 | 93.00 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.4083</span> | 93.00 | 0.004992 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 9</span>| 494.40832 | 1.000 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8515 | -0.8698 |
+#&gt; |.....................| -0.8775 | -0.8743 | -0.8683 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8746 | -0.8685 |...........|...........|</span>
+#&gt; | U| 494.40832 | 93.00 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.40832</span> | 93.00 | 0.004992 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 10</span>| 494.40832 | 1.000 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8515 | -0.8698 |
+#&gt; |.....................| -0.8775 | -0.8743 | -0.8683 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8746 | -0.8685 |...........|...........|</span>
+#&gt; | U| 494.40832 | 93.00 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.40832</span> | 93.00 | 0.004992 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 11</span>| 494.40832 | 1.000 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8515 | -0.8698 |
+#&gt; |.....................| -0.8775 | -0.8743 | -0.8683 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8746 | -0.8685 |...........|...........|</span>
+#&gt; | U| 494.40832 | 93.00 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.40832</span> | 93.00 | 0.004992 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 12</span>| 494.40832 | 1.000 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8515 | -0.8698 |
+#&gt; |.....................| -0.8775 | -0.8743 | -0.8683 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8746 | -0.8685 |...........|...........|</span>
+#&gt; | U| 494.40832 | 93.00 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.40832</span> | 93.00 | 0.004992 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 13</span>| 494.40832 | 1.000 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8515 | -0.8698 |
+#&gt; |.....................| -0.8775 | -0.8743 | -0.8683 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8746 | -0.8685 |...........|...........|</span>
+#&gt; | U| 494.40832 | 93.00 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.40832</span> | 93.00 | 0.004992 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 14</span>| 494.40832 | 1.000 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8515 | -0.8698 |
+#&gt; |.....................| -0.8775 | -0.8743 | -0.8683 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8746 | -0.8685 |...........|...........|</span>
+#&gt; | U| 494.40832 | 93.00 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.40832</span> | 93.00 | 0.004992 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 15</span>| 494.40832 | 1.000 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8515 | -0.8698 |
+#&gt; |.....................| -0.8775 | -0.8743 | -0.8683 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8746 | -0.8685 |...........|...........|</span>
+#&gt; | U| 494.40832 | 93.00 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.40832</span> | 93.00 | 0.004992 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 16</span>| 494.40832 | 1.000 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8515 | -0.8698 |
+#&gt; |.....................| -0.8775 | -0.8743 | -0.8683 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8746 | -0.8685 |...........|...........|</span>
+#&gt; | U| 494.40832 | 93.00 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.40832</span> | 93.00 | 0.004992 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 17</span>| 494.40832 | 1.000 | -1.000 | -0.9115 | -0.9329 |
+#&gt; |.....................| -0.9817 | -0.8883 | -0.8515 | -0.8698 |
+#&gt; |.....................| -0.8775 | -0.8743 | -0.8683 | -0.8723 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8746 | -0.8685 |...........|...........|</span>
+#&gt; | U| 494.40832 | 93.00 | -5.300 | -0.9500 | -2.000 |
+#&gt; |.....................| -4.400 | 0.1900 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.40832</span> | 93.00 | 0.004992 | 0.2789 | 0.1353 |
+#&gt; |.....................| 0.01228 | 0.5474 | 2.000 | 1.100 |
+#&gt; |.....................| 0.7210 | 0.8758 | 1.172 | 0.9765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.161 |...........|...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
+<span class='co'># Identical two-component error for all variables is only possible with</span>
+<span class='co'># est = 'focei' in nlmixr</span>
+<span class='va'>f_nlmixr_fomc_sfo_focei_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
+#&gt; |.....................| log_beta | sigma_low | rsd_high | o1 |
+#&gt; |.....................| o2 | o3 | o4 | o5 |
+#&gt; |<span style='font-weight: bold;'> 1</span>| 500.20030 | 1.000 | -1.000 | -0.9113 | -0.8944 |
+#&gt; |.....................| -0.8454 | -0.8678 | -0.8916 | -0.8767 |
+#&gt; |.....................| -0.8743 | -0.8675 | -0.8704 | -0.8704 |
+#&gt; | U| 500.2003 | 93.00 | -5.300 | -0.9400 | -0.1100 |
+#&gt; |.....................| 2.300 | 1.200 | 0.03000 | 0.7598 |
+#&gt; |.....................| 0.8758 | 1.214 | 1.068 | 1.071 |
+#&gt; | X|<span style='font-weight: bold;'> 500.2003</span> | 93.00 | 0.004992 | 0.2809 | 0.8958 |
+#&gt; |.....................| 9.974 | 1.200 | 0.03000 | 0.7598 |
+#&gt; |.....................| 0.8758 | 1.214 | 1.068 | 1.071 |
+#&gt; | G| Gill Diff. | 48.88 | 2.383 | 0.1231 | 0.1986 |
+#&gt; |.....................| 0.1571 | -64.31 | -21.89 | 0.6250 |
+#&gt; |.....................| 11.41 | -12.48 | -9.903 | -10.91 |
+#&gt; |<span style='font-weight: bold;'> 2</span>| 2909.4393 | 0.4361 | -1.027 | -0.9127 | -0.8967 |
+#&gt; |.....................| -0.8472 | -0.1258 | -0.6390 | -0.8839 |
+#&gt; |.....................| -1.006 | -0.7235 | -0.7562 | -0.7445 |
+#&gt; | U| 2909.4393 | 40.56 | -5.327 | -0.9413 | -0.1123 |
+#&gt; |.....................| 2.298 | 1.645 | 0.03379 | 0.7544 |
+#&gt; |.....................| 0.7605 | 1.389 | 1.189 | 1.206 |
+#&gt; | X|<span style='font-weight: bold;'> 2909.4393</span> | 40.56 | 0.004856 | 0.2806 | 0.8938 |
+#&gt; |.....................| 9.956 | 1.645 | 0.03379 | 0.7544 |
+#&gt; |.....................| 0.7605 | 1.389 | 1.189 | 1.206 |
+#&gt; |<span style='font-weight: bold;'> 3</span>| 515.24373 | 0.9436 | -1.003 | -0.9114 | -0.8946 |
+#&gt; |.....................| -0.8456 | -0.7936 | -0.8663 | -0.8774 |
+#&gt; |.....................| -0.8875 | -0.8531 | -0.8590 | -0.8578 |
+#&gt; | U| 515.24373 | 87.76 | -5.303 | -0.9401 | -0.1102 |
+#&gt; |.....................| 2.300 | 1.245 | 0.03038 | 0.7593 |
+#&gt; |.....................| 0.8642 | 1.232 | 1.080 | 1.084 |
+#&gt; | X|<span style='font-weight: bold;'> 515.24373</span> | 87.76 | 0.004978 | 0.2809 | 0.8956 |
+#&gt; |.....................| 9.972 | 1.245 | 0.03038 | 0.7593 |
+#&gt; |.....................| 0.8642 | 1.232 | 1.080 | 1.084 |
+#&gt; |<span style='font-weight: bold;'> 4</span>| 499.40695 | 0.9897 | -1.001 | -0.9113 | -0.8944 |
+#&gt; |.....................| -0.8454 | -0.8542 | -0.8869 | -0.8768 |
+#&gt; |.....................| -0.8768 | -0.8648 | -0.8684 | -0.8681 |
+#&gt; | U| 499.40695 | 92.04 | -5.301 | -0.9400 | -0.1100 |
+#&gt; |.....................| 2.300 | 1.208 | 0.03007 | 0.7597 |
+#&gt; |.....................| 0.8737 | 1.217 | 1.070 | 1.073 |
+#&gt; | X|<span style='font-weight: bold;'> 499.40695</span> | 92.04 | 0.004989 | 0.2809 | 0.8958 |
+#&gt; |.....................| 9.974 | 1.208 | 0.03007 | 0.7597 |
+#&gt; |.....................| 0.8737 | 1.217 | 1.070 | 1.073 |
+#&gt; | F| Forward Diff. | -99.71 | 2.245 | -0.1707 | 0.1202 |
+#&gt; |.....................| -0.1546 | -61.69 | -22.54 | 1.475 |
+#&gt; |.....................| 7.677 | -11.72 | -9.584 | -10.53 |
+#&gt; |<span style='font-weight: bold;'> 5</span>| 498.17135 | 1.001 | -1.001 | -0.9113 | -0.8945 |
+#&gt; |.....................| -0.8454 | -0.8410 | -0.8822 | -0.8771 |
+#&gt; |.....................| -0.8786 | -0.8623 | -0.8663 | -0.8658 |
+#&gt; | U| 498.17135 | 93.06 | -5.301 | -0.9400 | -0.1101 |
+#&gt; |.....................| 2.300 | 1.216 | 0.03014 | 0.7595 |
+#&gt; |.....................| 0.8720 | 1.221 | 1.072 | 1.076 |
+#&gt; | X|<span style='font-weight: bold;'> 498.17135</span> | 93.06 | 0.004987 | 0.2809 | 0.8958 |
+#&gt; |.....................| 9.974 | 1.216 | 0.03014 | 0.7595 |
+#&gt; |.....................| 0.8720 | 1.221 | 1.072 | 1.076 |
+#&gt; | F| Forward Diff. | 55.25 | 2.349 | 0.1359 | 0.2180 |
+#&gt; |.....................| 0.1993 | -60.48 | -20.28 | 1.106 |
+#&gt; |.....................| 9.662 | -11.74 | -9.501 | -10.55 |
+#&gt; |<span style='font-weight: bold;'> 6</span>| 497.33758 | 0.9906 | -1.002 | -0.9113 | -0.8945 |
+#&gt; |.....................| -0.8454 | -0.8273 | -0.8776 | -0.8773 |
+#&gt; |.....................| -0.8808 | -0.8596 | -0.8642 | -0.8634 |
+#&gt; | U| 497.33758 | 92.12 | -5.302 | -0.9400 | -0.1101 |
+#&gt; |.....................| 2.300 | 1.224 | 0.03021 | 0.7594 |
+#&gt; |.....................| 0.8701 | 1.224 | 1.074 | 1.078 |
+#&gt; | X|<span style='font-weight: bold;'> 497.33758</span> | 92.12 | 0.004984 | 0.2809 | 0.8957 |
+#&gt; |.....................| 9.974 | 1.224 | 0.03021 | 0.7594 |
+#&gt; |.....................| 0.8701 | 1.224 | 1.074 | 1.078 |
+#&gt; | F| Forward Diff. | -88.13 | 2.220 | -0.1371 | 0.1382 |
+#&gt; |.....................| -0.1101 | -57.44 | -20.90 | 1.111 |
+#&gt; |.....................| 7.358 | -11.52 | -9.371 | -10.34 |
+#&gt; |<span style='font-weight: bold;'> 7</span>| 496.20963 | 1.001 | -1.002 | -0.9113 | -0.8946 |
+#&gt; |.....................| -0.8454 | -0.8137 | -0.8728 | -0.8776 |
+#&gt; |.....................| -0.8827 | -0.8569 | -0.8620 | -0.8610 |
+#&gt; | U| 496.20963 | 93.07 | -5.302 | -0.9400 | -0.1102 |
+#&gt; |.....................| 2.300 | 1.232 | 0.03028 | 0.7592 |
+#&gt; |.....................| 0.8684 | 1.227 | 1.077 | 1.081 |
+#&gt; | X|<span style='font-weight: bold;'> 496.20963</span> | 93.07 | 0.004981 | 0.2809 | 0.8957 |
+#&gt; |.....................| 9.974 | 1.232 | 0.03028 | 0.7592 |
+#&gt; |.....................| 0.8684 | 1.227 | 1.077 | 1.081 |
+#&gt; | F| Forward Diff. | 55.31 | 2.316 | 0.1573 | 0.2363 |
+#&gt; |.....................| 0.2327 | -56.27 | -18.79 | 0.9054 |
+#&gt; |.....................| 9.277 | -11.53 | -9.283 | -10.35 |
+#&gt; |<span style='font-weight: bold;'> 8</span>| 495.35926 | 0.9914 | -1.003 | -0.9113 | -0.8946 |
+#&gt; |.....................| -0.8455 | -0.7996 | -0.8680 | -0.8778 |
+#&gt; |.....................| -0.8850 | -0.8541 | -0.8597 | -0.8584 |
+#&gt; | U| 495.35926 | 92.20 | -5.303 | -0.9401 | -0.1102 |
+#&gt; |.....................| 2.300 | 1.241 | 0.03035 | 0.7590 |
+#&gt; |.....................| 0.8664 | 1.231 | 1.079 | 1.084 |
+#&gt; | X|<span style='font-weight: bold;'> 495.35926</span> | 92.20 | 0.004979 | 0.2809 | 0.8956 |
+#&gt; |.....................| 9.973 | 1.241 | 0.03035 | 0.7590 |
+#&gt; |.....................| 0.8664 | 1.231 | 1.079 | 1.084 |
+#&gt; | F| Forward Diff. | -77.78 | 2.194 | -0.1077 | 0.1552 |
+#&gt; |.....................| -0.06714 | -52.97 | -19.27 | 0.8916 |
+#&gt; |.....................| 7.037 | -11.29 | -9.130 | -10.15 |
+#&gt; |<span style='font-weight: bold;'> 9</span>| 494.33654 | 1.001 | -1.003 | -0.9113 | -0.8947 |
+#&gt; |.....................| -0.8455 | -0.7857 | -0.8631 | -0.8780 |
+#&gt; |.....................| -0.8870 | -0.8511 | -0.8573 | -0.8558 |
+#&gt; | U| 494.33654 | 93.09 | -5.303 | -0.9400 | -0.1103 |
+#&gt; |.....................| 2.300 | 1.249 | 0.03043 | 0.7588 |
+#&gt; |.....................| 0.8647 | 1.234 | 1.082 | 1.087 |
+#&gt; | X|<span style='font-weight: bold;'> 494.33654</span> | 93.09 | 0.004976 | 0.2809 | 0.8956 |
+#&gt; |.....................| 9.973 | 1.249 | 0.03043 | 0.7588 |
+#&gt; |.....................| 0.8647 | 1.234 | 1.082 | 1.087 |
+#&gt; | F| Forward Diff. | 55.95 | 2.282 | 0.1850 | 0.2507 |
+#&gt; |.....................| 0.2656 | -51.81 | -17.28 | 0.8212 |
+#&gt; |.....................| 7.543 | -11.27 | -9.029 | -10.13 |
+#&gt; |<span style='font-weight: bold;'> 10</span>| 493.47922 | 0.9922 | -1.004 | -0.9114 | -0.8947 |
+#&gt; |.....................| -0.8455 | -0.7714 | -0.8582 | -0.8782 |
+#&gt; |.....................| -0.8891 | -0.8480 | -0.8548 | -0.8530 |
+#&gt; | U| 493.47922 | 92.28 | -5.304 | -0.9401 | -0.1103 |
+#&gt; |.....................| 2.300 | 1.258 | 0.03050 | 0.7587 |
+#&gt; |.....................| 0.8629 | 1.238 | 1.084 | 1.090 |
+#&gt; | X|<span style='font-weight: bold;'> 493.47922</span> | 92.28 | 0.004973 | 0.2809 | 0.8955 |
+#&gt; |.....................| 9.973 | 1.258 | 0.03050 | 0.7587 |
+#&gt; |.....................| 0.8629 | 1.238 | 1.084 | 1.090 |
+#&gt; | F| Forward Diff. | -67.18 | 2.173 | -0.07166 | 0.1818 |
+#&gt; |.....................| -0.01313 | -49.19 | -17.69 | 0.7047 |
+#&gt; |.....................| 8.114 | -11.03 | -8.882 | -9.923 |
+#&gt; |<span style='font-weight: bold;'> 11</span>| 492.53845 | 1.001 | -1.004 | -0.9114 | -0.8948 |
+#&gt; |.....................| -0.8456 | -0.7572 | -0.8532 | -0.8784 |
+#&gt; |.....................| -0.8914 | -0.8448 | -0.8522 | -0.8501 |
+#&gt; | U| 492.53845 | 93.09 | -5.304 | -0.9401 | -0.1104 |
+#&gt; |.....................| 2.300 | 1.266 | 0.03057 | 0.7585 |
+#&gt; |.....................| 0.8608 | 1.242 | 1.087 | 1.093 |
+#&gt; | X|<span style='font-weight: bold;'> 492.53845</span> | 93.09 | 0.004969 | 0.2809 | 0.8955 |
+#&gt; |.....................| 9.972 | 1.266 | 0.03057 | 0.7585 |
+#&gt; |.....................| 0.8608 | 1.242 | 1.087 | 1.093 |
+#&gt; | F| Forward Diff. | 53.38 | 2.243 | 0.1941 | 0.2566 |
+#&gt; |.....................| 0.2879 | -47.96 | -15.83 | 0.7595 |
+#&gt; |.....................| 8.537 | -10.98 | -8.771 | -9.890 |
+#&gt; |<span style='font-weight: bold;'> 12</span>| 491.72645 | 0.9926 | -1.005 | -0.9114 | -0.8949 |
+#&gt; |.....................| -0.8456 | -0.7429 | -0.8484 | -0.8786 |
+#&gt; |.....................| -0.8941 | -0.8415 | -0.8496 | -0.8471 |
+#&gt; | U| 491.72645 | 92.31 | -5.305 | -0.9401 | -0.1105 |
+#&gt; |.....................| 2.300 | 1.275 | 0.03065 | 0.7584 |
+#&gt; |.....................| 0.8584 | 1.246 | 1.090 | 1.096 |
+#&gt; | X|<span style='font-weight: bold;'> 491.72645</span> | 92.31 | 0.004966 | 0.2809 | 0.8954 |
+#&gt; |.....................| 9.972 | 1.275 | 0.03065 | 0.7584 |
+#&gt; |.....................| 0.8584 | 1.246 | 1.090 | 1.096 |
+#&gt; | F| Forward Diff. | -63.56 | 2.131 | -0.05387 | 0.1833 |
+#&gt; |.....................| 0.0009134 | -45.55 | -16.30 | 0.3872 |
+#&gt; |.....................| 9.447 | -10.76 | -8.612 | -9.684 |
+#&gt; |<span style='font-weight: bold;'> 13</span>| 490.83850 | 1.001 | -1.006 | -0.9114 | -0.8949 |
+#&gt; |.....................| -0.8457 | -0.7286 | -0.8435 | -0.8787 |
+#&gt; |.....................| -0.8974 | -0.8380 | -0.8468 | -0.8440 |
+#&gt; | U| 490.8385 | 93.07 | -5.306 | -0.9401 | -0.1105 |
+#&gt; |.....................| 2.300 | 1.283 | 0.03072 | 0.7583 |
+#&gt; |.....................| 0.8556 | 1.250 | 1.093 | 1.099 |
+#&gt; | X|<span style='font-weight: bold;'> 490.8385</span> | 93.07 | 0.004963 | 0.2809 | 0.8954 |
+#&gt; |.....................| 9.971 | 1.283 | 0.03072 | 0.7583 |
+#&gt; |.....................| 0.8556 | 1.250 | 1.093 | 1.099 |
+#&gt; | F| Forward Diff. | 49.01 | 2.198 | 0.2057 | 0.2666 |
+#&gt; |.....................| 0.3102 | -44.06 | -14.52 | 0.5614 |
+#&gt; |.....................| 8.039 | -10.72 | -8.482 | -9.628 |
+#&gt; |<span style='font-weight: bold;'> 14</span>| 490.09324 | 0.9928 | -1.007 | -0.9115 | -0.8950 |
+#&gt; |.....................| -0.8458 | -0.7143 | -0.8387 | -0.8788 |
+#&gt; |.....................| -0.9004 | -0.8343 | -0.8439 | -0.8407 |
+#&gt; | U| 490.09324 | 92.33 | -5.307 | -0.9402 | -0.1106 |
+#&gt; |.....................| 2.300 | 1.292 | 0.03079 | 0.7582 |
+#&gt; |.....................| 0.8529 | 1.254 | 1.096 | 1.103 |
+#&gt; | X|<span style='font-weight: bold;'> 490.09324</span> | 92.33 | 0.004959 | 0.2809 | 0.8953 |
+#&gt; |.....................| 9.970 | 1.292 | 0.03079 | 0.7582 |
+#&gt; |.....................| 0.8529 | 1.254 | 1.096 | 1.103 |
+#&gt; | F| Forward Diff. | -62.13 | 2.095 | -0.03472 | 0.1999 |
+#&gt; |.....................| 0.03562 | -41.55 | -14.84 | 0.5236 |
+#&gt; |.....................| 7.264 | -10.46 | -8.310 | -9.412 |
+#&gt; |<span style='font-weight: bold;'> 15</span>| 489.25271 | 1.001 | -1.007 | -0.9115 | -0.8951 |
+#&gt; |.....................| -0.8458 | -0.7001 | -0.8338 | -0.8789 |
+#&gt; |.....................| -0.9032 | -0.8304 | -0.8408 | -0.8372 |
+#&gt; | U| 489.25271 | 93.06 | -5.307 | -0.9402 | -0.1107 |
+#&gt; |.....................| 2.300 | 1.301 | 0.03087 | 0.7581 |
+#&gt; |.....................| 0.8505 | 1.259 | 1.099 | 1.107 |
+#&gt; | X|<span style='font-weight: bold;'> 489.25271</span> | 93.06 | 0.004955 | 0.2809 | 0.8952 |
+#&gt; |.....................| 9.970 | 1.301 | 0.03087 | 0.7581 |
+#&gt; |.....................| 0.8505 | 1.259 | 1.099 | 1.107 |
+#&gt; | F| Forward Diff. | 44.98 | 2.155 | 0.2191 | 0.2769 |
+#&gt; |.....................| 0.3339 | -40.42 | -13.24 | 0.4473 |
+#&gt; |.....................| 7.595 | -10.35 | -8.165 | -9.335 |
+#&gt; |<span style='font-weight: bold;'> 16</span>| 488.54089 | 0.9934 | -1.008 | -0.9116 | -0.8952 |
+#&gt; |.....................| -0.8459 | -0.6857 | -0.8290 | -0.8790 |
+#&gt; |.....................| -0.9061 | -0.8262 | -0.8376 | -0.8335 |
+#&gt; | U| 488.54089 | 92.38 | -5.308 | -0.9403 | -0.1108 |
+#&gt; |.....................| 2.299 | 1.309 | 0.03094 | 0.7581 |
+#&gt; |.....................| 0.8479 | 1.264 | 1.103 | 1.111 |
+#&gt; | X|<span style='font-weight: bold;'> 488.54089</span> | 92.38 | 0.004951 | 0.2808 | 0.8951 |
+#&gt; |.....................| 9.968 | 1.309 | 0.03094 | 0.7581 |
+#&gt; |.....................| 0.8479 | 1.264 | 1.103 | 1.111 |
+#&gt; | F| Forward Diff. | -55.81 | 2.061 | -0.02096 | 0.2050 |
+#&gt; |.....................| 0.07367 | -38.08 | -13.50 | 0.4111 |
+#&gt; |.....................| 6.904 | -10.08 | -7.981 | -9.106 |
+#&gt; |<span style='font-weight: bold;'> 17</span>| 487.77387 | 1.001 | -1.009 | -0.9116 | -0.8953 |
+#&gt; |.....................| -0.8461 | -0.6716 | -0.8243 | -0.8791 |
+#&gt; |.....................| -0.9092 | -0.8218 | -0.8341 | -0.8294 |
+#&gt; | U| 487.77387 | 93.07 | -5.309 | -0.9403 | -0.1109 |
+#&gt; |.....................| 2.299 | 1.318 | 0.03101 | 0.7580 |
+#&gt; |.....................| 0.8453 | 1.270 | 1.106 | 1.115 |
+#&gt; | X|<span style='font-weight: bold;'> 487.77387</span> | 93.07 | 0.004946 | 0.2808 | 0.8950 |
+#&gt; |.....................| 9.967 | 1.318 | 0.03101 | 0.7580 |
+#&gt; |.....................| 0.8453 | 1.270 | 1.106 | 1.115 |
+#&gt; | F| Forward Diff. | 43.45 | 2.114 | 0.2402 | 0.2940 |
+#&gt; |.....................| 0.3672 | -36.87 | -12.03 | 0.3081 |
+#&gt; |.....................| 7.143 | -10.02 | -7.799 | -9.000 |
+#&gt; |<span style='font-weight: bold;'> 18</span>| 487.09815 | 0.9939 | -1.010 | -0.9118 | -0.8955 |
+#&gt; |.....................| -0.8463 | -0.6575 | -0.8197 | -0.8791 |
+#&gt; |.....................| -0.9124 | -0.8169 | -0.8304 | -0.8251 |
+#&gt; | U| 487.09815 | 92.43 | -5.310 | -0.9404 | -0.1111 |
+#&gt; |.....................| 2.299 | 1.326 | 0.03108 | 0.7580 |
+#&gt; |.....................| 0.8425 | 1.276 | 1.110 | 1.120 |
+#&gt; | X|<span style='font-weight: bold;'> 487.09815</span> | 92.43 | 0.004941 | 0.2808 | 0.8948 |
+#&gt; |.....................| 9.965 | 1.326 | 0.03108 | 0.7580 |
+#&gt; |.....................| 0.8425 | 1.276 | 1.110 | 1.120 |
+#&gt; | F| Forward Diff. | -50.03 | 2.024 | 0.005993 | 0.2193 |
+#&gt; |.....................| 0.1119 | -34.69 | -12.26 | 0.2072 |
+#&gt; |.....................| 6.453 | -9.722 | -7.597 | -8.758 |
+#&gt; |<span style='font-weight: bold;'> 19</span>| 486.39882 | 1.001 | -1.011 | -0.9119 | -0.8957 |
+#&gt; |.....................| -0.8465 | -0.6438 | -0.8151 | -0.8789 |
+#&gt; |.....................| -0.9156 | -0.8116 | -0.8264 | -0.8203 |
+#&gt; | U| 486.39882 | 93.07 | -5.311 | -0.9405 | -0.1113 |
+#&gt; |.....................| 2.299 | 1.334 | 0.03115 | 0.7582 |
+#&gt; |.....................| 0.8396 | 1.282 | 1.114 | 1.125 |
+#&gt; | X|<span style='font-weight: bold;'> 486.39882</span> | 93.07 | 0.004935 | 0.2808 | 0.8947 |
+#&gt; |.....................| 9.963 | 1.334 | 0.03115 | 0.7582 |
+#&gt; |.....................| 0.8396 | 1.282 | 1.114 | 1.125 |
+#&gt; | F| Forward Diff. | 41.24 | 2.069 | 0.2581 | 0.3038 |
+#&gt; |.....................| 0.3965 | -33.71 | -10.93 | 0.1523 |
+#&gt; |.....................| 5.279 | -9.597 | -7.397 | -8.617 |
+#&gt; |<span style='font-weight: bold;'> 20</span>| 485.77269 | 0.9943 | -1.013 | -0.9120 | -0.8959 |
+#&gt; |.....................| -0.8467 | -0.6301 | -0.8107 | -0.8786 |
+#&gt; |.....................| -0.9175 | -0.8058 | -0.8222 | -0.8151 |
+#&gt; | U| 485.77269 | 92.47 | -5.313 | -0.9407 | -0.1115 |
+#&gt; |.....................| 2.299 | 1.343 | 0.03121 | 0.7584 |
+#&gt; |.....................| 0.8380 | 1.289 | 1.119 | 1.130 |
+#&gt; | X|<span style='font-weight: bold;'> 485.77269</span> | 92.47 | 0.004928 | 0.2808 | 0.8945 |
+#&gt; |.....................| 9.960 | 1.343 | 0.03121 | 0.7584 |
+#&gt; |.....................| 0.8380 | 1.289 | 1.119 | 1.130 |
+#&gt; | F| Forward Diff. | -45.38 | 1.992 | 0.03513 | 0.2356 |
+#&gt; |.....................| 0.1513 | -31.62 | -11.12 | 0.08802 |
+#&gt; |.....................| 6.113 | -9.278 | -7.167 | -8.332 |
+#&gt; |<span style='font-weight: bold;'> 21</span>| 485.13787 | 1.001 | -1.014 | -0.9122 | -0.8962 |
+#&gt; |.....................| -0.8471 | -0.6169 | -0.8065 | -0.8780 |
+#&gt; |.....................| -0.9196 | -0.7993 | -0.8176 | -0.8094 |
+#&gt; | U| 485.13787 | 93.06 | -5.314 | -0.9409 | -0.1118 |
+#&gt; |.....................| 2.298 | 1.351 | 0.03128 | 0.7588 |
+#&gt; |.....................| 0.8361 | 1.297 | 1.124 | 1.136 |
+#&gt; | X|<span style='font-weight: bold;'> 485.13787</span> | 93.06 | 0.004921 | 0.2807 | 0.8942 |
+#&gt; |.....................| 9.957 | 1.351 | 0.03128 | 0.7588 |
+#&gt; |.....................| 0.8361 | 1.297 | 1.124 | 1.136 |
+#&gt; | F| Forward Diff. | 37.95 | 2.033 | 0.2726 | 0.3147 |
+#&gt; |.....................| 0.4223 | -30.68 | -9.906 | 0.05100 |
+#&gt; |.....................| 4.975 | -9.039 | -6.928 | -8.144 |
+#&gt; |<span style='font-weight: bold;'> 22</span>| 484.56781 | 0.9947 | -1.016 | -0.9125 | -0.8965 |
+#&gt; |.....................| -0.8476 | -0.6040 | -0.8026 | -0.8774 |
+#&gt; |.....................| -0.9219 | -0.7925 | -0.8127 | -0.8032 |
+#&gt; | U| 484.56781 | 92.51 | -5.316 | -0.9411 | -0.1121 |
+#&gt; |.....................| 2.298 | 1.358 | 0.03133 | 0.7593 |
+#&gt; |.....................| 0.8341 | 1.305 | 1.129 | 1.143 |
+#&gt; | X|<span style='font-weight: bold;'> 484.56781</span> | 92.51 | 0.004912 | 0.2807 | 0.8939 |
+#&gt; |.....................| 9.952 | 1.358 | 0.03133 | 0.7593 |
+#&gt; |.....................| 0.8341 | 1.305 | 1.129 | 1.143 |
+#&gt; | F| Forward Diff. | -42.28 | 1.959 | 0.05438 | 0.2483 |
+#&gt; |.....................| 0.1829 | -28.95 | -10.12 | -0.04344 |
+#&gt; |.....................| 4.379 | -8.677 | -6.653 | -7.817 |
+#&gt; |<span style='font-weight: bold;'> 23</span>| 484.00832 | 1.000 | -1.018 | -0.9128 | -0.8970 |
+#&gt; |.....................| -0.8481 | -0.5915 | -0.7988 | -0.8764 |
+#&gt; |.....................| -0.9214 | -0.7852 | -0.8076 | -0.7966 |
+#&gt; | U| 484.00832 | 93.05 | -5.318 | -0.9414 | -0.1125 |
+#&gt; |.....................| 2.297 | 1.366 | 0.03139 | 0.7601 |
+#&gt; |.....................| 0.8346 | 1.314 | 1.135 | 1.150 |
+#&gt; | X|<span style='font-weight: bold;'> 484.00832</span> | 93.05 | 0.004901 | 0.2806 | 0.8936 |
+#&gt; |.....................| 9.947 | 1.366 | 0.03139 | 0.7601 |
+#&gt; |.....................| 0.8346 | 1.314 | 1.135 | 1.150 |
+#&gt; | F| Forward Diff. | 34.54 | 2.001 | 0.2786 | 0.3182 |
+#&gt; |.....................| 0.4381 | -28.02 | -9.026 | -0.09975 |
+#&gt; |.....................| 6.146 | -8.496 | -6.417 | -7.602 |
+#&gt; |<span style='font-weight: bold;'> 24</span>| 483.48726 | 0.9952 | -1.021 | -0.9132 | -0.8975 |
+#&gt; |.....................| -0.8489 | -0.5798 | -0.7955 | -0.8750 |
+#&gt; |.....................| -0.9256 | -0.7775 | -0.8025 | -0.7898 |
+#&gt; | U| 483.48726 | 92.55 | -5.321 | -0.9418 | -0.1131 |
+#&gt; |.....................| 2.296 | 1.373 | 0.03144 | 0.7611 |
+#&gt; |.....................| 0.8309 | 1.323 | 1.140 | 1.157 |
+#&gt; | X|<span style='font-weight: bold;'> 483.48726</span> | 92.55 | 0.004889 | 0.2805 | 0.8931 |
+#&gt; |.....................| 9.939 | 1.373 | 0.03144 | 0.7611 |
+#&gt; |.....................| 0.8309 | 1.323 | 1.140 | 1.157 |
+#&gt; | F| Forward Diff. | -37.52 | 1.926 | 0.07054 | 0.2526 |
+#&gt; |.....................| 0.2102 | -26.43 | -9.184 | -0.1123 |
+#&gt; |.....................| 5.591 | -8.057 | -6.119 | -7.239 |
+#&gt; |<span style='font-weight: bold;'> 25</span>| 482.99669 | 1.001 | -1.023 | -0.9136 | -0.8980 |
+#&gt; |.....................| -0.8497 | -0.5700 | -0.7928 | -0.8735 |
+#&gt; |.....................| -0.9342 | -0.7702 | -0.7978 | -0.7834 |
+#&gt; | U| 482.99669 | 93.05 | -5.323 | -0.9422 | -0.1136 |
+#&gt; |.....................| 2.296 | 1.379 | 0.03148 | 0.7623 |
+#&gt; |.....................| 0.8234 | 1.332 | 1.145 | 1.164 |
+#&gt; | X|<span style='font-weight: bold;'> 482.99669</span> | 93.05 | 0.004876 | 0.2805 | 0.8926 |
+#&gt; |.....................| 9.932 | 1.379 | 0.03148 | 0.7623 |
+#&gt; |.....................| 0.8234 | 1.332 | 1.145 | 1.164 |
+#&gt; | F| Forward Diff. | 33.56 | 1.934 | 0.3091 | 0.3219 |
+#&gt; |.....................| 0.4700 | -25.85 | -8.255 | -0.09267 |
+#&gt; |.....................| 5.467 | -7.833 | -5.883 | -7.031 |
+#&gt; |<span style='font-weight: bold;'> 26</span>| 482.53338 | 0.9957 | -1.027 | -0.9143 | -0.8987 |
+#&gt; |.....................| -0.8507 | -0.5600 | -0.7904 | -0.8719 |
+#&gt; |.....................| -0.9423 | -0.7626 | -0.7931 | -0.7767 |
+#&gt; | U| 482.53338 | 92.60 | -5.327 | -0.9428 | -0.1143 |
+#&gt; |.....................| 2.295 | 1.385 | 0.03152 | 0.7635 |
+#&gt; |.....................| 0.8163 | 1.342 | 1.150 | 1.171 |
+#&gt; | X|<span style='font-weight: bold;'> 482.53338</span> | 92.60 | 0.004861 | 0.2803 | 0.8920 |
+#&gt; |.....................| 9.921 | 1.385 | 0.03152 | 0.7635 |
+#&gt; |.....................| 0.8163 | 1.342 | 1.150 | 1.171 |
+#&gt; | F| Forward Diff. | -33.71 | 1.852 | 0.1405 | 0.2615 |
+#&gt; |.....................| 0.2476 | -24.53 | -8.462 | -0.2274 |
+#&gt; |.....................| 4.657 | -7.455 | -5.599 | -6.689 |
+#&gt; |<span style='font-weight: bold;'> 27</span>| 482.07760 | 1.001 | -1.030 | -0.9154 | -0.8996 |
+#&gt; |.....................| -0.8522 | -0.5495 | -0.7881 | -0.8694 |
+#&gt; |.....................| -0.9481 | -0.7546 | -0.7885 | -0.7696 |
+#&gt; | U| 482.0776 | 93.06 | -5.330 | -0.9439 | -0.1152 |
+#&gt; |.....................| 2.293 | 1.391 | 0.03155 | 0.7654 |
+#&gt; |.....................| 0.8112 | 1.351 | 1.155 | 1.179 |
+#&gt; | X|<span style='font-weight: bold;'> 482.0776</span> | 93.06 | 0.004842 | 0.2801 | 0.8912 |
+#&gt; |.....................| 9.906 | 1.391 | 0.03155 | 0.7654 |
+#&gt; |.....................| 0.8112 | 1.351 | 1.155 | 1.179 |
+#&gt; | F| Forward Diff. | 31.51 | 1.862 | 0.3171 | 0.3253 |
+#&gt; |.....................| 0.4890 | -23.74 | -7.570 | -0.1627 |
+#&gt; |.....................| 4.673 | -7.176 | -5.365 | -6.441 |
+#&gt; |<span style='font-weight: bold;'> 28</span>| 481.65018 | 0.9960 | -1.035 | -0.9168 | -0.9007 |
+#&gt; |.....................| -0.8541 | -0.5386 | -0.7859 | -0.8662 |
+#&gt; |.....................| -0.9515 | -0.7465 | -0.7840 | -0.7624 |
+#&gt; | U| 481.65018 | 92.63 | -5.335 | -0.9452 | -0.1163 |
+#&gt; |.....................| 2.291 | 1.398 | 0.03158 | 0.7678 |
+#&gt; |.....................| 0.8082 | 1.361 | 1.160 | 1.187 |
+#&gt; | X|<span style='font-weight: bold;'> 481.65018</span> | 92.63 | 0.004820 | 0.2799 | 0.8902 |
+#&gt; |.....................| 9.887 | 1.398 | 0.03158 | 0.7678 |
+#&gt; |.....................| 0.8082 | 1.361 | 1.160 | 1.187 |
+#&gt; | F| Forward Diff. | -31.18 | 1.794 | 0.1244 | 0.2518 |
+#&gt; |.....................| 0.2479 | -22.54 | -7.736 | -0.2537 |
+#&gt; |.....................| 4.155 | -6.794 | -5.094 | -6.088 |
+#&gt; |<span style='font-weight: bold;'> 29</span>| 481.23911 | 1.000 | -1.041 | -0.9182 | -0.9020 |
+#&gt; |.....................| -0.8564 | -0.5274 | -0.7840 | -0.8624 |
+#&gt; |.....................| -0.9539 | -0.7386 | -0.7800 | -0.7556 |
+#&gt; | U| 481.23911 | 93.04 | -5.341 | -0.9465 | -0.1176 |
+#&gt; |.....................| 2.289 | 1.404 | 0.03161 | 0.7707 |
+#&gt; |.....................| 0.8061 | 1.371 | 1.164 | 1.194 |
+#&gt; | X|<span style='font-weight: bold;'> 481.23911</span> | 93.04 | 0.004792 | 0.2796 | 0.8890 |
+#&gt; |.....................| 9.865 | 1.404 | 0.03161 | 0.7707 |
+#&gt; |.....................| 0.8061 | 1.371 | 1.164 | 1.194 |
+#&gt; |<span style='font-weight: bold;'> 30</span>| 480.84332 | 1.001 | -1.048 | -0.9201 | -0.9037 |
+#&gt; |.....................| -0.8593 | -0.5164 | -0.7829 | -0.8573 |
+#&gt; |.....................| -0.9562 | -0.7293 | -0.7754 | -0.7475 |
+#&gt; | U| 480.84332 | 93.06 | -5.348 | -0.9483 | -0.1193 |
+#&gt; |.....................| 2.286 | 1.411 | 0.03163 | 0.7746 |
+#&gt; |.....................| 0.8041 | 1.382 | 1.169 | 1.203 |
+#&gt; | X|<span style='font-weight: bold;'> 480.84332</span> | 93.06 | 0.004757 | 0.2792 | 0.8875 |
+#&gt; |.....................| 9.836 | 1.411 | 0.03163 | 0.7746 |
+#&gt; |.....................| 0.8041 | 1.382 | 1.169 | 1.203 |
+#&gt; |<span style='font-weight: bold;'> 31</span>| 479.47395 | 1.001 | -1.077 | -0.9274 | -0.9105 |
+#&gt; |.....................| -0.8708 | -0.4737 | -0.7785 | -0.8375 |
+#&gt; |.....................| -0.9655 | -0.6927 | -0.7575 | -0.7158 |
+#&gt; | U| 479.47395 | 93.12 | -5.377 | -0.9551 | -0.1261 |
+#&gt; |.....................| 2.275 | 1.436 | 0.03170 | 0.7896 |
+#&gt; |.....................| 0.7959 | 1.426 | 1.188 | 1.237 |
+#&gt; | X|<span style='font-weight: bold;'> 479.47395</span> | 93.12 | 0.004620 | 0.2779 | 0.8816 |
+#&gt; |.....................| 9.723 | 1.436 | 0.03170 | 0.7896 |
+#&gt; |.....................| 0.7959 | 1.426 | 1.188 | 1.237 |
+#&gt; |<span style='font-weight: bold;'> 32</span>| 477.01144 | 1.003 | -1.162 | -0.9485 | -0.9300 |
+#&gt; |.....................| -0.9044 | -0.3493 | -0.7656 | -0.7799 |
+#&gt; |.....................| -0.9925 | -0.5865 | -0.7057 | -0.6237 |
+#&gt; | U| 477.01144 | 93.31 | -5.462 | -0.9750 | -0.1456 |
+#&gt; |.....................| 2.241 | 1.511 | 0.03189 | 0.8334 |
+#&gt; |.....................| 0.7723 | 1.555 | 1.243 | 1.335 |
+#&gt; | X|<span style='font-weight: bold;'> 477.01144</span> | 93.31 | 0.004245 | 0.2739 | 0.8645 |
+#&gt; |.....................| 9.403 | 1.511 | 0.03189 | 0.8334 |
+#&gt; |.....................| 0.7723 | 1.555 | 1.243 | 1.335 |
+#&gt; | F| Forward Diff. | 48.38 | 1.353 | -0.3553 | -0.05530 |
+#&gt; |.....................| -0.006768 | -8.661 | -2.325 | -0.1540 |
+#&gt; |.....................| 2.503 | -0.2811 | -0.6438 | -0.5229 |
+#&gt; |<span style='font-weight: bold;'> 33</span>| 477.99463 | 1.002 | -1.284 | -0.8933 | -0.9162 |
+#&gt; |.....................| -0.8846 | -0.1951 | -0.7385 | -0.7367 |
+#&gt; |.....................| -1.093 | -0.7697 | -0.8046 | -0.7596 |
+#&gt; | U| 477.99463 | 93.20 | -5.584 | -0.9231 | -0.1318 |
+#&gt; |.....................| 2.261 | 1.604 | 0.03230 | 0.8662 |
+#&gt; |.....................| 0.6840 | 1.333 | 1.138 | 1.190 |
+#&gt; | X|<span style='font-weight: bold;'> 477.99463</span> | 93.20 | 0.003757 | 0.2843 | 0.8766 |
+#&gt; |.....................| 9.591 | 1.604 | 0.03230 | 0.8662 |
+#&gt; |.....................| 0.6840 | 1.333 | 1.138 | 1.190 |
+#&gt; |<span style='font-weight: bold;'> 34</span>| 476.67952 | 1.000 | -1.201 | -0.9310 | -0.9256 |
+#&gt; |.....................| -0.8981 | -0.3000 | -0.7569 | -0.7662 |
+#&gt; |.....................| -1.025 | -0.6445 | -0.7370 | -0.6668 |
+#&gt; | U| 476.67952 | 93.04 | -5.501 | -0.9585 | -0.1412 |
+#&gt; |.....................| 2.247 | 1.541 | 0.03202 | 0.8438 |
+#&gt; |.....................| 0.7442 | 1.485 | 1.210 | 1.289 |
+#&gt; | X|<span style='font-weight: bold;'> 476.67952</span> | 93.04 | 0.004084 | 0.2772 | 0.8683 |
+#&gt; |.....................| 9.462 | 1.541 | 0.03202 | 0.8438 |
+#&gt; |.....................| 0.7442 | 1.485 | 1.210 | 1.289 |
+#&gt; | F| Forward Diff. | 3.308 | 1.138 | 0.3206 | 0.007327 |
+#&gt; |.....................| -0.005220 | -6.420 | -1.952 | -0.8085 |
+#&gt; |.....................| -0.4295 | -3.531 | -2.349 | -2.485 |
+#&gt; |<span style='font-weight: bold;'> 35</span>| 477.00015 | 0.9939 | -1.268 | -0.9234 | -0.9152 |
+#&gt; |.....................| -0.8823 | -0.2647 | -0.7585 | -0.7168 |
+#&gt; |.....................| -0.9725 | -0.6365 | -0.7310 | -0.6853 |
+#&gt; | U| 477.00015 | 92.43 | -5.568 | -0.9514 | -0.1308 |
+#&gt; |.....................| 2.263 | 1.562 | 0.03200 | 0.8813 |
+#&gt; |.....................| 0.7898 | 1.495 | 1.216 | 1.269 |
+#&gt; | X|<span style='font-weight: bold;'> 477.00015</span> | 92.43 | 0.003818 | 0.2786 | 0.8774 |
+#&gt; |.....................| 9.613 | 1.562 | 0.03200 | 0.8813 |
+#&gt; |.....................| 0.7898 | 1.495 | 1.216 | 1.269 |
+#&gt; |<span style='font-weight: bold;'> 36</span>| 476.87328 | 0.9941 | -1.216 | -0.9300 | -0.9236 |
+#&gt; |.....................| -0.8950 | -0.2832 | -0.7542 | -0.7554 |
+#&gt; |.....................| -1.014 | -0.6375 | -0.7322 | -0.6666 |
+#&gt; | U| 476.87328 | 92.45 | -5.516 | -0.9576 | -0.1392 |
+#&gt; |.....................| 2.250 | 1.551 | 0.03206 | 0.8520 |
+#&gt; |.....................| 0.7536 | 1.493 | 1.215 | 1.289 |
+#&gt; | X|<span style='font-weight: bold;'> 476.87328</span> | 92.45 | 0.004024 | 0.2774 | 0.8700 |
+#&gt; |.....................| 9.491 | 1.551 | 0.03206 | 0.8520 |
+#&gt; |.....................| 0.7536 | 1.493 | 1.215 | 1.289 |
+#&gt; |<span style='font-weight: bold;'> 37</span>| 476.68202 | 0.9977 | -1.202 | -0.9313 | -0.9256 |
+#&gt; |.....................| -0.8981 | -0.2947 | -0.7553 | -0.7655 |
+#&gt; |.....................| -1.024 | -0.6416 | -0.7351 | -0.6648 |
+#&gt; | U| 476.68202 | 92.79 | -5.502 | -0.9588 | -0.1412 |
+#&gt; |.....................| 2.247 | 1.544 | 0.03204 | 0.8443 |
+#&gt; |.....................| 0.7445 | 1.488 | 1.212 | 1.291 |
+#&gt; | X|<span style='font-weight: bold;'> 476.68202</span> | 92.79 | 0.004080 | 0.2771 | 0.8683 |
+#&gt; |.....................| 9.462 | 1.544 | 0.03204 | 0.8443 |
+#&gt; |.....................| 0.7445 | 1.488 | 1.212 | 1.291 |
+#&gt; |<span style='font-weight: bold;'> 38</span>| 476.66620 | 0.9991 | -1.201 | -0.9311 | -0.9256 |
+#&gt; |.....................| -0.8981 | -0.2974 | -0.7561 | -0.7659 |
+#&gt; |.....................| -1.024 | -0.6431 | -0.7361 | -0.6658 |
+#&gt; | U| 476.6662 | 92.92 | -5.501 | -0.9587 | -0.1412 |
+#&gt; |.....................| 2.247 | 1.542 | 0.03203 | 0.8441 |
+#&gt; |.....................| 0.7443 | 1.487 | 1.211 | 1.290 |
+#&gt; | X|<span style='font-weight: bold;'> 476.6662</span> | 92.92 | 0.004082 | 0.2771 | 0.8683 |
+#&gt; |.....................| 9.462 | 1.542 | 0.03203 | 0.8441 |
+#&gt; |.....................| 0.7443 | 1.487 | 1.211 | 1.290 |
+#&gt; | F| Forward Diff. | -16.67 | 1.127 | 0.2138 | -0.01630 |
+#&gt; |.....................| -0.1134 | -4.869 | -1.703 | -0.03057 |
+#&gt; |.....................| -0.03000 | -2.848 | -2.302 | -2.432 |
+#&gt; |<span style='font-weight: bold;'> 39</span>| 476.65034 | 1.001 | -1.204 | -0.9308 | -0.9253 |
+#&gt; |.....................| -0.8974 | -0.2967 | -0.7561 | -0.7660 |
+#&gt; |.....................| -1.024 | -0.6432 | -0.7350 | -0.6655 |
+#&gt; | U| 476.65034 | 93.06 | -5.504 | -0.9584 | -0.1409 |
+#&gt; |.....................| 2.248 | 1.543 | 0.03203 | 0.8440 |
+#&gt; |.....................| 0.7448 | 1.487 | 1.212 | 1.290 |
+#&gt; | X|<span style='font-weight: bold;'> 476.65034</span> | 93.06 | 0.004070 | 0.2772 | 0.8686 |
+#&gt; |.....................| 9.468 | 1.543 | 0.03203 | 0.8440 |
+#&gt; |.....................| 0.7448 | 1.487 | 1.212 | 1.290 |
+#&gt; | F| Forward Diff. | 7.111 | 1.131 | 0.3498 | 0.02199 |
+#&gt; |.....................| 0.03596 | -6.336 | -1.893 | -0.8646 |
+#&gt; |.....................| -0.4089 | -3.511 | -2.253 | -2.437 |
+#&gt; |<span style='font-weight: bold;'> 40</span>| 476.63921 | 0.9998 | -1.207 | -0.9306 | -0.9249 |
+#&gt; |.....................| -0.8968 | -0.2957 | -0.7561 | -0.7661 |
+#&gt; |.....................| -1.024 | -0.6430 | -0.7338 | -0.6650 |
+#&gt; | U| 476.63921 | 92.98 | -5.507 | -0.9581 | -0.1405 |
+#&gt; |.....................| 2.249 | 1.543 | 0.03203 | 0.8439 |
+#&gt; |.....................| 0.7451 | 1.487 | 1.213 | 1.291 |
+#&gt; | X|<span style='font-weight: bold;'> 476.63921</span> | 92.98 | 0.004058 | 0.2773 | 0.8689 |
+#&gt; |.....................| 9.474 | 1.543 | 0.03203 | 0.8439 |
+#&gt; |.....................| 0.7451 | 1.487 | 1.213 | 1.291 |
+#&gt; | F| Forward Diff. | -6.837 | 1.116 | 0.2875 | 0.01149 |
+#&gt; |.....................| -0.02542 | -4.741 | -1.572 | 0.01643 |
+#&gt; |.....................| -1.427 | -2.805 | -2.162 | -2.393 |
+#&gt; |<span style='font-weight: bold;'> 41</span>| 476.63321 | 1.001 | -1.209 | -0.9304 | -0.9247 |
+#&gt; |.....................| -0.8965 | -0.2943 | -0.7557 | -0.7669 |
+#&gt; |.....................| -1.022 | -0.6432 | -0.7330 | -0.6644 |
+#&gt; | U| 476.63321 | 93.07 | -5.509 | -0.9580 | -0.1403 |
+#&gt; |.....................| 2.249 | 1.544 | 0.03204 | 0.8433 |
+#&gt; |.....................| 0.7468 | 1.487 | 1.214 | 1.292 |
+#&gt; | X|<span style='font-weight: bold;'> 476.63321</span> | 93.07 | 0.004050 | 0.2773 | 0.8691 |
+#&gt; |.....................| 9.477 | 1.544 | 0.03204 | 0.8433 |
+#&gt; |.....................| 0.7468 | 1.487 | 1.214 | 1.292 |
+#&gt; | F| Forward Diff. | 8.780 | 1.119 | 0.3715 | 0.03544 |
+#&gt; |.....................| 0.06786 | -4.773 | -1.470 | -0.02124 |
+#&gt; |.....................| -1.265 | -2.850 | -2.132 | -2.390 |
+#&gt; |<span style='font-weight: bold;'> 42</span>| 476.62737 | 0.9998 | -1.211 | -0.9303 | -0.9246 |
+#&gt; |.....................| -0.8963 | -0.2932 | -0.7554 | -0.7683 |
+#&gt; |.....................| -1.020 | -0.6436 | -0.7322 | -0.6637 |
+#&gt; | U| 476.62737 | 92.98 | -5.511 | -0.9578 | -0.1402 |
+#&gt; |.....................| 2.249 | 1.545 | 0.03204 | 0.8422 |
+#&gt; |.....................| 0.7485 | 1.486 | 1.215 | 1.292 |
+#&gt; | X|<span style='font-weight: bold;'> 476.62737</span> | 92.98 | 0.004043 | 0.2773 | 0.8692 |
+#&gt; |.....................| 9.479 | 1.545 | 0.03204 | 0.8422 |
+#&gt; |.....................| 0.7485 | 1.486 | 1.215 | 1.292 |
+#&gt; | F| Forward Diff. | -5.468 | 1.108 | 0.2964 | 0.01787 |
+#&gt; |.....................| -0.01029 | -4.584 | -1.512 | -0.04750 |
+#&gt; |.....................| -1.233 | -2.839 | -2.097 | -2.338 |
+#&gt; |<span style='font-weight: bold;'> 43</span>| 476.62183 | 1.001 | -1.213 | -0.9301 | -0.9245 |
+#&gt; |.....................| -0.8960 | -0.2918 | -0.7549 | -0.7696 |
+#&gt; |.....................| -1.018 | -0.6438 | -0.7313 | -0.6628 |
+#&gt; | U| 476.62183 | 93.07 | -5.513 | -0.9577 | -0.1401 |
+#&gt; |.....................| 2.249 | 1.546 | 0.03205 | 0.8412 |
+#&gt; |.....................| 0.7501 | 1.486 | 1.216 | 1.293 |
+#&gt; | X|<span style='font-weight: bold;'> 476.62183</span> | 93.07 | 0.004035 | 0.2773 | 0.8693 |
+#&gt; |.....................| 9.481 | 1.546 | 0.03205 | 0.8412 |
+#&gt; |.....................| 0.7501 | 1.486 | 1.216 | 1.293 |
+#&gt; | F| Forward Diff. | 8.726 | 1.111 | 0.3721 | 0.03969 |
+#&gt; |.....................| 0.07339 | -4.588 | -1.391 | -0.04583 |
+#&gt; |.....................| -1.059 | -2.851 | -2.052 | -2.306 |
+#&gt; |<span style='font-weight: bold;'> 44</span>| 476.61645 | 0.9998 | -1.215 | -0.9300 | -0.9243 |
+#&gt; |.....................| -0.8958 | -0.2908 | -0.7546 | -0.7711 |
+#&gt; |.....................| -1.016 | -0.6442 | -0.7306 | -0.6621 |
+#&gt; | U| 476.61645 | 92.98 | -5.515 | -0.9576 | -0.1399 |
+#&gt; |.....................| 2.250 | 1.546 | 0.03205 | 0.8401 |
+#&gt; |.....................| 0.7517 | 1.485 | 1.217 | 1.294 |
+#&gt; | X|<span style='font-weight: bold;'> 476.61645</span> | 92.98 | 0.004027 | 0.2774 | 0.8694 |
+#&gt; |.....................| 9.484 | 1.546 | 0.03205 | 0.8401 |
+#&gt; |.....................| 0.7517 | 1.485 | 1.217 | 1.294 |
+#&gt; | F| Forward Diff. | -5.224 | 1.099 | 0.2980 | 0.02349 |
+#&gt; |.....................| -0.002638 | -4.438 | -1.447 | -0.09166 |
+#&gt; |.....................| 0.4490 | -2.896 | -2.021 | -2.267 |
+#&gt; |<span style='font-weight: bold;'> 45</span>| 476.60491 | 1.001 | -1.217 | -0.9300 | -0.9242 |
+#&gt; |.....................| -0.8956 | -0.2899 | -0.7543 | -0.7729 |
+#&gt; |.....................| -1.016 | -0.6437 | -0.7294 | -0.6608 |
+#&gt; | U| 476.60491 | 93.08 | -5.517 | -0.9576 | -0.1398 |
+#&gt; |.....................| 2.250 | 1.547 | 0.03206 | 0.8387 |
+#&gt; |.....................| 0.7514 | 1.486 | 1.218 | 1.295 |
+#&gt; | X|<span style='font-weight: bold;'> 476.60491</span> | 93.08 | 0.004018 | 0.2774 | 0.8695 |
+#&gt; |.....................| 9.485 | 1.547 | 0.03206 | 0.8387 |
+#&gt; |.....................| 0.7514 | 1.486 | 1.218 | 1.295 |
+#&gt; | F| Forward Diff. | 9.891 | 1.101 | 0.3805 | 0.04781 |
+#&gt; |.....................| 0.09121 | -4.602 | -1.355 | -0.1211 |
+#&gt; |.....................| -0.9908 | -2.875 | -1.954 | -2.212 |
+#&gt; |<span style='font-weight: bold;'> 46</span>| 476.59275 | 0.9999 | -1.219 | -0.9301 | -0.9241 |
+#&gt; |.....................| -0.8954 | -0.2896 | -0.7542 | -0.7748 |
+#&gt; |.....................| -1.017 | -0.6434 | -0.7284 | -0.6597 |
+#&gt; | U| 476.59275 | 92.99 | -5.519 | -0.9576 | -0.1397 |
+#&gt; |.....................| 2.250 | 1.547 | 0.03206 | 0.8373 |
+#&gt; |.....................| 0.7512 | 1.486 | 1.219 | 1.297 |
+#&gt; | X|<span style='font-weight: bold;'> 476.59275</span> | 92.99 | 0.004009 | 0.2774 | 0.8696 |
+#&gt; |.....................| 9.487 | 1.547 | 0.03206 | 0.8373 |
+#&gt; |.....................| 0.7512 | 1.486 | 1.219 | 1.297 |
+#&gt; | F| Forward Diff. | -4.741 | 1.086 | 0.3018 | 0.02978 |
+#&gt; |.....................| 0.01334 | -4.300 | -1.393 | -0.08082 |
+#&gt; |.....................| 0.4335 | -2.821 | -1.884 | -2.156 |
+#&gt; |<span style='font-weight: bold;'> 47</span>| 476.58049 | 1.001 | -1.222 | -0.9302 | -0.9241 |
+#&gt; |.....................| -0.8953 | -0.2889 | -0.7541 | -0.7767 |
+#&gt; |.....................| -1.017 | -0.6427 | -0.7275 | -0.6585 |
+#&gt; | U| 476.58049 | 93.06 | -5.522 | -0.9577 | -0.1397 |
+#&gt; |.....................| 2.250 | 1.547 | 0.03206 | 0.8359 |
+#&gt; |.....................| 0.7507 | 1.487 | 1.220 | 1.298 |
+#&gt; | X|<span style='font-weight: bold;'> 476.58049</span> | 93.06 | 0.003999 | 0.2773 | 0.8697 |
+#&gt; |.....................| 9.488 | 1.547 | 0.03206 | 0.8359 |
+#&gt; |.....................| 0.7507 | 1.487 | 1.220 | 1.298 |
+#&gt; |<span style='font-weight: bold;'> 48</span>| 476.57085 | 1.001 | -1.225 | -0.9302 | -0.9239 |
+#&gt; |.....................| -0.8951 | -0.2891 | -0.7542 | -0.7796 |
+#&gt; |.....................| -1.018 | -0.6424 | -0.7265 | -0.6573 |
+#&gt; | U| 476.57085 | 93.06 | -5.525 | -0.9578 | -0.1395 |
+#&gt; |.....................| 2.250 | 1.547 | 0.03206 | 0.8336 |
+#&gt; |.....................| 0.7502 | 1.488 | 1.221 | 1.299 |
+#&gt; | X|<span style='font-weight: bold;'> 476.57085</span> | 93.06 | 0.003985 | 0.2773 | 0.8698 |
+#&gt; |.....................| 9.490 | 1.547 | 0.03206 | 0.8336 |
+#&gt; |.....................| 0.7502 | 1.488 | 1.221 | 1.299 |
+#&gt; |<span style='font-weight: bold;'> 49</span>| 476.52700 | 1.000 | -1.243 | -0.9306 | -0.9233 |
+#&gt; |.....................| -0.8940 | -0.2898 | -0.7549 | -0.7948 |
+#&gt; |.....................| -1.021 | -0.6409 | -0.7216 | -0.6509 |
+#&gt; | U| 476.527 | 93.02 | -5.543 | -0.9582 | -0.1389 |
+#&gt; |.....................| 2.251 | 1.547 | 0.03205 | 0.8221 |
+#&gt; |.....................| 0.7475 | 1.489 | 1.226 | 1.306 |
+#&gt; | X|<span style='font-weight: bold;'> 476.527</span> | 93.02 | 0.003915 | 0.2772 | 0.8703 |
+#&gt; |.....................| 9.501 | 1.547 | 0.03205 | 0.8221 |
+#&gt; |.....................| 0.7475 | 1.489 | 1.226 | 1.306 |
+#&gt; |<span style='font-weight: bold;'> 50</span>| 476.45166 | 0.9988 | -1.314 | -0.9321 | -0.9209 |
+#&gt; |.....................| -0.8895 | -0.2927 | -0.7576 | -0.8554 |
+#&gt; |.....................| -1.033 | -0.6351 | -0.7022 | -0.6254 |
+#&gt; | U| 476.45166 | 92.89 | -5.614 | -0.9596 | -0.1365 |
+#&gt; |.....................| 2.256 | 1.545 | 0.03201 | 0.7760 |
+#&gt; |.....................| 0.7365 | 1.496 | 1.247 | 1.333 |
+#&gt; | X|<span style='font-weight: bold;'> 476.45166</span> | 92.89 | 0.003648 | 0.2770 | 0.8724 |
+#&gt; |.....................| 9.543 | 1.545 | 0.03201 | 0.7760 |
+#&gt; |.....................| 0.7365 | 1.496 | 1.247 | 1.333 |
+#&gt; | F| Forward Diff. | -21.31 | 0.8191 | 0.2022 | 0.1018 |
+#&gt; |.....................| 0.1327 | -4.505 | -1.303 | -1.202 |
+#&gt; |.....................| -2.080 | -2.304 | -0.3706 | -0.4948 |
+#&gt; |<span style='font-weight: bold;'> 51</span>| 476.56836 | 1.004 | -1.424 | -0.9336 | -0.9183 |
+#&gt; |.....................| -0.8856 | -0.2810 | -0.7637 | -0.9206 |
+#&gt; |.....................| -1.004 | -0.6303 | -0.6962 | -0.6148 |
+#&gt; | U| 476.56836 | 93.36 | -5.724 | -0.9609 | -0.1338 |
+#&gt; |.....................| 2.260 | 1.552 | 0.03192 | 0.7265 |
+#&gt; |.....................| 0.7619 | 1.502 | 1.254 | 1.345 |
+#&gt; | X|<span style='font-weight: bold;'> 476.56836</span> | 93.36 | 0.003266 | 0.2767 | 0.8747 |
+#&gt; |.....................| 9.581 | 1.552 | 0.03192 | 0.7265 |
+#&gt; |.....................| 0.7619 | 1.502 | 1.254 | 1.345 |
+#&gt; |<span style='font-weight: bold;'> 52</span>| 476.44457 | 1.002 | -1.351 | -0.9326 | -0.9200 |
+#&gt; |.....................| -0.8882 | -0.2885 | -0.7595 | -0.8773 |
+#&gt; |.....................| -1.024 | -0.6333 | -0.7001 | -0.6218 |
+#&gt; | U| 476.44457 | 93.15 | -5.651 | -0.9600 | -0.1356 |
+#&gt; |.....................| 2.257 | 1.548 | 0.03198 | 0.7594 |
+#&gt; |.....................| 0.7451 | 1.499 | 1.249 | 1.337 |
+#&gt; | X|<span style='font-weight: bold;'> 476.44457</span> | 93.15 | 0.003514 | 0.2769 | 0.8732 |
+#&gt; |.....................| 9.556 | 1.548 | 0.03198 | 0.7594 |
+#&gt; |.....................| 0.7451 | 1.499 | 1.249 | 1.337 |
+#&gt; | F| Forward Diff. | 15.82 | 0.7276 | 0.3571 | 0.1746 |
+#&gt; |.....................| 0.4004 | -4.436 | -0.9222 | -1.572 |
+#&gt; |.....................| -1.287 | -2.164 | -0.2873 | -0.3883 |
+#&gt; |<span style='font-weight: bold;'> 53</span>| 476.40417 | 1.000 | -1.371 | -0.9349 | -0.9209 |
+#&gt; |.....................| -0.8904 | -0.2869 | -0.7634 | -0.8782 |
+#&gt; |.....................| -1.024 | -0.6262 | -0.7046 | -0.6250 |
+#&gt; | U| 476.40417 | 93.02 | -5.671 | -0.9622 | -0.1365 |
+#&gt; |.....................| 2.255 | 1.549 | 0.03192 | 0.7587 |
+#&gt; |.....................| 0.7444 | 1.507 | 1.245 | 1.334 |
+#&gt; | X|<span style='font-weight: bold;'> 476.40417</span> | 93.02 | 0.003446 | 0.2764 | 0.8724 |
+#&gt; |.....................| 9.535 | 1.549 | 0.03192 | 0.7587 |
+#&gt; |.....................| 0.7444 | 1.507 | 1.245 | 1.334 |
+#&gt; |<span style='font-weight: bold;'> 54</span>| 476.37918 | 1.000 | -1.391 | -0.9372 | -0.9218 |
+#&gt; |.....................| -0.8927 | -0.2856 | -0.7675 | -0.8792 |
+#&gt; |.....................| -1.025 | -0.6191 | -0.7092 | -0.6283 |
+#&gt; | U| 476.37918 | 93.03 | -5.691 | -0.9644 | -0.1374 |
+#&gt; |.....................| 2.253 | 1.549 | 0.03186 | 0.7580 |
+#&gt; |.....................| 0.7434 | 1.516 | 1.240 | 1.330 |
+#&gt; | X|<span style='font-weight: bold;'> 476.37918</span> | 93.03 | 0.003376 | 0.2760 | 0.8716 |
+#&gt; |.....................| 9.513 | 1.549 | 0.03186 | 0.7580 |
+#&gt; |.....................| 0.7434 | 1.516 | 1.240 | 1.330 |
+#&gt; |<span style='font-weight: bold;'> 55</span>| 476.33357 | 1.001 | -1.461 | -0.9453 | -0.9249 |
+#&gt; |.....................| -0.9004 | -0.2814 | -0.7818 | -0.8827 |
+#&gt; |.....................| -1.029 | -0.5944 | -0.7253 | -0.6399 |
+#&gt; | U| 476.33357 | 93.07 | -5.761 | -0.9719 | -0.1405 |
+#&gt; |.....................| 2.245 | 1.552 | 0.03165 | 0.7553 |
+#&gt; |.....................| 0.7403 | 1.546 | 1.222 | 1.318 |
+#&gt; | X|<span style='font-weight: bold;'> 476.33357</span> | 93.07 | 0.003146 | 0.2745 | 0.8689 |
+#&gt; |.....................| 9.440 | 1.552 | 0.03165 | 0.7553 |
+#&gt; |.....................| 0.7403 | 1.546 | 1.222 | 1.318 |
+#&gt; | F| Forward Diff. | -1.553 | 0.4475 | -0.2195 | 0.07220 |
+#&gt; |.....................| 0.05655 | -4.350 | -1.061 | -1.750 |
+#&gt; |.....................| 0.1436 | -0.4527 | -1.673 | -1.245 |
+#&gt; |<span style='font-weight: bold;'> 56</span>| 476.20746 | 1.002 | -1.571 | -0.9452 | -0.9313 |
+#&gt; |.....................| -0.9123 | -0.2680 | -0.8139 | -0.8382 |
+#&gt; |.....................| -1.032 | -0.6009 | -0.7081 | -0.6381 |
+#&gt; | U| 476.20746 | 93.20 | -5.871 | -0.9719 | -0.1469 |
+#&gt; |.....................| 2.233 | 1.560 | 0.03117 | 0.7891 |
+#&gt; |.....................| 0.7373 | 1.538 | 1.241 | 1.320 |
+#&gt; | X|<span style='font-weight: bold;'> 476.20746</span> | 93.20 | 0.002821 | 0.2745 | 0.8634 |
+#&gt; |.....................| 9.328 | 1.560 | 0.03117 | 0.7891 |
+#&gt; |.....................| 0.7373 | 1.538 | 1.241 | 1.320 |
+#&gt; | F| Forward Diff. | 12.15 | 0.1791 | -0.01894 | -0.004675 |
+#&gt; |.....................| -0.06593 | -5.850 | -1.512 | -1.794 |
+#&gt; |.....................| -1.396 | -1.647 | -0.7085 | -1.309 |
+#&gt; |<span style='font-weight: bold;'> 57</span>| 476.15444 | 1.000 | -1.669 | -0.9317 | -0.9229 |
+#&gt; |.....................| -0.8889 | -0.2480 | -0.8424 | -0.7961 |
+#&gt; |.....................| -1.030 | -0.6117 | -0.7275 | -0.5959 |
+#&gt; | U| 476.15444 | 93.03 | -5.969 | -0.9591 | -0.1385 |
+#&gt; |.....................| 2.256 | 1.572 | 0.03074 | 0.8211 |
+#&gt; |.....................| 0.7395 | 1.525 | 1.220 | 1.365 |
+#&gt; | X|<span style='font-weight: bold;'> 476.15444</span> | 93.03 | 0.002558 | 0.2771 | 0.8707 |
+#&gt; |.....................| 9.549 | 1.572 | 0.03074 | 0.8211 |
+#&gt; |.....................| 0.7395 | 1.525 | 1.220 | 1.365 |
+#&gt; | F| Forward Diff. | -13.97 | -0.09883 | 0.5245 | 0.1410 |
+#&gt; |.....................| 0.5845 | -3.407 | -1.272 | -0.2800 |
+#&gt; |.....................| 0.9652 | -1.487 | -1.684 | 0.3572 |
+#&gt; |<span style='font-weight: bold;'> 58</span>| 476.18235 | 1.000 | -1.690 | -0.9781 | -0.8961 |
+#&gt; |.....................| -0.8818 | -0.1915 | -0.8548 | -0.7635 |
+#&gt; |.....................| -1.041 | -0.6068 | -0.6702 | -0.6625 |
+#&gt; | U| 476.18235 | 93.04 | -5.990 | -1.003 | -0.1117 |
+#&gt; |.....................| 2.264 | 1.606 | 0.03055 | 0.8458 |
+#&gt; |.....................| 0.7299 | 1.531 | 1.281 | 1.294 |
+#&gt; | X|<span style='font-weight: bold;'> 476.18235</span> | 93.04 | 0.002505 | 0.2684 | 0.8943 |
+#&gt; |.....................| 9.617 | 1.606 | 0.03055 | 0.8458 |
+#&gt; |.....................| 0.7299 | 1.531 | 1.281 | 1.294 |
+#&gt; |<span style='font-weight: bold;'> 59</span>| 476.08231 | 1.003 | -1.678 | -0.9530 | -0.9107 |
+#&gt; |.....................| -0.8858 | -0.2215 | -0.8479 | -0.7811 |
+#&gt; |.....................| -1.035 | -0.6092 | -0.7010 | -0.6265 |
+#&gt; | U| 476.08231 | 93.25 | -5.978 | -0.9792 | -0.1263 |
+#&gt; |.....................| 2.260 | 1.588 | 0.03066 | 0.8325 |
+#&gt; |.....................| 0.7350 | 1.528 | 1.248 | 1.332 |
+#&gt; | X|<span style='font-weight: bold;'> 476.08231</span> | 93.25 | 0.002533 | 0.2730 | 0.8814 |
+#&gt; |.....................| 9.579 | 1.588 | 0.03066 | 0.8325 |
+#&gt; |.....................| 0.7350 | 1.528 | 1.248 | 1.332 |
+#&gt; | F| Forward Diff. | 18.25 | -0.08933 | -0.2508 | 0.5157 |
+#&gt; |.....................| 0.8830 | -3.835 | -1.133 | -1.026 |
+#&gt; |.....................| -1.010 | -2.153 | -0.2439 | -1.007 |
+#&gt; |<span style='font-weight: bold;'> 60</span>| 476.03808 | 1.001 | -1.672 | -0.9320 | -0.9310 |
+#&gt; |.....................| -0.9291 | -0.2079 | -0.8419 | -0.7733 |
+#&gt; |.....................| -1.039 | -0.6026 | -0.6913 | -0.6380 |
+#&gt; | U| 476.03808 | 93.13 | -5.972 | -0.9594 | -0.1466 |
+#&gt; |.....................| 2.216 | 1.596 | 0.03074 | 0.8384 |
+#&gt; |.....................| 0.7314 | 1.536 | 1.259 | 1.320 |
+#&gt; | X|<span style='font-weight: bold;'> 476.03808</span> | 93.13 | 0.002548 | 0.2770 | 0.8636 |
+#&gt; |.....................| 9.173 | 1.596 | 0.03074 | 0.8384 |
+#&gt; |.....................| 0.7314 | 1.536 | 1.259 | 1.320 |
+#&gt; | F| Forward Diff. | -5.407 | -0.06545 | 0.6727 | 0.05373 |
+#&gt; |.....................| -0.4541 | -1.330 | -0.5709 | -0.1224 |
+#&gt; |.....................| -0.8702 | -1.228 | 0.2640 | -1.506 |
+#&gt; |<span style='font-weight: bold;'> 61</span>| 476.03300 | 1.003 | -1.664 | -0.9621 | -0.9598 |
+#&gt; |.....................| -0.9520 | -0.2020 | -0.8337 | -0.7650 |
+#&gt; |.....................| -1.042 | -0.6106 | -0.7076 | -0.6154 |
+#&gt; | U| 476.033 | 93.29 | -5.964 | -0.9878 | -0.1754 |
+#&gt; |.....................| 2.193 | 1.599 | 0.03087 | 0.8447 |
+#&gt; |.....................| 0.7289 | 1.526 | 1.241 | 1.344 |
+#&gt; | X|<span style='font-weight: bold;'> 476.033</span> | 93.29 | 0.002569 | 0.2714 | 0.8391 |
+#&gt; |.....................| 8.966 | 1.599 | 0.03087 | 0.8447 |
+#&gt; |.....................| 0.7289 | 1.526 | 1.241 | 1.344 |
+#&gt; | F| Forward Diff. | 15.25 | -0.008049 | -0.5780 | -0.5632 |
+#&gt; |.....................| -0.9601 | -0.9870 | -0.1614 | -0.08306 |
+#&gt; |.....................| 0.3446 | -1.564 | -0.5735 | -0.5777 |
+#&gt; |<span style='font-weight: bold;'> 62</span>| 475.98457 | 1.001 | -1.657 | -0.9620 | -0.9650 |
+#&gt; |.....................| -0.9284 | -0.2016 | -0.8312 | -0.7567 |
+#&gt; |.....................| -1.045 | -0.6004 | -0.7091 | -0.6133 |
+#&gt; | U| 475.98457 | 93.13 | -5.957 | -0.9877 | -0.1806 |
+#&gt; |.....................| 2.217 | 1.600 | 0.03091 | 0.8511 |
+#&gt; |.....................| 0.7262 | 1.538 | 1.240 | 1.346 |
+#&gt; | X|<span style='font-weight: bold;'> 475.98457</span> | 93.13 | 0.002588 | 0.2714 | 0.8347 |
+#&gt; |.....................| 9.180 | 1.600 | 0.03091 | 0.8511 |
+#&gt; |.....................| 0.7262 | 1.538 | 1.240 | 1.346 |
+#&gt; |<span style='font-weight: bold;'> 63</span>| 475.96536 | 1.003 | -1.649 | -0.9620 | -0.9705 |
+#&gt; |.....................| -0.9043 | -0.2014 | -0.8286 | -0.7480 |
+#&gt; |.....................| -1.048 | -0.5903 | -0.7109 | -0.6113 |
+#&gt; | U| 475.96536 | 93.24 | -5.949 | -0.9876 | -0.1861 |
+#&gt; |.....................| 2.241 | 1.600 | 0.03094 | 0.8576 |
+#&gt; |.....................| 0.7235 | 1.551 | 1.238 | 1.349 |
+#&gt; | X|<span style='font-weight: bold;'> 475.96536</span> | 93.24 | 0.002608 | 0.2714 | 0.8302 |
+#&gt; |.....................| 9.403 | 1.600 | 0.03094 | 0.8576 |
+#&gt; |.....................| 0.7235 | 1.551 | 1.238 | 1.349 |
+#&gt; |<span style='font-weight: bold;'> 64</span>| 476.05821 | 1.003 | -1.627 | -0.9618 | -0.9866 |
+#&gt; |.....................| -0.8332 | -0.2007 | -0.8211 | -0.7226 |
+#&gt; |.....................| -1.057 | -0.5602 | -0.7159 | -0.6052 |
+#&gt; | U| 476.05821 | 93.28 | -5.927 | -0.9874 | -0.2022 |
+#&gt; |.....................| 2.312 | 1.600 | 0.03106 | 0.8769 |
+#&gt; |.....................| 0.7156 | 1.587 | 1.233 | 1.355 |
+#&gt; | X|<span style='font-weight: bold;'> 476.05821</span> | 93.28 | 0.002666 | 0.2714 | 0.8169 |
+#&gt; |.....................| 10.10 | 1.600 | 0.03106 | 0.8769 |
+#&gt; |.....................| 0.7156 | 1.587 | 1.233 | 1.355 |
+#&gt; | F| Forward Diff. | 11.90 | 0.05098 | -0.6601 | -0.8657 |
+#&gt; |.....................| 0.4347 | -0.9523 | -0.3178 | -0.1283 |
+#&gt; |.....................| -0.1024 | -0.7800 | -0.7284 | -0.4981 |
+#&gt; |<span style='font-weight: bold;'> 65</span>| 476.00714 | 1.001 | -1.643 | -0.9512 | -0.8390 |
+#&gt; |.....................| -0.8932 | -0.2051 | -0.7956 | -0.7365 |
+#&gt; |.....................| -1.045 | -0.5599 | -0.7127 | -0.5744 |
+#&gt; | U| 476.00714 | 93.11 | -5.943 | -0.9775 | -0.05460 |
+#&gt; |.....................| 2.252 | 1.598 | 0.03144 | 0.8663 |
+#&gt; |.....................| 0.7264 | 1.588 | 1.236 | 1.388 |
+#&gt; | X|<span style='font-weight: bold;'> 476.00714</span> | 93.11 | 0.002624 | 0.2734 | 0.9469 |
+#&gt; |.....................| 9.508 | 1.598 | 0.03144 | 0.8663 |
+#&gt; |.....................| 0.7264 | 1.588 | 1.236 | 1.388 |
+#&gt; |<span style='font-weight: bold;'> 66</span>| 475.93814 | 1.000 | -1.647 | -0.9575 | -0.9171 |
+#&gt; |.....................| -0.8999 | -0.2027 | -0.8152 | -0.7434 |
+#&gt; |.....................| -1.047 | -0.5779 | -0.7115 | -0.5963 |
+#&gt; | U| 475.93814 | 93.01 | -5.947 | -0.9834 | -0.1327 |
+#&gt; |.....................| 2.245 | 1.599 | 0.03115 | 0.8612 |
+#&gt; |.....................| 0.7247 | 1.566 | 1.237 | 1.365 |
+#&gt; | X|<span style='font-weight: bold;'> 475.93814</span> | 93.01 | 0.002614 | 0.2722 | 0.8757 |
+#&gt; |.....................| 9.445 | 1.599 | 0.03115 | 0.8612 |
+#&gt; |.....................| 0.7247 | 1.566 | 1.237 | 1.365 |
+#&gt; | F| Forward Diff. | -23.67 | 0.03897 | -0.7058 | 0.2979 |
+#&gt; |.....................| 0.2507 | -0.5051 | -0.4675 | -0.05050 |
+#&gt; |.....................| -1.329 | -0.1594 | -0.7628 | 0.1885 |
+#&gt; |<span style='font-weight: bold;'> 67</span>| 475.98668 | 1.003 | -1.653 | -0.9119 | -0.8938 |
+#&gt; |.....................| -0.8940 | -0.2050 | -0.7980 | -0.7479 |
+#&gt; |.....................| -1.040 | -0.5617 | -0.7056 | -0.5853 |
+#&gt; | U| 475.98668 | 93.26 | -5.953 | -0.9406 | -0.1094 |
+#&gt; |.....................| 2.251 | 1.598 | 0.03140 | 0.8577 |
+#&gt; |.....................| 0.7310 | 1.586 | 1.243 | 1.376 |
+#&gt; | X|<span style='font-weight: bold;'> 475.98668</span> | 93.26 | 0.002598 | 0.2808 | 0.8964 |
+#&gt; |.....................| 9.501 | 1.598 | 0.03140 | 0.8577 |
+#&gt; |.....................| 0.7310 | 1.586 | 1.243 | 1.376 |
+#&gt; |<span style='font-weight: bold;'> 68</span>| 475.93401 | 1.003 | -1.649 | -0.9419 | -0.9092 |
+#&gt; |.....................| -0.8979 | -0.2035 | -0.8093 | -0.7449 |
+#&gt; |.....................| -1.044 | -0.5723 | -0.7094 | -0.5925 |
+#&gt; | U| 475.93401 | 93.26 | -5.949 | -0.9687 | -0.1248 |
+#&gt; |.....................| 2.247 | 1.599 | 0.03123 | 0.8600 |
+#&gt; |.....................| 0.7270 | 1.573 | 1.239 | 1.369 |
+#&gt; | X|<span style='font-weight: bold;'> 475.93401</span> | 93.26 | 0.002609 | 0.2751 | 0.8827 |
+#&gt; |.....................| 9.464 | 1.599 | 0.03123 | 0.8600 |
+#&gt; |.....................| 0.7270 | 1.573 | 1.239 | 1.369 |
+#&gt; | F| Forward Diff. | 21.62 | 0.03755 | 0.3553 | 0.5344 |
+#&gt; |.....................| 0.5780 | -0.8226 | -0.2181 | -0.2167 |
+#&gt; |.....................| -1.049 | 0.002537 | -0.7279 | 0.2347 |
+#&gt; |<span style='font-weight: bold;'> 69</span>| 475.92580 | 1.001 | -1.653 | -0.9417 | -0.9124 |
+#&gt; |.....................| -0.8966 | -0.2037 | -0.8058 | -0.7501 |
+#&gt; |.....................| -1.041 | -0.5739 | -0.7048 | -0.5926 |
+#&gt; | U| 475.9258 | 93.12 | -5.953 | -0.9686 | -0.1280 |
+#&gt; |.....................| 2.249 | 1.598 | 0.03129 | 0.8560 |
+#&gt; |.....................| 0.7297 | 1.571 | 1.244 | 1.369 |
+#&gt; | X|<span style='font-weight: bold;'> 475.9258</span> | 93.12 | 0.002598 | 0.2752 | 0.8798 |
+#&gt; |.....................| 9.476 | 1.598 | 0.03129 | 0.8560 |
+#&gt; |.....................| 0.7297 | 1.571 | 1.244 | 1.369 |
+#&gt; | F| Forward Diff. | -1.238 | 0.003180 | 0.2025 | 0.4289 |
+#&gt; |.....................| 0.4493 | -0.2935 | -0.2270 | -0.1209 |
+#&gt; |.....................| 0.3327 | -0.04065 | -0.4864 | 0.2705 |
+#&gt; |<span style='font-weight: bold;'> 70</span>| 475.92421 | 1.002 | -1.655 | -0.9475 | -0.9180 |
+#&gt; |.....................| -0.8971 | -0.2051 | -0.8017 | -0.7499 |
+#&gt; |.....................| -1.041 | -0.5760 | -0.7024 | -0.5951 |
+#&gt; | U| 475.92421 | 93.14 | -5.955 | -0.9740 | -0.1336 |
+#&gt; |.....................| 2.248 | 1.598 | 0.03135 | 0.8562 |
+#&gt; |.....................| 0.7299 | 1.568 | 1.247 | 1.366 |
+#&gt; | X|<span style='font-weight: bold;'> 475.92421</span> | 93.14 | 0.002593 | 0.2741 | 0.8749 |
+#&gt; |.....................| 9.472 | 1.598 | 0.03135 | 0.8562 |
+#&gt; |.....................| 0.7299 | 1.568 | 1.247 | 1.366 |
+#&gt; | F| Forward Diff. | 1.572 | 0.0005078 | -0.07939 | 0.3039 |
+#&gt; |.....................| 0.4520 | -0.5123 | -0.2298 | -0.1955 |
+#&gt; |.....................| 0.3506 | -0.1759 | -0.3471 | 0.1717 |
+#&gt; |<span style='font-weight: bold;'> 71</span>| 475.91356 | 1.001 | -1.654 | -0.9476 | -0.9223 |
+#&gt; |.....................| -0.8992 | -0.2071 | -0.7965 | -0.7440 |
+#&gt; |.....................| -1.043 | -0.5749 | -0.7035 | -0.5974 |
+#&gt; | U| 475.91356 | 93.12 | -5.954 | -0.9741 | -0.1379 |
+#&gt; |.....................| 2.246 | 1.596 | 0.03143 | 0.8607 |
+#&gt; |.....................| 0.7278 | 1.569 | 1.246 | 1.363 |
+#&gt; | X|<span style='font-weight: bold;'> 475.91356</span> | 93.12 | 0.002596 | 0.2741 | 0.8712 |
+#&gt; |.....................| 9.452 | 1.596 | 0.03143 | 0.8607 |
+#&gt; |.....................| 0.7278 | 1.569 | 1.246 | 1.363 |
+#&gt; |<span style='font-weight: bold;'> 72</span>| 475.89054 | 1.001 | -1.650 | -0.9479 | -0.9349 |
+#&gt; |.....................| -0.9054 | -0.2136 | -0.7808 | -0.7261 |
+#&gt; |.....................| -1.051 | -0.5716 | -0.7071 | -0.6043 |
+#&gt; | U| 475.89054 | 93.11 | -5.950 | -0.9744 | -0.1505 |
+#&gt; |.....................| 2.240 | 1.592 | 0.03166 | 0.8742 |
+#&gt; |.....................| 0.7214 | 1.574 | 1.242 | 1.356 |
+#&gt; | X|<span style='font-weight: bold;'> 475.89054</span> | 93.11 | 0.002606 | 0.2740 | 0.8602 |
+#&gt; |.....................| 9.393 | 1.592 | 0.03166 | 0.8742 |
+#&gt; |.....................| 0.7214 | 1.574 | 1.242 | 1.356 |
+#&gt; | F| Forward Diff. | -3.467 | 0.05330 | -0.1133 | -0.1045 |
+#&gt; |.....................| 0.1362 | -0.3304 | -0.2172 | 0.04726 |
+#&gt; |.....................| -1.416 | 0.08323 | -0.4566 | -0.2851 |
+#&gt; |<span style='font-weight: bold;'> 73</span>| 476.06529 | 1.002 | -1.688 | -0.8959 | -0.9784 |
+#&gt; |.....................| -0.9076 | -0.2354 | -0.6823 | -0.7302 |
+#&gt; |.....................| -1.035 | -0.5603 | -0.6700 | -0.6079 |
+#&gt; | U| 476.06529 | 93.20 | -5.988 | -0.9255 | -0.1940 |
+#&gt; |.....................| 2.238 | 1.579 | 0.03314 | 0.8712 |
+#&gt; |.....................| 0.7347 | 1.587 | 1.281 | 1.352 |
+#&gt; | X|<span style='font-weight: bold;'> 476.06529</span> | 93.20 | 0.002510 | 0.2838 | 0.8236 |
+#&gt; |.....................| 9.372 | 1.579 | 0.03314 | 0.8712 |
+#&gt; |.....................| 0.7347 | 1.587 | 1.281 | 1.352 |
+#&gt; |<span style='font-weight: bold;'> 74</span>| 475.89054 | 1.001 | -1.650 | -0.9479 | -0.9349 |
+#&gt; |.....................| -0.9054 | -0.2136 | -0.7808 | -0.7261 |
+#&gt; |.....................| -1.051 | -0.5716 | -0.7071 | -0.6043 |
+#&gt; | U| 475.89054 | 93.11 | -5.950 | -0.9744 | -0.1505 |
+#&gt; |.....................| 2.240 | 1.592 | 0.03166 | 0.8742 |
+#&gt; |.....................| 0.7214 | 1.574 | 1.242 | 1.356 |
+#&gt; | X|<span style='font-weight: bold;'> 475.89054</span> | 93.11 | 0.002606 | 0.2740 | 0.8602 |
+#&gt; |.....................| 9.393 | 1.592 | 0.03166 | 0.8742 |
+#&gt; |.....................| 0.7214 | 1.574 | 1.242 | 1.356 |
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
+#&gt; |.....................| log_k2 | g_qlogis | sigma_low | rsd_high |
+#&gt; |.....................| o1 | o2 | o3 | o4 |
+#&gt; <span style='text-decoration: underline;'>|.....................| o5 | o6 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 1</span>| 495.48573 | 1.000 | -1.000 | -0.9104 | -0.9376 |
+#&gt; |.....................| -0.9875 | -0.8823 | -0.8746 | -0.8907 |
+#&gt; |.....................| -0.8767 | -0.8731 | -0.8673 | -0.8720 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8739 | -0.8666 |...........|...........|</span>
+#&gt; | U| 495.48573 | 91.00 | -5.200 | -0.8900 | -2.200 |
+#&gt; |.....................| -4.600 | 0.4600 | 0.8300 | 0.05800 |
+#&gt; |.....................| 0.7311 | 0.9036 | 1.183 | 0.9554 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.214 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 495.48573</span> | 91.00 | 0.005517 | 0.2911 | 0.1108 |
+#&gt; |.....................| 0.01005 | 0.6130 | 0.8300 | 0.05800 |
+#&gt; |.....................| 0.7311 | 0.9036 | 1.183 | 0.9554 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.8633 | 1.214 |...........|...........|</span>
+#&gt; | G| Gill Diff. | -0.9650 | 2.223 | -0.3153 | -0.01817 |
+#&gt; |.....................| -0.3350 | 0.6789 | -29.17 | -19.58 |
+#&gt; |.....................| 0.9642 | 9.851 | -11.94 | -1.319 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 8.578 | -12.45 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 2</span>| 487.27153 | 1.023 | -1.054 | -0.9028 | -0.9372 |
+#&gt; |.....................| -0.9794 | -0.8987 | -0.1695 | -0.4175 |
+#&gt; |.....................| -0.9000 | -1.111 | -0.5788 | -0.8401 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.081 | -0.5657 |...........|...........|</span>
+#&gt; | U| 487.27153 | 93.12 | -5.254 | -0.8832 | -2.200 |
+#&gt; |.....................| -4.592 | 0.4525 | 1.123 | 0.07172 |
+#&gt; |.....................| 0.7141 | 0.6884 | 1.525 | 0.9859 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6843 | 1.580 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 487.27153</span> | 93.12 | 0.005228 | 0.2925 | 0.1109 |
+#&gt; |.....................| 0.01013 | 0.6112 | 1.123 | 0.07172 |
+#&gt; |.....................| 0.7141 | 0.6884 | 1.525 | 0.9859 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6843 | 1.580 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 131.2 | 1.375 | 2.844 | -0.2311 |
+#&gt; |.....................| 0.2724 | 0.4206 | 9.234 | 14.82 |
+#&gt; |.....................| -0.3432 | -1.547 | -2.137 | 2.699 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.845 | -6.389 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 3</span>| 3806.3530 | 0.1967 | -1.082 | -0.9181 | -0.9356 |
+#&gt; |.....................| -0.9782 | -0.9073 | 0.02635 | -0.3409 |
+#&gt; |.....................| -0.9062 | -1.204 | -0.4610 | -0.8458 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.125 | -0.4164 |...........|...........|</span>
+#&gt; | U| 3806.353 | 17.90 | -5.282 | -0.8969 | -2.198 |
+#&gt; |.....................| -4.591 | 0.4485 | 1.204 | 0.07394 |
+#&gt; |.....................| 0.7095 | 0.6043 | 1.664 | 0.9805 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6463 | 1.761 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 3806.353</span> | 17.90 | 0.005083 | 0.2897 | 0.1110 |
+#&gt; |.....................| 0.01015 | 0.6103 | 1.204 | 0.07394 |
+#&gt; |.....................| 0.7095 | 0.6043 | 1.664 | 0.9805 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6463 | 1.761 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 4</span>| 498.29847 | 0.9363 | -1.055 | -0.9047 | -0.9370 |
+#&gt; |.....................| -0.9796 | -0.8990 | -0.1756 | -0.4273 |
+#&gt; |.....................| -0.8998 | -1.110 | -0.5773 | -0.8419 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.078 | -0.5615 |...........|...........|</span>
+#&gt; | U| 498.29847 | 85.20 | -5.255 | -0.8849 | -2.199 |
+#&gt; |.....................| -4.592 | 0.4523 | 1.120 | 0.07144 |
+#&gt; |.....................| 0.7142 | 0.6894 | 1.526 | 0.9842 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6871 | 1.585 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 498.29847</span> | 85.20 | 0.005223 | 0.2922 | 0.1109 |
+#&gt; |.....................| 0.01013 | 0.6112 | 1.120 | 0.07144 |
+#&gt; |.....................| 0.7142 | 0.6894 | 1.526 | 0.9842 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6871 | 1.585 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 5</span>| 485.66266 | 1.001 | -1.054 | -0.9033 | -0.9372 |
+#&gt; |.....................| -0.9795 | -0.8988 | -0.1711 | -0.4200 |
+#&gt; |.....................| -0.8999 | -1.111 | -0.5784 | -0.8406 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.080 | -0.5646 |...........|...........|</span>
+#&gt; | U| 485.66266 | 91.08 | -5.254 | -0.8836 | -2.200 |
+#&gt; |.....................| -4.592 | 0.4524 | 1.122 | 0.07165 |
+#&gt; |.....................| 0.7141 | 0.6887 | 1.525 | 0.9855 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6850 | 1.581 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 485.66266</span> | 91.08 | 0.005227 | 0.2924 | 0.1109 |
+#&gt; |.....................| 0.01013 | 0.6112 | 1.122 | 0.07165 |
+#&gt; |.....................| 0.7141 | 0.6887 | 1.525 | 0.9855 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6850 | 1.581 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 5.221 | 1.276 | 0.8286 | 0.07146 |
+#&gt; |.....................| 0.3378 | 0.6177 | 8.950 | 14.42 |
+#&gt; |.....................| -2.232 | -2.934 | -2.090 | 2.822 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.031 | -6.085 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 6</span>| 485.32609 | 0.9950 | -1.055 | -0.9042 | -0.9372 |
+#&gt; |.....................| -0.9799 | -0.8995 | -0.1813 | -0.4364 |
+#&gt; |.....................| -0.8974 | -1.108 | -0.5760 | -0.8438 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.076 | -0.5577 |...........|...........|</span>
+#&gt; | U| 485.32609 | 90.54 | -5.255 | -0.8845 | -2.200 |
+#&gt; |.....................| -4.592 | 0.4521 | 1.118 | 0.07117 |
+#&gt; |.....................| 0.7160 | 0.6917 | 1.528 | 0.9824 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6890 | 1.589 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 485.32609</span> | 90.54 | 0.005219 | 0.2922 | 0.1108 |
+#&gt; |.....................| 0.01013 | 0.6111 | 1.118 | 0.07117 |
+#&gt; |.....................| 0.7160 | 0.6917 | 1.528 | 0.9824 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6890 | 1.589 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -30.72 | 1.256 | 0.2407 | 0.1468 |
+#&gt; |.....................| 0.3576 | 0.6982 | 8.550 | 13.79 |
+#&gt; |.....................| -2.152 | -3.092 | -1.869 | 2.672 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -3.399 | -5.827 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 7</span>| 484.94767 | 1.003 | -1.055 | -0.9045 | -0.9373 |
+#&gt; |.....................| -0.9801 | -0.8996 | -0.1956 | -0.4497 |
+#&gt; |.....................| -0.8963 | -1.103 | -0.5795 | -0.8455 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.071 | -0.5595 |...........|...........|</span>
+#&gt; | U| 484.94767 | 91.28 | -5.255 | -0.8848 | -2.200 |
+#&gt; |.....................| -4.593 | 0.4521 | 1.112 | 0.07079 |
+#&gt; |.....................| 0.7168 | 0.6961 | 1.524 | 0.9808 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6930 | 1.587 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 484.94767</span> | 91.28 | 0.005220 | 0.2922 | 0.1108 |
+#&gt; |.....................| 0.01013 | 0.6111 | 1.112 | 0.07079 |
+#&gt; |.....................| 0.7168 | 0.6961 | 1.524 | 0.9808 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6930 | 1.587 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 16.95 | 1.308 | 0.9181 | 0.03760 |
+#&gt; |.....................| 0.3308 | 0.6549 | 8.124 | 13.74 |
+#&gt; |.....................| -1.975 | -2.369 | -2.107 | 2.437 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -3.334 | -5.928 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 8</span>| 484.63747 | 0.9965 | -1.055 | -0.9051 | -0.9373 |
+#&gt; |.....................| -0.9805 | -0.8998 | -0.2100 | -0.4642 |
+#&gt; |.....................| -0.8952 | -1.098 | -0.5823 | -0.8472 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.5602 |...........|...........|</span>
+#&gt; | U| 484.63747 | 90.68 | -5.255 | -0.8853 | -2.200 |
+#&gt; |.....................| -4.593 | 0.4520 | 1.106 | 0.07037 |
+#&gt; |.....................| 0.7176 | 0.7002 | 1.521 | 0.9792 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6968 | 1.586 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 484.63747</span> | 90.68 | 0.005220 | 0.2921 | 0.1108 |
+#&gt; |.....................| 0.01012 | 0.6111 | 1.106 | 0.07037 |
+#&gt; |.....................| 0.7176 | 0.7002 | 1.521 | 0.9792 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6968 | 1.586 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -22.67 | 1.288 | 0.2773 | 0.1211 |
+#&gt; |.....................| 0.3459 | 0.7203 | 8.028 | 13.24 |
+#&gt; |.....................| -1.967 | -2.555 | -2.117 | 2.333 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.789 | -5.812 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 9</span>| 484.31288 | 1.003 | -1.055 | -0.9054 | -0.9374 |
+#&gt; |.....................| -0.9808 | -0.9000 | -0.2248 | -0.4783 |
+#&gt; |.....................| -0.8942 | -1.094 | -0.5856 | -0.8486 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.063 | -0.5617 |...........|...........|</span>
+#&gt; | U| 484.31288 | 91.27 | -5.255 | -0.8855 | -2.200 |
+#&gt; |.....................| -4.593 | 0.4519 | 1.100 | 0.06996 |
+#&gt; |.....................| 0.7183 | 0.7043 | 1.517 | 0.9778 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7003 | 1.585 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 484.31288</span> | 91.27 | 0.005220 | 0.2920 | 0.1108 |
+#&gt; |.....................| 0.01012 | 0.6111 | 1.100 | 0.06996 |
+#&gt; |.....................| 0.7183 | 0.7043 | 1.517 | 0.9778 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7003 | 1.585 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 16.32 | 1.333 | 0.8110 | 0.03416 |
+#&gt; |.....................| 0.3225 | 0.6774 | 7.502 | 12.95 |
+#&gt; |.....................| -1.990 | -1.849 | -2.190 | 2.193 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.714 | -5.891 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 10</span>| 484.03445 | 0.9966 | -1.055 | -0.9058 | -0.9374 |
+#&gt; |.....................| -0.9811 | -0.9003 | -0.2393 | -0.4932 |
+#&gt; |.....................| -0.8929 | -1.090 | -0.5881 | -0.8501 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.059 | -0.5620 |...........|...........|</span>
+#&gt; | U| 484.03445 | 90.69 | -5.255 | -0.8859 | -2.200 |
+#&gt; |.....................| -4.594 | 0.4517 | 1.094 | 0.06953 |
+#&gt; |.....................| 0.7192 | 0.7079 | 1.514 | 0.9764 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7034 | 1.584 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 484.03445</span> | 90.69 | 0.005219 | 0.2919 | 0.1108 |
+#&gt; |.....................| 0.01012 | 0.6110 | 1.094 | 0.06953 |
+#&gt; |.....................| 0.7192 | 0.7079 | 1.514 | 0.9764 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7034 | 1.584 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -23.34 | 1.311 | 0.1997 | 0.1136 |
+#&gt; |.....................| 0.3397 | 0.7422 | 7.043 | 12.17 |
+#&gt; |.....................| -1.843 | -2.075 | -2.300 | 2.141 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.235 | -5.778 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 11</span>| 483.72794 | 1.003 | -1.056 | -0.9061 | -0.9374 |
+#&gt; |.....................| -0.9815 | -0.9008 | -0.2540 | -0.5081 |
+#&gt; |.....................| -0.8918 | -1.086 | -0.5906 | -0.8514 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.056 | -0.5623 |...........|...........|</span>
+#&gt; | U| 483.72794 | 91.28 | -5.256 | -0.8861 | -2.200 |
+#&gt; |.....................| -4.594 | 0.4515 | 1.088 | 0.06909 |
+#&gt; |.....................| 0.7200 | 0.7113 | 1.511 | 0.9751 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7061 | 1.584 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 483.72794</span> | 91.28 | 0.005217 | 0.2919 | 0.1108 |
+#&gt; |.....................| 0.01011 | 0.6110 | 1.088 | 0.06909 |
+#&gt; |.....................| 0.7200 | 0.7113 | 1.511 | 0.9751 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7061 | 1.584 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 16.56 | 1.355 | 0.7367 | 0.03002 |
+#&gt; |.....................| 0.3166 | 0.7021 | 6.528 | 11.89 |
+#&gt; |.....................| -1.880 | -1.512 | -2.404 | 1.917 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.215 | -5.846 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 12</span>| 483.44272 | 0.9974 | -1.057 | -0.9064 | -0.9375 |
+#&gt; |.....................| -0.9820 | -0.9016 | -0.2678 | -0.5243 |
+#&gt; |.....................| -0.8904 | -1.083 | -0.5914 | -0.8528 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.054 | -0.5601 |...........|...........|</span>
+#&gt; | U| 483.44272 | 90.76 | -5.257 | -0.8865 | -2.200 |
+#&gt; |.....................| -4.594 | 0.4511 | 1.082 | 0.06862 |
+#&gt; |.....................| 0.7211 | 0.7141 | 1.510 | 0.9738 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7081 | 1.587 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 483.44272</span> | 90.76 | 0.005212 | 0.2918 | 0.1108 |
+#&gt; |.....................| 0.01011 | 0.6109 | 1.082 | 0.06862 |
+#&gt; |.....................| 0.7211 | 0.7141 | 1.510 | 0.9738 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7081 | 1.587 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -19.50 | 1.332 | 0.2061 | 0.1022 |
+#&gt; |.....................| 0.3336 | 0.7519 | 5.944 | 11.09 |
+#&gt; |.....................| -1.878 | -1.675 | -2.404 | 1.054 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.833 | -5.715 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 13</span>| 483.13758 | 1.003 | -1.059 | -0.9067 | -0.9375 |
+#&gt; |.....................| -0.9826 | -0.9029 | -0.2791 | -0.5415 |
+#&gt; |.....................| -0.8881 | -1.081 | -0.5896 | -0.8508 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.053 | -0.5541 |...........|...........|</span>
+#&gt; | U| 483.13758 | 91.30 | -5.259 | -0.8867 | -2.200 |
+#&gt; |.....................| -4.595 | 0.4505 | 1.077 | 0.06813 |
+#&gt; |.....................| 0.7227 | 0.7157 | 1.512 | 0.9758 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7089 | 1.594 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 483.13758</span> | 91.30 | 0.005202 | 0.2918 | 0.1108 |
+#&gt; |.....................| 0.01010 | 0.6108 | 1.077 | 0.06813 |
+#&gt; |.....................| 0.7227 | 0.7157 | 1.512 | 0.9758 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7089 | 1.594 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 16.83 | 1.368 | 0.7006 | 0.02276 |
+#&gt; |.....................| 0.3159 | 0.7144 | 5.487 | 10.74 |
+#&gt; |.....................| -1.773 | -1.125 | -2.251 | 1.956 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.882 | -5.671 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 14</span>| 482.85180 | 0.9981 | -1.062 | -0.9072 | -0.9376 |
+#&gt; |.....................| -0.9834 | -0.9050 | -0.2850 | -0.5582 |
+#&gt; |.....................| -0.8853 | -1.082 | -0.5852 | -0.8503 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.053 | -0.5428 |...........|...........|</span>
+#&gt; | U| 482.8518 | 90.83 | -5.262 | -0.8872 | -2.200 |
+#&gt; |.....................| -4.596 | 0.4496 | 1.075 | 0.06764 |
+#&gt; |.....................| 0.7248 | 0.7152 | 1.517 | 0.9762 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7084 | 1.607 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 482.8518</span> | 90.83 | 0.005184 | 0.2917 | 0.1108 |
+#&gt; |.....................| 0.01009 | 0.6105 | 1.075 | 0.06764 |
+#&gt; |.....................| 0.7248 | 0.7152 | 1.517 | 0.9762 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7084 | 1.607 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -16.64 | 1.337 | 0.2421 | 0.09047 |
+#&gt; |.....................| 0.3389 | 0.7643 | 5.051 | 10.06 |
+#&gt; |.....................| -1.787 | -1.445 | -2.047 | 2.073 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.627 | -5.410 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 15</span>| 482.60290 | 1.003 | -1.066 | -0.9079 | -0.9377 |
+#&gt; |.....................| -0.9844 | -0.9075 | -0.2858 | -0.5723 |
+#&gt; |.....................| -0.8822 | -1.083 | -0.5806 | -0.8571 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.055 | -0.5294 |...........|...........|</span>
+#&gt; | U| 482.6029 | 91.28 | -5.266 | -0.8878 | -2.200 |
+#&gt; |.....................| -4.597 | 0.4484 | 1.074 | 0.06723 |
+#&gt; |.....................| 0.7271 | 0.7136 | 1.523 | 0.9697 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7072 | 1.624 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 482.6029</span> | 91.28 | 0.005162 | 0.2916 | 0.1108 |
+#&gt; |.....................| 0.01008 | 0.6103 | 1.074 | 0.06723 |
+#&gt; |.....................| 0.7271 | 0.7136 | 1.523 | 0.9697 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7072 | 1.624 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 14.50 | 1.352 | 0.6742 | 0.02192 |
+#&gt; |.....................| 0.3317 | 0.7297 | 4.803 | 9.894 |
+#&gt; |.....................| -1.694 | -1.220 | -2.031 | 1.506 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.722 | -5.269 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 16</span>| 482.37953 | 0.9987 | -1.071 | -0.9090 | -0.9377 |
+#&gt; |.....................| -0.9857 | -0.9106 | -0.2840 | -0.5862 |
+#&gt; |.....................| -0.8787 | -1.084 | -0.5758 | -0.8611 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.056 | -0.5150 |...........|...........|</span>
+#&gt; | U| 482.37953 | 90.88 | -5.271 | -0.8888 | -2.200 |
+#&gt; |.....................| -4.598 | 0.4470 | 1.075 | 0.06683 |
+#&gt; |.....................| 0.7296 | 0.7132 | 1.528 | 0.9659 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7058 | 1.641 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 482.37953</span> | 90.88 | 0.005137 | 0.2914 | 0.1108 |
+#&gt; |.....................| 0.01007 | 0.6099 | 1.075 | 0.06683 |
+#&gt; |.....................| 0.7296 | 0.7132 | 1.528 | 0.9659 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7058 | 1.641 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 17</span>| 482.17662 | 0.9986 | -1.077 | -0.9102 | -0.9378 |
+#&gt; |.....................| -0.9871 | -0.9141 | -0.2800 | -0.5994 |
+#&gt; |.....................| -0.8750 | -1.085 | -0.5707 | -0.8654 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.059 | -0.4996 |...........|...........|</span>
+#&gt; | U| 482.17662 | 90.88 | -5.277 | -0.8898 | -2.200 |
+#&gt; |.....................| -4.600 | 0.4454 | 1.077 | 0.06645 |
+#&gt; |.....................| 0.7323 | 0.7123 | 1.534 | 0.9618 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7037 | 1.660 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 482.17662</span> | 90.88 | 0.005108 | 0.2911 | 0.1108 |
+#&gt; |.....................| 0.01006 | 0.6095 | 1.077 | 0.06645 |
+#&gt; |.....................| 0.7323 | 0.7123 | 1.534 | 0.9618 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7037 | 1.660 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 18</span>| 481.54428 | 0.9984 | -1.097 | -0.9142 | -0.9379 |
+#&gt; |.....................| -0.9921 | -0.9262 | -0.2660 | -0.6456 |
+#&gt; |.....................| -0.8623 | -1.088 | -0.5530 | -0.8805 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.068 | -0.4457 |...........|...........|</span>
+#&gt; | U| 481.54428 | 90.86 | -5.297 | -0.8934 | -2.200 |
+#&gt; |.....................| -4.605 | 0.4398 | 1.083 | 0.06511 |
+#&gt; |.....................| 0.7417 | 0.7091 | 1.555 | 0.9473 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6961 | 1.725 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 481.54428</span> | 90.86 | 0.005009 | 0.2904 | 0.1108 |
+#&gt; |.....................| 0.01001 | 0.6082 | 1.083 | 0.06511 |
+#&gt; |.....................| 0.7417 | 0.7091 | 1.555 | 0.9473 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6961 | 1.725 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 19</span>| 480.42060 | 0.9980 | -1.149 | -0.9249 | -0.9384 |
+#&gt; |.....................| -1.006 | -0.9588 | -0.2285 | -0.7695 |
+#&gt; |.....................| -0.8280 | -1.098 | -0.5055 | -0.9211 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.091 | -0.3011 |...........|...........|</span>
+#&gt; | U| 480.4206 | 90.81 | -5.349 | -0.9029 | -2.201 |
+#&gt; |.....................| -4.618 | 0.4248 | 1.098 | 0.06151 |
+#&gt; |.....................| 0.7667 | 0.7005 | 1.611 | 0.9085 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6759 | 1.901 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 480.4206</span> | 90.81 | 0.004753 | 0.2885 | 0.1107 |
+#&gt; |.....................| 0.009872 | 0.6046 | 1.098 | 0.06151 |
+#&gt; |.....................| 0.7667 | 0.7005 | 1.611 | 0.9085 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6759 | 1.901 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -36.54 | 1.160 | -0.4282 | 0.02550 |
+#&gt; |.....................| 0.4248 | 0.7330 | 2.572 | 4.769 |
+#&gt; |.....................| -1.047 | -1.982 | 1.244 | -3.305 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.792 | -2.494 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 20</span>| 480.52888 | 1.003 | -1.232 | -0.9300 | -0.9345 |
+#&gt; |.....................| -1.037 | -1.013 | -0.2660 | -0.9542 |
+#&gt; |.....................| -0.7770 | -1.021 | -0.6177 | -0.7306 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.035 | -0.1927 |...........|...........|</span>
+#&gt; | U| 480.52888 | 91.28 | -5.432 | -0.9075 | -2.197 |
+#&gt; |.....................| -4.649 | 0.3997 | 1.083 | 0.05616 |
+#&gt; |.....................| 0.8040 | 0.7699 | 1.479 | 1.091 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7247 | 2.033 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 480.52888</span> | 91.28 | 0.004374 | 0.2875 | 0.1111 |
+#&gt; |.....................| 0.009571 | 0.5986 | 1.083 | 0.05616 |
+#&gt; |.....................| 0.8040 | 0.7699 | 1.479 | 1.091 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7247 | 2.033 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 21</span>| 479.69850 | 1.004 | -1.189 | -0.9273 | -0.9365 |
+#&gt; |.....................| -1.020 | -0.9850 | -0.2467 | -0.8583 |
+#&gt; |.....................| -0.8035 | -1.061 | -0.5593 | -0.8297 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2490 |...........|...........|</span>
+#&gt; | U| 479.6985 | 91.34 | -5.389 | -0.9050 | -2.199 |
+#&gt; |.....................| -4.633 | 0.4128 | 1.091 | 0.05894 |
+#&gt; |.....................| 0.7846 | 0.7338 | 1.548 | 0.9959 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6994 | 1.964 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.6985</span> | 91.34 | 0.004567 | 0.2880 | 0.1109 |
+#&gt; |.....................| 0.009727 | 0.6018 | 1.091 | 0.05894 |
+#&gt; |.....................| 0.7846 | 0.7338 | 1.548 | 0.9959 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6994 | 1.964 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 5.264 | 1.163 | -0.05494 | -0.06753 |
+#&gt; |.....................| 0.3641 | 0.6248 | 0.1998 | 1.877 |
+#&gt; |.....................| -0.5696 | 0.3809 | 0.8989 | 3.758 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2123 | -1.578 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 22</span>| 479.87893 | 1.001 | -1.256 | -0.9150 | -0.9312 |
+#&gt; |.....................| -1.045 | -1.024 | -0.2268 | -0.8946 |
+#&gt; |.....................| -0.7799 | -1.052 | -0.6825 | -0.8629 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.056 | -0.2060 |...........|...........|</span>
+#&gt; | U| 479.87893 | 91.06 | -5.456 | -0.8941 | -2.194 |
+#&gt; |.....................| -4.658 | 0.3949 | 1.099 | 0.05789 |
+#&gt; |.....................| 0.8019 | 0.7416 | 1.402 | 0.9642 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7063 | 2.016 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.87893</span> | 91.06 | 0.004269 | 0.2903 | 0.1115 |
+#&gt; |.....................| 0.009490 | 0.5975 | 1.099 | 0.05789 |
+#&gt; |.....................| 0.8019 | 0.7416 | 1.402 | 0.9642 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7063 | 2.016 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 23</span>| 479.70356 | 0.9996 | -1.214 | -0.9229 | -0.9346 |
+#&gt; |.....................| -1.029 | -0.9992 | -0.2397 | -0.8723 |
+#&gt; |.....................| -0.7947 | -1.058 | -0.6038 | -0.8437 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.061 | -0.2328 |...........|...........|</span>
+#&gt; | U| 479.70356 | 90.96 | -5.414 | -0.9011 | -2.197 |
+#&gt; |.....................| -4.642 | 0.4062 | 1.093 | 0.05853 |
+#&gt; |.....................| 0.7910 | 0.7364 | 1.495 | 0.9825 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7017 | 1.984 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.70356</span> | 90.96 | 0.004455 | 0.2888 | 0.1111 |
+#&gt; |.....................| 0.009639 | 0.6002 | 1.093 | 0.05853 |
+#&gt; |.....................| 0.7910 | 0.7364 | 1.495 | 0.9825 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7017 | 1.984 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 24</span>| 479.71523 | 0.9993 | -1.201 | -0.9253 | -0.9356 |
+#&gt; |.....................| -1.025 | -0.9918 | -0.2436 | -0.8656 |
+#&gt; |.....................| -0.7992 | -1.060 | -0.5801 | -0.8379 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.063 | -0.2408 |...........|...........|</span>
+#&gt; | U| 479.71523 | 90.93 | -5.401 | -0.9032 | -2.198 |
+#&gt; |.....................| -4.637 | 0.4096 | 1.092 | 0.05873 |
+#&gt; |.....................| 0.7877 | 0.7349 | 1.523 | 0.9880 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7004 | 1.974 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.71523</span> | 90.93 | 0.004513 | 0.2884 | 0.1110 |
+#&gt; |.....................| 0.009685 | 0.6010 | 1.092 | 0.05873 |
+#&gt; |.....................| 0.7877 | 0.7349 | 1.523 | 0.9880 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.7004 | 1.974 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 25</span>| 479.73471 | 0.9991 | -1.194 | -0.9266 | -0.9362 |
+#&gt; |.....................| -1.022 | -0.9877 | -0.2457 | -0.8619 |
+#&gt; |.....................| -0.8017 | -1.061 | -0.5670 | -0.8347 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2453 |...........|...........|</span>
+#&gt; | U| 479.73471 | 90.92 | -5.394 | -0.9044 | -2.199 |
+#&gt; |.....................| -4.635 | 0.4115 | 1.091 | 0.05884 |
+#&gt; |.....................| 0.7859 | 0.7340 | 1.539 | 0.9911 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6996 | 1.969 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.73471</span> | 90.92 | 0.004545 | 0.2881 | 0.1110 |
+#&gt; |.....................| 0.009710 | 0.6015 | 1.091 | 0.05884 |
+#&gt; |.....................| 0.7859 | 0.7340 | 1.539 | 0.9911 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6996 | 1.969 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 26</span>| 479.71271 | 1.001 | -1.190 | -0.9273 | -0.9365 |
+#&gt; |.....................| -1.021 | -0.9854 | -0.2468 | -0.8594 |
+#&gt; |.....................| -0.8032 | -1.061 | -0.5599 | -0.8320 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2481 |...........|...........|</span>
+#&gt; | U| 479.71271 | 91.05 | -5.390 | -0.9050 | -2.199 |
+#&gt; |.....................| -4.633 | 0.4126 | 1.091 | 0.05891 |
+#&gt; |.....................| 0.7849 | 0.7336 | 1.547 | 0.9937 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6993 | 1.965 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.71271</span> | 91.05 | 0.004564 | 0.2880 | 0.1109 |
+#&gt; |.....................| 0.009725 | 0.6017 | 1.091 | 0.05891 |
+#&gt; |.....................| 0.7849 | 0.7336 | 1.547 | 0.9937 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6993 | 1.965 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 27</span>| 479.69386 | 1.003 | -1.189 | -0.9273 | -0.9365 |
+#&gt; |.....................| -1.020 | -0.9851 | -0.2467 | -0.8587 |
+#&gt; |.....................| -0.8034 | -1.061 | -0.5595 | -0.8305 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2487 |...........|...........|</span>
+#&gt; | U| 479.69386 | 91.24 | -5.389 | -0.9050 | -2.199 |
+#&gt; |.....................| -4.633 | 0.4127 | 1.091 | 0.05893 |
+#&gt; |.....................| 0.7847 | 0.7338 | 1.548 | 0.9951 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6994 | 1.965 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.69386</span> | 91.24 | 0.004566 | 0.2880 | 0.1109 |
+#&gt; |.....................| 0.009726 | 0.6017 | 1.091 | 0.05893 |
+#&gt; |.....................| 0.7847 | 0.7338 | 1.548 | 0.9951 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6994 | 1.965 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -3.722 | 1.155 | -0.1645 | -0.05121 |
+#&gt; |.....................| 0.3669 | 0.6376 | 0.06785 | 1.772 |
+#&gt; |.....................| -0.5854 | 0.2936 | 0.9229 | 3.709 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2520 | -1.579 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 28</span>| 479.68901 | 1.004 | -1.189 | -0.9273 | -0.9365 |
+#&gt; |.....................| -1.021 | -0.9853 | -0.2467 | -0.8591 |
+#&gt; |.....................| -0.8033 | -1.061 | -0.5597 | -0.8314 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2483 |...........|...........|</span>
+#&gt; | U| 479.68901 | 91.32 | -5.389 | -0.9050 | -2.199 |
+#&gt; |.....................| -4.633 | 0.4126 | 1.091 | 0.05892 |
+#&gt; |.....................| 0.7848 | 0.7337 | 1.547 | 0.9942 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6993 | 1.965 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.68901</span> | 91.32 | 0.004565 | 0.2880 | 0.1109 |
+#&gt; |.....................| 0.009725 | 0.6017 | 1.091 | 0.05892 |
+#&gt; |.....................| 0.7848 | 0.7337 | 1.547 | 0.9942 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6993 | 1.965 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.772 | 1.160 | -0.07003 | -0.06455 |
+#&gt; |.....................| 0.3646 | 0.6238 | 0.08418 | 1.806 |
+#&gt; |.....................| -0.5672 | 0.3711 | 0.9250 | 3.651 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2161 | -1.579 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 29</span>| 479.68474 | 1.003 | -1.190 | -0.9272 | -0.9365 |
+#&gt; |.....................| -1.021 | -0.9854 | -0.2468 | -0.8595 |
+#&gt; |.....................| -0.8031 | -1.061 | -0.5600 | -0.8323 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2479 |...........|...........|</span>
+#&gt; | U| 479.68474 | 91.24 | -5.390 | -0.9050 | -2.199 |
+#&gt; |.....................| -4.633 | 0.4126 | 1.091 | 0.05890 |
+#&gt; |.....................| 0.7849 | 0.7336 | 1.547 | 0.9934 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6993 | 1.966 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.68474</span> | 91.24 | 0.004563 | 0.2880 | 0.1109 |
+#&gt; |.....................| 0.009724 | 0.6017 | 1.091 | 0.05890 |
+#&gt; |.....................| 0.7849 | 0.7336 | 1.547 | 0.9934 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6993 | 1.966 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -3.834 | 1.153 | -0.1599 | -0.05010 |
+#&gt; |.....................| 0.3669 | 0.6355 | 0.09191 | 1.764 |
+#&gt; |.....................| -0.5796 | 0.2889 | 1.006 | 3.561 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2610 | -1.565 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 30</span>| 479.68016 | 1.004 | -1.190 | -0.9272 | -0.9365 |
+#&gt; |.....................| -1.021 | -0.9856 | -0.2468 | -0.8600 |
+#&gt; |.....................| -0.8030 | -1.061 | -0.5602 | -0.8332 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2475 |...........|...........|</span>
+#&gt; | U| 479.68016 | 91.32 | -5.390 | -0.9050 | -2.199 |
+#&gt; |.....................| -4.633 | 0.4125 | 1.091 | 0.05889 |
+#&gt; |.....................| 0.7850 | 0.7336 | 1.547 | 0.9926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6992 | 1.966 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.68016</span> | 91.32 | 0.004562 | 0.2880 | 0.1109 |
+#&gt; |.....................| 0.009723 | 0.6017 | 1.091 | 0.05889 |
+#&gt; |.....................| 0.7850 | 0.7336 | 1.547 | 0.9926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6992 | 1.966 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.891 | 1.158 | -0.06530 | -0.06447 |
+#&gt; |.....................| 0.3645 | 0.6207 | 0.1821 | 1.812 |
+#&gt; |.....................| -0.5486 | 0.3656 | 1.002 | 3.562 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2233 | -1.574 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 31</span>| 479.67614 | 1.003 | -1.190 | -0.9272 | -0.9365 |
+#&gt; |.....................| -1.021 | -0.9857 | -0.2468 | -0.8604 |
+#&gt; |.....................| -0.8028 | -1.061 | -0.5604 | -0.8341 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2472 |...........|...........|</span>
+#&gt; | U| 479.67614 | 91.24 | -5.390 | -0.9049 | -2.199 |
+#&gt; |.....................| -4.633 | 0.4124 | 1.091 | 0.05888 |
+#&gt; |.....................| 0.7851 | 0.7335 | 1.546 | 0.9917 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6992 | 1.966 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.67614</span> | 91.24 | 0.004561 | 0.2880 | 0.1109 |
+#&gt; |.....................| 0.009722 | 0.6017 | 1.091 | 0.05888 |
+#&gt; |.....................| 0.7851 | 0.7335 | 1.546 | 0.9917 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6992 | 1.966 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -3.915 | 1.151 | -0.1574 | -0.04977 |
+#&gt; |.....................| 0.3672 | 0.6321 | 0.06058 | 1.705 |
+#&gt; |.....................| -0.5691 | 0.2601 | 0.8724 | 3.420 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2638 | -1.562 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 32</span>| 479.67180 | 1.004 | -1.191 | -0.9271 | -0.9364 |
+#&gt; |.....................| -1.021 | -0.9859 | -0.2469 | -0.8608 |
+#&gt; |.....................| -0.8027 | -1.061 | -0.5607 | -0.8349 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2468 |...........|...........|</span>
+#&gt; | U| 479.6718 | 91.33 | -5.391 | -0.9049 | -2.199 |
+#&gt; |.....................| -4.633 | 0.4124 | 1.091 | 0.05887 |
+#&gt; |.....................| 0.7852 | 0.7334 | 1.546 | 0.9909 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6991 | 1.967 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.6718</span> | 91.33 | 0.004560 | 0.2880 | 0.1109 |
+#&gt; |.....................| 0.009722 | 0.6017 | 1.091 | 0.05887 |
+#&gt; |.....................| 0.7852 | 0.7334 | 1.546 | 0.9909 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6991 | 1.967 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 4.074 | 1.157 | -0.05990 | -0.06452 |
+#&gt; |.....................| 0.3645 | 0.6170 | 0.1286 | 1.744 |
+#&gt; |.....................| -0.5576 | 0.3161 | 0.9007 | 3.345 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2216 | -1.572 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 33</span>| 479.66809 | 1.003 | -1.191 | -0.9271 | -0.9364 |
+#&gt; |.....................| -1.021 | -0.9860 | -0.2469 | -0.8613 |
+#&gt; |.....................| -0.8026 | -1.062 | -0.5609 | -0.8357 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2464 |...........|...........|</span>
+#&gt; | U| 479.66809 | 91.23 | -5.391 | -0.9049 | -2.199 |
+#&gt; |.....................| -4.634 | 0.4123 | 1.091 | 0.05885 |
+#&gt; |.....................| 0.7853 | 0.7334 | 1.546 | 0.9901 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6991 | 1.967 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.66809</span> | 91.23 | 0.004558 | 0.2880 | 0.1109 |
+#&gt; |.....................| 0.009721 | 0.6016 | 1.091 | 0.05885 |
+#&gt; |.....................| 0.7853 | 0.7334 | 1.546 | 0.9901 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6991 | 1.967 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.161 | 1.149 | -0.1570 | -0.04911 |
+#&gt; |.....................| 0.3674 | 0.6293 | 0.04215 | 1.668 |
+#&gt; |.....................| -0.5621 | 0.2625 | 0.8940 | 3.313 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2611 | -1.561 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 34</span>| 479.66397 | 1.004 | -1.191 | -0.9271 | -0.9364 |
+#&gt; |.....................| -1.021 | -0.9862 | -0.2469 | -0.8617 |
+#&gt; |.....................| -0.8024 | -1.062 | -0.5611 | -0.8366 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2460 |...........|...........|</span>
+#&gt; | U| 479.66397 | 91.33 | -5.391 | -0.9049 | -2.199 |
+#&gt; |.....................| -4.634 | 0.4122 | 1.091 | 0.05884 |
+#&gt; |.....................| 0.7854 | 0.7333 | 1.546 | 0.9893 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6990 | 1.968 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.66397</span> | 91.33 | 0.004557 | 0.2881 | 0.1109 |
+#&gt; |.....................| 0.009720 | 0.6016 | 1.091 | 0.05884 |
+#&gt; |.....................| 0.7854 | 0.7333 | 1.546 | 0.9893 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6990 | 1.968 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 4.197 | 1.155 | -0.05534 | -0.06448 |
+#&gt; |.....................| 0.3644 | 0.6140 | 0.1526 | 1.765 |
+#&gt; |.....................| -0.5340 | 0.3555 | 0.9900 | 3.325 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2199 | -1.571 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 35</span>| 479.66043 | 1.003 | -1.191 | -0.9271 | -0.9364 |
+#&gt; |.....................| -1.021 | -0.9863 | -0.2469 | -0.8621 |
+#&gt; |.....................| -0.8023 | -1.062 | -0.5613 | -0.8374 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2456 |...........|...........|</span>
+#&gt; | U| 479.66043 | 91.23 | -5.391 | -0.9048 | -2.199 |
+#&gt; |.....................| -4.634 | 0.4122 | 1.090 | 0.05883 |
+#&gt; |.....................| 0.7855 | 0.7332 | 1.545 | 0.9886 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6989 | 1.968 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.66043</span> | 91.23 | 0.004556 | 0.2881 | 0.1109 |
+#&gt; |.....................| 0.009719 | 0.6016 | 1.090 | 0.05883 |
+#&gt; |.....................| 0.7855 | 0.7332 | 1.545 | 0.9886 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6989 | 1.968 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.161 | 1.147 | -0.1538 | -0.04891 |
+#&gt; |.....................| 0.3674 | 0.6262 | 0.06581 | 1.677 |
+#&gt; |.....................| -0.5453 | 0.2828 | 1.029 | 3.251 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2683 | -1.555 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 36</span>| 479.65652 | 1.004 | -1.192 | -0.9270 | -0.9364 |
+#&gt; |.....................| -1.021 | -0.9865 | -0.2469 | -0.8625 |
+#&gt; |.....................| -0.8022 | -1.062 | -0.5616 | -0.8382 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2452 |...........|...........|</span>
+#&gt; | U| 479.65652 | 91.33 | -5.392 | -0.9048 | -2.199 |
+#&gt; |.....................| -4.634 | 0.4121 | 1.090 | 0.05882 |
+#&gt; |.....................| 0.7856 | 0.7332 | 1.545 | 0.9878 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6989 | 1.969 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.65652</span> | 91.33 | 0.004554 | 0.2881 | 0.1109 |
+#&gt; |.....................| 0.009718 | 0.6016 | 1.090 | 0.05882 |
+#&gt; |.....................| 0.7856 | 0.7332 | 1.545 | 0.9878 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6989 | 1.969 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 4.221 | 1.153 | -0.05203 | -0.06424 |
+#&gt; |.....................| 0.3643 | 0.6104 | 0.04854 | 1.680 |
+#&gt; |.....................| -0.5365 | 0.2999 | 0.7877 | 3.080 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2284 | -1.566 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 37</span>| 479.65328 | 1.003 | -1.192 | -0.9270 | -0.9364 |
+#&gt; |.....................| -1.021 | -0.9866 | -0.2470 | -0.8629 |
+#&gt; |.....................| -0.8020 | -1.062 | -0.5618 | -0.8389 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.064 | -0.2448 |...........|...........|</span>
+#&gt; | U| 479.65328 | 91.23 | -5.392 | -0.9048 | -2.199 |
+#&gt; |.....................| -4.634 | 0.4120 | 1.090 | 0.05880 |
+#&gt; |.....................| 0.7857 | 0.7331 | 1.545 | 0.9871 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6988 | 1.969 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.65328</span> | 91.23 | 0.004553 | 0.2881 | 0.1109 |
+#&gt; |.....................| 0.009717 | 0.6016 | 1.090 | 0.05880 |
+#&gt; |.....................| 0.7857 | 0.7331 | 1.545 | 0.9871 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6988 | 1.969 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.438 | 1.145 | -0.1538 | -0.04822 |
+#&gt; |.....................| 0.3675 | 0.6235 | 0.0004265 | 1.625 |
+#&gt; |.....................| -0.5487 | 0.2329 | 0.8499 | 3.058 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2658 | -1.554 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 38</span>| 479.64923 | 1.004 | -1.192 | -0.9270 | -0.9364 |
+#&gt; |.....................| -1.022 | -0.9868 | -0.2469 | -0.8633 |
+#&gt; |.....................| -0.8019 | -1.062 | -0.5621 | -0.8396 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.065 | -0.2444 |...........|...........|</span>
+#&gt; | U| 479.64923 | 91.32 | -5.392 | -0.9048 | -2.199 |
+#&gt; |.....................| -4.634 | 0.4119 | 1.091 | 0.05879 |
+#&gt; |.....................| 0.7858 | 0.7330 | 1.544 | 0.9864 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6988 | 1.970 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.64923</span> | 91.32 | 0.004551 | 0.2881 | 0.1109 |
+#&gt; |.....................| 0.009716 | 0.6015 | 1.091 | 0.05879 |
+#&gt; |.....................| 0.7858 | 0.7330 | 1.544 | 0.9864 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6988 | 1.970 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.878 | 1.150 | -0.05277 | -0.06333 |
+#&gt; |.....................| 0.3643 | 0.6074 | 0.07271 | 1.651 |
+#&gt; |.....................| -0.5369 | 0.2992 | 0.8896 | 2.970 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2314 | -1.562 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 39</span>| 479.64621 | 1.003 | -1.193 | -0.9270 | -0.9363 |
+#&gt; |.....................| -1.022 | -0.9870 | -0.2469 | -0.8638 |
+#&gt; |.....................| -0.8017 | -1.062 | -0.5623 | -0.8404 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.065 | -0.2440 |...........|...........|</span>
+#&gt; | U| 479.64621 | 91.23 | -5.393 | -0.9047 | -2.199 |
+#&gt; |.....................| -4.634 | 0.4119 | 1.091 | 0.05878 |
+#&gt; |.....................| 0.7859 | 0.7330 | 1.544 | 0.9856 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6987 | 1.970 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.64621</span> | 91.23 | 0.004550 | 0.2881 | 0.1109 |
+#&gt; |.....................| 0.009715 | 0.6015 | 1.091 | 0.05878 |
+#&gt; |.....................| 0.7859 | 0.7330 | 1.544 | 0.9856 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6987 | 1.970 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.471 | 1.143 | -0.1506 | -0.04802 |
+#&gt; |.....................| 0.3674 | 0.6203 | -0.003354 | 1.603 |
+#&gt; |.....................| -0.5429 | 0.2243 | 0.9025 | 2.920 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2732 | -1.548 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 40</span>| 479.64228 | 1.004 | -1.193 | -0.9269 | -0.9363 |
+#&gt; |.....................| -1.022 | -0.9872 | -0.2468 | -0.8642 |
+#&gt; |.....................| -0.8016 | -1.062 | -0.5627 | -0.8411 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.065 | -0.2435 |...........|...........|</span>
+#&gt; | U| 479.64228 | 91.32 | -5.393 | -0.9047 | -2.199 |
+#&gt; |.....................| -4.634 | 0.4118 | 1.091 | 0.05877 |
+#&gt; |.....................| 0.7860 | 0.7329 | 1.544 | 0.9850 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6987 | 1.971 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.64228</span> | 91.32 | 0.004548 | 0.2881 | 0.1109 |
+#&gt; |.....................| 0.009714 | 0.6015 | 1.091 | 0.05877 |
+#&gt; |.....................| 0.7860 | 0.7329 | 1.544 | 0.9850 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6987 | 1.971 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.744 | 1.148 | -0.05088 | -0.06289 |
+#&gt; |.....................| 0.3642 | 0.6037 | 0.03047 | 1.629 |
+#&gt; |.....................| -0.5287 | 0.2733 | 0.8334 | 2.850 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2290 | -1.558 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 41</span>| 479.63935 | 1.003 | -1.193 | -0.9269 | -0.9363 |
+#&gt; |.....................| -1.022 | -0.9874 | -0.2468 | -0.8646 |
+#&gt; |.....................| -0.8014 | -1.062 | -0.5630 | -0.8419 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.065 | -0.2431 |...........|...........|</span>
+#&gt; | U| 479.63935 | 91.23 | -5.393 | -0.9047 | -2.199 |
+#&gt; |.....................| -4.634 | 0.4117 | 1.091 | 0.05876 |
+#&gt; |.....................| 0.7861 | 0.7329 | 1.543 | 0.9843 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6986 | 1.971 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.63935</span> | 91.23 | 0.004547 | 0.2881 | 0.1110 |
+#&gt; |.....................| 0.009713 | 0.6015 | 1.091 | 0.05876 |
+#&gt; |.....................| 0.7861 | 0.7329 | 1.543 | 0.9843 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6986 | 1.971 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.432 | 1.140 | -0.1464 | -0.04798 |
+#&gt; |.....................| 0.3672 | 0.6157 | -0.06295 | 1.547 |
+#&gt; |.....................| -0.5341 | 0.1919 | 0.7582 | 2.801 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2698 | -1.544 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 42</span>| 479.63543 | 1.004 | -1.194 | -0.9268 | -0.9363 |
+#&gt; |.....................| -1.022 | -0.9876 | -0.2467 | -0.8650 |
+#&gt; |.....................| -0.8013 | -1.062 | -0.5633 | -0.8425 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.065 | -0.2426 |...........|...........|</span>
+#&gt; | U| 479.63543 | 91.32 | -5.394 | -0.9046 | -2.199 |
+#&gt; |.....................| -4.634 | 0.4116 | 1.091 | 0.05874 |
+#&gt; |.....................| 0.7863 | 0.7328 | 1.543 | 0.9837 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6985 | 1.972 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.63543</span> | 91.32 | 0.004545 | 0.2881 | 0.1110 |
+#&gt; |.....................| 0.009712 | 0.6015 | 1.091 | 0.05874 |
+#&gt; |.....................| 0.7863 | 0.7328 | 1.543 | 0.9837 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6985 | 1.972 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.612 | 1.146 | -0.04876 | -0.06242 |
+#&gt; |.....................| 0.3640 | 0.6002 | 0.04743 | 1.619 |
+#&gt; |.....................| -0.5199 | 0.2573 | 0.7734 | 2.739 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2298 | -1.553 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 43</span>| 479.63248 | 1.003 | -1.194 | -0.9268 | -0.9363 |
+#&gt; |.....................| -1.022 | -0.9878 | -0.2466 | -0.8655 |
+#&gt; |.....................| -0.8011 | -1.062 | -0.5636 | -0.8432 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.065 | -0.2421 |...........|...........|</span>
+#&gt; | U| 479.63248 | 91.23 | -5.394 | -0.9046 | -2.199 |
+#&gt; |.....................| -4.635 | 0.4115 | 1.091 | 0.05873 |
+#&gt; |.....................| 0.7864 | 0.7328 | 1.543 | 0.9830 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6985 | 1.973 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.63248</span> | 91.23 | 0.004543 | 0.2881 | 0.1110 |
+#&gt; |.....................| 0.009710 | 0.6014 | 1.091 | 0.05873 |
+#&gt; |.....................| 0.7864 | 0.7328 | 1.543 | 0.9830 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6985 | 1.973 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.237 | 1.138 | -0.1400 | -0.04830 |
+#&gt; |.....................| 0.3668 | 0.6108 | -0.07665 | 1.521 |
+#&gt; |.....................| -0.5353 | 0.1893 | 0.7456 | 2.704 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2668 | -1.543 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 44</span>| 479.62869 | 1.004 | -1.195 | -0.9268 | -0.9362 |
+#&gt; |.....................| -1.022 | -0.9880 | -0.2464 | -0.8659 |
+#&gt; |.....................| -0.8009 | -1.062 | -0.5639 | -0.8438 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.065 | -0.2415 |...........|...........|</span>
+#&gt; | U| 479.62869 | 91.32 | -5.395 | -0.9046 | -2.199 |
+#&gt; |.....................| -4.635 | 0.4114 | 1.091 | 0.05872 |
+#&gt; |.....................| 0.7865 | 0.7327 | 1.542 | 0.9824 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6984 | 1.973 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.62869</span> | 91.32 | 0.004541 | 0.2881 | 0.1110 |
+#&gt; |.....................| 0.009709 | 0.6014 | 1.091 | 0.05872 |
+#&gt; |.....................| 0.7865 | 0.7327 | 1.542 | 0.9824 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6984 | 1.973 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.552 | 1.143 | -0.04554 | -0.06221 |
+#&gt; |.....................| 0.3637 | 0.5952 | -0.01323 | 1.563 |
+#&gt; |.....................| -0.3448 | 0.2470 | 0.7924 | 2.643 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2272 | -1.550 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 45</span>| 479.62584 | 1.003 | -1.195 | -0.9268 | -0.9362 |
+#&gt; |.....................| -1.022 | -0.9883 | -0.2463 | -0.8663 |
+#&gt; |.....................| -0.8008 | -1.062 | -0.5642 | -0.8446 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.065 | -0.2410 |...........|...........|</span>
+#&gt; | U| 479.62584 | 91.24 | -5.395 | -0.9046 | -2.199 |
+#&gt; |.....................| -4.635 | 0.4113 | 1.091 | 0.05871 |
+#&gt; |.....................| 0.7866 | 0.7326 | 1.542 | 0.9817 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6983 | 1.974 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.62584</span> | 91.24 | 0.004539 | 0.2881 | 0.1110 |
+#&gt; |.....................| 0.009708 | 0.6014 | 1.091 | 0.05871 |
+#&gt; |.....................| 0.7866 | 0.7326 | 1.542 | 0.9817 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6983 | 1.974 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.148 | 1.135 | -0.1348 | -0.04846 |
+#&gt; |.....................| 0.3664 | 0.6063 | -0.009834 | 1.510 |
+#&gt; |.....................| -0.5271 | 0.1803 | 0.7932 | 2.587 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2684 | -1.536 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 46</span>| 479.62216 | 1.004 | -1.195 | -0.9267 | -0.9362 |
+#&gt; |.....................| -1.023 | -0.9885 | -0.2462 | -0.8667 |
+#&gt; |.....................| -0.8007 | -1.062 | -0.5646 | -0.8451 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.065 | -0.2404 |...........|...........|</span>
+#&gt; | U| 479.62216 | 91.32 | -5.395 | -0.9045 | -2.199 |
+#&gt; |.....................| -4.635 | 0.4112 | 1.091 | 0.05870 |
+#&gt; |.....................| 0.7867 | 0.7326 | 1.541 | 0.9811 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6983 | 1.975 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.62216</span> | 91.32 | 0.004537 | 0.2881 | 0.1110 |
+#&gt; |.....................| 0.009706 | 0.6014 | 1.091 | 0.05870 |
+#&gt; |.....................| 0.7867 | 0.7326 | 1.541 | 0.9811 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6983 | 1.975 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.404 | 1.140 | -0.04564 | -0.06187 |
+#&gt; |.....................| 0.3633 | 0.5903 | -0.01970 | 1.541 |
+#&gt; |.....................| -0.5054 | 0.2303 | 0.6483 | 2.528 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2288 | -1.542 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 47</span>| 479.61938 | 1.003 | -1.196 | -0.9267 | -0.9362 |
+#&gt; |.....................| -1.023 | -0.9887 | -0.2461 | -0.8672 |
+#&gt; |.....................| -0.8005 | -1.062 | -0.5649 | -0.8458 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.065 | -0.2398 |...........|...........|</span>
+#&gt; | U| 479.61938 | 91.24 | -5.396 | -0.9045 | -2.199 |
+#&gt; |.....................| -4.635 | 0.4111 | 1.091 | 0.05868 |
+#&gt; |.....................| 0.7868 | 0.7325 | 1.541 | 0.9805 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6982 | 1.975 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.61938</span> | 91.24 | 0.004535 | 0.2881 | 0.1110 |
+#&gt; |.....................| 0.009705 | 0.6013 | 1.091 | 0.05868 |
+#&gt; |.....................| 0.7868 | 0.7325 | 1.541 | 0.9805 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6982 | 1.975 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.197 | 1.132 | -0.1312 | -0.04839 |
+#&gt; |.....................| 0.3660 | 0.6012 | 0.05916 | 1.560 |
+#&gt; |.....................| -0.4869 | 0.2015 | 0.8305 | 2.573 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2666 | -1.531 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 48</span>| 479.61563 | 1.003 | -1.196 | -0.9266 | -0.9361 |
+#&gt; |.....................| -1.023 | -0.9890 | -0.2459 | -0.8676 |
+#&gt; |.....................| -0.8003 | -1.062 | -0.5653 | -0.8464 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.065 | -0.2392 |...........|...........|</span>
+#&gt; | U| 479.61563 | 91.32 | -5.396 | -0.9044 | -2.199 |
+#&gt; |.....................| -4.635 | 0.4109 | 1.091 | 0.05867 |
+#&gt; |.....................| 0.7870 | 0.7325 | 1.541 | 0.9799 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6981 | 1.976 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.61563</span> | 91.32 | 0.004533 | 0.2881 | 0.1110 |
+#&gt; |.....................| 0.009703 | 0.6013 | 1.091 | 0.05867 |
+#&gt; |.....................| 0.7870 | 0.7325 | 1.541 | 0.9799 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6981 | 1.976 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.024 | 1.137 | -0.04591 | -0.06118 |
+#&gt; |.....................| 0.3629 | 0.5856 | 0.004035 | 1.536 |
+#&gt; |.....................| -0.4978 | 0.2329 | 0.6617 | 2.436 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2318 | -1.535 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 49</span>| 479.61337 | 1.003 | -1.197 | -0.9266 | -0.9361 |
+#&gt; |.....................| -1.023 | -0.9892 | -0.2459 | -0.8680 |
+#&gt; |.....................| -0.8001 | -1.063 | -0.5655 | -0.8471 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.065 | -0.2388 |...........|...........|</span>
+#&gt; | U| 479.61337 | 91.23 | -5.397 | -0.9044 | -2.198 |
+#&gt; |.....................| -4.635 | 0.4109 | 1.091 | 0.05866 |
+#&gt; |.....................| 0.7871 | 0.7324 | 1.540 | 0.9792 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6980 | 1.977 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.61337</span> | 91.23 | 0.004531 | 0.2881 | 0.1110 |
+#&gt; |.....................| 0.009702 | 0.6013 | 1.091 | 0.05866 |
+#&gt; |.....................| 0.7871 | 0.7324 | 1.540 | 0.9792 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6980 | 1.977 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.815 | 1.129 | -0.1342 | -0.04706 |
+#&gt; |.....................| 0.3660 | 0.5971 | -0.07697 | 1.438 |
+#&gt; |.....................| -0.5059 | 0.1462 | 0.6633 | 2.381 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2676 | -1.522 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 50</span>| 479.60932 | 1.003 | -1.197 | -0.9266 | -0.9361 |
+#&gt; |.....................| -1.023 | -0.9894 | -0.2456 | -0.8684 |
+#&gt; |.....................| -0.8000 | -1.063 | -0.5659 | -0.8476 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2381 |...........|...........|</span>
+#&gt; | U| 479.60932 | 91.31 | -5.397 | -0.9044 | -2.198 |
+#&gt; |.....................| -4.636 | 0.4107 | 1.091 | 0.05865 |
+#&gt; |.....................| 0.7872 | 0.7324 | 1.540 | 0.9788 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6979 | 1.977 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.60932</span> | 91.31 | 0.004529 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009700 | 0.6013 | 1.091 | 0.05865 |
+#&gt; |.....................| 0.7872 | 0.7324 | 1.540 | 0.9788 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6979 | 1.977 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.699 | 1.134 | -0.04549 | -0.06017 |
+#&gt; |.....................| 0.3630 | 0.5814 | -0.04512 | 1.484 |
+#&gt; |.....................| -0.4915 | 0.2556 | 0.7248 | 2.322 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2317 | -1.529 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 51</span>| 479.60706 | 1.003 | -1.198 | -0.9265 | -0.9361 |
+#&gt; |.....................| -1.023 | -0.9896 | -0.2455 | -0.8689 |
+#&gt; |.....................| -0.7998 | -1.063 | -0.5661 | -0.8484 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2376 |...........|...........|</span>
+#&gt; | U| 479.60706 | 91.23 | -5.398 | -0.9044 | -2.198 |
+#&gt; |.....................| -4.636 | 0.4106 | 1.091 | 0.05863 |
+#&gt; |.....................| 0.7873 | 0.7323 | 1.540 | 0.9781 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6979 | 1.978 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.60706</span> | 91.23 | 0.004527 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009699 | 0.6012 | 1.091 | 0.05863 |
+#&gt; |.....................| 0.7873 | 0.7323 | 1.540 | 0.9781 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6979 | 1.978 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.618 | 1.127 | -0.1276 | -0.04760 |
+#&gt; |.....................| 0.3656 | 0.5915 | -0.08622 | 1.415 |
+#&gt; |.....................| -0.5531 | 0.1512 | 0.6569 | 2.298 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2620 | -1.540 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 52</span>| 479.60314 | 1.003 | -1.198 | -0.9265 | -0.9360 |
+#&gt; |.....................| -1.023 | -0.9899 | -0.2452 | -0.8692 |
+#&gt; |.....................| -0.7996 | -1.063 | -0.5665 | -0.8488 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2369 |...........|...........|</span>
+#&gt; | U| 479.60314 | 91.31 | -5.398 | -0.9043 | -2.198 |
+#&gt; |.....................| -4.636 | 0.4105 | 1.091 | 0.05862 |
+#&gt; |.....................| 0.7875 | 0.7322 | 1.539 | 0.9776 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6978 | 1.979 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.60314</span> | 91.31 | 0.004525 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009698 | 0.6012 | 1.091 | 0.05862 |
+#&gt; |.....................| 0.7875 | 0.7322 | 1.539 | 0.9776 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6978 | 1.979 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.641 | 1.131 | -0.04213 | -0.06002 |
+#&gt; |.....................| 0.3627 | 0.5770 | -0.05114 | 1.464 |
+#&gt; |.....................| -0.4913 | 0.1735 | 0.5980 | 2.238 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2116 | -1.521 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 53</span>| 479.60093 | 1.003 | -1.199 | -0.9265 | -0.9360 |
+#&gt; |.....................| -1.024 | -0.9901 | -0.2452 | -0.8697 |
+#&gt; |.....................| -0.7994 | -1.063 | -0.5667 | -0.8495 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2363 |...........|...........|</span>
+#&gt; | U| 479.60093 | 91.23 | -5.399 | -0.9043 | -2.198 |
+#&gt; |.....................| -4.636 | 0.4104 | 1.091 | 0.05861 |
+#&gt; |.....................| 0.7876 | 0.7322 | 1.539 | 0.9769 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6977 | 1.980 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.60093</span> | 91.23 | 0.004523 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009696 | 0.6012 | 1.091 | 0.05861 |
+#&gt; |.....................| 0.7876 | 0.7322 | 1.539 | 0.9769 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6977 | 1.980 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.657 | 1.124 | -0.1240 | -0.04721 |
+#&gt; |.....................| 0.3655 | 0.5872 | -0.09119 | 1.382 |
+#&gt; |.....................| -0.4948 | 0.1646 | 0.6965 | 2.186 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2747 | -1.512 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 54</span>| 479.59701 | 1.003 | -1.199 | -0.9264 | -0.9360 |
+#&gt; |.....................| -1.024 | -0.9904 | -0.2448 | -0.8700 |
+#&gt; |.....................| -0.7992 | -1.063 | -0.5670 | -0.8499 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2356 |...........|...........|</span>
+#&gt; | U| 479.59701 | 91.31 | -5.399 | -0.9043 | -2.198 |
+#&gt; |.....................| -4.636 | 0.4103 | 1.091 | 0.05860 |
+#&gt; |.....................| 0.7877 | 0.7321 | 1.539 | 0.9766 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6976 | 1.980 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.59701</span> | 91.31 | 0.004520 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009695 | 0.6012 | 1.091 | 0.05860 |
+#&gt; |.....................| 0.7877 | 0.7321 | 1.539 | 0.9766 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6976 | 1.980 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.447 | 1.128 | -0.03826 | -0.05934 |
+#&gt; |.....................| 0.3628 | 0.5721 | -0.04376 | 1.440 |
+#&gt; |.....................| -0.4844 | 0.2233 | -0.3355 | 1.410 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3677 | -1.539 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 55</span>| 479.59436 | 1.003 | -1.200 | -0.9264 | -0.9360 |
+#&gt; |.....................| -1.024 | -0.9907 | -0.2446 | -0.8705 |
+#&gt; |.....................| -0.7990 | -1.063 | -0.5669 | -0.8504 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2349 |...........|...........|</span>
+#&gt; | U| 479.59436 | 91.23 | -5.400 | -0.9042 | -2.198 |
+#&gt; |.....................| -4.636 | 0.4102 | 1.091 | 0.05858 |
+#&gt; |.....................| 0.7879 | 0.7320 | 1.539 | 0.9761 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6977 | 1.981 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.59436</span> | 91.23 | 0.004518 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009693 | 0.6011 | 1.091 | 0.05858 |
+#&gt; |.....................| 0.7879 | 0.7320 | 1.539 | 0.9761 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6977 | 1.981 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.478 | 1.121 | -0.1165 | -0.04761 |
+#&gt; |.....................| 0.3651 | 0.5835 | -0.09604 | 1.373 |
+#&gt; |.....................| -0.4943 | 0.1086 | -0.4551 | 1.395 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3088 | -1.502 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 56</span>| 479.58979 | 1.003 | -1.200 | -0.9263 | -0.9359 |
+#&gt; |.....................| -1.024 | -0.9910 | -0.2442 | -0.8708 |
+#&gt; |.....................| -0.7988 | -1.063 | -0.5665 | -0.8506 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2341 |...........|...........|</span>
+#&gt; | U| 479.58979 | 91.30 | -5.400 | -0.9042 | -2.198 |
+#&gt; |.....................| -4.637 | 0.4100 | 1.092 | 0.05858 |
+#&gt; |.....................| 0.7880 | 0.7319 | 1.539 | 0.9759 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6978 | 1.982 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.58979</span> | 91.30 | 0.004516 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009691 | 0.6011 | 1.092 | 0.05858 |
+#&gt; |.....................| 0.7880 | 0.7319 | 1.539 | 0.9759 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6978 | 1.982 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 1.813 | 1.125 | -0.03904 | -0.05862 |
+#&gt; |.....................| 0.3624 | 0.5728 | -0.008587 | 1.448 |
+#&gt; |.....................| -0.2657 | 0.1639 | 0.6610 | 2.108 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2622 | -1.501 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 57</span>| 479.58727 | 1.003 | -1.201 | -0.9263 | -0.9359 |
+#&gt; |.....................| -1.024 | -0.9912 | -0.2441 | -0.8713 |
+#&gt; |.....................| -0.7987 | -1.063 | -0.5668 | -0.8514 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2335 |...........|...........|</span>
+#&gt; | U| 479.58727 | 91.24 | -5.401 | -0.9042 | -2.198 |
+#&gt; |.....................| -4.637 | 0.4099 | 1.092 | 0.05856 |
+#&gt; |.....................| 0.7881 | 0.7318 | 1.539 | 0.9751 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6978 | 1.983 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.58727</span> | 91.24 | 0.004513 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009690 | 0.6011 | 1.092 | 0.05856 |
+#&gt; |.....................| 0.7881 | 0.7318 | 1.539 | 0.9751 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6978 | 1.983 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -3.987 | 1.119 | -0.1055 | -0.04878 |
+#&gt; |.....................| 0.3644 | 0.5797 | -0.03160 | 1.359 |
+#&gt; |.....................| -0.4809 | 0.09403 | -0.4184 | 1.337 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2770 | -1.489 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 58</span>| 479.58366 | 1.004 | -1.201 | -0.9263 | -0.9359 |
+#&gt; |.....................| -1.024 | -0.9915 | -0.2438 | -0.8717 |
+#&gt; |.....................| -0.7986 | -1.063 | -0.5667 | -0.8517 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2327 |...........|...........|</span>
+#&gt; | U| 479.58366 | 91.32 | -5.401 | -0.9041 | -2.198 |
+#&gt; |.....................| -4.637 | 0.4098 | 1.092 | 0.05855 |
+#&gt; |.....................| 0.7882 | 0.7317 | 1.539 | 0.9749 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6978 | 1.984 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.58366</span> | 91.32 | 0.004511 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009688 | 0.6010 | 1.092 | 0.05855 |
+#&gt; |.....................| 0.7882 | 0.7317 | 1.539 | 0.9749 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6978 | 1.984 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.434 | 1.122 | -0.01954 | -0.06326 |
+#&gt; |.....................| 0.3597 | 0.5645 | -0.03484 | 1.404 |
+#&gt; |.....................| -0.4782 | 0.1697 | -0.05991 | 1.573 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2504 | -1.489 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 59</span>| 479.57994 | 1.003 | -1.202 | -0.9262 | -0.9358 |
+#&gt; |.....................| -1.025 | -0.9918 | -0.2433 | -0.8720 |
+#&gt; |.....................| -0.7984 | -1.063 | -0.5664 | -0.8520 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2319 |...........|...........|</span>
+#&gt; | U| 479.57994 | 91.26 | -5.402 | -0.9041 | -2.198 |
+#&gt; |.....................| -4.637 | 0.4096 | 1.092 | 0.05854 |
+#&gt; |.....................| 0.7884 | 0.7316 | 1.539 | 0.9746 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6977 | 1.985 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.57994</span> | 91.26 | 0.004508 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009686 | 0.6010 | 1.092 | 0.05854 |
+#&gt; |.....................| 0.7884 | 0.7316 | 1.539 | 0.9746 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6977 | 1.985 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -2.328 | 1.117 | -0.07952 | -0.05137 |
+#&gt; |.....................| 0.3636 | 0.5738 | 0.02815 | 1.418 |
+#&gt; |.....................| -0.4669 | 0.1345 | 0.7258 | 2.078 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2949 | -1.476 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 60</span>| 479.57683 | 1.004 | -1.202 | -0.9262 | -0.9358 |
+#&gt; |.....................| -1.025 | -0.9921 | -0.2431 | -0.8724 |
+#&gt; |.....................| -0.7982 | -1.064 | -0.5667 | -0.8526 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2311 |...........|...........|</span>
+#&gt; | U| 479.57683 | 91.32 | -5.402 | -0.9041 | -2.198 |
+#&gt; |.....................| -4.637 | 0.4095 | 1.092 | 0.05853 |
+#&gt; |.....................| 0.7885 | 0.7315 | 1.539 | 0.9740 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6976 | 1.986 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.57683</span> | 91.32 | 0.004505 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009684 | 0.6010 | 1.092 | 0.05853 |
+#&gt; |.....................| 0.7885 | 0.7315 | 1.539 | 0.9740 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6976 | 1.986 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.369 | 1.121 | -0.01236 | -0.06033 |
+#&gt; |.....................| 0.3618 | 0.5608 | -0.009614 | 1.424 |
+#&gt; |.....................| -0.4677 | 0.1416 | 0.6194 | 1.932 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2634 | -1.483 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 61</span>| 479.57433 | 1.003 | -1.203 | -0.9262 | -0.9358 |
+#&gt; |.....................| -1.025 | -0.9924 | -0.2429 | -0.8728 |
+#&gt; |.....................| -0.7980 | -1.064 | -0.5671 | -0.8530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2304 |...........|...........|</span>
+#&gt; | U| 479.57433 | 91.25 | -5.403 | -0.9041 | -2.198 |
+#&gt; |.....................| -4.637 | 0.4094 | 1.092 | 0.05852 |
+#&gt; |.....................| 0.7886 | 0.7315 | 1.539 | 0.9736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6975 | 1.987 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.57433</span> | 91.25 | 0.004503 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009683 | 0.6009 | 1.092 | 0.05852 |
+#&gt; |.....................| 0.7886 | 0.7315 | 1.539 | 0.9736 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6975 | 1.987 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -3.507 | 1.111 | -0.09183 | -0.05192 |
+#&gt; |.....................| 0.3614 | 0.5665 | -0.03887 | 1.349 |
+#&gt; |.....................| -0.4753 | 0.07826 | 0.5528 | 1.905 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2844 | -1.468 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 62</span>| 479.57116 | 1.003 | -1.204 | -0.9262 | -0.9357 |
+#&gt; |.....................| -1.025 | -0.9927 | -0.2425 | -0.8732 |
+#&gt; |.....................| -0.7978 | -1.064 | -0.5674 | -0.8534 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2297 |...........|...........|</span>
+#&gt; | U| 479.57116 | 91.32 | -5.404 | -0.9040 | -2.198 |
+#&gt; |.....................| -4.638 | 0.4092 | 1.092 | 0.05851 |
+#&gt; |.....................| 0.7888 | 0.7315 | 1.538 | 0.9732 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6973 | 1.988 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.57116</span> | 91.32 | 0.004500 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009681 | 0.6009 | 1.092 | 0.05851 |
+#&gt; |.....................| 0.7888 | 0.7315 | 1.538 | 0.9732 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6973 | 1.988 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.953 | 1.117 | -0.01332 | -0.05913 |
+#&gt; |.....................| 0.3618 | 0.5550 | -0.01942 | 1.377 |
+#&gt; |.....................| -0.4588 | 0.1396 | 0.5378 | 1.901 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2564 | -1.475 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 63</span>| 479.56857 | 1.003 | -1.204 | -0.9261 | -0.9357 |
+#&gt; |.....................| -1.025 | -0.9930 | -0.2422 | -0.8735 |
+#&gt; |.....................| -0.7976 | -1.064 | -0.5677 | -0.8539 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.2289 |...........|...........|</span>
+#&gt; | U| 479.56857 | 91.25 | -5.404 | -0.9040 | -2.198 |
+#&gt; |.....................| -4.638 | 0.4091 | 1.092 | 0.05850 |
+#&gt; |.....................| 0.7889 | 0.7314 | 1.538 | 0.9728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6972 | 1.989 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.56857</span> | 91.25 | 0.004497 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009679 | 0.6009 | 1.092 | 0.05850 |
+#&gt; |.....................| 0.7889 | 0.7314 | 1.538 | 0.9728 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6972 | 1.989 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -3.279 | 1.109 | -0.08378 | -0.05051 |
+#&gt; |.....................| 0.3625 | 0.5609 | -0.06234 | 1.320 |
+#&gt; |.....................| -0.5093 | 0.06989 | -1.266 | 1.852 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2753 | -1.463 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 64</span>| 479.56430 | 1.003 | -1.205 | -0.9261 | -0.9357 |
+#&gt; |.....................| -1.026 | -0.9933 | -0.2419 | -0.8738 |
+#&gt; |.....................| -0.7974 | -1.064 | -0.5672 | -0.8543 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2281 |...........|...........|</span>
+#&gt; | U| 479.5643 | 91.31 | -5.405 | -0.9040 | -2.198 |
+#&gt; |.....................| -4.638 | 0.4090 | 1.093 | 0.05849 |
+#&gt; |.....................| 0.7891 | 0.7314 | 1.538 | 0.9724 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6971 | 1.990 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.5643</span> | 91.31 | 0.004495 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009677 | 0.6008 | 1.093 | 0.05849 |
+#&gt; |.....................| 0.7891 | 0.7314 | 1.538 | 0.9724 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6971 | 1.990 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.181 | 1.113 | -0.01711 | -0.05862 |
+#&gt; |.....................| 0.3610 | 0.5490 | -0.06295 | 1.399 |
+#&gt; |.....................| -0.4495 | 0.1474 | 0.6781 | 1.913 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2455 | -1.468 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 65</span>| 479.56239 | 1.003 | -1.205 | -0.9261 | -0.9356 |
+#&gt; |.....................| -1.026 | -0.9935 | -0.2417 | -0.8744 |
+#&gt; |.....................| -0.7972 | -1.064 | -0.5674 | -0.8549 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2275 |...........|...........|</span>
+#&gt; | U| 479.56239 | 91.24 | -5.405 | -0.9040 | -2.198 |
+#&gt; |.....................| -4.638 | 0.4089 | 1.093 | 0.05847 |
+#&gt; |.....................| 0.7892 | 0.7313 | 1.538 | 0.9718 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6970 | 1.990 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.56239</span> | 91.24 | 0.004493 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009675 | 0.6008 | 1.093 | 0.05847 |
+#&gt; |.....................| 0.7892 | 0.7313 | 1.538 | 0.9718 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6970 | 1.990 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.516 | 1.106 | -0.09308 | -0.04714 |
+#&gt; |.....................| 0.3636 | 0.5580 | -0.04406 | 1.488 |
+#&gt; |.....................| -0.4662 | 0.05187 | 0.6104 | 1.787 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2769 | -1.453 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 66</span>| 479.55877 | 1.003 | -1.206 | -0.9261 | -0.9356 |
+#&gt; |.....................| -1.026 | -0.9938 | -0.2414 | -0.8747 |
+#&gt; |.....................| -0.7970 | -1.064 | -0.5678 | -0.8553 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2268 |...........|...........|</span>
+#&gt; | U| 479.55877 | 91.31 | -5.406 | -0.9039 | -2.198 |
+#&gt; |.....................| -4.638 | 0.4087 | 1.093 | 0.05846 |
+#&gt; |.....................| 0.7894 | 0.7313 | 1.538 | 0.9714 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6969 | 1.991 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.55877</span> | 91.31 | 0.004490 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009674 | 0.6008 | 1.093 | 0.05846 |
+#&gt; |.....................| 0.7894 | 0.7313 | 1.538 | 0.9714 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6969 | 1.991 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.254 | 1.111 | -0.01255 | -0.05783 |
+#&gt; |.....................| 0.3613 | 0.5437 | -0.01079 | 1.366 |
+#&gt; |.....................| -0.4954 | 0.1048 | 0.5565 | 1.745 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2417 | -1.458 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 67</span>| 479.55696 | 1.003 | -1.206 | -0.9261 | -0.9356 |
+#&gt; |.....................| -1.026 | -0.9940 | -0.2413 | -0.8753 |
+#&gt; |.....................| -0.7968 | -1.064 | -0.5681 | -0.8559 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2262 |...........|...........|</span>
+#&gt; | U| 479.55696 | 91.24 | -5.406 | -0.9039 | -2.198 |
+#&gt; |.....................| -4.639 | 0.4086 | 1.093 | 0.05845 |
+#&gt; |.....................| 0.7895 | 0.7312 | 1.537 | 0.9708 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6968 | 1.992 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.55696</span> | 91.24 | 0.004488 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009672 | 0.6008 | 1.093 | 0.05845 |
+#&gt; |.....................| 0.7895 | 0.7312 | 1.537 | 0.9708 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6968 | 1.992 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.420 | 1.104 | -0.08938 | -0.04652 |
+#&gt; |.....................| 0.3638 | 0.5524 | -0.03600 | 1.474 |
+#&gt; |.....................| -0.4537 | 0.08714 | 0.5943 | 1.686 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2777 | -1.443 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 68</span>| 479.55331 | 1.003 | -1.207 | -0.9260 | -0.9356 |
+#&gt; |.....................| -1.026 | -0.9943 | -0.2409 | -0.8756 |
+#&gt; |.....................| -0.7966 | -1.064 | -0.5684 | -0.8562 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2254 |...........|...........|</span>
+#&gt; | U| 479.55331 | 91.31 | -5.407 | -0.9039 | -2.198 |
+#&gt; |.....................| -4.639 | 0.4085 | 1.093 | 0.05844 |
+#&gt; |.....................| 0.7897 | 0.7312 | 1.537 | 0.9706 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6966 | 1.993 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.55331</span> | 91.31 | 0.004485 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009670 | 0.6007 | 1.093 | 0.05844 |
+#&gt; |.....................| 0.7897 | 0.7312 | 1.537 | 0.9706 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6966 | 1.993 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 1.940 | 1.107 | -0.01326 | -0.05734 |
+#&gt; |.....................| 0.3610 | 0.5380 | -0.03050 | 1.334 |
+#&gt; |.....................| -0.4419 | 0.09953 | 0.4758 | 1.660 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2363 | -1.448 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 69</span>| 479.55178 | 1.003 | -1.208 | -0.9260 | -0.9355 |
+#&gt; |.....................| -1.026 | -0.9945 | -0.2409 | -0.8762 |
+#&gt; |.....................| -0.7964 | -1.064 | -0.5686 | -0.8569 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2248 |...........|...........|</span>
+#&gt; | U| 479.55178 | 91.23 | -5.408 | -0.9039 | -2.198 |
+#&gt; |.....................| -4.639 | 0.4084 | 1.093 | 0.05842 |
+#&gt; |.....................| 0.7898 | 0.7311 | 1.537 | 0.9699 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6965 | 1.994 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.55178</span> | 91.23 | 0.004483 | 0.2882 | 0.1110 |
+#&gt; |.....................| 0.009668 | 0.6007 | 1.093 | 0.05842 |
+#&gt; |.....................| 0.7898 | 0.7311 | 1.537 | 0.9699 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6965 | 1.994 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.846 | 1.100 | -0.09130 | -0.04553 |
+#&gt; |.....................| 0.3638 | 0.5474 | -0.02936 | 1.430 |
+#&gt; |.....................| -0.4494 | 0.05105 | 0.6245 | 1.611 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2724 | -1.435 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 70</span>| 479.54790 | 1.003 | -1.208 | -0.9260 | -0.9355 |
+#&gt; |.....................| -1.027 | -0.9948 | -0.2405 | -0.8765 |
+#&gt; |.....................| -0.7962 | -1.064 | -0.5690 | -0.8571 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2240 |...........|...........|</span>
+#&gt; | U| 479.5479 | 91.30 | -5.408 | -0.9039 | -2.198 |
+#&gt; |.....................| -4.639 | 0.4083 | 1.093 | 0.05841 |
+#&gt; |.....................| 0.7899 | 0.7311 | 1.536 | 0.9697 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6964 | 1.995 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.5479</span> | 91.30 | 0.004480 | 0.2883 | 0.1110 |
+#&gt; |.....................| 0.009667 | 0.6007 | 1.093 | 0.05841 |
+#&gt; |.....................| 0.7899 | 0.7311 | 1.536 | 0.9697 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6964 | 1.995 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 1.570 | 1.104 | -0.01594 | -0.05674 |
+#&gt; |.....................| 0.3607 | 0.5327 | -0.02577 | 1.253 |
+#&gt; |.....................| -0.4401 | 0.07544 | -0.5163 | 0.8741 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3456 | -1.445 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 71</span>| 479.54587 | 1.003 | -1.209 | -0.9260 | -0.9355 |
+#&gt; |.....................| -1.027 | -0.9951 | -0.2405 | -0.8771 |
+#&gt; |.....................| -0.7960 | -1.064 | -0.5687 | -0.8576 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2233 |...........|...........|</span>
+#&gt; | U| 479.54587 | 91.23 | -5.409 | -0.9039 | -2.198 |
+#&gt; |.....................| -4.639 | 0.4081 | 1.093 | 0.05839 |
+#&gt; |.....................| 0.7901 | 0.7310 | 1.537 | 0.9693 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6965 | 1.995 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.54587</span> | 91.23 | 0.004478 | 0.2883 | 0.1110 |
+#&gt; |.....................| 0.009665 | 0.6006 | 1.093 | 0.05839 |
+#&gt; |.....................| 0.7901 | 0.7310 | 1.537 | 0.9693 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6965 | 1.995 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.902 | 1.097 | -0.08880 | -0.04568 |
+#&gt; |.....................| 0.3633 | 0.5436 | -0.03820 | 1.421 |
+#&gt; |.....................| -0.4438 | 0.04451 | 0.5507 | 1.558 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2862 | -1.423 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 72</span>| 479.54157 | 1.003 | -1.209 | -0.9260 | -0.9354 |
+#&gt; |.....................| -1.027 | -0.9954 | -0.2399 | -0.8773 |
+#&gt; |.....................| -0.7958 | -1.064 | -0.5687 | -0.8577 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2225 |...........|...........|</span>
+#&gt; | U| 479.54157 | 91.30 | -5.409 | -0.9038 | -2.198 |
+#&gt; |.....................| -4.639 | 0.4080 | 1.093 | 0.05839 |
+#&gt; |.....................| 0.7902 | 0.7309 | 1.537 | 0.9691 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6965 | 1.996 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.54157</span> | 91.30 | 0.004475 | 0.2883 | 0.1110 |
+#&gt; |.....................| 0.009663 | 0.6006 | 1.093 | 0.05839 |
+#&gt; |.....................| 0.7902 | 0.7309 | 1.537 | 0.9691 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6965 | 1.996 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 1.063 | 1.100 | -0.01768 | -0.05631 |
+#&gt; |.....................| 0.3603 | 0.5311 | -0.05904 | 1.468 |
+#&gt; |.....................| -0.4400 | 0.06384 | 0.5216 | 1.564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2548 | -1.433 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 73</span>| 479.53906 | 1.003 | -1.210 | -0.9259 | -0.9354 |
+#&gt; |.....................| -1.027 | -0.9956 | -0.2399 | -0.8780 |
+#&gt; |.....................| -0.7956 | -1.064 | -0.5689 | -0.8584 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2218 |...........|...........|</span>
+#&gt; | U| 479.53906 | 91.25 | -5.410 | -0.9038 | -2.198 |
+#&gt; |.....................| -4.640 | 0.4079 | 1.093 | 0.05837 |
+#&gt; |.....................| 0.7904 | 0.7309 | 1.536 | 0.9684 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6964 | 1.997 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.53906</span> | 91.25 | 0.004472 | 0.2883 | 0.1110 |
+#&gt; |.....................| 0.009661 | 0.6006 | 1.093 | 0.05837 |
+#&gt; |.....................| 0.7904 | 0.7309 | 1.536 | 0.9684 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6964 | 1.997 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -3.131 | 1.095 | -0.06506 | -0.04908 |
+#&gt; |.....................| 0.3620 | 0.5356 | -0.007514 | 1.441 |
+#&gt; |.....................| -0.4274 | 0.08578 | -0.3543 | 0.8441 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2944 | -1.418 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 74</span>| 479.53616 | 1.004 | -1.210 | -0.9259 | -0.9354 |
+#&gt; |.....................| -1.027 | -0.9959 | -0.2396 | -0.8785 |
+#&gt; |.....................| -0.7954 | -1.064 | -0.5688 | -0.8586 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2210 |...........|...........|</span>
+#&gt; | U| 479.53616 | 91.33 | -5.410 | -0.9038 | -2.198 |
+#&gt; |.....................| -4.640 | 0.4077 | 1.094 | 0.05835 |
+#&gt; |.....................| 0.7905 | 0.7308 | 1.537 | 0.9682 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6965 | 1.998 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.53616</span> | 91.33 | 0.004470 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009659 | 0.6005 | 1.094 | 0.05835 |
+#&gt; |.....................| 0.7905 | 0.7308 | 1.537 | 0.9682 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6965 | 1.998 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.979 | 1.099 | 0.01619 | -0.06233 |
+#&gt; |.....................| 0.3580 | 0.5217 | -0.09749 | 1.245 |
+#&gt; |.....................| -0.4289 | 0.1115 | -0.5282 | 0.7580 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3266 | -1.417 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 75</span>| 479.53242 | 1.003 | -1.211 | -0.9259 | -0.9353 |
+#&gt; |.....................| -1.028 | -0.9962 | -0.2391 | -0.8787 |
+#&gt; |.....................| -0.7953 | -1.065 | -0.5685 | -0.8588 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2202 |...........|...........|</span>
+#&gt; | U| 479.53242 | 91.27 | -5.411 | -0.9038 | -2.198 |
+#&gt; |.....................| -4.640 | 0.4076 | 1.094 | 0.05835 |
+#&gt; |.....................| 0.7906 | 0.7307 | 1.537 | 0.9681 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6966 | 1.999 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.53242</span> | 91.27 | 0.004467 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009657 | 0.6005 | 1.094 | 0.05835 |
+#&gt; |.....................| 0.7906 | 0.7307 | 1.537 | 0.9681 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6966 | 1.999 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.679 | 1.093 | -0.04308 | -0.05224 |
+#&gt; |.....................| 0.3605 | 0.5318 | -0.002555 | 1.446 |
+#&gt; |.....................| -0.4215 | 0.05786 | 0.6079 | 1.538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2997 | -1.401 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 76</span>| 479.52958 | 1.004 | -1.212 | -0.9259 | -0.9353 |
+#&gt; |.....................| -1.028 | -0.9965 | -0.2388 | -0.8793 |
+#&gt; |.....................| -0.7951 | -1.065 | -0.5686 | -0.8593 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2194 |...........|...........|</span>
+#&gt; | U| 479.52958 | 91.33 | -5.412 | -0.9038 | -2.198 |
+#&gt; |.....................| -4.640 | 0.4075 | 1.094 | 0.05833 |
+#&gt; |.....................| 0.7908 | 0.7306 | 1.537 | 0.9676 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6965 | 2.000 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.52958</span> | 91.33 | 0.004464 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009655 | 0.6005 | 1.094 | 0.05833 |
+#&gt; |.....................| 0.7908 | 0.7306 | 1.537 | 0.9676 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6965 | 2.000 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.139 | 1.094 | 0.01046 | -0.06226 |
+#&gt; |.....................| 0.3570 | 0.5194 | -0.09592 | 1.421 |
+#&gt; |.....................| -0.4323 | 0.06052 | -0.5454 | 0.7071 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2962 | -1.410 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 77</span>| 479.52646 | 1.003 | -1.212 | -0.9259 | -0.9353 |
+#&gt; |.....................| -1.028 | -0.9968 | -0.2384 | -0.8797 |
+#&gt; |.....................| -0.7949 | -1.065 | -0.5684 | -0.8594 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2186 |...........|...........|</span>
+#&gt; | U| 479.52646 | 91.26 | -5.412 | -0.9038 | -2.198 |
+#&gt; |.....................| -4.640 | 0.4073 | 1.094 | 0.05832 |
+#&gt; |.....................| 0.7909 | 0.7304 | 1.537 | 0.9675 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6966 | 2.001 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.52646</span> | 91.26 | 0.004461 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009653 | 0.6005 | 1.094 | 0.05832 |
+#&gt; |.....................| 0.7909 | 0.7304 | 1.537 | 0.9675 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6966 | 2.001 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -2.758 | 1.088 | -0.05217 | -0.05158 |
+#&gt; |.....................| 0.3593 | 0.5291 | -0.05980 | 1.185 |
+#&gt; |.....................| -0.4227 | -2.218 | -0.3659 | 0.8223 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2423 | -1.392 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 78</span>| 479.52294 | 1.003 | -1.213 | -0.9258 | -0.9352 |
+#&gt; |.....................| -1.028 | -0.9971 | -0.2379 | -0.8800 |
+#&gt; |.....................| -0.7947 | -1.064 | -0.5681 | -0.8596 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2178 |...........|...........|</span>
+#&gt; | U| 479.52294 | 91.30 | -5.413 | -0.9037 | -2.198 |
+#&gt; |.....................| -4.641 | 0.4072 | 1.094 | 0.05831 |
+#&gt; |.....................| 0.7910 | 0.7311 | 1.537 | 0.9673 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6967 | 2.002 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.52294</span> | 91.30 | 0.004458 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009652 | 0.6004 | 1.094 | 0.05831 |
+#&gt; |.....................| 0.7910 | 0.7311 | 1.537 | 0.9673 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6967 | 2.002 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 0.7571 | 1.091 | -0.01328 | -0.05733 |
+#&gt; |.....................| 0.3573 | 0.5211 | 0.006105 | 1.423 |
+#&gt; |.....................| -0.4119 | 0.1268 | 0.6771 | 1.465 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.3146 | -1.386 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 79</span>| 479.52041 | 1.003 | -1.213 | -0.9258 | -0.9352 |
+#&gt; |.....................| -1.028 | -0.9973 | -0.2380 | -0.8807 |
+#&gt; |.....................| -0.7945 | -1.064 | -0.5684 | -0.8604 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2172 |...........|...........|</span>
+#&gt; | U| 479.52041 | 91.27 | -5.413 | -0.9037 | -2.198 |
+#&gt; |.....................| -4.641 | 0.4071 | 1.094 | 0.05829 |
+#&gt; |.....................| 0.7912 | 0.7311 | 1.537 | 0.9666 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6965 | 2.003 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.52041</span> | 91.27 | 0.004456 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009650 | 0.6004 | 1.094 | 0.05829 |
+#&gt; |.....................| 0.7912 | 0.7311 | 1.537 | 0.9666 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6965 | 2.003 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -2.400 | 1.087 | -0.04852 | -0.05189 |
+#&gt; |.....................| 0.3585 | 0.5236 | -0.05100 | 1.183 |
+#&gt; |.....................| -0.4319 | 0.01564 | 0.3566 | 1.324 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.3221 | -1.379 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 80</span>| 479.51911 | 1.004 | -1.214 | -0.9258 | -0.9352 |
+#&gt; |.....................| -1.029 | -0.9976 | -0.2379 | -0.8812 |
+#&gt; |.....................| -0.7944 | -1.064 | -0.5686 | -0.8609 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2166 |...........|...........|</span>
+#&gt; | U| 479.51911 | 91.35 | -5.414 | -0.9037 | -2.198 |
+#&gt; |.....................| -4.641 | 0.4070 | 1.094 | 0.05828 |
+#&gt; |.....................| 0.7913 | 0.7310 | 1.537 | 0.9661 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6964 | 2.004 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.51911</span> | 91.35 | 0.004454 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009648 | 0.6004 | 1.094 | 0.05828 |
+#&gt; |.....................| 0.7913 | 0.7310 | 1.537 | 0.9661 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6964 | 2.004 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 5.458 | 1.092 | 0.04306 | -0.06507 |
+#&gt; |.....................| 0.3552 | 0.5068 | -0.06807 | 1.418 |
+#&gt; |.....................| -0.4090 | 0.1358 | -0.5109 | 0.5676 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2804 | -1.390 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 81</span>| 479.51487 | 1.003 | -1.215 | -0.9258 | -0.9352 |
+#&gt; |.....................| -1.029 | -0.9978 | -0.2377 | -0.8817 |
+#&gt; |.....................| -0.7942 | -1.064 | -0.5685 | -0.8612 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2158 |...........|...........|</span>
+#&gt; | U| 479.51487 | 91.27 | -5.415 | -0.9037 | -2.198 |
+#&gt; |.....................| -4.641 | 0.4069 | 1.094 | 0.05826 |
+#&gt; |.....................| 0.7914 | 0.7307 | 1.537 | 0.9658 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6963 | 2.005 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.51487</span> | 91.27 | 0.004451 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009647 | 0.6003 | 1.094 | 0.05826 |
+#&gt; |.....................| 0.7914 | 0.7307 | 1.537 | 0.9658 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6963 | 2.005 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.582 | 1.084 | -0.03533 | -0.05340 |
+#&gt; |.....................| 0.3581 | 0.5175 | -0.06480 | 1.157 |
+#&gt; |.....................| -0.4224 | 0.03489 | -0.5536 | 0.6041 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2386 | -1.371 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 82</span>| 479.51208 | 1.004 | -1.215 | -0.9258 | -0.9351 |
+#&gt; |.....................| -1.029 | -0.9981 | -0.2375 | -0.8823 |
+#&gt; |.....................| -0.7939 | -1.065 | -0.5682 | -0.8615 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2150 |...........|...........|</span>
+#&gt; | U| 479.51208 | 91.34 | -5.415 | -0.9037 | -2.197 |
+#&gt; |.....................| -4.641 | 0.4067 | 1.094 | 0.05824 |
+#&gt; |.....................| 0.7916 | 0.7306 | 1.537 | 0.9655 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6964 | 2.006 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.51208</span> | 91.34 | 0.004449 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009645 | 0.6003 | 1.094 | 0.05824 |
+#&gt; |.....................| 0.7916 | 0.7306 | 1.537 | 0.9655 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6964 | 2.006 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.943 | 1.087 | 0.02817 | -0.06279 |
+#&gt; |.....................| 0.3555 | 0.5065 | -0.06060 | 1.305 |
+#&gt; |.....................| -0.4115 | 0.06912 | 0.4865 | 1.240 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2990 | -1.371 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 83</span>| 479.50842 | 1.003 | -1.216 | -0.9258 | -0.9351 |
+#&gt; |.....................| -1.029 | -0.9984 | -0.2372 | -0.8827 |
+#&gt; |.....................| -0.7937 | -1.065 | -0.5683 | -0.8618 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2141 |...........|...........|</span>
+#&gt; | U| 479.50842 | 91.29 | -5.416 | -0.9037 | -2.197 |
+#&gt; |.....................| -4.642 | 0.4066 | 1.095 | 0.05823 |
+#&gt; |.....................| 0.7918 | 0.7302 | 1.537 | 0.9652 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6962 | 2.007 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.50842</span> | 91.29 | 0.004446 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009643 | 0.6003 | 1.095 | 0.05823 |
+#&gt; |.....................| 0.7918 | 0.7302 | 1.537 | 0.9652 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6962 | 2.007 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.7463 | 1.081 | -0.02105 | -0.05532 |
+#&gt; |.....................| 0.3572 | 0.5118 | -0.07839 | 1.134 |
+#&gt; |.....................| -0.4206 | 0.01709 | -0.5616 | 0.5218 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2429 | -1.361 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 84</span>| 479.50515 | 1.004 | -1.216 | -0.9258 | -0.9351 |
+#&gt; |.....................| -1.029 | -0.9987 | -0.2372 | -0.8834 |
+#&gt; |.....................| -0.7935 | -1.065 | -0.5680 | -0.8621 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2133 |...........|...........|</span>
+#&gt; | U| 479.50515 | 91.33 | -5.416 | -0.9037 | -2.197 |
+#&gt; |.....................| -4.642 | 0.4065 | 1.095 | 0.05821 |
+#&gt; |.....................| 0.7919 | 0.7302 | 1.537 | 0.9649 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6964 | 2.008 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.50515</span> | 91.33 | 0.004443 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009641 | 0.6002 | 1.095 | 0.05821 |
+#&gt; |.....................| 0.7919 | 0.7302 | 1.537 | 0.9649 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6964 | 2.008 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 85</span>| 479.49887 | 1.004 | -1.219 | -0.9257 | -0.9350 |
+#&gt; |.....................| -1.030 | -0.9997 | -0.2363 | -0.8851 |
+#&gt; |.....................| -0.7928 | -1.066 | -0.5675 | -0.8630 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2104 |...........|...........|</span>
+#&gt; | U| 479.49887 | 91.39 | -5.419 | -0.9037 | -2.197 |
+#&gt; |.....................| -4.642 | 0.4060 | 1.095 | 0.05816 |
+#&gt; |.....................| 0.7925 | 0.7293 | 1.538 | 0.9641 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6963 | 2.011 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.49887</span> | 91.39 | 0.004434 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009634 | 0.6001 | 1.095 | 0.05816 |
+#&gt; |.....................| 0.7925 | 0.7293 | 1.538 | 0.9641 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6963 | 2.011 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 8.922 | 1.081 | 0.1004 | -0.07252 |
+#&gt; |.....................| 0.3520 | 0.4871 | 0.2543 | 1.578 |
+#&gt; |.....................| -0.3854 | 0.03465 | -0.5794 | 0.4083 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2550 | -1.344 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 86</span>| 479.48147 | 1.003 | -1.221 | -0.9257 | -0.9348 |
+#&gt; |.....................| -1.031 | -1.001 | -0.2344 | -0.8861 |
+#&gt; |.....................| -0.7921 | -1.067 | -0.5658 | -0.8636 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2068 |...........|...........|</span>
+#&gt; | U| 479.48147 | 91.29 | -5.421 | -0.9036 | -2.197 |
+#&gt; |.....................| -4.643 | 0.4054 | 1.096 | 0.05813 |
+#&gt; |.....................| 0.7930 | 0.7283 | 1.540 | 0.9635 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6963 | 2.016 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.48147</span> | 91.29 | 0.004421 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009626 | 0.6000 | 1.096 | 0.05813 |
+#&gt; |.....................| 0.7930 | 0.7283 | 1.540 | 0.9635 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6963 | 2.016 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 87</span>| 479.46291 | 1.003 | -1.226 | -0.9256 | -0.9345 |
+#&gt; |.....................| -1.032 | -1.003 | -0.2312 | -0.8874 |
+#&gt; |.....................| -0.7910 | -1.069 | -0.5631 | -0.8644 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.2012 |...........|...........|</span>
+#&gt; | U| 479.46291 | 91.29 | -5.426 | -0.9035 | -2.197 |
+#&gt; |.....................| -4.645 | 0.4045 | 1.097 | 0.05809 |
+#&gt; |.....................| 0.7937 | 0.7267 | 1.543 | 0.9627 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6964 | 2.022 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.46291</span> | 91.29 | 0.004402 | 0.2883 | 0.1111 |
+#&gt; |.....................| 0.009612 | 0.5998 | 1.097 | 0.05809 |
+#&gt; |.....................| 0.7937 | 0.7267 | 1.543 | 0.9627 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6964 | 2.022 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 88</span>| 479.38653 | 1.003 | -1.248 | -0.9250 | -0.9332 |
+#&gt; |.....................| -1.039 | -1.013 | -0.2154 | -0.8940 |
+#&gt; |.....................| -0.7859 | -1.078 | -0.5497 | -0.8687 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.067 | -0.1734 |...........|...........|</span>
+#&gt; | U| 479.38653 | 91.26 | -5.448 | -0.9030 | -2.196 |
+#&gt; |.....................| -4.652 | 0.4000 | 1.104 | 0.05790 |
+#&gt; |.....................| 0.7975 | 0.7188 | 1.559 | 0.9587 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6966 | 2.056 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.38653</span> | 91.26 | 0.004306 | 0.2884 | 0.1113 |
+#&gt; |.....................| 0.009547 | 0.5987 | 1.104 | 0.05790 |
+#&gt; |.....................| 0.7975 | 0.7188 | 1.559 | 0.9587 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6966 | 2.056 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 89</span>| 479.33405 | 1.002 | -1.333 | -0.9226 | -0.9281 |
+#&gt; |.....................| -1.066 | -1.051 | -0.1533 | -0.9198 |
+#&gt; |.....................| -0.7659 | -1.112 | -0.4971 | -0.8853 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.066 | -0.06439 |...........|...........|</span>
+#&gt; | U| 479.33405 | 91.15 | -5.533 | -0.9008 | -2.190 |
+#&gt; |.....................| -4.678 | 0.3823 | 1.129 | 0.05715 |
+#&gt; |.....................| 0.8121 | 0.6876 | 1.621 | 0.9427 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6975 | 2.188 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.33405</span> | 91.15 | 0.003953 | 0.2889 | 0.1119 |
+#&gt; |.....................| 0.009294 | 0.5944 | 1.129 | 0.05715 |
+#&gt; |.....................| 0.8121 | 0.6876 | 1.621 | 0.9427 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6975 | 2.188 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -22.35 | 0.8049 | 0.3265 | -0.06456 |
+#&gt; |.....................| 0.3038 | 0.2091 | 1.763 | 1.473 |
+#&gt; |.....................| -0.5535 | -2.463 | 1.244 | -0.6274 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.702 | -0.2760 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 90</span>| 479.70817 | 1.005 | -1.492 | -0.9504 | -0.9122 |
+#&gt; |.....................| -1.121 | -1.106 | -0.1774 | -0.9510 |
+#&gt; |.....................| -0.7305 | -1.145 | -0.4385 | -0.8800 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.177 | -0.01012 |...........|...........|</span>
+#&gt; | U| 479.70817 | 91.47 | -5.692 | -0.9256 | -2.175 |
+#&gt; |.....................| -4.734 | 0.3572 | 1.119 | 0.05625 |
+#&gt; |.....................| 0.8380 | 0.6579 | 1.691 | 0.9478 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6020 | 2.254 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.70817</span> | 91.47 | 0.003371 | 0.2838 | 0.1137 |
+#&gt; |.....................| 0.008794 | 0.5884 | 1.119 | 0.05625 |
+#&gt; |.....................| 0.8380 | 0.6579 | 1.691 | 0.9478 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6020 | 2.254 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 91</span>| 479.27063 | 1.005 | -1.375 | -0.9298 | -0.9240 |
+#&gt; |.....................| -1.080 | -1.065 | -0.1597 | -0.9281 |
+#&gt; |.....................| -0.7567 | -1.120 | -0.4820 | -0.8839 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.095 | -0.05030 |...........|...........|</span>
+#&gt; | U| 479.27063 | 91.42 | -5.575 | -0.9073 | -2.186 |
+#&gt; |.....................| -4.693 | 0.3758 | 1.127 | 0.05692 |
+#&gt; |.....................| 0.8189 | 0.6801 | 1.639 | 0.9441 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6726 | 2.206 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.27063</span> | 91.42 | 0.003793 | 0.2876 | 0.1123 |
+#&gt; |.....................| 0.009162 | 0.5929 | 1.127 | 0.05692 |
+#&gt; |.....................| 0.8189 | 0.6801 | 1.639 | 0.9441 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6726 | 2.206 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.862 | 0.7516 | 0.3576 | -0.07893 |
+#&gt; |.....................| 0.2806 | -0.4298 | 1.369 | 1.213 |
+#&gt; |.....................| -0.5227 | -2.562 | 2.801 | -1.010 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.234 | -0.5388 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 92</span>| 479.18239 | 1.005 | -1.423 | -0.9401 | -0.9189 |
+#&gt; |.....................| -1.098 | -1.064 | -0.1729 | -0.9195 |
+#&gt; |.....................| -0.7414 | -1.117 | -0.4967 | -0.8806 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04375 |...........|...........|</span>
+#&gt; | U| 479.18239 | 91.43 | -5.623 | -0.9165 | -2.181 |
+#&gt; |.....................| -4.710 | 0.3764 | 1.121 | 0.05716 |
+#&gt; |.....................| 0.8300 | 0.6834 | 1.622 | 0.9472 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6830 | 2.213 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.18239</span> | 91.43 | 0.003613 | 0.2857 | 0.1129 |
+#&gt; |.....................| 0.009001 | 0.5930 | 1.121 | 0.05716 |
+#&gt; |.....................| 0.8300 | 0.6834 | 1.622 | 0.9472 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6830 | 2.213 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.797 | 0.6564 | -0.1913 | -0.04289 |
+#&gt; |.....................| 0.2359 | -0.3012 | 1.209 | 1.124 |
+#&gt; |.....................| -0.4349 | -2.322 | 2.160 | -0.7215 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1578 | -0.4171 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 93</span>| 479.53483 | 0.9938 | -1.508 | -0.8927 | -0.9141 |
+#&gt; |.....................| -1.127 | -1.054 | -0.1802 | -0.9016 |
+#&gt; |.....................| -0.7110 | -1.089 | -0.5260 | -0.8567 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.093 | -0.01567 |...........|...........|</span>
+#&gt; | U| 479.53483 | 90.44 | -5.708 | -0.8742 | -2.177 |
+#&gt; |.....................| -4.740 | 0.3812 | 1.118 | 0.05768 |
+#&gt; |.....................| 0.8523 | 0.7081 | 1.587 | 0.9700 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6741 | 2.248 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.53483</span> | 90.44 | 0.003320 | 0.2944 | 0.1134 |
+#&gt; |.....................| 0.008741 | 0.5942 | 1.118 | 0.05768 |
+#&gt; |.....................| 0.8523 | 0.7081 | 1.587 | 0.9700 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6741 | 2.248 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 94</span>| 479.57437 | 0.9943 | -1.436 | -0.9336 | -0.9181 |
+#&gt; |.....................| -1.102 | -1.062 | -0.1777 | -0.9209 |
+#&gt; |.....................| -0.7362 | -1.106 | -0.5073 | -0.8753 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.084 | -0.03890 |...........|...........|</span>
+#&gt; | U| 479.57437 | 90.49 | -5.636 | -0.9106 | -2.181 |
+#&gt; |.....................| -4.715 | 0.3775 | 1.119 | 0.05712 |
+#&gt; |.....................| 0.8338 | 0.6933 | 1.609 | 0.9523 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6824 | 2.219 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.57437</span> | 90.49 | 0.003567 | 0.2869 | 0.1130 |
+#&gt; |.....................| 0.008961 | 0.5933 | 1.119 | 0.05712 |
+#&gt; |.....................| 0.8338 | 0.6933 | 1.609 | 0.9523 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6824 | 2.219 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 95</span>| 479.18328 | 1.003 | -1.424 | -0.9400 | -0.9189 |
+#&gt; |.....................| -1.098 | -1.064 | -0.1736 | -0.9201 |
+#&gt; |.....................| -0.7412 | -1.115 | -0.4980 | -0.8802 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04351 |...........|...........|</span>
+#&gt; | U| 479.18328 | 91.28 | -5.624 | -0.9164 | -2.181 |
+#&gt; |.....................| -4.711 | 0.3765 | 1.121 | 0.05715 |
+#&gt; |.....................| 0.8302 | 0.6847 | 1.620 | 0.9476 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6831 | 2.214 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.18328</span> | 91.28 | 0.003612 | 0.2857 | 0.1129 |
+#&gt; |.....................| 0.009000 | 0.5930 | 1.121 | 0.05715 |
+#&gt; |.....................| 0.8302 | 0.6847 | 1.620 | 0.9476 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6831 | 2.214 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 96</span>| 479.17990 | 1.004 | -1.423 | -0.9401 | -0.9189 |
+#&gt; |.....................| -1.098 | -1.064 | -0.1732 | -0.9198 |
+#&gt; |.....................| -0.7413 | -1.116 | -0.4973 | -0.8805 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04364 |...........|...........|</span>
+#&gt; | U| 479.1799 | 91.36 | -5.623 | -0.9164 | -2.181 |
+#&gt; |.....................| -4.710 | 0.3764 | 1.121 | 0.05716 |
+#&gt; |.....................| 0.8301 | 0.6840 | 1.621 | 0.9474 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6831 | 2.214 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.1799</span> | 91.36 | 0.003612 | 0.2857 | 0.1129 |
+#&gt; |.....................| 0.009001 | 0.5930 | 1.121 | 0.05716 |
+#&gt; |.....................| 0.8301 | 0.6840 | 1.621 | 0.9474 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6831 | 2.214 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -3.933 | 0.6514 | -0.2757 | -0.03244 |
+#&gt; |.....................| 0.2382 | -0.2823 | 1.183 | 1.090 |
+#&gt; |.....................| -0.4397 | -2.345 | 2.145 | -0.7620 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1240 | -0.3947 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 97</span>| 479.17667 | 1.005 | -1.424 | -0.9399 | -0.9189 |
+#&gt; |.....................| -1.098 | -1.064 | -0.1735 | -0.9200 |
+#&gt; |.....................| -0.7411 | -1.116 | -0.4978 | -0.8802 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04350 |...........|...........|</span>
+#&gt; | U| 479.17667 | 91.44 | -5.624 | -0.9162 | -2.181 |
+#&gt; |.....................| -4.711 | 0.3765 | 1.121 | 0.05715 |
+#&gt; |.....................| 0.8302 | 0.6845 | 1.621 | 0.9476 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6831 | 2.214 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.17667</span> | 91.44 | 0.003611 | 0.2857 | 0.1129 |
+#&gt; |.....................| 0.009000 | 0.5930 | 1.121 | 0.05715 |
+#&gt; |.....................| 0.8302 | 0.6845 | 1.621 | 0.9476 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6831 | 2.214 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.521 | 0.6547 | -0.1751 | -0.04313 |
+#&gt; |.....................| 0.2353 | -0.2995 | 1.118 | 1.121 |
+#&gt; |.....................| -0.4506 | -2.323 | 2.084 | -0.7259 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1653 | -0.4503 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 98</span>| 479.17418 | 1.004 | -1.424 | -0.9398 | -0.9188 |
+#&gt; |.....................| -1.098 | -1.064 | -0.1738 | -0.9202 |
+#&gt; |.....................| -0.7410 | -1.115 | -0.4983 | -0.8800 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04335 |...........|...........|</span>
+#&gt; | U| 479.17418 | 91.36 | -5.624 | -0.9161 | -2.181 |
+#&gt; |.....................| -4.711 | 0.3765 | 1.121 | 0.05714 |
+#&gt; |.....................| 0.8303 | 0.6850 | 1.620 | 0.9478 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6831 | 2.214 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.17418</span> | 91.36 | 0.003610 | 0.2857 | 0.1129 |
+#&gt; |.....................| 0.008999 | 0.5930 | 1.121 | 0.05714 |
+#&gt; |.....................| 0.8303 | 0.6850 | 1.620 | 0.9478 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6831 | 2.214 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -3.859 | 0.6491 | -0.2708 | -0.03145 |
+#&gt; |.....................| 0.2380 | -0.2786 | 1.113 | 1.074 |
+#&gt; |.....................| -0.4387 | -2.285 | 2.045 | -0.7498 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1354 | -0.4011 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 99</span>| 479.17107 | 1.005 | -1.424 | -0.9396 | -0.9188 |
+#&gt; |.....................| -1.098 | -1.064 | -0.1740 | -0.9204 |
+#&gt; |.....................| -0.7408 | -1.114 | -0.4988 | -0.8798 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04320 |...........|...........|</span>
+#&gt; | U| 479.17107 | 91.44 | -5.624 | -0.9160 | -2.181 |
+#&gt; |.....................| -4.711 | 0.3766 | 1.121 | 0.05714 |
+#&gt; |.....................| 0.8305 | 0.6855 | 1.619 | 0.9480 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6831 | 2.214 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.17107</span> | 91.44 | 0.003609 | 0.2858 | 0.1129 |
+#&gt; |.....................| 0.008997 | 0.5930 | 1.121 | 0.05714 |
+#&gt; |.....................| 0.8305 | 0.6855 | 1.619 | 0.9480 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6831 | 2.214 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.569 | 0.6522 | -0.1642 | -0.04243 |
+#&gt; |.....................| 0.2349 | -0.2958 | 1.101 | 1.106 |
+#&gt; |.....................| -0.4222 | -2.201 | 1.058 | -0.2096 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2358 | -0.4015 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 100</span>| 479.16873 | 1.004 | -1.425 | -0.9393 | -0.9188 |
+#&gt; |.....................| -1.099 | -1.064 | -0.1743 | -0.9206 |
+#&gt; |.....................| -0.7406 | -1.114 | -0.4991 | -0.8797 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04303 |...........|...........|</span>
+#&gt; | U| 479.16873 | 91.36 | -5.625 | -0.9158 | -2.181 |
+#&gt; |.....................| -4.711 | 0.3766 | 1.121 | 0.05713 |
+#&gt; |.....................| 0.8306 | 0.6860 | 1.619 | 0.9481 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6830 | 2.214 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.16873</span> | 91.36 | 0.003607 | 0.2858 | 0.1129 |
+#&gt; |.....................| 0.008996 | 0.5931 | 1.121 | 0.05713 |
+#&gt; |.....................| 0.8306 | 0.6860 | 1.619 | 0.9481 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6830 | 2.214 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -3.833 | 0.6464 | -0.2551 | -0.03020 |
+#&gt; |.....................| 0.2388 | -0.2745 | 1.092 | 1.036 |
+#&gt; |.....................| -0.4378 | -2.238 | 1.100 | -0.2036 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2823 | -0.3907 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 101</span>| 479.16547 | 1.005 | -1.426 | -0.9390 | -0.9187 |
+#&gt; |.....................| -1.099 | -1.063 | -0.1745 | -0.9206 |
+#&gt; |.....................| -0.7403 | -1.113 | -0.4993 | -0.8795 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04283 |...........|...........|</span>
+#&gt; | U| 479.16547 | 91.42 | -5.626 | -0.9155 | -2.181 |
+#&gt; |.....................| -4.711 | 0.3767 | 1.121 | 0.05713 |
+#&gt; |.....................| 0.8308 | 0.6865 | 1.619 | 0.9483 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6830 | 2.215 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.16547</span> | 91.42 | 0.003605 | 0.2859 | 0.1129 |
+#&gt; |.....................| 0.008994 | 0.5931 | 1.121 | 0.05713 |
+#&gt; |.....................| 0.8308 | 0.6865 | 1.619 | 0.9483 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6830 | 2.215 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.367 | 0.6482 | -0.1602 | -0.03907 |
+#&gt; |.....................| 0.2347 | -0.2874 | 1.147 | 1.057 |
+#&gt; |.....................| -0.4142 | -2.141 | 1.081 | -0.1748 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2414 | -0.4049 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 102</span>| 479.16316 | 1.004 | -1.426 | -0.9389 | -0.9187 |
+#&gt; |.....................| -1.099 | -1.063 | -0.1748 | -0.9208 |
+#&gt; |.....................| -0.7401 | -1.113 | -0.4996 | -0.8794 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04264 |...........|...........|</span>
+#&gt; | U| 479.16316 | 91.36 | -5.626 | -0.9154 | -2.181 |
+#&gt; |.....................| -4.711 | 0.3768 | 1.120 | 0.05713 |
+#&gt; |.....................| 0.8310 | 0.6872 | 1.618 | 0.9484 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6829 | 2.215 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.16316</span> | 91.36 | 0.003603 | 0.2859 | 0.1129 |
+#&gt; |.....................| 0.008992 | 0.5931 | 1.120 | 0.05713 |
+#&gt; |.....................| 0.8310 | 0.6872 | 1.618 | 0.9484 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6829 | 2.215 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -3.810 | 0.6431 | -0.2376 | -0.02872 |
+#&gt; |.....................| 0.2384 | -0.2689 | 1.073 | 1.021 |
+#&gt; |.....................| -0.4195 | -2.179 | 2.025 | -0.6985 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1403 | -0.3873 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 103</span>| 479.15976 | 1.005 | -1.427 | -0.9385 | -0.9187 |
+#&gt; |.....................| -1.099 | -1.063 | -0.1751 | -0.9208 |
+#&gt; |.....................| -0.7399 | -1.112 | -0.5000 | -0.8792 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04242 |...........|...........|</span>
+#&gt; | U| 479.15976 | 91.41 | -5.627 | -0.9150 | -2.181 |
+#&gt; |.....................| -4.712 | 0.3768 | 1.120 | 0.05713 |
+#&gt; |.....................| 0.8311 | 0.6876 | 1.618 | 0.9486 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6829 | 2.215 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.15976</span> | 91.41 | 0.003601 | 0.2860 | 0.1129 |
+#&gt; |.....................| 0.008990 | 0.5931 | 1.120 | 0.05713 |
+#&gt; |.....................| 0.8311 | 0.6876 | 1.618 | 0.9486 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6829 | 2.215 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 1.385 | 0.6444 | -0.1513 | -0.03575 |
+#&gt; |.....................| 0.2363 | -0.2788 | 1.057 | 1.037 |
+#&gt; |.....................| -0.4304 | -2.135 | 1.940 | -0.6607 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1552 | -0.4034 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 104</span>| 479.15697 | 1.004 | -1.427 | -0.9385 | -0.9187 |
+#&gt; |.....................| -1.099 | -1.063 | -0.1754 | -0.9212 |
+#&gt; |.....................| -0.7397 | -1.111 | -0.5007 | -0.8790 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04228 |...........|...........|</span>
+#&gt; | U| 479.15697 | 91.37 | -5.627 | -0.9150 | -2.181 |
+#&gt; |.....................| -4.712 | 0.3769 | 1.120 | 0.05712 |
+#&gt; |.....................| 0.8312 | 0.6883 | 1.617 | 0.9488 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6829 | 2.215 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.15697</span> | 91.37 | 0.003600 | 0.2860 | 0.1129 |
+#&gt; |.....................| 0.008990 | 0.5931 | 1.120 | 0.05712 |
+#&gt; |.....................| 0.8312 | 0.6883 | 1.617 | 0.9488 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6829 | 2.215 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -2.828 | 0.6406 | -0.2090 | -0.02895 |
+#&gt; |.....................| 0.2376 | -0.2659 | 1.059 | 0.9695 |
+#&gt; |.....................| -0.4112 | -2.078 | 1.041 | -0.1304 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2608 | -0.3859 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 105</span>| 479.15524 | 1.005 | -1.427 | -0.9384 | -0.9187 |
+#&gt; |.....................| -1.099 | -1.063 | -0.1758 | -0.9215 |
+#&gt; |.....................| -0.7396 | -1.111 | -0.5010 | -0.8789 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04216 |...........|...........|</span>
+#&gt; | U| 479.15524 | 91.45 | -5.627 | -0.9149 | -2.181 |
+#&gt; |.....................| -4.712 | 0.3769 | 1.120 | 0.05711 |
+#&gt; |.....................| 0.8313 | 0.6888 | 1.617 | 0.9489 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6828 | 2.215 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.15524</span> | 91.45 | 0.003599 | 0.2860 | 0.1129 |
+#&gt; |.....................| 0.008989 | 0.5931 | 1.120 | 0.05711 |
+#&gt; |.....................| 0.8313 | 0.6888 | 1.617 | 0.9489 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6828 | 2.215 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 5.191 | 0.6447 | -0.1017 | -0.04048 |
+#&gt; |.....................| 0.2348 | -0.2858 | 1.095 | 1.009 |
+#&gt; |.....................| -0.3975 | -1.983 | 1.956 | -0.5702 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1591 | -0.3996 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 106</span>| 479.15192 | 1.004 | -1.428 | -0.9381 | -0.9186 |
+#&gt; |.....................| -1.100 | -1.063 | -0.1760 | -0.9214 |
+#&gt; |.....................| -0.7393 | -1.110 | -0.5013 | -0.8787 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04194 |...........|...........|</span>
+#&gt; | U| 479.15192 | 91.38 | -5.628 | -0.9146 | -2.181 |
+#&gt; |.....................| -4.712 | 0.3770 | 1.120 | 0.05711 |
+#&gt; |.....................| 0.8315 | 0.6892 | 1.616 | 0.9490 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6828 | 2.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.15192</span> | 91.38 | 0.003597 | 0.2861 | 0.1129 |
+#&gt; |.....................| 0.008987 | 0.5932 | 1.120 | 0.05711 |
+#&gt; |.....................| 0.8315 | 0.6892 | 1.616 | 0.9490 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6828 | 2.216 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.012 | 0.6390 | -0.1711 | -0.03027 |
+#&gt; |.....................| 0.2366 | -0.2653 | 1.098 | 0.9640 |
+#&gt; |.....................| -0.4101 | -2.024 | 0.9749 | -0.1142 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2645 | -0.3871 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 107</span>| 479.14897 | 1.005 | -1.428 | -0.9380 | -0.9186 |
+#&gt; |.....................| -1.100 | -1.063 | -0.1764 | -0.9218 |
+#&gt; |.....................| -0.7392 | -1.110 | -0.5017 | -0.8787 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04178 |...........|...........|</span>
+#&gt; | U| 479.14897 | 91.42 | -5.628 | -0.9146 | -2.181 |
+#&gt; |.....................| -4.712 | 0.3771 | 1.120 | 0.05710 |
+#&gt; |.....................| 0.8317 | 0.6900 | 1.616 | 0.9491 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6827 | 2.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.14897</span> | 91.42 | 0.003596 | 0.2861 | 0.1129 |
+#&gt; |.....................| 0.008986 | 0.5932 | 1.120 | 0.05710 |
+#&gt; |.....................| 0.8317 | 0.6900 | 1.616 | 0.9491 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6827 | 2.216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 108</span>| 479.14773 | 1.005 | -1.428 | -0.9379 | -0.9186 |
+#&gt; |.....................| -1.100 | -1.062 | -0.1770 | -0.9223 |
+#&gt; |.....................| -0.7390 | -1.109 | -0.5022 | -0.8786 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04159 |...........|...........|</span>
+#&gt; | U| 479.14773 | 91.47 | -5.628 | -0.9145 | -2.181 |
+#&gt; |.....................| -4.712 | 0.3771 | 1.120 | 0.05708 |
+#&gt; |.....................| 0.8318 | 0.6909 | 1.615 | 0.9491 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6826 | 2.216 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.14773</span> | 91.47 | 0.003595 | 0.2861 | 0.1129 |
+#&gt; |.....................| 0.008985 | 0.5932 | 1.120 | 0.05708 |
+#&gt; |.....................| 0.8318 | 0.6909 | 1.615 | 0.9491 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6826 | 2.216 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 7.333 | 0.6414 | -0.06030 | -0.04156 |
+#&gt; |.....................| 0.2338 | -0.2836 | 1.014 | 1.002 |
+#&gt; |.....................| -0.3897 | -1.922 | 0.8816 | -0.1288 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.1940 | -0.4011 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 109</span>| 479.14119 | 1.004 | -1.430 | -0.9374 | -0.9185 |
+#&gt; |.....................| -1.100 | -1.062 | -0.1775 | -0.9218 |
+#&gt; |.....................| -0.7383 | -1.108 | -0.5019 | -0.8783 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04112 |...........|...........|</span>
+#&gt; | U| 479.14119 | 91.39 | -5.630 | -0.9140 | -2.181 |
+#&gt; |.....................| -4.713 | 0.3774 | 1.119 | 0.05710 |
+#&gt; |.....................| 0.8323 | 0.6917 | 1.616 | 0.9495 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6826 | 2.217 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.14119</span> | 91.39 | 0.003588 | 0.2862 | 0.1129 |
+#&gt; |.....................| 0.008979 | 0.5933 | 1.119 | 0.05710 |
+#&gt; |.....................| 0.8323 | 0.6917 | 1.616 | 0.9495 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6826 | 2.217 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.4299 | 0.6321 | -0.1435 | -0.02760 |
+#&gt; |.....................| 0.2360 | -0.2479 | 1.019 | 0.9518 |
+#&gt; |.....................| -0.3967 | -1.860 | 1.900 | -0.5922 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1599 | -0.3806 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 110</span>| 479.13501 | 1.005 | -1.431 | -0.9373 | -0.9185 |
+#&gt; |.....................| -1.101 | -1.062 | -0.1783 | -0.9226 |
+#&gt; |.....................| -0.7379 | -1.106 | -0.5035 | -0.8778 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04080 |...........|...........|</span>
+#&gt; | U| 479.13501 | 91.42 | -5.631 | -0.9139 | -2.181 |
+#&gt; |.....................| -4.713 | 0.3775 | 1.119 | 0.05707 |
+#&gt; |.....................| 0.8326 | 0.6932 | 1.614 | 0.9500 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6827 | 2.217 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.13501</span> | 91.42 | 0.003586 | 0.2862 | 0.1129 |
+#&gt; |.....................| 0.008977 | 0.5933 | 1.119 | 0.05707 |
+#&gt; |.....................| 0.8326 | 0.6932 | 1.614 | 0.9500 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6827 | 2.217 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.960 | 0.6324 | -0.1010 | -0.03176 |
+#&gt; |.....................| 0.2344 | -0.2516 | 0.9454 | 0.8792 |
+#&gt; |.....................| -0.3822 | -1.742 | 0.9146 | -0.04263 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2425 | -0.3771 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 111</span>| 479.13244 | 1.004 | -1.432 | -0.9368 | -0.9184 |
+#&gt; |.....................| -1.101 | -1.061 | -0.1790 | -0.9224 |
+#&gt; |.....................| -0.7372 | -1.105 | -0.5036 | -0.8775 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.04025 |...........|...........|</span>
+#&gt; | U| 479.13244 | 91.33 | -5.632 | -0.9135 | -2.181 |
+#&gt; |.....................| -4.714 | 0.3778 | 1.119 | 0.05708 |
+#&gt; |.....................| 0.8331 | 0.6941 | 1.614 | 0.9502 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6825 | 2.218 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.13244</span> | 91.33 | 0.003580 | 0.2863 | 0.1130 |
+#&gt; |.....................| 0.008971 | 0.5933 | 1.119 | 0.05708 |
+#&gt; |.....................| 0.8331 | 0.6941 | 1.614 | 0.9502 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6825 | 2.218 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -5.808 | 0.6219 | -0.1958 | -0.01683 |
+#&gt; |.....................| 0.2369 | -0.2179 | 0.9347 | 0.8364 |
+#&gt; |.....................| -0.3987 | -1.797 | 0.8150 | -0.05765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2618 | -0.3704 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 112</span>| 479.12666 | 1.004 | -1.434 | -0.9365 | -0.9183 |
+#&gt; |.....................| -1.102 | -1.060 | -0.1796 | -0.9220 |
+#&gt; |.....................| -0.7365 | -1.104 | -0.5033 | -0.8772 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.03975 |...........|...........|</span>
+#&gt; | U| 479.12666 | 91.40 | -5.634 | -0.9132 | -2.181 |
+#&gt; |.....................| -4.714 | 0.3782 | 1.118 | 0.05709 |
+#&gt; |.....................| 0.8336 | 0.6951 | 1.614 | 0.9505 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6824 | 2.218 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.12666</span> | 91.40 | 0.003574 | 0.2863 | 0.1130 |
+#&gt; |.....................| 0.008965 | 0.5934 | 1.118 | 0.05709 |
+#&gt; |.....................| 0.8336 | 0.6951 | 1.614 | 0.9505 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6824 | 2.218 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 0.9955 | 0.6218 | -0.09617 | -0.02448 |
+#&gt; |.....................| 0.2342 | -0.2176 | 0.9924 | 0.8560 |
+#&gt; |.....................| -0.3772 | -1.645 | 1.883 | -0.4422 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1320 | -0.3750 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 113</span>| 479.12255 | 1.004 | -1.436 | -0.9361 | -0.9182 |
+#&gt; |.....................| -1.103 | -1.060 | -0.1805 | -0.9221 |
+#&gt; |.....................| -0.7358 | -1.103 | -0.5043 | -0.8768 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.03920 |...........|...........|</span>
+#&gt; | U| 479.12255 | 91.34 | -5.636 | -0.9129 | -2.181 |
+#&gt; |.....................| -4.715 | 0.3784 | 1.118 | 0.05709 |
+#&gt; |.....................| 0.8341 | 0.6962 | 1.613 | 0.9509 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6824 | 2.219 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.12255</span> | 91.34 | 0.003569 | 0.2864 | 0.1130 |
+#&gt; |.....................| 0.008960 | 0.5935 | 1.118 | 0.05709 |
+#&gt; |.....................| 0.8341 | 0.6962 | 1.613 | 0.9509 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6824 | 2.219 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.522 | 0.6133 | -0.1571 | -0.01492 |
+#&gt; |.....................| 0.2353 | -0.1923 | 0.9045 | 0.7846 |
+#&gt; |.....................| -0.3572 | -1.629 | 0.8508 | 0.03564 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2811 | -0.3561 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 114</span>| 479.11855 | 1.005 | -1.437 | -0.9356 | -0.9182 |
+#&gt; |.....................| -1.103 | -1.059 | -0.1812 | -0.9217 |
+#&gt; |.....................| -0.7351 | -1.102 | -0.5043 | -0.8766 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.084 | -0.03859 |...........|...........|</span>
+#&gt; | U| 479.11855 | 91.41 | -5.637 | -0.9124 | -2.181 |
+#&gt; |.....................| -4.716 | 0.3787 | 1.118 | 0.05710 |
+#&gt; |.....................| 0.8346 | 0.6968 | 1.613 | 0.9510 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6823 | 2.220 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.11855</span> | 91.41 | 0.003562 | 0.2865 | 0.1130 |
+#&gt; |.....................| 0.008953 | 0.5936 | 1.118 | 0.05710 |
+#&gt; |.....................| 0.8346 | 0.6968 | 1.613 | 0.9510 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6823 | 2.220 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.813 | 0.6131 | -0.03713 | -0.02450 |
+#&gt; |.....................| 0.2319 | -0.1976 | 0.8863 | 0.8390 |
+#&gt; |.....................| -0.3589 | -1.516 | 0.8806 | -0.4426 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1647 | -0.3784 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 115</span>| 479.11487 | 1.004 | -1.439 | -0.9352 | -0.9181 |
+#&gt; |.....................| -1.104 | -1.058 | -0.1819 | -0.9213 |
+#&gt; |.....................| -0.7344 | -1.101 | -0.5040 | -0.8763 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.084 | -0.03810 |...........|...........|</span>
+#&gt; | U| 479.11487 | 91.37 | -5.639 | -0.9121 | -2.180 |
+#&gt; |.....................| -4.716 | 0.3790 | 1.117 | 0.05711 |
+#&gt; |.....................| 0.8352 | 0.6977 | 1.613 | 0.9514 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6823 | 2.220 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.11487</span> | 91.37 | 0.003555 | 0.2866 | 0.1130 |
+#&gt; |.....................| 0.008947 | 0.5936 | 1.117 | 0.05711 |
+#&gt; |.....................| 0.8352 | 0.6977 | 1.613 | 0.9514 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6823 | 2.220 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.684 | 0.6054 | -0.08346 | -0.01559 |
+#&gt; |.....................| 0.2328 | -0.1708 | 0.9518 | 0.8099 |
+#&gt; |.....................| -0.3621 | -1.485 | 0.9267 | -0.3776 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1041 | -0.3537 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 116</span>| 479.11139 | 1.005 | -1.441 | -0.9347 | -0.9181 |
+#&gt; |.....................| -1.105 | -1.058 | -0.1829 | -0.9211 |
+#&gt; |.....................| -0.7337 | -1.100 | -0.5039 | -0.8760 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.083 | -0.03771 |...........|...........|</span>
+#&gt; | U| 479.11139 | 91.41 | -5.641 | -0.9117 | -2.180 |
+#&gt; |.....................| -4.717 | 0.3792 | 1.117 | 0.05712 |
+#&gt; |.....................| 0.8357 | 0.6988 | 1.613 | 0.9517 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6824 | 2.221 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.11139</span> | 91.41 | 0.003549 | 0.2867 | 0.1130 |
+#&gt; |.....................| 0.008941 | 0.5937 | 1.117 | 0.05712 |
+#&gt; |.....................| 0.8357 | 0.6988 | 1.613 | 0.9517 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6824 | 2.221 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.241 | 0.6036 | 0.0009951 | -0.02154 |
+#&gt; |.....................| 0.2300 | -0.1727 | 0.8524 | 0.8311 |
+#&gt; |.....................| -0.3642 | -1.386 | 1.866 | -0.3472 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1024 | -0.3634 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 117</span>| 479.10851 | 1.004 | -1.443 | -0.9342 | -0.9180 |
+#&gt; |.....................| -1.105 | -1.058 | -0.1837 | -0.9207 |
+#&gt; |.....................| -0.7329 | -1.100 | -0.5043 | -0.8759 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.084 | -0.03710 |...........|...........|</span>
+#&gt; | U| 479.10851 | 91.37 | -5.643 | -0.9112 | -2.180 |
+#&gt; |.....................| -4.718 | 0.3794 | 1.117 | 0.05713 |
+#&gt; |.....................| 0.8363 | 0.6988 | 1.613 | 0.9517 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6823 | 2.222 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.10851</span> | 91.37 | 0.003542 | 0.2868 | 0.1130 |
+#&gt; |.....................| 0.008933 | 0.5937 | 1.117 | 0.05713 |
+#&gt; |.....................| 0.8363 | 0.6988 | 1.613 | 0.9517 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6823 | 2.222 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.500 | 0.5956 | -0.03344 | -0.01385 |
+#&gt; |.....................| 0.2306 | -0.1498 | 0.8910 | 0.8240 |
+#&gt; |.....................| -0.3570 | -1.405 | 0.8461 | -0.3572 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.08808 | -0.3487 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 118</span>| 479.10606 | 1.005 | -1.445 | -0.9338 | -0.9180 |
+#&gt; |.....................| -1.106 | -1.057 | -0.1846 | -0.9207 |
+#&gt; |.....................| -0.7320 | -1.099 | -0.5047 | -0.8757 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.084 | -0.03650 |...........|...........|</span>
+#&gt; | U| 479.10606 | 91.43 | -5.645 | -0.9108 | -2.180 |
+#&gt; |.....................| -4.719 | 0.3796 | 1.116 | 0.05713 |
+#&gt; |.....................| 0.8369 | 0.6994 | 1.612 | 0.9519 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6822 | 2.222 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.10606</span> | 91.43 | 0.003535 | 0.2868 | 0.1130 |
+#&gt; |.....................| 0.008927 | 0.5938 | 1.116 | 0.05713 |
+#&gt; |.....................| 0.8369 | 0.6994 | 1.612 | 0.9519 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6822 | 2.222 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 5.260 | 0.5953 | 0.07226 | -0.02302 |
+#&gt; |.....................| 0.2275 | -0.1573 | 0.8150 | 0.8159 |
+#&gt; |.....................| -0.3410 | -1.340 | 0.8208 | 0.1422 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2750 | -0.3500 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 119</span>| 479.10199 | 1.004 | -1.447 | -0.9337 | -0.9181 |
+#&gt; |.....................| -1.107 | -1.057 | -0.1854 | -0.9204 |
+#&gt; |.....................| -0.7311 | -1.099 | -0.5045 | -0.8757 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.084 | -0.03604 |...........|...........|</span>
+#&gt; | U| 479.10199 | 91.37 | -5.647 | -0.9107 | -2.180 |
+#&gt; |.....................| -4.720 | 0.3799 | 1.116 | 0.05714 |
+#&gt; |.....................| 0.8375 | 0.6999 | 1.613 | 0.9520 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6821 | 2.223 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.10199</span> | 91.37 | 0.003528 | 0.2869 | 0.1130 |
+#&gt; |.....................| 0.008919 | 0.5938 | 1.116 | 0.05714 |
+#&gt; |.....................| 0.8375 | 0.6999 | 1.613 | 0.9520 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6821 | 2.223 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.7698 | 0.5858 | -0.004343 | -0.01418 |
+#&gt; |.....................| 0.2278 | -0.1298 | 0.8244 | 0.7686 |
+#&gt; |.....................| -0.3575 | -1.372 | 0.8320 | -0.3359 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2977 | -0.3384 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 120</span>| 479.09844 | 1.005 | -1.448 | -0.9337 | -0.9180 |
+#&gt; |.....................| -1.108 | -1.056 | -0.1863 | -0.9208 |
+#&gt; |.....................| -0.7304 | -1.097 | -0.5051 | -0.8752 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.084 | -0.03534 |...........|...........|</span>
+#&gt; | U| 479.09844 | 91.43 | -5.648 | -0.9108 | -2.180 |
+#&gt; |.....................| -4.720 | 0.3801 | 1.116 | 0.05713 |
+#&gt; |.....................| 0.8381 | 0.7011 | 1.612 | 0.9524 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6817 | 2.224 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.09844</span> | 91.43 | 0.003523 | 0.2868 | 0.1130 |
+#&gt; |.....................| 0.008914 | 0.5939 | 1.116 | 0.05713 |
+#&gt; |.....................| 0.8381 | 0.7011 | 1.612 | 0.9524 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6817 | 2.224 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 4.894 | 0.5851 | 0.05981 | -0.02077 |
+#&gt; |.....................| 0.2261 | -0.1389 | 0.7622 | 0.7617 |
+#&gt; |.....................| -0.3411 | -1.236 | 0.7863 | 0.1583 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2091 | -0.3951 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 121</span>| 479.09485 | 1.004 | -1.450 | -0.9338 | -0.9180 |
+#&gt; |.....................| -1.108 | -1.056 | -0.1867 | -0.9202 |
+#&gt; |.....................| -0.7295 | -1.097 | -0.5051 | -0.8750 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.085 | -0.03445 |...........|...........|</span>
+#&gt; | U| 479.09485 | 91.37 | -5.650 | -0.9108 | -2.180 |
+#&gt; |.....................| -4.721 | 0.3803 | 1.116 | 0.05714 |
+#&gt; |.....................| 0.8388 | 0.7016 | 1.612 | 0.9526 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6813 | 2.225 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.09485</span> | 91.37 | 0.003517 | 0.2868 | 0.1130 |
+#&gt; |.....................| 0.008907 | 0.5939 | 1.116 | 0.05714 |
+#&gt; |.....................| 0.8388 | 0.7016 | 1.612 | 0.9526 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6813 | 2.225 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.077 | 0.5762 | -0.02502 | -0.01122 |
+#&gt; |.....................| 0.2275 | -0.1137 | 0.7953 | 0.7347 |
+#&gt; |.....................| -0.3473 | -1.249 | 0.8683 | 0.1895 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2333 | -0.3625 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 122</span>| 479.09211 | 1.005 | -1.452 | -0.9337 | -0.9180 |
+#&gt; |.....................| -1.109 | -1.055 | -0.1878 | -0.9202 |
+#&gt; |.....................| -0.7286 | -1.096 | -0.5055 | -0.8752 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.085 | -0.03372 |...........|...........|</span>
+#&gt; | U| 479.09211 | 91.41 | -5.652 | -0.9107 | -2.180 |
+#&gt; |.....................| -4.722 | 0.3805 | 1.115 | 0.05714 |
+#&gt; |.....................| 0.8394 | 0.7021 | 1.612 | 0.9524 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6810 | 2.226 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.09211</span> | 91.41 | 0.003510 | 0.2868 | 0.1130 |
+#&gt; |.....................| 0.008900 | 0.5940 | 1.115 | 0.05714 |
+#&gt; |.....................| 0.8394 | 0.7021 | 1.612 | 0.9524 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6810 | 2.226 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 3.651 | 0.5754 | 0.04071 | -0.01634 |
+#&gt; |.....................| 0.2261 | -0.1150 | 0.8084 | 0.7089 |
+#&gt; |.....................| -0.3268 | -1.156 | 0.8610 | 0.1793 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2137 | -0.3471 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 123</span>| 479.08947 | 1.004 | -1.454 | -0.9335 | -0.9181 |
+#&gt; |.....................| -1.110 | -1.055 | -0.1890 | -0.9199 |
+#&gt; |.....................| -0.7277 | -1.096 | -0.5056 | -0.8754 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.085 | -0.03307 |...........|...........|</span>
+#&gt; | U| 479.08947 | 91.37 | -5.654 | -0.9105 | -2.180 |
+#&gt; |.....................| -4.722 | 0.3808 | 1.115 | 0.05715 |
+#&gt; |.....................| 0.8401 | 0.7021 | 1.611 | 0.9522 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6809 | 2.226 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.08947</span> | 91.37 | 0.003504 | 0.2869 | 0.1130 |
+#&gt; |.....................| 0.008893 | 0.5941 | 1.115 | 0.05715 |
+#&gt; |.....................| 0.8401 | 0.7021 | 1.611 | 0.9522 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6809 | 2.226 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.8529 | 0.5679 | -0.006947 | -0.009666 |
+#&gt; |.....................| 0.2263 | -0.09399 | 0.7582 | 0.6848 |
+#&gt; |.....................| -0.3382 | -1.232 | 0.7736 | -0.3452 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1950 | -0.3796 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 124</span>| 479.08673 | 1.005 | -1.456 | -0.9331 | -0.9181 |
+#&gt; |.....................| -1.111 | -1.054 | -0.1901 | -0.9198 |
+#&gt; |.....................| -0.7269 | -1.095 | -0.5060 | -0.8751 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.085 | -0.03242 |...........|...........|</span>
+#&gt; | U| 479.08673 | 91.42 | -5.656 | -0.9102 | -2.180 |
+#&gt; |.....................| -4.723 | 0.3808 | 1.114 | 0.05716 |
+#&gt; |.....................| 0.8406 | 0.7030 | 1.611 | 0.9525 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6810 | 2.227 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.08673</span> | 91.42 | 0.003498 | 0.2870 | 0.1130 |
+#&gt; |.....................| 0.008887 | 0.5941 | 1.114 | 0.05716 |
+#&gt; |.....................| 0.8406 | 0.7030 | 1.611 | 0.9525 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6810 | 2.227 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 4.055 | 0.5667 | 0.07240 | -0.01542 |
+#&gt; |.....................| 0.2241 | -0.1033 | 0.7160 | 0.6904 |
+#&gt; |.....................| -0.3260 | -1.123 | 0.7675 | 0.1856 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.1986 | -0.4973 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 125</span>| 479.08385 | 1.004 | -1.457 | -0.9328 | -0.9181 |
+#&gt; |.....................| -1.112 | -1.054 | -0.1908 | -0.9191 |
+#&gt; |.....................| -0.7261 | -1.095 | -0.5059 | -0.8749 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.085 | -0.03140 |...........|...........|</span>
+#&gt; | U| 479.08385 | 91.37 | -5.657 | -0.9100 | -2.180 |
+#&gt; |.....................| -4.724 | 0.3808 | 1.114 | 0.05718 |
+#&gt; |.....................| 0.8412 | 0.7034 | 1.611 | 0.9527 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6808 | 2.228 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.08385</span> | 91.37 | 0.003491 | 0.2870 | 0.1130 |
+#&gt; |.....................| 0.008879 | 0.5941 | 1.114 | 0.05718 |
+#&gt; |.....................| 0.8412 | 0.7034 | 1.611 | 0.9527 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6808 | 2.228 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.7735 | 0.5583 | 0.01997 | -0.008335 |
+#&gt; |.....................| 0.2243 | -0.08958 | 0.6952 | 0.6337 |
+#&gt; |.....................| -0.3199 | -1.102 | 0.8222 | 0.2014 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2310 | -0.4538 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 126</span>| 479.08143 | 1.005 | -1.459 | -0.9328 | -0.9181 |
+#&gt; |.....................| -1.112 | -1.054 | -0.1918 | -0.9191 |
+#&gt; |.....................| -0.7254 | -1.094 | -0.5066 | -0.8749 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.086 | -0.03018 |...........|...........|</span>
+#&gt; | U| 479.08143 | 91.42 | -5.659 | -0.9100 | -2.180 |
+#&gt; |.....................| -4.725 | 0.3810 | 1.113 | 0.05718 |
+#&gt; |.....................| 0.8417 | 0.7042 | 1.610 | 0.9527 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6804 | 2.230 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.08143</span> | 91.42 | 0.003486 | 0.2870 | 0.1130 |
+#&gt; |.....................| 0.008874 | 0.5941 | 1.113 | 0.05718 |
+#&gt; |.....................| 0.8417 | 0.7042 | 1.610 | 0.9527 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6804 | 2.230 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 4.589 | 0.5568 | 0.08446 | -0.01637 |
+#&gt; |.....................| 0.2217 | -0.09943 | 0.6530 | 0.6713 |
+#&gt; |.....................| -0.3160 | -1.044 | 0.6971 | -0.3035 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2323 | -0.3746 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 127</span>| 479.07858 | 1.004 | -1.461 | -0.9326 | -0.9181 |
+#&gt; |.....................| -1.113 | -1.054 | -0.1923 | -0.9184 |
+#&gt; |.....................| -0.7246 | -1.093 | -0.5066 | -0.8747 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.086 | -0.02916 |...........|...........|</span>
+#&gt; | U| 479.07858 | 91.36 | -5.661 | -0.9098 | -2.181 |
+#&gt; |.....................| -4.725 | 0.3811 | 1.113 | 0.05720 |
+#&gt; |.....................| 0.8423 | 0.7045 | 1.610 | 0.9529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6802 | 2.231 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.07858</span> | 91.36 | 0.003479 | 0.2870 | 0.1130 |
+#&gt; |.....................| 0.008866 | 0.5941 | 1.113 | 0.05720 |
+#&gt; |.....................| 0.8423 | 0.7045 | 1.610 | 0.9529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6802 | 2.231 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.147 | 0.5485 | 0.01974 | -0.006990 |
+#&gt; |.....................| 0.2231 | -0.08394 | 0.6583 | 0.6424 |
+#&gt; |.....................| -0.3232 | -1.114 | 0.8219 | 0.1886 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.1911 | -0.3375 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 128</span>| 479.07618 | 1.004 | -1.463 | -0.9323 | -0.9182 |
+#&gt; |.....................| -1.114 | -1.054 | -0.1929 | -0.9181 |
+#&gt; |.....................| -0.7237 | -1.093 | -0.5068 | -0.8746 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.086 | -0.02850 |...........|...........|</span>
+#&gt; | U| 479.07618 | 91.40 | -5.663 | -0.9095 | -2.181 |
+#&gt; |.....................| -4.726 | 0.3811 | 1.113 | 0.05721 |
+#&gt; |.....................| 0.8430 | 0.7050 | 1.610 | 0.9530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6800 | 2.232 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.07618</span> | 91.40 | 0.003472 | 0.2871 | 0.1130 |
+#&gt; |.....................| 0.008858 | 0.5941 | 1.113 | 0.05721 |
+#&gt; |.....................| 0.8430 | 0.7050 | 1.610 | 0.9530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6800 | 2.232 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.586 | 0.5458 | 0.07904 | -0.01251 |
+#&gt; |.....................| 0.2203 | -0.08960 | 0.6458 | 0.6586 |
+#&gt; |.....................| -0.3031 | -0.9906 | 0.7687 | 0.2646 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.1721 | -0.3284 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 129</span>| 479.07405 | 1.004 | -1.465 | -0.9322 | -0.9183 |
+#&gt; |.....................| -1.115 | -1.053 | -0.1937 | -0.9179 |
+#&gt; |.....................| -0.7228 | -1.093 | -0.5070 | -0.8747 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.087 | -0.02798 |...........|...........|</span>
+#&gt; | U| 479.07405 | 91.36 | -5.665 | -0.9094 | -2.181 |
+#&gt; |.....................| -4.727 | 0.3813 | 1.113 | 0.05721 |
+#&gt; |.....................| 0.8437 | 0.7050 | 1.610 | 0.9529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6797 | 2.233 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.07405</span> | 91.36 | 0.003465 | 0.2871 | 0.1130 |
+#&gt; |.....................| 0.008850 | 0.5942 | 1.113 | 0.05721 |
+#&gt; |.....................| 0.8437 | 0.7050 | 1.610 | 0.9529 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6797 | 2.233 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.296 | 0.5389 | 0.03360 | -0.006173 |
+#&gt; |.....................| 0.2208 | -0.07255 | 0.6853 | 0.5995 |
+#&gt; |.....................| -0.2906 | -1.015 | 0.7685 | 0.2327 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.1765 | -0.3245 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 130</span>| 479.07209 | 1.004 | -1.467 | -0.9321 | -0.9183 |
+#&gt; |.....................| -1.116 | -1.053 | -0.1949 | -0.9178 |
+#&gt; |.....................| -0.7220 | -1.093 | -0.5073 | -0.8750 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.087 | -0.02746 |...........|...........|</span>
+#&gt; | U| 479.07209 | 91.39 | -5.667 | -0.9093 | -2.181 |
+#&gt; |.....................| -4.728 | 0.3814 | 1.112 | 0.05721 |
+#&gt; |.....................| 0.8442 | 0.7050 | 1.609 | 0.9526 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6796 | 2.233 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.07209</span> | 91.39 | 0.003458 | 0.2871 | 0.1130 |
+#&gt; |.....................| 0.008841 | 0.5942 | 1.112 | 0.05721 |
+#&gt; |.....................| 0.8442 | 0.7050 | 1.609 | 0.9526 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6796 | 2.233 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.160 | 0.5372 | 0.08826 | -0.01153 |
+#&gt; |.....................| 0.2184 | -0.07756 | 0.6386 | 0.6404 |
+#&gt; |.....................| -0.2977 | -0.9812 | 0.7463 | 0.2047 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.1647 | -0.3238 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 131</span>| 479.07029 | 1.004 | -1.469 | -0.9320 | -0.9184 |
+#&gt; |.....................| -1.117 | -1.053 | -0.1960 | -0.9175 |
+#&gt; |.....................| -0.7213 | -1.093 | -0.5075 | -0.8752 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.087 | -0.02689 |...........|...........|</span>
+#&gt; | U| 479.07029 | 91.35 | -5.669 | -0.9092 | -2.181 |
+#&gt; |.....................| -4.729 | 0.3815 | 1.112 | 0.05722 |
+#&gt; |.....................| 0.8447 | 0.7049 | 1.609 | 0.9524 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6795 | 2.234 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.07029</span> | 91.35 | 0.003451 | 0.2872 | 0.1130 |
+#&gt; |.....................| 0.008833 | 0.5942 | 1.112 | 0.05722 |
+#&gt; |.....................| 0.8447 | 0.7049 | 1.609 | 0.9524 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6795 | 2.234 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.487 | 0.5301 | 0.04502 | -0.006786 |
+#&gt; |.....................| 0.2180 | -0.06576 | 0.6433 | 0.5523 |
+#&gt; |.....................| -0.2822 | -1.039 | 1.637 | -0.2973 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2152 | -0.3175 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 132</span>| 479.06833 | 1.004 | -1.471 | -0.9316 | -0.9185 |
+#&gt; |.....................| -1.118 | -1.053 | -0.1965 | -0.9170 |
+#&gt; |.....................| -0.7207 | -1.093 | -0.5082 | -0.8751 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.087 | -0.02616 |...........|...........|</span>
+#&gt; | U| 479.06833 | 91.38 | -5.671 | -0.9088 | -2.181 |
+#&gt; |.....................| -4.730 | 0.3814 | 1.111 | 0.05724 |
+#&gt; |.....................| 0.8452 | 0.7048 | 1.608 | 0.9525 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6792 | 2.235 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.06833</span> | 91.38 | 0.003444 | 0.2872 | 0.1129 |
+#&gt; |.....................| 0.008825 | 0.5942 | 1.111 | 0.05724 |
+#&gt; |.....................| 0.8452 | 0.7048 | 1.608 | 0.9525 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6792 | 2.235 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 0.6466 | 0.5255 | 0.09166 | -0.01288 |
+#&gt; |.....................| 0.2142 | -0.07904 | 0.5622 | 0.5865 |
+#&gt; |.....................| -0.2779 | -1.008 | 0.7011 | 0.1998 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.1404 | -0.3181 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 133</span>| 479.06868 | 1.003 | -1.472 | -0.9317 | -0.9185 |
+#&gt; |.....................| -1.118 | -1.053 | -0.1973 | -0.9180 |
+#&gt; |.....................| -0.7202 | -1.092 | -0.5093 | -0.8754 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.087 | -0.02567 |...........|...........|</span>
+#&gt; | U| 479.06868 | 91.29 | -5.672 | -0.9090 | -2.181 |
+#&gt; |.....................| -4.731 | 0.3814 | 1.111 | 0.05721 |
+#&gt; |.....................| 0.8455 | 0.7062 | 1.607 | 0.9522 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6790 | 2.235 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.06868</span> | 91.29 | 0.003441 | 0.2872 | 0.1129 |
+#&gt; |.....................| 0.008822 | 0.5942 | 1.111 | 0.05721 |
+#&gt; |.....................| 0.8455 | 0.7062 | 1.607 | 0.9522 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6790 | 2.235 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 134</span>| 479.06735 | 1.004 | -1.472 | -0.9316 | -0.9185 |
+#&gt; |.....................| -1.118 | -1.053 | -0.1969 | -0.9175 |
+#&gt; |.....................| -0.7205 | -1.092 | -0.5087 | -0.8753 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.087 | -0.02593 |...........|...........|</span>
+#&gt; | U| 479.06735 | 91.33 | -5.672 | -0.9089 | -2.181 |
+#&gt; |.....................| -4.730 | 0.3814 | 1.111 | 0.05722 |
+#&gt; |.....................| 0.8453 | 0.7054 | 1.608 | 0.9523 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6791 | 2.235 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.06735</span> | 91.33 | 0.003443 | 0.2872 | 0.1129 |
+#&gt; |.....................| 0.008823 | 0.5942 | 1.111 | 0.05722 |
+#&gt; |.....................| 0.8453 | 0.7054 | 1.608 | 0.9523 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6791 | 2.235 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -3.476 | 0.5223 | 0.03269 | -0.003763 |
+#&gt; |.....................| 0.2173 | -0.06616 | 0.5281 | 0.5229 |
+#&gt; |.....................| -0.3041 | -1.023 | 1.607 | -0.2773 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2325 | -0.3192 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 135</span>| 479.06543 | 1.004 | -1.472 | -0.9319 | -0.9185 |
+#&gt; |.....................| -1.118 | -1.053 | -0.1968 | -0.9175 |
+#&gt; |.....................| -0.7201 | -1.092 | -0.5088 | -0.8751 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.088 | -0.02567 |...........|...........|</span>
+#&gt; | U| 479.06543 | 91.36 | -5.672 | -0.9091 | -2.181 |
+#&gt; |.....................| -4.731 | 0.3815 | 1.111 | 0.05722 |
+#&gt; |.....................| 0.8456 | 0.7056 | 1.608 | 0.9525 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6790 | 2.235 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.06543</span> | 91.36 | 0.003439 | 0.2872 | 0.1129 |
+#&gt; |.....................| 0.008820 | 0.5942 | 1.111 | 0.05722 |
+#&gt; |.....................| 0.8456 | 0.7056 | 1.608 | 0.9525 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6790 | 2.235 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 136</span>| 479.06390 | 1.004 | -1.474 | -0.9324 | -0.9185 |
+#&gt; |.....................| -1.119 | -1.053 | -0.1965 | -0.9174 |
+#&gt; |.....................| -0.7194 | -1.092 | -0.5089 | -0.8750 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.088 | -0.02528 |...........|...........|</span>
+#&gt; | U| 479.0639 | 91.36 | -5.674 | -0.9095 | -2.181 |
+#&gt; |.....................| -4.732 | 0.3816 | 1.111 | 0.05723 |
+#&gt; |.....................| 0.8461 | 0.7059 | 1.607 | 0.9526 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6786 | 2.236 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.0639</span> | 91.36 | 0.003434 | 0.2871 | 0.1129 |
+#&gt; |.....................| 0.008813 | 0.5943 | 1.111 | 0.05723 |
+#&gt; |.....................| 0.8461 | 0.7059 | 1.607 | 0.9526 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6786 | 2.236 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 137</span>| 479.05708 | 1.004 | -1.481 | -0.9346 | -0.9186 |
+#&gt; |.....................| -1.123 | -1.051 | -0.1952 | -0.9171 |
+#&gt; |.....................| -0.7164 | -1.090 | -0.5089 | -0.8741 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.090 | -0.02338 |...........|...........|</span>
+#&gt; | U| 479.05708 | 91.37 | -5.681 | -0.9115 | -2.181 |
+#&gt; |.....................| -4.735 | 0.3824 | 1.112 | 0.05724 |
+#&gt; |.....................| 0.8483 | 0.7072 | 1.607 | 0.9535 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6769 | 2.238 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.05708</span> | 91.37 | 0.003409 | 0.2867 | 0.1129 |
+#&gt; |.....................| 0.008783 | 0.5944 | 1.112 | 0.05724 |
+#&gt; |.....................| 0.8483 | 0.7072 | 1.607 | 0.9535 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6769 | 2.238 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 138</span>| 479.03987 | 1.004 | -1.510 | -0.9434 | -0.9188 |
+#&gt; |.....................| -1.136 | -1.045 | -0.1899 | -0.9157 |
+#&gt; |.....................| -0.7043 | -1.085 | -0.5092 | -0.8705 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.098 | -0.01577 |...........|...........|</span>
+#&gt; | U| 479.03987 | 91.37 | -5.710 | -0.9193 | -2.181 |
+#&gt; |.....................| -4.749 | 0.3852 | 1.114 | 0.05728 |
+#&gt; |.....................| 0.8571 | 0.7123 | 1.607 | 0.9569 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6702 | 2.247 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.03987</span> | 91.37 | 0.003311 | 0.2851 | 0.1129 |
+#&gt; |.....................| 0.008662 | 0.5951 | 1.114 | 0.05728 |
+#&gt; |.....................| 0.8571 | 0.7123 | 1.607 | 0.9569 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6702 | 2.247 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.3651 | 0.4285 | -0.5283 | -0.001988 |
+#&gt; |.....................| 0.1991 | 0.06799 | 0.8278 | 0.7155 |
+#&gt; |.....................| -0.2362 | -0.3851 | 0.6274 | 0.1204 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.9270 | -0.3308 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 139</span>| 479.01407 | 1.005 | -1.553 | -0.9371 | -0.9187 |
+#&gt; |.....................| -1.158 | -1.041 | -0.1978 | -0.9162 |
+#&gt; |.....................| -0.6881 | -1.086 | -0.5088 | -0.8721 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.097 | -0.01436 |...........|...........|</span>
+#&gt; | U| 479.01407 | 91.44 | -5.753 | -0.9138 | -2.181 |
+#&gt; |.....................| -4.770 | 0.3869 | 1.111 | 0.05726 |
+#&gt; |.....................| 0.8690 | 0.7117 | 1.608 | 0.9554 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6704 | 2.249 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.01407</span> | 91.44 | 0.003172 | 0.2862 | 0.1129 |
+#&gt; |.....................| 0.008479 | 0.5955 | 1.111 | 0.05726 |
+#&gt; |.....................| 0.8690 | 0.7117 | 1.608 | 0.9554 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6704 | 2.249 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 7.322 | 0.3385 | -0.09736 | -0.005783 |
+#&gt; |.....................| 0.1607 | 0.1322 | 0.5556 | 0.5176 |
+#&gt; |.....................| -0.1562 | -0.2690 | 1.549 | -0.03161 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8578 | -0.3240 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 140</span>| 478.99946 | 1.003 | -1.595 | -0.9294 | -0.9194 |
+#&gt; |.....................| -1.179 | -1.045 | -0.1992 | -0.9136 |
+#&gt; |.....................| -0.6715 | -1.093 | -0.5132 | -0.8724 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.100 | -0.009543 |...........|...........|</span>
+#&gt; | U| 478.99946 | 91.31 | -5.795 | -0.9069 | -2.182 |
+#&gt; |.....................| -4.791 | 0.3851 | 1.110 | 0.05734 |
+#&gt; |.....................| 0.8811 | 0.7049 | 1.602 | 0.9551 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6678 | 2.255 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.99946</span> | 91.31 | 0.003042 | 0.2876 | 0.1128 |
+#&gt; |.....................| 0.008303 | 0.5951 | 1.110 | 0.05734 |
+#&gt; |.....................| 0.8811 | 0.7049 | 1.602 | 0.9551 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6678 | 2.255 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -5.440 | 0.2525 | 0.1677 | 0.001517 |
+#&gt; |.....................| 0.1272 | 0.05864 | 0.6253 | 0.4352 |
+#&gt; |.....................| -0.1457 | -0.7321 | 1.353 | 0.0009973 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.018 | -0.3498 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 141</span>| 479.00064 | 1.004 | -1.626 | -0.9429 | -0.9240 |
+#&gt; |.....................| -1.201 | -1.064 | -0.2165 | -0.9169 |
+#&gt; |.....................| -0.6612 | -1.100 | -0.5189 | -0.8809 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.100 | -0.001744 |...........|...........|</span>
+#&gt; | U| 479.00064 | 91.38 | -5.826 | -0.9189 | -2.186 |
+#&gt; |.....................| -4.814 | 0.3763 | 1.103 | 0.05724 |
+#&gt; |.....................| 0.8887 | 0.6986 | 1.596 | 0.9470 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6683 | 2.264 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.00064</span> | 91.38 | 0.002950 | 0.2852 | 0.1123 |
+#&gt; |.....................| 0.008117 | 0.5930 | 1.103 | 0.05724 |
+#&gt; |.....................| 0.8887 | 0.6986 | 1.596 | 0.9470 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6683 | 2.264 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 142</span>| 478.99385 | 1.004 | -1.610 | -0.9359 | -0.9216 |
+#&gt; |.....................| -1.190 | -1.054 | -0.2077 | -0.9152 |
+#&gt; |.....................| -0.6665 | -1.096 | -0.5161 | -0.8765 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.100 | -0.005738 |...........|...........|</span>
+#&gt; | U| 478.99385 | 91.39 | -5.810 | -0.9127 | -2.184 |
+#&gt; |.....................| -4.802 | 0.3808 | 1.107 | 0.05729 |
+#&gt; |.....................| 0.8848 | 0.7019 | 1.599 | 0.9512 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6681 | 2.260 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.99385</span> | 91.39 | 0.002997 | 0.2864 | 0.1126 |
+#&gt; |.....................| 0.008212 | 0.5941 | 1.107 | 0.05729 |
+#&gt; |.....................| 0.8848 | 0.7019 | 1.599 | 0.9512 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6681 | 2.260 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.499 | 0.2382 | -0.03703 | -0.03958 |
+#&gt; |.....................| 0.09629 | -0.2111 | 0.3210 | 0.2393 |
+#&gt; |.....................| -0.1233 | -0.7892 | 1.126 | -0.4047 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.051 | -0.3984 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 143</span>| 478.98455 | 1.004 | -1.625 | -0.9347 | -0.9200 |
+#&gt; |.....................| -1.200 | -1.054 | -0.2131 | -0.9088 |
+#&gt; |.....................| -0.6653 | -1.094 | -0.5167 | -0.8757 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.099 | 0.008183 |...........|...........|</span>
+#&gt; | U| 478.98455 | 91.36 | -5.825 | -0.9116 | -2.182 |
+#&gt; |.....................| -4.813 | 0.3812 | 1.105 | 0.05748 |
+#&gt; |.....................| 0.8857 | 0.7042 | 1.598 | 0.9520 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6689 | 2.277 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.98455</span> | 91.36 | 0.002951 | 0.2867 | 0.1128 |
+#&gt; |.....................| 0.008125 | 0.5942 | 1.105 | 0.05748 |
+#&gt; |.....................| 0.8857 | 0.7042 | 1.598 | 0.9520 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6689 | 2.277 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.2799 | 0.1926 | -0.02074 | -0.02333 |
+#&gt; |.....................| 0.08052 | -0.1468 | 0.2817 | 0.3348 |
+#&gt; |.....................| -0.1470 | -0.6425 | 1.062 | -0.3208 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8181 | -0.3186 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 144</span>| 478.97736 | 1.005 | -1.639 | -0.9325 | -0.9174 |
+#&gt; |.....................| -1.210 | -1.043 | -0.2100 | -0.9166 |
+#&gt; |.....................| -0.6557 | -1.093 | -0.5206 | -0.8754 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.097 | 0.01446 |...........|...........|</span>
+#&gt; | U| 478.97736 | 91.42 | -5.839 | -0.9097 | -2.180 |
+#&gt; |.....................| -4.822 | 0.3861 | 1.106 | 0.05725 |
+#&gt; |.....................| 0.8927 | 0.7053 | 1.594 | 0.9522 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6711 | 2.284 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.97736</span> | 91.42 | 0.002912 | 0.2871 | 0.1131 |
+#&gt; |.....................| 0.008047 | 0.5953 | 1.106 | 0.05725 |
+#&gt; |.....................| 0.8927 | 0.7053 | 1.594 | 0.9522 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6711 | 2.284 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 5.719 | 0.1644 | 0.1764 | 0.0002018 |
+#&gt; |.....................| 0.06754 | 0.1935 | -0.08189 | -0.1310 |
+#&gt; |.....................| -0.08678 | -2.826 | 0.8338 | -0.2552 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.4561 | -0.1956 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 145</span>| 478.97194 | 1.004 | -1.652 | -0.9304 | -0.9153 |
+#&gt; |.....................| -1.221 | -1.039 | -0.2044 | -0.9254 |
+#&gt; |.....................| -0.6443 | -1.087 | -0.5238 | -0.8740 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.092 | 0.01749 |...........|...........|</span>
+#&gt; | U| 478.97194 | 91.40 | -5.852 | -0.9078 | -2.178 |
+#&gt; |.....................| -4.833 | 0.3880 | 1.108 | 0.05699 |
+#&gt; |.....................| 0.9010 | 0.7106 | 1.590 | 0.9536 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.97194</span> | 91.40 | 0.002874 | 0.2875 | 0.1133 |
+#&gt; |.....................| 0.007961 | 0.5958 | 1.108 | 0.05699 |
+#&gt; |.....................| 0.9010 | 0.7106 | 1.590 | 0.9536 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.925 | 0.1117 | 0.2312 | 0.02461 |
+#&gt; |.....................| 0.04286 | 0.3818 | 0.1548 | -0.1592 |
+#&gt; |.....................| -0.04325 | -0.1382 | 0.7430 | -0.2262 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.01070 | -0.1316 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 146</span>| 479.08778 | 0.9990 | -1.662 | -0.9298 | -0.9158 |
+#&gt; |.....................| -1.224 | -1.050 | -0.2095 | -0.9175 |
+#&gt; |.....................| -0.6325 | -1.087 | -0.5258 | -0.8715 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.094 | 0.02816 |...........|...........|</span>
+#&gt; | U| 479.08778 | 90.91 | -5.862 | -0.9073 | -2.178 |
+#&gt; |.....................| -4.836 | 0.3828 | 1.106 | 0.05722 |
+#&gt; |.....................| 0.9096 | 0.7103 | 1.587 | 0.9559 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6733 | 2.301 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.08778</span> | 90.91 | 0.002845 | 0.2876 | 0.1132 |
+#&gt; |.....................| 0.007936 | 0.5946 | 1.106 | 0.05722 |
+#&gt; |.....................| 0.9096 | 0.7103 | 1.587 | 0.9559 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6733 | 2.301 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 147</span>| 478.99303 | 1.002 | -1.652 | -0.9306 | -0.9153 |
+#&gt; |.....................| -1.221 | -1.039 | -0.2045 | -0.9253 |
+#&gt; |.....................| -0.6442 | -1.087 | -0.5244 | -0.8738 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.092 | 0.01760 |...........|...........|</span>
+#&gt; | U| 478.99303 | 91.18 | -5.852 | -0.9080 | -2.178 |
+#&gt; |.....................| -4.833 | 0.3879 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9011 | 0.7107 | 1.589 | 0.9537 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.99303</span> | 91.18 | 0.002874 | 0.2874 | 0.1133 |
+#&gt; |.....................| 0.007961 | 0.5958 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9011 | 0.7107 | 1.589 | 0.9537 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 148</span>| 478.97158 | 1.004 | -1.652 | -0.9304 | -0.9153 |
+#&gt; |.....................| -1.221 | -1.039 | -0.2044 | -0.9254 |
+#&gt; |.....................| -0.6443 | -1.087 | -0.5239 | -0.8740 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.092 | 0.01751 |...........|...........|</span>
+#&gt; | U| 478.97158 | 91.37 | -5.852 | -0.9078 | -2.178 |
+#&gt; |.....................| -4.833 | 0.3880 | 1.108 | 0.05699 |
+#&gt; |.....................| 0.9010 | 0.7106 | 1.590 | 0.9536 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.97158</span> | 91.37 | 0.002874 | 0.2874 | 0.1133 |
+#&gt; |.....................| 0.007961 | 0.5958 | 1.108 | 0.05699 |
+#&gt; |.....................| 0.9010 | 0.7106 | 1.590 | 0.9536 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.1518 | 0.1094 | 0.1916 | 0.02921 |
+#&gt; |.....................| 0.04385 | 0.3896 | -0.2077 | -0.4379 |
+#&gt; |.....................| -0.03471 | -2.421 | 0.7262 | -0.1589 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.01110 | -0.1305 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 149</span>| 478.97152 | 1.004 | -1.652 | -0.9304 | -0.9153 |
+#&gt; |.....................| -1.221 | -1.039 | -0.2044 | -0.9254 |
+#&gt; |.....................| -0.6443 | -1.086 | -0.5240 | -0.8739 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.092 | 0.01753 |...........|...........|</span>
+#&gt; | U| 478.97152 | 91.37 | -5.852 | -0.9078 | -2.178 |
+#&gt; |.....................| -4.833 | 0.3880 | 1.108 | 0.05699 |
+#&gt; |.....................| 0.9010 | 0.7109 | 1.590 | 0.9536 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.97152</span> | 91.37 | 0.002874 | 0.2874 | 0.1133 |
+#&gt; |.....................| 0.007961 | 0.5958 | 1.108 | 0.05699 |
+#&gt; |.....................| 0.9010 | 0.7109 | 1.590 | 0.9536 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | C| Central Diff. | -0.2246 | 0.1050 | 0.1574 | 0.02036 |
+#&gt; |.....................| 0.04103 | 0.3470 | -0.3387 | -0.1919 |
+#&gt; |.....................| -0.1172 | -0.1870 | 0.6243 | -0.2341 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.06769 | -0.1265 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 150</span>| 478.97142 | 1.004 | -1.652 | -0.9305 | -0.9153 |
+#&gt; |.....................| -1.221 | -1.039 | -0.2042 | -0.9253 |
+#&gt; |.....................| -0.6442 | -1.086 | -0.5242 | -0.8739 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.092 | 0.01757 |...........|...........|</span>
+#&gt; | U| 478.97142 | 91.38 | -5.852 | -0.9079 | -2.178 |
+#&gt; |.....................| -4.833 | 0.3879 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9011 | 0.7110 | 1.589 | 0.9537 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.97142</span> | 91.38 | 0.002874 | 0.2874 | 0.1133 |
+#&gt; |.....................| 0.007961 | 0.5958 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9011 | 0.7110 | 1.589 | 0.9537 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | C| Central Diff. | 0.5593 | 0.1052 | 0.1640 | 0.01900 |
+#&gt; |.....................| 0.04052 | 0.3419 | -0.3227 | -0.1646 |
+#&gt; |.....................| -0.1158 | -0.1768 | 0.1839 | -0.2151 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.04116 | -0.1006 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 151</span>| 478.97143 | 1.004 | -1.652 | -0.9306 | -0.9153 |
+#&gt; |.....................| -1.221 | -1.039 | -0.2041 | -0.9252 |
+#&gt; |.....................| -0.6442 | -1.086 | -0.5243 | -0.8738 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.092 | 0.01761 |...........|...........|</span>
+#&gt; | U| 478.97143 | 91.36 | -5.852 | -0.9079 | -2.178 |
+#&gt; |.....................| -4.833 | 0.3879 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9011 | 0.7110 | 1.589 | 0.9538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.97143</span> | 91.36 | 0.002874 | 0.2874 | 0.1133 |
+#&gt; |.....................| 0.007961 | 0.5958 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9011 | 0.7110 | 1.589 | 0.9538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 152</span>| 478.97137 | 1.004 | -1.652 | -0.9305 | -0.9153 |
+#&gt; |.....................| -1.221 | -1.039 | -0.2042 | -0.9253 |
+#&gt; |.....................| -0.6442 | -1.086 | -0.5242 | -0.8738 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.092 | 0.01759 |...........|...........|</span>
+#&gt; | U| 478.97137 | 91.37 | -5.852 | -0.9079 | -2.178 |
+#&gt; |.....................| -4.833 | 0.3879 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9011 | 0.7110 | 1.589 | 0.9537 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.97137</span> | 91.37 | 0.002874 | 0.2874 | 0.1133 |
+#&gt; |.....................| 0.007961 | 0.5958 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9011 | 0.7110 | 1.589 | 0.9537 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | C| Central Diff. | -0.4660 | 0.1043 | 0.1497 | 0.02048 |
+#&gt; |.....................| 0.04080 | 0.3434 | -0.3050 | -0.1804 |
+#&gt; |.....................| -0.2015 | -1.954 | 0.1460 | -0.2263 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.03239 | -0.1147 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 153</span>| 478.97135 | 1.004 | -1.652 | -0.9305 | -0.9153 |
+#&gt; |.....................| -1.221 | -1.039 | -0.2041 | -0.9253 |
+#&gt; |.....................| -0.6441 | -1.086 | -0.5242 | -0.8738 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.092 | 0.01760 |...........|...........|</span>
+#&gt; | U| 478.97135 | 91.36 | -5.852 | -0.9079 | -2.178 |
+#&gt; |.....................| -4.833 | 0.3879 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9012 | 0.7110 | 1.589 | 0.9538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.97135</span> | 91.36 | 0.002874 | 0.2874 | 0.1133 |
+#&gt; |.....................| 0.007961 | 0.5958 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9012 | 0.7110 | 1.589 | 0.9538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | C| Central Diff. | -0.8144 | 0.1038 | 0.1446 | 0.02101 |
+#&gt; |.....................| 0.04083 | 0.3431 | -0.3133 | -0.1844 |
+#&gt; |.....................| -0.05440 | -1.096 | 0.1463 | -0.2004 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.2780 | -0.1269 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 154</span>| 478.97125 | 1.004 | -1.652 | -0.9305 | -0.9153 |
+#&gt; |.....................| -1.221 | -1.039 | -0.2041 | -0.9252 |
+#&gt; |.....................| -0.6441 | -1.086 | -0.5243 | -0.8738 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.092 | 0.01762 |...........|...........|</span>
+#&gt; | U| 478.97125 | 91.37 | -5.852 | -0.9079 | -2.178 |
+#&gt; |.....................| -4.833 | 0.3879 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9012 | 0.7111 | 1.589 | 0.9538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.97125</span> | 91.37 | 0.002874 | 0.2874 | 0.1133 |
+#&gt; |.....................| 0.007961 | 0.5958 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9012 | 0.7111 | 1.589 | 0.9538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | C| Central Diff. | 0.03985 | 0.1039 | 0.1540 | 0.01970 |
+#&gt; |.....................| 0.04056 | 0.3392 | -0.3415 | -0.1666 |
+#&gt; |.....................| -0.1386 | -0.1574 | 0.08901 | -0.2003 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.04000 | -0.1187 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 155</span>| 478.97118 | 1.004 | -1.652 | -0.9306 | -0.9153 |
+#&gt; |.....................| -1.221 | -1.039 | -0.2040 | -0.9252 |
+#&gt; |.....................| -0.6440 | -1.086 | -0.5243 | -0.8737 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.092 | 0.01765 |...........|...........|</span>
+#&gt; | U| 478.97118 | 91.37 | -5.852 | -0.9080 | -2.178 |
+#&gt; |.....................| -4.833 | 0.3878 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9012 | 0.7112 | 1.589 | 0.9538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.97118</span> | 91.37 | 0.002874 | 0.2874 | 0.1133 |
+#&gt; |.....................| 0.007961 | 0.5958 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9012 | 0.7112 | 1.589 | 0.9538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | C| Central Diff. | -0.05720 | 0.1036 | 0.1507 | 0.01972 |
+#&gt; |.....................| 0.04048 | 0.3375 | -0.2940 | -0.1684 |
+#&gt; |.....................| -0.1979 | -1.920 | 0.1339 | -0.2027 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.04399 | -0.1216 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 156</span>| 478.97118 | 1.004 | -1.652 | -0.9306 | -0.9153 |
+#&gt; |.....................| -1.221 | -1.039 | -0.2040 | -0.9252 |
+#&gt; |.....................| -0.6440 | -1.086 | -0.5243 | -0.8737 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.092 | 0.01765 |...........|...........|</span>
+#&gt; | U| 478.97118 | 91.37 | -5.852 | -0.9080 | -2.178 |
+#&gt; |.....................| -4.833 | 0.3878 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9012 | 0.7112 | 1.589 | 0.9538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.97118</span> | 91.37 | 0.002874 | 0.2874 | 0.1133 |
+#&gt; |.....................| 0.007961 | 0.5958 | 1.108 | 0.05700 |
+#&gt; |.....................| 0.9012 | 0.7112 | 1.589 | 0.9538 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.6749 | 2.288 |...........|...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
+<span class='co'># Two-component error by variable is possible with both estimation methods</span>
+<span class='co'># Variance by variable is supported by 'saem' and 'focei'</span>
+<span class='va'>f_nlmixr_fomc_sfo_saem_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
+ error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; 1: 92.0624 -5.2854 0.1952 1.9494 -1.9431 2.8500 1.6150 0.7315 0.7220 0.4370 6.8425 0.4265 7.3797 0.5659
+#&gt; 2: 92.7371 -5.3819 0.0345 2.0839 -2.0310 2.7075 1.5342 0.6949 0.8358 0.4151 7.2043 0.0003 8.1096 0.0003
+#&gt; 3: 9.2941e+01 -5.7880e+00 1.0336e-01 2.5772e+00 -1.5152e+00 2.5721e+00 1.4575e+00 6.6018e-01 7.9403e-01 3.9439e-01 4.5749e+00 1.5986e-05 5.1354e+00 2.8796e-05
+#&gt; 4: 92.6277 -5.8599 0.0858 2.5068 -1.3253 2.4435 1.3847 0.6272 0.7543 0.3747 3.4165 0.0001 3.9071 0.0016
+#&gt; 5: 93.0289 -6.0258 0.0528 2.4932 -1.1961 2.3213 1.3154 0.5958 0.7166 0.3559 3.2552 0.0069 3.3744 0.0170
+#&gt; 6: 93.2107 -6.2881 0.0143 2.4052 -1.1930 2.2053 2.2853 0.5660 0.6808 0.3381 2.8020 0.0086 3.1436 0.0256
+#&gt; 7: 93.0563 -6.3624 -0.0104 2.3989 -1.1521 2.0950 2.4414 0.5377 0.6467 0.3212 2.6528 0.0209 2.8462 0.0289
+#&gt; 8: 93.0567 -6.2699 -0.0303 2.3700 -1.0941 1.9903 2.5004 0.5204 0.6144 0.3052 2.3448 0.0314 2.5026 0.0349
+#&gt; 9: 92.8366 -6.2013 -0.0507 2.3798 -1.0963 1.8907 2.6552 0.4943 0.5837 0.2899 2.2219 0.0368 2.2604 0.0448
+#&gt; 10: 92.9069 -6.2499 -0.1116 2.3100 -1.0557 1.9625 3.9231 0.4696 0.5545 0.2754 2.0980 0.0359 2.1413 0.0325
+#&gt; 11: 92.9942 -6.2134 -0.1037 2.3109 -1.0441 1.8643 3.7270 0.4755 0.5268 0.2616 1.9711 0.0372 1.9901 0.0355
+#&gt; 12: 92.9262 -6.2511 -0.1133 2.2707 -1.0465 1.8430 4.3304 0.4697 0.5004 0.2486 1.8083 0.0346 1.9184 0.0356
+#&gt; 13: 93.0761 -6.3559 -0.1106 2.2534 -1.0162 2.4826 5.2857 0.4685 0.4754 0.2361 1.7896 0.0331 1.9865 0.0342
+#&gt; 14: 93.0929 -6.1852 -0.1058 2.2972 -1.0175 2.9964 5.0214 0.4451 0.4516 0.2243 1.8316 0.0309 1.9112 0.0348
+#&gt; 15: 93.3343 -6.3408 -0.1025 2.2905 -0.9962 3.1132 4.9630 0.4594 0.4291 0.2131 1.8198 0.0338 1.9154 0.0372
+#&gt; 16: 92.9959 -6.2227 -0.1016 2.2869 -1.0103 3.3338 4.7149 0.4598 0.4076 0.2025 1.8726 0.0327 1.9617 0.0361
+#&gt; 17: 93.0394 -6.2586 -0.1027 2.2932 -0.9991 3.1671 4.8730 0.4591 0.3872 0.1923 1.8405 0.0336 2.0192 0.0242
+#&gt; 18: 93.2374 -6.3410 -0.1110 2.2965 -0.9689 3.0087 5.4325 0.4632 0.3679 0.1827 1.9051 0.0351 1.9247 0.0277
+#&gt; 19: 93.0557 -6.4503 -0.1011 2.2941 -0.9884 2.8583 6.2872 0.4742 0.3495 0.1736 1.8054 0.0345 1.9173 0.0260
+#&gt; 20: 92.9280 -6.4945 -0.1018 2.2902 -0.9864 3.5934 6.8737 0.4751 0.3320 0.1649 1.7097 0.0372 1.9483 0.0225
+#&gt; 21: 93.2023 -6.3418 -0.1033 2.2846 -0.9863 3.4138 6.5300 0.4710 0.3154 0.1567 1.7507 0.0318 1.9030 0.0249
+#&gt; 22: 93.5494 -6.1985 -0.1078 2.2991 -1.0171 3.2431 6.2035 0.4475 0.2996 0.1488 1.7370 0.0342 1.8124 0.0282
+#&gt; 23: 93.3588 -6.2577 -0.1084 2.2654 -0.9956 3.0809 5.8933 0.4393 0.2869 0.1481 1.6928 0.0380 1.8288 0.0254
+#&gt; 24: 93.5705 -6.4876 -0.1083 2.2606 -1.0062 3.7095 6.7801 0.4459 0.2726 0.1684 1.7001 0.0377 1.9012 0.0249
+#&gt; 25: 93.9726 -6.5638 -0.1239 2.2374 -1.0071 5.1357 6.6571 0.4608 0.2755 0.1600 1.6615 0.0382 1.8846 0.0213
+#&gt; 26: 93.8894 -6.5073 -0.1120 2.2645 -1.0327 4.8789 6.3243 0.4473 0.3014 0.1520 1.7152 0.0340 1.8990 0.0254
+#&gt; 27: 94.5348 -6.3868 -0.0891 2.3139 -1.0361 5.3856 6.0081 0.4250 0.3080 0.1453 1.7028 0.0385 1.7853 0.0304
+#&gt; 28: 93.9221 -6.1747 -0.1039 2.3013 -1.0087 5.1163 5.7077 0.4214 0.3136 0.1634 1.6823 0.0340 1.7487 0.0353
+#&gt; 29: 93.4946 -6.0264 -0.0940 2.3124 -1.0166 5.3744 5.4223 0.4404 0.3114 0.1813 1.6310 0.0370 1.7646 0.0367
+#&gt; 30: 93.9287 -5.9114 -0.0967 2.3078 -1.0090 5.2017 5.1512 0.4381 0.3048 0.2091 1.5825 0.0393 1.7431 0.0312
+#&gt; 31: 93.7065 -6.0174 -0.0928 2.2917 -0.9880 5.1935 4.8936 0.4352 0.3109 0.1986 1.5876 0.0392 1.8465 0.0280
+#&gt; 32: 93.7675 -5.6444 -0.0918 2.3145 -0.9664 4.9338 4.6489 0.4332 0.3090 0.1918 1.6874 0.0332 1.7501 0.0331
+#&gt; 33: 94.2589 -5.7637 -0.0865 2.3130 -0.9733 4.6871 4.4165 0.4235 0.2935 0.1865 1.7173 0.0355 1.7365 0.0334
+#&gt; 34: 94.0788 -5.7432 -0.1022 2.3049 -0.9681 4.4528 4.1957 0.4319 0.2962 0.1772 1.6357 0.0361 1.4755 0.0574
+#&gt; 35: 94.0798 -5.8549 -0.0929 2.2856 -0.9849 4.2301 3.9859 0.4391 0.2937 0.1734 1.6460 0.0275 1.7739 0.0379
+#&gt; 36: 93.9997 -5.8708 -0.0890 2.2870 -1.0134 4.0186 3.7866 0.4268 0.2819 0.1840 1.5830 0.0258 1.8922 0.0320
+#&gt; 37: 93.8186 -5.8979 -0.0973 2.2807 -1.0197 3.8177 3.5973 0.4280 0.2778 0.1799 1.5783 0.0282 1.7697 0.0404
+#&gt; 38: 94.0728 -5.9601 -0.0936 2.3011 -1.0381 3.6268 3.4174 0.4186 0.2944 0.1864 1.5780 0.0294 1.5210 0.0558
+#&gt; 39: 94.0504 -5.8302 -0.0995 2.2847 -1.0418 3.4455 3.2465 0.4240 0.2796 0.1771 1.6888 0.0242 1.7744 0.0366
+#&gt; 40: 93.8918 -5.9418 -0.0988 2.2925 -1.0613 3.2732 3.0842 0.4144 0.2672 0.1837 1.7275 0.0232 1.7840 0.0357
+#&gt; 41: 93.7961 -6.0741 -0.0896 2.2932 -1.0359 3.1095 3.2890 0.4236 0.2606 0.1782 1.7591 0.0212 1.8920 0.0273
+#&gt; 42: 93.9458 -6.0319 -0.0909 2.3114 -1.0281 3.0544 3.1246 0.4196 0.2598 0.1839 1.6854 0.0310 1.7586 0.0308
+#&gt; 43: 93.7623 -6.0165 -0.1056 2.2837 -1.0378 3.9092 3.2100 0.4298 0.2468 0.1747 1.7064 0.0286 1.6676 0.0397
+#&gt; 44: 93.4300 -5.9019 -0.1114 2.2716 -1.0167 4.4100 3.0495 0.4476 0.2345 0.1687 1.7989 0.0253 1.7741 0.0299
+#&gt; 45: 93.3475 -5.9962 -0.1231 2.2546 -1.0007 6.4879 3.3965 0.4528 0.2452 0.1602 1.7283 0.0276 1.7219 0.0379
+#&gt; 46: 93.3100 -6.0073 -0.1255 2.2483 -0.9962 6.6009 3.5942 0.4520 0.2533 0.1568 1.6991 0.0258 1.1783 0.0706
+#&gt; 47: 93.4422 -5.8442 -0.1286 2.2578 -0.9819 6.2709 3.4145 0.4492 0.2637 0.1694 1.6754 0.0317 1.3442 0.0599
+#&gt; 48: 93.0996 -5.5881 -0.1307 2.2541 -0.9882 5.9573 3.2438 0.4480 0.2665 0.1695 1.7040 0.0285 1.6825 0.0426
+#&gt; 49: 93.3649 -5.8011 -0.1260 2.2595 -0.9704 5.7230 3.0816 0.4399 0.2646 0.1715 1.6544 0.0297 1.6414 0.0418
+#&gt; 50: 93.9331 -5.8731 -0.1195 2.2615 -0.9837 5.4368 2.9275 0.4453 0.2735 0.1940 1.6316 0.0289 1.6885 0.0392
+#&gt; 51: 93.6092 -5.8721 -0.1237 2.2599 -1.0015 5.1650 2.7811 0.4413 0.2865 0.1939 1.6492 0.0272 1.7686 0.0358
+#&gt; 52: 93.3008 -5.9775 -0.1277 2.2628 -0.9962 4.9067 3.1139 0.4438 0.2946 0.1963 1.5642 0.0337 1.7391 0.0335
+#&gt; 53: 93.6347 -6.0805 -0.1189 2.2663 -1.0177 4.6614 3.5169 0.4335 0.2962 0.2043 1.5275 0.0343 1.7417 0.0366
+#&gt; 54: 93.5781 -6.0412 -0.1166 2.2573 -1.0015 4.4283 3.3411 0.4395 0.2912 0.2080 1.5464 0.0346 1.7584 0.0359
+#&gt; 55: 93.9675 -6.0867 -0.0952 2.2970 -0.9987 4.2069 3.6762 0.4550 0.2780 0.1988 1.5138 0.0405 1.6251 0.0472
+#&gt; 56: 94.4069 -6.1375 -0.0943 2.2975 -1.0190 3.9966 4.2280 0.4550 0.2806 0.1945 1.5294 0.0425 1.6443 0.0468
+#&gt; 57: 93.8076 -6.1618 -0.0936 2.2687 -1.0237 3.7967 4.3085 0.4524 0.2666 0.1897 1.5227 0.0414 1.6955 0.0438
+#&gt; 58: 93.9188 -6.2272 -0.0947 2.2767 -1.0408 3.6069 4.6707 0.4536 0.2676 0.1873 1.5201 0.0425 1.5336 0.0550
+#&gt; 59: 93.9572 -6.3460 -0.1074 2.2746 -1.0069 3.4266 5.8058 0.4614 0.2718 0.1919 1.5533 0.0417 1.6227 0.0460
+#&gt; 60: 93.5430 -6.1622 -0.1048 2.2861 -0.9959 3.2552 5.5155 0.4535 0.2848 0.1823 1.4745 0.0431 1.5242 0.0522
+#&gt; 61: 93.8016 -6.4079 -0.1065 2.2897 -1.0325 3.0925 5.9252 0.4583 0.2901 0.1732 1.5364 0.0365 1.4623 0.0550
+#&gt; 62: 93.4249 -6.2284 -0.0967 2.3126 -1.0208 2.9378 5.6289 0.4429 0.2756 0.1645 1.6111 0.0325 1.3996 0.0618
+#&gt; 63: 93.2335 -6.0996 -0.1051 2.3047 -0.9976 2.7909 5.3475 0.4292 0.2719 0.1633 1.6010 0.0326 1.5115 0.0494
+#&gt; 64: 92.7091 -6.1109 -0.1041 2.3032 -0.9746 3.2610 5.0801 0.4301 0.2793 0.1751 1.5979 0.0302 1.3867 0.0575
+#&gt; 65: 92.6059 -6.0049 -0.1077 2.3062 -0.9853 3.0979 4.8261 0.4316 0.2826 0.1714 1.6357 0.0272 1.3931 0.0543
+#&gt; 66: 92.7778 -6.0856 -0.1040 2.3057 -0.9828 2.9430 4.5848 0.4362 0.2888 0.1628 1.6126 0.0316 1.4340 0.0505
+#&gt; 67: 93.0325 -6.1775 -0.1085 2.3122 -0.9714 2.7959 4.3790 0.4464 0.2843 0.1547 1.6090 0.0354 1.4966 0.0448
+#&gt; 68: 92.8987 -5.8741 -0.1089 2.3184 -0.9567 2.6561 4.1601 0.4389 0.2866 0.1470 1.5888 0.0347 1.4492 0.0507
+#&gt; 69: 92.7300 -6.0473 -0.1070 2.3082 -0.9739 2.5233 4.0183 0.4371 0.3158 0.1527 1.5904 0.0298 1.5387 0.0477
+#&gt; 70: 92.5285 -6.0962 -0.1115 2.3179 -0.9785 2.4856 4.0612 0.4380 0.3059 0.1504 1.5237 0.0402 1.4541 0.0463
+#&gt; 71: 92.3975 -6.2090 -0.1269 2.2819 -0.9713 2.3613 4.3811 0.4173 0.2906 0.1520 1.5388 0.0316 1.3713 0.0584
+#&gt; 72: 92.1593 -6.2214 -0.1217 2.2950 -0.9481 2.2433 5.1205 0.4227 0.2760 0.1605 1.5431 0.0312 1.5797 0.0459
+#&gt; 73: 92.1195 -6.6667 -0.1244 2.3076 -0.9642 2.1311 7.6538 0.4124 0.2622 0.1525 1.4505 0.0375 1.2810 0.0595
+#&gt; 74: 92.2191 -6.6665 -0.1278 2.2989 -0.9703 2.0246 7.2711 0.4098 0.2491 0.1666 1.4309 0.0384 1.2717 0.0638
+#&gt; 75: 92.4656 -6.8881 -0.1274 2.3011 -0.9595 1.9233 8.3835 0.4147 0.2367 0.1656 1.4181 0.0424 1.2498 0.0620
+#&gt; 76: 92.4593 -6.2323 -0.1203 2.2912 -0.9799 1.8272 7.9643 0.3967 0.2301 0.1596 1.5448 0.0336 1.6758 0.0359
+#&gt; 77: 92.4501 -6.1123 -0.1219 2.2889 -0.9426 1.7358 7.5661 0.4049 0.2299 0.1594 1.5380 0.0327 1.6947 0.0364
+#&gt; 78: 92.5059 -6.0339 -0.1198 2.2985 -0.9544 1.6490 7.1878 0.4007 0.2422 0.1568 1.5722 0.0302 1.5665 0.0415
+#&gt; 79: 92.4302 -6.6428 -0.1141 2.3119 -0.9421 1.5666 9.0889 0.3986 0.2340 0.1489 1.5029 0.0306 1.1894 0.0638
+#&gt; 80: 92.5305 -6.3036 -0.1127 2.3099 -0.9406 1.9062 8.6344 0.4091 0.2327 0.1648 1.5558 0.0308 1.0136 0.0749
+#&gt; 81: 92.6652 -6.0832 -0.1167 2.2994 -0.9552 2.3641 8.2027 0.4142 0.2348 0.1566 1.6232 0.0300 1.1320 0.0712
+#&gt; 82: 92.5109 -6.1524 -0.1100 2.3037 -0.9686 2.2459 7.7926 0.4145 0.2381 0.1695 1.6128 0.0306 1.6145 0.0413
+#&gt; 83: 92.6455 -6.3979 -0.1059 2.3245 -0.9573 2.1336 8.1077 0.4060 0.2348 0.1667 1.6039 0.0304 1.6251 0.0419
+#&gt; 84: 92.5768 -6.3469 -0.0979 2.3177 -0.9346 2.0269 8.2125 0.4141 0.2439 0.1720 1.6334 0.0302 1.5803 0.0450
+#&gt; 85: 92.7920 -6.3536 -0.0969 2.3363 -0.9389 1.9256 8.1820 0.4035 0.2512 0.1713 1.5815 0.0338 1.1193 0.0719
+#&gt; 86: 92.8571 -6.2567 -0.0911 2.3426 -0.9633 1.8293 8.1211 0.4008 0.2659 0.1627 1.5840 0.0356 1.2425 0.0639
+#&gt; 87: 92.9101 -6.1557 -0.0937 2.3326 -0.9624 1.7378 7.7151 0.3950 0.2839 0.1546 1.6017 0.0354 1.0600 0.0766
+#&gt; 88: 92.7649 -6.2151 -0.0881 2.3275 -0.9967 1.6509 7.3293 0.4046 0.2697 0.1469 1.6092 0.0302 1.1839 0.0693
+#&gt; 89: 92.9350 -5.9222 -0.0903 2.3372 -0.9612 1.5684 6.9628 0.4058 0.2818 0.1395 1.5957 0.0335 1.5450 0.0444
+#&gt; 90: 92.7895 -5.9348 -0.0890 2.3457 -0.9601 1.4900 6.6147 0.4070 0.2705 0.1430 1.5716 0.0378 1.4918 0.0439
+#&gt; 91: 93.0113 -5.9302 -0.0997 2.3316 -0.9489 1.4155 6.2840 0.4424 0.2929 0.1410 1.5582 0.0377 1.2459 0.0582
+#&gt; 92: 92.8603 -6.3366 -0.0918 2.3356 -0.9938 1.3447 5.9698 0.4287 0.2929 0.1531 1.4906 0.0398 1.2421 0.0605
+#&gt; 93: 92.8094 -6.1097 -0.0953 2.3382 -0.9996 1.2775 5.6713 0.4309 0.2783 0.1597 1.4317 0.0468 1.2694 0.0584
+#&gt; 94: 92.7100 -6.1043 -0.0909 2.3287 -0.9928 1.3828 5.3877 0.4337 0.2698 0.1517 1.4173 0.0489 1.4335 0.0476
+#&gt; 95: 92.2055 -6.1792 -0.0889 2.3553 -0.9983 1.3137 5.1183 0.4209 0.3273 0.1566 1.4865 0.0417 1.2485 0.0681
+#&gt; 96: 92.3225 -6.2710 -0.0811 2.3734 -1.0043 1.3428 4.8624 0.4121 0.3110 0.1532 1.5817 0.0374 1.5209 0.0532
+#&gt; 97: 92.2983 -6.3023 -0.0776 2.3615 -0.9801 1.2757 4.6193 0.4221 0.3018 0.1455 1.5971 0.0337 1.2137 0.0719
+#&gt; 98: 92.1433 -6.3114 -0.0935 2.3269 -0.9866 1.2227 4.8121 0.4327 0.2907 0.1694 1.5524 0.0303 1.1779 0.0727
+#&gt; 99: 92.1631 -6.3090 -0.0908 2.3197 -0.9891 1.1615 4.9271 0.4169 0.2859 0.1736 1.5303 0.0334 1.6227 0.0511
+#&gt; 100: 92.1185 -6.3603 -0.0950 2.3280 -1.0209 1.1035 5.0957 0.4213 0.2924 0.1817 1.5991 0.0330 1.7197 0.0445
+#&gt; 101: 92.3964 -6.0447 -0.0898 2.3347 -1.0164 1.0483 4.8409 0.4251 0.2778 0.1727 1.5708 0.0422 1.6197 0.0461
+#&gt; 102: 92.6597 -6.2545 -0.0954 2.3264 -1.0206 0.9959 4.5989 0.4218 0.2736 0.1640 1.5853 0.0408 1.5912 0.0455
+#&gt; 103: 92.7866 -6.3292 -0.0933 2.3148 -1.0013 0.9461 4.8935 0.4234 0.2599 0.1688 1.6299 0.0399 1.5921 0.0445
+#&gt; 104: 92.8098 -6.2608 -0.1009 2.3014 -0.9947 0.8988 4.7750 0.4306 0.2548 0.1813 1.6363 0.0378 1.6713 0.0427
+#&gt; 105: 92.8300 -5.9827 -0.1028 2.3155 -0.9896 0.8538 4.5362 0.4339 0.2664 0.1722 1.6079 0.0397 1.3691 0.0573
+#&gt; 106: 92.8218 -6.1138 -0.1024 2.3462 -0.9750 0.8299 4.3094 0.4494 0.2530 0.1636 1.5761 0.0389 1.2857 0.0595
+#&gt; 107: 92.9304 -6.0063 -0.1002 2.3269 -0.9778 0.7884 4.0939 0.4600 0.2404 0.1620 1.6499 0.0373 1.2101 0.0675
+#&gt; 108: 92.9072 -6.0928 -0.0991 2.3183 -0.9732 0.7489 4.4394 0.4584 0.2518 0.1539 1.6509 0.0332 1.2346 0.0670
+#&gt; 109: 92.7504 -6.1545 -0.0862 2.3423 -0.9618 0.7115 4.7501 0.4371 0.2766 0.1465 1.5755 0.0349 1.1552 0.0701
+#&gt; 110: 92.9277 -6.3786 -0.0904 2.3468 -0.9402 0.6759 5.8620 0.4328 0.2821 0.1703 1.4661 0.0439 1.3292 0.0609
+#&gt; 111: 92.8023 -5.8686 -0.0886 2.3653 -0.9417 0.7635 5.5689 0.4288 0.2680 0.1618 1.4278 0.0502 1.4715 0.0468
+#&gt; 112: 92.9411 -5.8095 -0.0883 2.3625 -0.9322 0.8592 5.2905 0.4562 0.2586 0.1537 1.3920 0.0513 1.1766 0.0648
+#&gt; 113: 92.9845 -6.0499 -0.0761 2.3626 -0.9533 0.8163 5.0259 0.4403 0.2595 0.1532 1.4306 0.0450 1.1416 0.0645
+#&gt; 114: 92.7735 -6.0605 -0.0694 2.3497 -0.9646 0.7754 4.7746 0.4394 0.2682 0.1576 1.4866 0.0344 1.1127 0.0745
+#&gt; 115: 92.7048 -6.1327 -0.0702 2.3427 -0.9910 0.7367 4.5359 0.4257 0.2736 0.1497 1.5045 0.0413 1.2783 0.0677
+#&gt; 116: 92.7131 -6.0115 -0.0751 2.3370 -0.9899 0.6998 4.3091 0.4187 0.2638 0.1422 1.6036 0.0325 1.1109 0.0748
+#&gt; 117: 92.7720 -5.9163 -0.0709 2.3503 -0.9566 0.6648 4.0937 0.4185 0.2555 0.1417 1.6016 0.0297 1.0778 0.0774
+#&gt; 118: 92.9182 -5.9312 -0.0812 2.3436 -0.9731 0.6316 3.8890 0.4084 0.2667 0.1400 1.5698 0.0320 1.2364 0.0665
+#&gt; 119: 92.9546 -5.9622 -0.0870 2.3330 -0.9934 0.6000 3.6945 0.4035 0.2867 0.1486 1.5364 0.0343 1.5892 0.0489
+#&gt; 120: 92.9168 -6.0966 -0.0905 2.3301 -1.0045 0.5700 3.6677 0.3988 0.2871 0.1567 1.5378 0.0349 1.0886 0.0796
+#&gt; 121: 92.7767 -6.1038 -0.0802 2.3396 -0.9815 0.5981 4.3032 0.3803 0.2884 0.1684 1.4788 0.0335 1.0886 0.0796
+#&gt; 122: 92.8439 -6.2425 -0.0799 2.3323 -0.9987 0.6537 4.5745 0.3884 0.2834 0.1600 1.4786 0.0346 1.2146 0.0682
+#&gt; 123: 92.8219 -5.7869 -0.0872 2.3478 -0.9619 0.7886 4.3458 0.3951 0.2887 0.1658 1.4827 0.0341 1.3911 0.0559
+#&gt; 124: 92.7930 -5.7551 -0.0819 2.3559 -0.9809 0.8922 4.1285 0.3907 0.2972 0.1575 1.5329 0.0330 1.3824 0.0594
+#&gt; 125: 92.7488 -5.9406 -0.0819 2.3550 -0.9797 0.8476 3.9221 0.3907 0.2996 0.1733 1.5096 0.0333 1.3148 0.0667
+#&gt; 126: 92.7926 -5.7106 -0.0824 2.3560 -0.9653 0.8052 3.7260 0.3918 0.3018 0.1854 1.4237 0.0381 1.2607 0.0639
+#&gt; 127: 92.9153 -5.6682 -0.0717 2.3654 -0.9645 0.7649 3.5397 0.3722 0.2948 0.1784 1.4679 0.0415 1.2310 0.0695
+#&gt; 128: 92.8827 -5.7984 -0.0783 2.3813 -1.0047 1.1012 3.3627 0.3802 0.2997 0.1694 1.5187 0.0442 1.2884 0.0649
+#&gt; 129: 92.8727 -5.7191 -0.0785 2.3426 -0.9857 1.0461 3.1946 0.3784 0.2984 0.1610 1.4757 0.0398 1.1695 0.0775
+#&gt; 130: 92.8689 -5.8036 -0.0935 2.3123 -0.9783 0.9938 3.0348 0.4184 0.2980 0.1723 1.5143 0.0319 1.2298 0.0738
+#&gt; 131: 92.8733 -5.6707 -0.0988 2.3045 -0.9936 1.3313 2.8831 0.4277 0.2831 0.1816 1.5919 0.0329 1.5260 0.0533
+#&gt; 132: 92.5761 -5.7773 -0.0925 2.3211 -0.9661 1.2647 2.7389 0.4216 0.2815 0.1995 1.5306 0.0321 1.5863 0.0520
+#&gt; 133: 92.4512 -5.7800 -0.0920 2.3269 -0.9625 1.2015 2.6020 0.4242 0.2674 0.1955 1.5669 0.0288 1.4087 0.0606
+#&gt; 134: 92.5625 -5.7968 -0.0965 2.3271 -0.9728 1.1414 2.4719 0.4201 0.2753 0.1945 1.5935 0.0311 1.5348 0.0534
+#&gt; 135: 92.3448 -5.6624 -0.0961 2.3303 -0.9600 1.0843 2.3483 0.4193 0.2728 0.1983 1.6245 0.0305 1.6281 0.0506
+#&gt; 136: 92.3407 -5.7523 -0.0932 2.3208 -0.9897 1.0301 2.3267 0.4107 0.2668 0.1884 1.5933 0.0358 1.2970 0.0657
+#&gt; 137: 92.3940 -6.0148 -0.1046 2.2981 -0.9866 0.9786 3.1382 0.4166 0.3012 0.1790 1.5077 0.0385 1.1944 0.0723
+#&gt; 138: 92.3556 -5.9912 -0.1039 2.2969 -0.9920 0.9297 3.2144 0.4208 0.3039 0.1703 1.5042 0.0378 1.2588 0.0717
+#&gt; 139: 92.5548 -5.9253 -0.1177 2.2723 -1.0079 0.8832 3.2648 0.4049 0.3263 0.1618 1.5558 0.0382 1.2673 0.0698
+#&gt; 140: 92.6546 -6.0596 -0.1368 2.2659 -0.9922 0.8390 3.3893 0.3846 0.3100 0.1537 1.5475 0.0355 1.3190 0.0629
+#&gt; 141: 92.6661 -5.9744 -0.1379 2.2793 -0.9754 0.8287 3.2725 0.3800 0.3178 0.1528 1.5076 0.0361 1.4087 0.0540
+#&gt; 142: 92.5681 -5.7650 -0.1033 2.3249 -0.9613 0.7872 3.1089 0.3610 0.3564 0.1701 1.4733 0.0332 1.2603 0.0720
+#&gt; 143: 92.4184 -5.6070 -0.1033 2.3520 -0.9764 0.7479 2.9534 0.3591 0.3758 0.1674 1.5420 0.0390 1.3280 0.0614
+#&gt; 144: 92.5354 -5.6144 -0.0978 2.3801 -0.9425 0.7105 2.8058 0.3538 0.3606 0.1722 1.4884 0.0400 1.3455 0.0620
+#&gt; 145: 92.4207 -5.6541 -0.0746 2.3873 -0.9633 0.6750 2.6655 0.3361 0.3426 0.1718 1.4981 0.0416 1.2440 0.0685
+#&gt; 146: 92.3058 -5.6608 -0.0731 2.3755 -0.9732 0.6412 2.5322 0.3193 0.3304 0.1719 1.6391 0.0348 1.1788 0.0743
+#&gt; 147: 92.4067 -5.7615 -0.0746 2.3775 -0.9903 0.6091 2.4056 0.3148 0.3311 0.1709 1.6695 0.0314 1.2931 0.0676
+#&gt; 148: 92.3739 -5.8812 -0.0820 2.3644 -0.9823 0.5787 2.7260 0.3332 0.3296 0.1794 1.6168 0.0303 1.3206 0.0670
+#&gt; 149: 92.4456 -5.8277 -0.0921 2.3508 -0.9924 0.5498 2.8750 0.3368 0.3305 0.1917 1.5602 0.0302 1.3622 0.0608
+#&gt; 150: 92.5049 -5.7964 -0.1003 2.3353 -0.9809 0.5223 2.7312 0.3291 0.3634 0.1874 1.5035 0.0301 1.4002 0.0615
+#&gt; 151: 92.3292 -6.0377 -0.1039 2.3301 -0.9866 0.4962 3.3342 0.3348 0.3626 0.1780 1.4819 0.0298 1.3217 0.0672
+#&gt; 152: 92.3747 -6.0460 -0.1023 2.3154 -1.0242 0.5079 3.4530 0.3371 0.3518 0.1674 1.6034 0.0296 1.2304 0.0749
+#&gt; 153: 92.3909 -5.8707 -0.1008 2.3284 -0.9897 0.5623 2.8180 0.3480 0.3792 0.1749 1.4953 0.0291 1.3442 0.0677
+#&gt; 154: 92.2532 -5.9313 -0.0991 2.3232 -0.9839 0.5340 3.3946 0.3502 0.3723 0.1729 1.4837 0.0280 1.1452 0.0776
+#&gt; 155: 92.1782 -6.1012 -0.0988 2.3339 -0.9600 0.3900 3.9676 0.3593 0.3704 0.1531 1.4927 0.0286 1.1848 0.0730
+#&gt; 156: 92.2225 -5.8387 -0.0991 2.3393 -0.9459 0.3294 3.0685 0.3598 0.3808 0.1568 1.5540 0.0318 1.3419 0.0671
+#&gt; 157: 92.2411 -5.7045 -0.1038 2.3578 -0.9252 0.2797 2.5238 0.3716 0.3579 0.1653 1.4704 0.0373 1.1959 0.0686
+#&gt; 158: 92.2865 -5.6692 -0.1009 2.3771 -0.9532 0.2840 2.4144 0.3592 0.3610 0.1641 1.5065 0.0389 1.1780 0.0674
+#&gt; 159: 92.2771 -5.7526 -0.0782 2.3632 -0.9771 0.2996 2.7295 0.3357 0.3779 0.1606 1.5818 0.0366 1.1512 0.0781
+#&gt; 160: 92.3400 -5.8039 -0.0811 2.3615 -0.9453 0.2707 2.7305 0.3373 0.3834 0.1528 1.4765 0.0370 1.1427 0.0756
+#&gt; 161: 92.4180 -5.7448 -0.0961 2.3653 -0.9508 0.2965 2.6051 0.3666 0.3833 0.1647 1.4581 0.0364 0.9817 0.0827
+#&gt; 162: 92.4487 -5.8952 -0.0889 2.3460 -0.9646 0.2370 3.1413 0.3460 0.3801 0.1571 1.4528 0.0346 1.0006 0.0798
+#&gt; 163: 92.5251 -5.8567 -0.0987 2.3342 -0.9615 0.1453 2.9917 0.3535 0.3735 0.1452 1.4521 0.0330 1.0498 0.0766
+#&gt; 164: 92.5949 -6.1580 -0.1008 2.3332 -0.9749 0.1095 4.1797 0.3586 0.3767 0.1355 1.4659 0.0310 1.0218 0.0797
+#&gt; 165: 92.5794 -6.0542 -0.1001 2.3321 -0.9795 0.1332 4.2924 0.3588 0.3752 0.1386 1.4858 0.0313 0.9836 0.0812
+#&gt; 166: 92.6686 -6.0065 -0.0960 2.3623 -0.9532 0.1465 4.0810 0.3439 0.3683 0.1647 1.3929 0.0372 0.9354 0.0837
+#&gt; 167: 92.7086 -6.2096 -0.0895 2.3656 -0.9552 0.1938 4.6857 0.3325 0.3519 0.1681 1.4281 0.0362 1.0329 0.0784
+#&gt; 168: 92.6096 -6.0709 -0.0880 2.3595 -0.9474 0.2141 4.1277 0.3379 0.3527 0.1620 1.4264 0.0347 0.9627 0.0836
+#&gt; 169: 92.5365 -5.9418 -0.0919 2.3546 -0.9575 0.3620 3.7767 0.3489 0.3589 0.1609 1.4761 0.0360 1.1348 0.0745
+#&gt; 170: 92.6270 -5.8404 -0.0935 2.3562 -0.9517 0.3312 3.2506 0.3552 0.3607 0.1560 1.4506 0.0383 1.0731 0.0722
+#&gt; 171: 92.5606 -5.9213 -0.0899 2.3513 -0.9554 0.4399 3.5587 0.3599 0.3646 0.1385 1.4779 0.0349 0.9844 0.0775
+#&gt; 172: 92.3630 -5.7066 -0.0765 2.3798 -0.9314 0.5208 2.5578 0.3458 0.3657 0.1547 1.4900 0.0348 1.0485 0.0765
+#&gt; 173: 92.2527 -5.5811 -0.0713 2.4173 -0.9221 0.8674 2.2100 0.3448 0.3370 0.1513 1.5403 0.0445 1.4403 0.0518
+#&gt; 174: 92.3852 -5.5348 -0.0712 2.4066 -0.9033 0.7543 2.1568 0.3457 0.3324 0.1482 1.5322 0.0407 1.2744 0.0623
+#&gt; 175: 92.4798 -5.5494 -0.0712 2.4004 -0.9100 0.5675 2.0147 0.3457 0.3333 0.1629 1.5229 0.0383 1.2917 0.0655
+#&gt; 176: 92.5881 -5.5613 -0.0675 2.4180 -0.9188 0.4011 2.0736 0.3413 0.3487 0.1781 1.5149 0.0389 1.1499 0.0669
+#&gt; 177: 92.6015 -5.4951 -0.0494 2.4324 -0.9525 0.4992 1.9009 0.3629 0.3353 0.1919 1.4881 0.0393 1.2289 0.0650
+#&gt; 178: 92.6317 -5.4943 -0.0505 2.4373 -0.9298 0.5087 1.6116 0.3631 0.3324 0.1906 1.4475 0.0454 1.0764 0.0701
+#&gt; 179: 92.7043 -5.5326 -0.0419 2.4386 -0.9376 0.4350 1.8241 0.3577 0.3757 0.1991 1.4445 0.0424 0.9626 0.0833
+#&gt; 180: 92.7457 -5.5591 -0.0371 2.4684 -0.9450 0.3973 1.7797 0.3507 0.3707 0.1944 1.4392 0.0415 1.0784 0.0764
+#&gt; 181: 92.6287 -5.5741 -0.0368 2.4489 -0.9459 0.4744 1.8016 0.3502 0.3544 0.1970 1.4317 0.0392 0.9225 0.0848
+#&gt; 182: 92.6121 -5.5593 -0.0316 2.4610 -0.9345 0.6054 1.9206 0.3492 0.3538 0.1855 1.4410 0.0367 0.8977 0.0878
+#&gt; 183: 92.4258 -5.4737 -0.0393 2.4592 -0.9319 0.8062 1.7845 0.3528 0.3544 0.1649 1.4545 0.0409 1.0723 0.0751
+#&gt; 184: 92.3939 -5.5961 -0.0479 2.4268 -0.9435 1.0246 2.2534 0.3497 0.3289 0.1363 1.5022 0.0370 1.1058 0.0729
+#&gt; 185: 92.4673 -5.5415 -0.0525 2.4157 -0.9058 0.8296 2.2848 0.3406 0.3314 0.1706 1.4935 0.0367 1.1362 0.0722
+#&gt; 186: 92.4122 -5.6594 -0.0574 2.4466 -0.9430 0.9133 2.3350 0.3327 0.3596 0.1506 1.4450 0.0404 1.2273 0.0629
+#&gt; 187: 92.5416 -5.5472 -0.0521 2.4393 -0.9261 0.9731 1.9228 0.3208 0.3673 0.1421 1.4890 0.0409 1.2553 0.0626
+#&gt; 188: 92.5502 -5.6425 -0.0591 2.4345 -0.9246 0.9315 2.2041 0.3184 0.3639 0.1319 1.4896 0.0392 1.0986 0.0684
+#&gt; 189: 92.4180 -5.6737 -0.0504 2.4448 -0.9191 0.9006 2.4647 0.3102 0.3743 0.1648 1.4649 0.0397 1.1320 0.0742
+#&gt; 190: 92.5821 -5.5823 -0.0363 2.4588 -0.9205 0.9862 2.2692 0.2820 0.4087 0.1459 1.3938 0.0412 0.9562 0.0815
+#&gt; 191: 92.3708 -5.5825 -0.0418 2.4621 -0.9231 0.9867 2.4743 0.2890 0.4196 0.1445 1.4619 0.0403 0.9630 0.0811
+#&gt; 192: 92.2628 -5.5337 -0.0366 2.4392 -0.9194 0.6944 2.2771 0.2909 0.4169 0.1279 1.4745 0.0363 0.8601 0.0892
+#&gt; 193: 92.4854 -5.6303 -0.0352 2.4484 -0.9316 0.4403 2.3253 0.2928 0.4109 0.1282 1.4768 0.0399 0.8886 0.0871
+#&gt; 194: 92.4900 -5.5824 -0.0372 2.4648 -0.9451 0.4891 2.6428 0.2899 0.4160 0.1331 1.5124 0.0412 0.9340 0.0853
+#&gt; 195: 92.4685 -5.7658 -0.0357 2.4659 -0.9217 0.4549 3.3767 0.2921 0.4171 0.1552 1.5062 0.0396 1.0336 0.0817
+#&gt; 196: 92.4125 -5.7544 -0.0255 2.4834 -0.9230 0.4146 3.1963 0.3000 0.4369 0.1501 1.4560 0.0430 0.9942 0.0813
+#&gt; 197: 92.3284 -5.9347 -0.0305 2.4860 -0.9448 0.4115 3.5642 0.3129 0.4314 0.1740 1.3441 0.0473 1.0954 0.0723
+#&gt; 198: 92.3428 -5.9255 -0.0266 2.4822 -0.9463 0.3258 3.4818 0.3185 0.4163 0.1716 1.3868 0.0447 0.9452 0.0788
+#&gt; 199: 92.1692 -6.0683 -0.0227 2.4860 -0.9495 0.2685 4.4044 0.3149 0.4064 0.1824 1.3558 0.0478 1.0294 0.0749
+#&gt; 200: 92.0965 -6.1541 -0.0261 2.4793 -0.9288 0.2210 4.4026 0.3265 0.4200 0.1772 1.3348 0.0441 1.0018 0.0761
+#&gt; 201: 92.1362 -6.1170 -0.0244 2.4776 -0.9237 0.1801 4.4160 0.3276 0.4303 0.1732 1.3479 0.0418 0.9419 0.0809
+#&gt; 202: 92.1114 -6.0898 -0.0233 2.4862 -0.9253 0.1506 4.4494 0.3286 0.4305 0.1656 1.3473 0.0440 0.9394 0.0802
+#&gt; 203: 92.0893 -6.1307 -0.0233 2.4894 -0.9258 0.1510 4.7958 0.3310 0.4233 0.1673 1.3396 0.0457 0.9617 0.0788
+#&gt; 204: 92.0870 -6.0914 -0.0230 2.4867 -0.9234 0.1589 4.6265 0.3316 0.4237 0.1643 1.3478 0.0456 0.9509 0.0793
+#&gt; 205: 92.0800 -6.0960 -0.0228 2.4867 -0.9256 0.1613 4.6319 0.3321 0.4226 0.1623 1.3399 0.0463 0.9547 0.0789
+#&gt; 206: 92.1037 -6.0869 -0.0238 2.4833 -0.9264 0.1648 4.5547 0.3341 0.4186 0.1606 1.3351 0.0466 0.9453 0.0797
+#&gt; 207: 92.1212 -6.0561 -0.0247 2.4821 -0.9299 0.1677 4.3736 0.3363 0.4150 0.1602 1.3394 0.0467 0.9552 0.0790
+#&gt; 208: 92.1203 -6.0351 -0.0260 2.4804 -0.9309 0.1616 4.2520 0.3369 0.4120 0.1613 1.3366 0.0466 0.9667 0.0785
+#&gt; 209: 92.1169 -6.0133 -0.0277 2.4792 -0.9300 0.1596 4.1237 0.3352 0.4111 0.1616 1.3344 0.0464 0.9741 0.0778
+#&gt; 210: 92.1195 -5.9866 -0.0289 2.4752 -0.9287 0.1586 3.9853 0.3352 0.4091 0.1602 1.3410 0.0461 0.9708 0.0778
+#&gt; 211: 92.1243 -5.9458 -0.0316 2.4687 -0.9287 0.1606 3.8383 0.3366 0.4094 0.1607 1.3525 0.0455 0.9759 0.0778
+#&gt; 212: 92.1384 -5.9338 -0.0345 2.4640 -0.9280 0.1635 3.7875 0.3375 0.4105 0.1594 1.3589 0.0454 0.9800 0.0776
+#&gt; 213: 92.1481 -5.9191 -0.0379 2.4587 -0.9269 0.1629 3.7150 0.3375 0.4100 0.1586 1.3673 0.0449 0.9839 0.0775
+#&gt; 214: 92.1523 -5.9189 -0.0408 2.4542 -0.9270 0.1593 3.7061 0.3375 0.4092 0.1579 1.3731 0.0446 0.9847 0.0773
+#&gt; 215: 92.1548 -5.9183 -0.0429 2.4499 -0.9269 0.1604 3.7075 0.3369 0.4095 0.1574 1.3765 0.0442 0.9821 0.0775
+#&gt; 216: 92.1547 -5.9171 -0.0450 2.4455 -0.9270 0.1600 3.6967 0.3368 0.4100 0.1571 1.3811 0.0438 0.9830 0.0776
+#&gt; 217: 92.1556 -5.9141 -0.0468 2.4422 -0.9281 0.1580 3.6732 0.3361 0.4102 0.1578 1.3864 0.0435 0.9995 0.0770
+#&gt; 218: 92.1587 -5.9173 -0.0477 2.4395 -0.9287 0.1545 3.6822 0.3351 0.4112 0.1580 1.3882 0.0432 1.0001 0.0772
+#&gt; 219: 92.1590 -5.9188 -0.0483 2.4374 -0.9303 0.1540 3.6595 0.3341 0.4132 0.1578 1.3889 0.0430 0.9983 0.0775
+#&gt; 220: 92.1614 -5.9303 -0.0493 2.4353 -0.9321 0.1559 3.6914 0.3336 0.4141 0.1581 1.3914 0.0427 1.0003 0.0775
+#&gt; 221: 92.1657 -5.9455 -0.0504 2.4328 -0.9344 0.1585 3.7569 0.3329 0.4140 0.1591 1.3938 0.0424 1.0064 0.0773
+#&gt; 222: 92.1697 -5.9320 -0.0515 2.4306 -0.9358 0.1617 3.6783 0.3321 0.4145 0.1600 1.3992 0.0421 1.0107 0.0772
+#&gt; 223: 92.1754 -5.9205 -0.0525 2.4280 -0.9375 0.1630 3.6233 0.3313 0.4158 0.1604 1.4072 0.0416 1.0216 0.0770
+#&gt; 224: 92.1809 -5.9149 -0.0534 2.4264 -0.9386 0.1623 3.5812 0.3306 0.4167 0.1607 1.4130 0.0413 1.0349 0.0764
+#&gt; 225: 92.1872 -5.9099 -0.0543 2.4243 -0.9390 0.1619 3.5446 0.3299 0.4174 0.1607 1.4152 0.0411 1.0348 0.0766
+#&gt; 226: 92.1935 -5.9046 -0.0554 2.4224 -0.9396 0.1631 3.5046 0.3299 0.4183 0.1608 1.4157 0.0409 1.0375 0.0766
+#&gt; 227: 92.2026 -5.8964 -0.0567 2.4198 -0.9400 0.1637 3.4591 0.3303 0.4183 0.1614 1.4144 0.0408 1.0444 0.0763
+#&gt; 228: 92.2069 -5.8852 -0.0578 2.4175 -0.9407 0.1633 3.4091 0.3308 0.4185 0.1621 1.4144 0.0407 1.0485 0.0763
+#&gt; 229: 92.2122 -5.8844 -0.0591 2.4145 -0.9418 0.1631 3.3899 0.3314 0.4194 0.1622 1.4173 0.0404 1.0514 0.0763
+#&gt; 230: 92.2183 -5.8907 -0.0604 2.4116 -0.9416 0.1640 3.4053 0.3319 0.4202 0.1616 1.4200 0.0401 1.0527 0.0764
+#&gt; 231: 92.2246 -5.8895 -0.0619 2.4087 -0.9422 0.1651 3.3985 0.3323 0.4208 0.1609 1.4234 0.0400 1.0560 0.0762
+#&gt; 232: 92.2282 -5.8840 -0.0632 2.4058 -0.9423 0.1641 3.3771 0.3327 0.4215 0.1609 1.4266 0.0398 1.0585 0.0762
+#&gt; 233: 92.2294 -5.8775 -0.0645 2.4032 -0.9424 0.1620 3.3481 0.3335 0.4216 0.1607 1.4311 0.0395 1.0600 0.0763
+#&gt; 234: 92.2311 -5.8709 -0.0658 2.4006 -0.9421 0.1626 3.3242 0.3343 0.4220 0.1602 1.4340 0.0393 1.0604 0.0764
+#&gt; 235: 92.2312 -5.8656 -0.0668 2.3985 -0.9420 0.1608 3.3023 0.3350 0.4225 0.1596 1.4381 0.0391 1.0600 0.0765
+#&gt; 236: 92.2289 -5.8633 -0.0675 2.3974 -0.9423 0.1599 3.2811 0.3352 0.4227 0.1589 1.4392 0.0390 1.0594 0.0765
+#&gt; 237: 92.2251 -5.8641 -0.0683 2.3960 -0.9435 0.1586 3.2734 0.3351 0.4226 0.1588 1.4403 0.0389 1.0623 0.0765
+#&gt; 238: 92.2242 -5.8633 -0.0690 2.3949 -0.9443 0.1579 3.2547 0.3349 0.4230 0.1590 1.4409 0.0389 1.0659 0.0765
+#&gt; 239: 92.2250 -5.8612 -0.0693 2.3951 -0.9449 0.1558 3.2309 0.3346 0.4234 0.1599 1.4396 0.0389 1.0740 0.0762
+#&gt; 240: 92.2264 -5.8597 -0.0696 2.3949 -0.9446 0.1550 3.2124 0.3342 0.4234 0.1603 1.4401 0.0388 1.0791 0.0760
+#&gt; 241: 92.2281 -5.8562 -0.0699 2.3948 -0.9449 0.1544 3.1933 0.3339 0.4236 0.1604 1.4411 0.0388 1.0825 0.0760
+#&gt; 242: 92.2289 -5.8512 -0.0703 2.3942 -0.9450 0.1534 3.1709 0.3338 0.4235 0.1606 1.4421 0.0388 1.0870 0.0760
+#&gt; 243: 92.2296 -5.8489 -0.0708 2.3934 -0.9446 0.1531 3.1689 0.3342 0.4230 0.1605 1.4423 0.0387 1.0876 0.0760
+#&gt; 244: 92.2311 -5.8446 -0.0715 2.3929 -0.9443 0.1528 3.1630 0.3349 0.4228 0.1604 1.4429 0.0387 1.0916 0.0759
+#&gt; 245: 92.2338 -5.8421 -0.0718 2.3924 -0.9443 0.1528 3.1616 0.3352 0.4224 0.1610 1.4438 0.0387 1.0980 0.0755
+#&gt; 246: 92.2361 -5.8389 -0.0721 2.3918 -0.9439 0.1525 3.1525 0.3354 0.4216 0.1620 1.4438 0.0388 1.1018 0.0753
+#&gt; 247: 92.2374 -5.8388 -0.0724 2.3917 -0.9434 0.1510 3.1605 0.3356 0.4212 0.1629 1.4438 0.0389 1.1050 0.0751
+#&gt; 248: 92.2360 -5.8367 -0.0728 2.3918 -0.9432 0.1505 3.1559 0.3360 0.4207 0.1638 1.4437 0.0389 1.1090 0.0748
+#&gt; 249: 92.2361 -5.8351 -0.0732 2.3914 -0.9435 0.1499 3.1521 0.3363 0.4204 0.1646 1.4433 0.0389 1.1117 0.0748
+#&gt; 250: 92.2353 -5.8349 -0.0733 2.3906 -0.9436 0.1502 3.1607 0.3365 0.4202 0.1646 1.4457 0.0388 1.1107 0.0749
+#&gt; 251: 92.2343 -5.8318 -0.0736 2.3903 -0.9430 0.1494 3.1513 0.3367 0.4201 0.1648 1.4453 0.0387 1.1093 0.0750
+#&gt; 252: 92.2356 -5.8244 -0.0739 2.3895 -0.9424 0.1477 3.1240 0.3369 0.4200 0.1651 1.4460 0.0386 1.1083 0.0750
+#&gt; 253: 92.2367 -5.8188 -0.0742 2.3890 -0.9423 0.1465 3.1025 0.3369 0.4200 0.1649 1.4477 0.0385 1.1092 0.0750
+#&gt; 254: 92.2392 -5.8154 -0.0747 2.3880 -0.9421 0.1458 3.0888 0.3372 0.4195 0.1644 1.4494 0.0384 1.1080 0.0750
+#&gt; 255: 92.2404 -5.8131 -0.0751 2.3870 -0.9417 0.1451 3.0778 0.3375 0.4191 0.1639 1.4501 0.0383 1.1070 0.0751
+#&gt; 256: 92.2408 -5.8109 -0.0753 2.3867 -0.9413 0.1445 3.0740 0.3376 0.4192 0.1633 1.4510 0.0382 1.1064 0.0751
+#&gt; 257: 92.2413 -5.8066 -0.0754 2.3866 -0.9409 0.1446 3.0636 0.3376 0.4191 0.1628 1.4522 0.0382 1.1080 0.0750
+#&gt; 258: 92.2412 -5.8035 -0.0754 2.3869 -0.9404 0.1436 3.0502 0.3372 0.4191 0.1623 1.4534 0.0381 1.1057 0.0751
+#&gt; 259: 92.2399 -5.7996 -0.0753 2.3871 -0.9399 0.1427 3.0357 0.3370 0.4195 0.1621 1.4540 0.0380 1.1037 0.0752
+#&gt; 260: 92.2389 -5.7955 -0.0755 2.3872 -0.9391 0.1420 3.0251 0.3366 0.4199 0.1619 1.4555 0.0380 1.1041 0.0752
+#&gt; 261: 92.2378 -5.7941 -0.0755 2.3875 -0.9385 0.1412 3.0240 0.3362 0.4201 0.1613 1.4575 0.0380 1.1048 0.0751
+#&gt; 262: 92.2361 -5.7920 -0.0756 2.3879 -0.9379 0.1407 3.0182 0.3358 0.4205 0.1607 1.4581 0.0381 1.1047 0.0750
+#&gt; 263: 92.2338 -5.7891 -0.0754 2.3883 -0.9375 0.1407 3.0072 0.3356 0.4211 0.1603 1.4585 0.0381 1.1041 0.0750
+#&gt; 264: 92.2313 -5.7882 -0.0752 2.3886 -0.9371 0.1407 3.0009 0.3355 0.4217 0.1601 1.4574 0.0381 1.1036 0.0750
+#&gt; 265: 92.2312 -5.7843 -0.0752 2.3883 -0.9372 0.1402 2.9872 0.3358 0.4220 0.1599 1.4577 0.0381 1.1026 0.0750
+#&gt; 266: 92.2312 -5.7800 -0.0753 2.3880 -0.9370 0.1396 2.9708 0.3363 0.4223 0.1597 1.4584 0.0381 1.1019 0.0750
+#&gt; 267: 92.2306 -5.7785 -0.0755 2.3878 -0.9372 0.1397 2.9619 0.3368 0.4227 0.1595 1.4578 0.0381 1.1021 0.0750
+#&gt; 268: 92.2287 -5.7803 -0.0758 2.3870 -0.9372 0.1394 2.9777 0.3375 0.4226 0.1594 1.4578 0.0380 1.1032 0.0749
+#&gt; 269: 92.2265 -5.7804 -0.0761 2.3865 -0.9371 0.1399 2.9816 0.3382 0.4226 0.1592 1.4589 0.0380 1.1058 0.0747
+#&gt; 270: 92.2236 -5.7811 -0.0765 2.3860 -0.9369 0.1411 2.9893 0.3386 0.4227 0.1591 1.4597 0.0380 1.1081 0.0745
+#&gt; 271: 92.2211 -5.7793 -0.0769 2.3852 -0.9365 0.1421 2.9888 0.3390 0.4228 0.1591 1.4606 0.0379 1.1083 0.0745
+#&gt; 272: 92.2187 -5.7773 -0.0773 2.3845 -0.9361 0.1423 2.9810 0.3396 0.4232 0.1589 1.4617 0.0378 1.1076 0.0746
+#&gt; 273: 92.2164 -5.7769 -0.0776 2.3838 -0.9356 0.1427 2.9809 0.3402 0.4240 0.1589 1.4615 0.0378 1.1073 0.0746
+#&gt; 274: 92.2145 -5.7763 -0.0778 2.3836 -0.9355 0.1434 2.9795 0.3407 0.4248 0.1589 1.4615 0.0378 1.1069 0.0746
+#&gt; 275: 92.2133 -5.7762 -0.0779 2.3836 -0.9352 0.1436 2.9837 0.3410 0.4253 0.1589 1.4621 0.0378 1.1064 0.0746
+#&gt; 276: 92.2123 -5.7764 -0.0781 2.3835 -0.9348 0.1431 2.9889 0.3414 0.4255 0.1589 1.4632 0.0378 1.1073 0.0746
+#&gt; 277: 92.2113 -5.7771 -0.0781 2.3839 -0.9347 0.1423 2.9925 0.3423 0.4264 0.1589 1.4630 0.0378 1.1104 0.0744
+#&gt; 278: 92.2099 -5.7774 -0.0780 2.3841 -0.9349 0.1418 2.9927 0.3429 0.4270 0.1590 1.4634 0.0378 1.1127 0.0742
+#&gt; 279: 92.2087 -5.7798 -0.0779 2.3844 -0.9352 0.1413 2.9997 0.3437 0.4276 0.1590 1.4630 0.0378 1.1133 0.0742
+#&gt; 280: 92.2077 -5.7802 -0.0778 2.3841 -0.9358 0.1407 2.9971 0.3445 0.4284 0.1586 1.4634 0.0378 1.1136 0.0742
+#&gt; 281: 92.2061 -5.7814 -0.0777 2.3837 -0.9362 0.1401 3.0004 0.3452 0.4291 0.1582 1.4629 0.0378 1.1133 0.0743
+#&gt; 282: 92.2058 -5.7802 -0.0777 2.3834 -0.9363 0.1386 2.9994 0.3459 0.4297 0.1579 1.4634 0.0378 1.1126 0.0743
+#&gt; 283: 92.2057 -5.7780 -0.0778 2.3828 -0.9361 0.1376 2.9917 0.3469 0.4298 0.1576 1.4645 0.0378 1.1147 0.0742
+#&gt; 284: 92.2051 -5.7788 -0.0780 2.3824 -0.9360 0.1367 2.9968 0.3479 0.4300 0.1573 1.4647 0.0378 1.1149 0.0741
+#&gt; 285: 92.2041 -5.7793 -0.0782 2.3821 -0.9362 0.1359 2.9941 0.3487 0.4302 0.1573 1.4653 0.0378 1.1164 0.0740
+#&gt; 286: 92.2040 -5.7803 -0.0783 2.3819 -0.9364 0.1352 2.9957 0.3495 0.4304 0.1573 1.4655 0.0378 1.1180 0.0738
+#&gt; 287: 92.2044 -5.7809 -0.0784 2.3817 -0.9365 0.1348 2.9961 0.3502 0.4304 0.1572 1.4657 0.0379 1.1178 0.0738
+#&gt; 288: 92.2043 -5.7835 -0.0785 2.3814 -0.9366 0.1350 3.0073 0.3509 0.4304 0.1572 1.4658 0.0379 1.1184 0.0738
+#&gt; 289: 92.2041 -5.7845 -0.0787 2.3809 -0.9364 0.1347 3.0126 0.3516 0.4304 0.1571 1.4653 0.0379 1.1190 0.0737
+#&gt; 290: 92.2032 -5.7852 -0.0788 2.3807 -0.9363 0.1349 3.0161 0.3521 0.4304 0.1568 1.4656 0.0379 1.1191 0.0737
+#&gt; 291: 92.2019 -5.7848 -0.0790 2.3802 -0.9363 0.1356 3.0155 0.3528 0.4300 0.1565 1.4664 0.0380 1.1210 0.0736
+#&gt; 292: 92.2012 -5.7846 -0.0792 2.3799 -0.9363 0.1361 3.0167 0.3535 0.4296 0.1563 1.4670 0.0380 1.1223 0.0735
+#&gt; 293: 92.2007 -5.7845 -0.0793 2.3795 -0.9363 0.1365 3.0175 0.3542 0.4291 0.1561 1.4681 0.0380 1.1236 0.0734
+#&gt; 294: 92.2009 -5.7850 -0.0795 2.3791 -0.9360 0.1365 3.0189 0.3550 0.4287 0.1560 1.4682 0.0380 1.1243 0.0733
+#&gt; 295: 92.2009 -5.7865 -0.0797 2.3786 -0.9360 0.1360 3.0279 0.3556 0.4286 0.1558 1.4689 0.0380 1.1243 0.0734
+#&gt; 296: 92.2007 -5.7878 -0.0798 2.3781 -0.9362 0.1358 3.0345 0.3562 0.4283 0.1555 1.4694 0.0379 1.1247 0.0734
+#&gt; 297: 92.1992 -5.7891 -0.0801 2.3774 -0.9364 0.1358 3.0403 0.3568 0.4278 0.1554 1.4699 0.0379 1.1267 0.0734
+#&gt; 298: 92.1978 -5.7892 -0.0803 2.3768 -0.9366 0.1357 3.0383 0.3573 0.4274 0.1553 1.4706 0.0378 1.1276 0.0734
+#&gt; 299: 92.1968 -5.7906 -0.0805 2.3763 -0.9369 0.1353 3.0408 0.3579 0.4269 0.1553 1.4712 0.0378 1.1282 0.0733
+#&gt; 300: 92.1954 -5.7929 -0.0807 2.3760 -0.9369 0.1352 3.0477 0.3583 0.4265 0.1551 1.4716 0.0379 1.1286 0.0733
+#&gt; 301: 92.1941 -5.7934 -0.0809 2.3757 -0.9369 0.1352 3.0483 0.3588 0.4261 0.1548 1.4727 0.0378 1.1288 0.0732
+#&gt; 302: 92.1929 -5.7949 -0.0811 2.3754 -0.9370 0.1354 3.0560 0.3592 0.4256 0.1548 1.4728 0.0379 1.1296 0.0731
+#&gt; 303: 92.1919 -5.7972 -0.0813 2.3751 -0.9368 0.1352 3.0671 0.3597 0.4250 0.1550 1.4730 0.0379 1.1302 0.0731
+#&gt; 304: 92.1906 -5.8018 -0.0814 2.3750 -0.9368 0.1349 3.0935 0.3602 0.4245 0.1552 1.4731 0.0379 1.1314 0.0730
+#&gt; 305: 92.1897 -5.8063 -0.0817 2.3744 -0.9370 0.1350 3.1211 0.3606 0.4238 0.1554 1.4727 0.0379 1.1323 0.0730
+#&gt; 306: 92.1896 -5.8116 -0.0820 2.3740 -0.9373 0.1347 3.1571 0.3610 0.4233 0.1555 1.4727 0.0379 1.1351 0.0728
+#&gt; 307: 92.1895 -5.8156 -0.0822 2.3735 -0.9373 0.1341 3.1826 0.3613 0.4226 0.1552 1.4741 0.0379 1.1374 0.0726
+#&gt; 308: 92.1899 -5.8202 -0.0824 2.3732 -0.9376 0.1338 3.2124 0.3617 0.4220 0.1554 1.4745 0.0379 1.1408 0.0724
+#&gt; 309: 92.1903 -5.8232 -0.0827 2.3728 -0.9377 0.1337 3.2330 0.3620 0.4213 0.1554 1.4749 0.0379 1.1419 0.0724
+#&gt; 310: 92.1902 -5.8249 -0.0828 2.3727 -0.9378 0.1335 3.2463 0.3621 0.4207 0.1554 1.4752 0.0379 1.1435 0.0723
+#&gt; 311: 92.1910 -5.8267 -0.0828 2.3726 -0.9378 0.1335 3.2581 0.3623 0.4200 0.1554 1.4754 0.0379 1.1441 0.0722
+#&gt; 312: 92.1918 -5.8271 -0.0829 2.3726 -0.9378 0.1333 3.2567 0.3624 0.4195 0.1552 1.4751 0.0380 1.1432 0.0723
+#&gt; 313: 92.1926 -5.8260 -0.0829 2.3725 -0.9380 0.1334 3.2497 0.3626 0.4190 0.1552 1.4751 0.0380 1.1434 0.0723
+#&gt; 314: 92.1934 -5.8256 -0.0829 2.3724 -0.9381 0.1330 3.2426 0.3628 0.4185 0.1553 1.4746 0.0380 1.1441 0.0722
+#&gt; 315: 92.1938 -5.8237 -0.0829 2.3724 -0.9384 0.1326 3.2327 0.3630 0.4179 0.1555 1.4746 0.0380 1.1468 0.0721
+#&gt; 316: 92.1950 -5.8235 -0.0829 2.3722 -0.9385 0.1324 3.2283 0.3631 0.4172 0.1557 1.4745 0.0380 1.1476 0.0721
+#&gt; 317: 92.1963 -5.8239 -0.0829 2.3722 -0.9385 0.1322 3.2260 0.3633 0.4167 0.1560 1.4741 0.0380 1.1481 0.0721
+#&gt; 318: 92.1975 -5.8242 -0.0829 2.3722 -0.9387 0.1321 3.2240 0.3634 0.4163 0.1559 1.4740 0.0380 1.1477 0.0722
+#&gt; 319: 92.1990 -5.8250 -0.0829 2.3721 -0.9387 0.1320 3.2215 0.3634 0.4159 0.1560 1.4736 0.0381 1.1496 0.0720
+#&gt; 320: 92.2003 -5.8256 -0.0829 2.3722 -0.9386 0.1322 3.2199 0.3635 0.4155 0.1561 1.4730 0.0381 1.1508 0.0719
+#&gt; 321: 92.2018 -5.8249 -0.0829 2.3723 -0.9386 0.1326 3.2150 0.3635 0.4151 0.1562 1.4727 0.0381 1.1514 0.0718
+#&gt; 322: 92.2031 -5.8239 -0.0829 2.3724 -0.9386 0.1333 3.2081 0.3635 0.4147 0.1561 1.4729 0.0381 1.1527 0.0717
+#&gt; 323: 92.2045 -5.8244 -0.0829 2.3725 -0.9384 0.1336 3.2065 0.3635 0.4143 0.1562 1.4729 0.0381 1.1541 0.0716
+#&gt; 324: 92.2060 -5.8228 -0.0828 2.3726 -0.9383 0.1339 3.1996 0.3635 0.4139 0.1562 1.4729 0.0382 1.1562 0.0714
+#&gt; 325: 92.2071 -5.8212 -0.0828 2.3727 -0.9383 0.1339 3.1921 0.3636 0.4135 0.1563 1.4733 0.0382 1.1580 0.0713
+#&gt; 326: 92.2083 -5.8201 -0.0826 2.3728 -0.9382 0.1340 3.1888 0.3639 0.4134 0.1562 1.4734 0.0382 1.1587 0.0713
+#&gt; 327: 92.2095 -5.8185 -0.0825 2.3729 -0.9379 0.1340 3.1831 0.3641 0.4134 0.1562 1.4737 0.0382 1.1592 0.0713
+#&gt; 328: 92.2105 -5.8188 -0.0823 2.3731 -0.9379 0.1338 3.1836 0.3643 0.4132 0.1561 1.4736 0.0383 1.1589 0.0713
+#&gt; 329: 92.2115 -5.8182 -0.0821 2.3732 -0.9381 0.1339 3.1807 0.3646 0.4129 0.1561 1.4737 0.0383 1.1585 0.0713
+#&gt; 330: 92.2127 -5.8181 -0.0819 2.3734 -0.9381 0.1338 3.1827 0.3648 0.4127 0.1563 1.4735 0.0383 1.1578 0.0714
+#&gt; 331: 92.2134 -5.8180 -0.0815 2.3739 -0.9381 0.1340 3.1837 0.3647 0.4128 0.1566 1.4735 0.0383 1.1575 0.0714
+#&gt; 332: 92.2136 -5.8184 -0.0811 2.3746 -0.9379 0.1340 3.1847 0.3647 0.4130 0.1570 1.4728 0.0384 1.1577 0.0714
+#&gt; 333: 92.2133 -5.8180 -0.0807 2.3753 -0.9376 0.1340 3.1853 0.3646 0.4132 0.1572 1.4725 0.0384 1.1573 0.0714
+#&gt; 334: 92.2136 -5.8173 -0.0803 2.3760 -0.9374 0.1342 3.1838 0.3645 0.4133 0.1576 1.4720 0.0385 1.1570 0.0714
+#&gt; 335: 92.2139 -5.8187 -0.0800 2.3769 -0.9372 0.1344 3.1947 0.3643 0.4135 0.1576 1.4714 0.0386 1.1567 0.0714
+#&gt; 336: 92.2134 -5.8198 -0.0796 2.3777 -0.9370 0.1348 3.2008 0.3641 0.4135 0.1577 1.4706 0.0387 1.1557 0.0714
+#&gt; 337: 92.2130 -5.8201 -0.0792 2.3784 -0.9370 0.1357 3.2050 0.3640 0.4137 0.1579 1.4703 0.0388 1.1558 0.0714
+#&gt; 338: 92.2130 -5.8190 -0.0787 2.3791 -0.9368 0.1362 3.2036 0.3638 0.4139 0.1580 1.4708 0.0388 1.1558 0.0714
+#&gt; 339: 92.2132 -5.8177 -0.0783 2.3798 -0.9368 0.1369 3.2006 0.3637 0.4142 0.1581 1.4712 0.0388 1.1551 0.0714
+#&gt; 340: 92.2137 -5.8167 -0.0778 2.3806 -0.9366 0.1376 3.1984 0.3636 0.4143 0.1581 1.4712 0.0388 1.1540 0.0715
+#&gt; 341: 92.2141 -5.8145 -0.0773 2.3814 -0.9364 0.1378 3.1916 0.3635 0.4142 0.1581 1.4712 0.0389 1.1529 0.0715
+#&gt; 342: 92.2142 -5.8123 -0.0769 2.3821 -0.9364 0.1383 3.1840 0.3634 0.4142 0.1581 1.4718 0.0389 1.1513 0.0716
+#&gt; 343: 92.2139 -5.8109 -0.0764 2.3830 -0.9364 0.1389 3.1806 0.3632 0.4142 0.1581 1.4721 0.0389 1.1501 0.0716
+#&gt; 344: 92.2137 -5.8117 -0.0759 2.3839 -0.9366 0.1390 3.1830 0.3631 0.4144 0.1582 1.4711 0.0390 1.1492 0.0717
+#&gt; 345: 92.2133 -5.8118 -0.0754 2.3849 -0.9368 0.1391 3.1827 0.3630 0.4146 0.1582 1.4703 0.0391 1.1488 0.0717
+#&gt; 346: 92.2127 -5.8113 -0.0748 2.3858 -0.9369 0.1389 3.1793 0.3629 0.4147 0.1581 1.4700 0.0391 1.1475 0.0717
+#&gt; 347: 92.2121 -5.8107 -0.0743 2.3867 -0.9371 0.1386 3.1748 0.3628 0.4149 0.1579 1.4701 0.0392 1.1463 0.0718
+#&gt; 348: 92.2106 -5.8109 -0.0738 2.3876 -0.9374 0.1385 3.1726 0.3626 0.4151 0.1577 1.4704 0.0392 1.1453 0.0719
+#&gt; 349: 92.2096 -5.8111 -0.0732 2.3883 -0.9377 0.1382 3.1703 0.3626 0.4151 0.1575 1.4705 0.0392 1.1448 0.0719
+#&gt; 350: 92.2088 -5.8108 -0.0727 2.3890 -0.9378 0.1380 3.1674 0.3625 0.4152 0.1574 1.4704 0.0392 1.1439 0.0720
+#&gt; 351: 92.2077 -5.8103 -0.0722 2.3899 -0.9379 0.1379 3.1634 0.3623 0.4154 0.1572 1.4701 0.0393 1.1432 0.0720
+#&gt; 352: 92.2069 -5.8103 -0.0718 2.3906 -0.9381 0.1380 3.1626 0.3623 0.4154 0.1570 1.4701 0.0393 1.1425 0.0721
+#&gt; 353: 92.2058 -5.8107 -0.0714 2.3913 -0.9381 0.1382 3.1629 0.3624 0.4154 0.1570 1.4695 0.0394 1.1426 0.0720
+#&gt; 354: 92.2046 -5.8102 -0.0710 2.3921 -0.9381 0.1384 3.1576 0.3624 0.4154 0.1571 1.4691 0.0394 1.1424 0.0720
+#&gt; 355: 92.2034 -5.8084 -0.0707 2.3928 -0.9381 0.1388 3.1501 0.3624 0.4154 0.1570 1.4686 0.0395 1.1414 0.0721
+#&gt; 356: 92.2027 -5.8079 -0.0703 2.3935 -0.9382 0.1392 3.1463 0.3626 0.4155 0.1569 1.4682 0.0396 1.1405 0.0721
+#&gt; 357: 92.2019 -5.8084 -0.0698 2.3943 -0.9382 0.1390 3.1444 0.3628 0.4156 0.1569 1.4665 0.0397 1.1403 0.0721
+#&gt; 358: 92.2014 -5.8085 -0.0694 2.3950 -0.9381 0.1389 3.1413 0.3630 0.4158 0.1569 1.4662 0.0398 1.1398 0.0722
+#&gt; 359: 92.2005 -5.8091 -0.0689 2.3956 -0.9383 0.1387 3.1393 0.3633 0.4159 0.1570 1.4664 0.0398 1.1401 0.0722
+#&gt; 360: 92.1994 -5.8091 -0.0685 2.3962 -0.9385 0.1385 3.1362 0.3635 0.4159 0.1572 1.4664 0.0398 1.1413 0.0722
+#&gt; 361: 92.1983 -5.8094 -0.0682 2.3966 -0.9386 0.1384 3.1340 0.3638 0.4159 0.1573 1.4669 0.0398 1.1420 0.0722
+#&gt; 362: 92.1976 -5.8086 -0.0678 2.3971 -0.9389 0.1380 3.1277 0.3639 0.4160 0.1573 1.4671 0.0398 1.1414 0.0723
+#&gt; 363: 92.1967 -5.8081 -0.0675 2.3976 -0.9389 0.1377 3.1239 0.3641 0.4161 0.1573 1.4669 0.0399 1.1412 0.0723
+#&gt; 364: 92.1960 -5.8073 -0.0671 2.3982 -0.9390 0.1373 3.1208 0.3643 0.4161 0.1572 1.4668 0.0399 1.1411 0.0723
+#&gt; 365: 92.1958 -5.8066 -0.0667 2.3988 -0.9389 0.1369 3.1164 0.3645 0.4160 0.1572 1.4672 0.0399 1.1416 0.0723
+#&gt; 366: 92.1956 -5.8063 -0.0664 2.3992 -0.9390 0.1364 3.1127 0.3650 0.4156 0.1573 1.4674 0.0399 1.1425 0.0723
+#&gt; 367: 92.1952 -5.8056 -0.0661 2.3996 -0.9389 0.1361 3.1082 0.3652 0.4155 0.1574 1.4675 0.0399 1.1416 0.0723
+#&gt; 368: 92.1948 -5.8059 -0.0658 2.4001 -0.9389 0.1359 3.1068 0.3655 0.4154 0.1575 1.4671 0.0399 1.1406 0.0724
+#&gt; 369: 92.1948 -5.8064 -0.0655 2.4005 -0.9388 0.1360 3.1055 0.3658 0.4152 0.1576 1.4669 0.0399 1.1408 0.0724
+#&gt; 370: 92.1951 -5.8072 -0.0652 2.4010 -0.9389 0.1361 3.1060 0.3660 0.4151 0.1576 1.4669 0.0399 1.1406 0.0724
+#&gt; 371: 92.1956 -5.8080 -0.0649 2.4015 -0.9390 0.1362 3.1095 0.3662 0.4150 0.1576 1.4669 0.0400 1.1411 0.0724
+#&gt; 372: 92.1962 -5.8096 -0.0645 2.4020 -0.9390 0.1363 3.1168 0.3665 0.4149 0.1576 1.4667 0.0400 1.1411 0.0724
+#&gt; 373: 92.1968 -5.8098 -0.0642 2.4025 -0.9392 0.1363 3.1154 0.3666 0.4147 0.1576 1.4664 0.0400 1.1418 0.0723
+#&gt; 374: 92.1972 -5.8098 -0.0640 2.4029 -0.9395 0.1363 3.1117 0.3667 0.4146 0.1576 1.4661 0.0401 1.1421 0.0723
+#&gt; 375: 92.1979 -5.8101 -0.0637 2.4032 -0.9397 0.1364 3.1090 0.3668 0.4143 0.1577 1.4654 0.0401 1.1425 0.0723
+#&gt; 376: 92.1981 -5.8106 -0.0635 2.4035 -0.9399 0.1363 3.1084 0.3669 0.4142 0.1576 1.4650 0.0401 1.1423 0.0723
+#&gt; 377: 92.1986 -5.8104 -0.0633 2.4039 -0.9399 0.1360 3.1053 0.3670 0.4142 0.1576 1.4645 0.0402 1.1424 0.0723
+#&gt; 378: 92.1989 -5.8104 -0.0631 2.4043 -0.9399 0.1358 3.1026 0.3671 0.4142 0.1577 1.4638 0.0402 1.1421 0.0723
+#&gt; 379: 92.1990 -5.8114 -0.0628 2.4047 -0.9399 0.1355 3.1068 0.3671 0.4141 0.1577 1.4636 0.0402 1.1413 0.0724
+#&gt; 380: 92.1989 -5.8119 -0.0627 2.4048 -0.9400 0.1351 3.1095 0.3673 0.4136 0.1577 1.4634 0.0402 1.1413 0.0724
+#&gt; 381: 92.1989 -5.8127 -0.0627 2.4048 -0.9400 0.1349 3.1152 0.3676 0.4131 0.1577 1.4631 0.0403 1.1408 0.0723
+#&gt; 382: 92.1994 -5.8126 -0.0627 2.4049 -0.9399 0.1348 3.1188 0.3678 0.4126 0.1576 1.4635 0.0403 1.1403 0.0723
+#&gt; 383: 92.2000 -5.8129 -0.0626 2.4049 -0.9397 0.1346 3.1256 0.3681 0.4120 0.1576 1.4637 0.0403 1.1396 0.0723
+#&gt; 384: 92.2006 -5.8133 -0.0626 2.4050 -0.9396 0.1347 3.1290 0.3683 0.4115 0.1575 1.4641 0.0402 1.1389 0.0723
+#&gt; 385: 92.2015 -5.8131 -0.0626 2.4050 -0.9394 0.1350 3.1287 0.3686 0.4110 0.1575 1.4642 0.0402 1.1382 0.0723
+#&gt; 386: 92.2023 -5.8140 -0.0625 2.4049 -0.9391 0.1349 3.1324 0.3690 0.4104 0.1574 1.4647 0.0402 1.1374 0.0723
+#&gt; 387: 92.2030 -5.8147 -0.0625 2.4050 -0.9390 0.1349 3.1345 0.3693 0.4099 0.1572 1.4652 0.0402 1.1366 0.0724
+#&gt; 388: 92.2040 -5.8157 -0.0625 2.4050 -0.9389 0.1349 3.1381 0.3696 0.4094 0.1570 1.4652 0.0402 1.1362 0.0724
+#&gt; 389: 92.2051 -5.8156 -0.0625 2.4051 -0.9387 0.1349 3.1373 0.3699 0.4090 0.1570 1.4653 0.0402 1.1354 0.0724
+#&gt; 390: 92.2063 -5.8152 -0.0625 2.4051 -0.9386 0.1349 3.1350 0.3702 0.4087 0.1570 1.4655 0.0402 1.1345 0.0725
+#&gt; 391: 92.2076 -5.8160 -0.0625 2.4051 -0.9384 0.1350 3.1380 0.3705 0.4083 0.1571 1.4656 0.0402 1.1341 0.0725
+#&gt; 392: 92.2086 -5.8166 -0.0626 2.4049 -0.9384 0.1349 3.1397 0.3707 0.4081 0.1572 1.4658 0.0402 1.1345 0.0725
+#&gt; 393: 92.2095 -5.8168 -0.0626 2.4047 -0.9383 0.1348 3.1405 0.3708 0.4080 0.1573 1.4659 0.0402 1.1344 0.0725
+#&gt; 394: 92.2107 -5.8174 -0.0627 2.4045 -0.9382 0.1347 3.1433 0.3710 0.4079 0.1575 1.4660 0.0401 1.1342 0.0725
+#&gt; 395: 92.2118 -5.8174 -0.0628 2.4043 -0.9380 0.1346 3.1437 0.3711 0.4078 0.1575 1.4661 0.0401 1.1343 0.0725
+#&gt; 396: 92.2127 -5.8170 -0.0629 2.4041 -0.9379 0.1344 3.1424 0.3712 0.4077 0.1575 1.4664 0.0401 1.1342 0.0725
+#&gt; 397: 92.2137 -5.8161 -0.0630 2.4040 -0.9376 0.1342 3.1386 0.3713 0.4076 0.1577 1.4667 0.0401 1.1341 0.0725
+#&gt; 398: 92.2146 -5.8152 -0.0633 2.4036 -0.9374 0.1341 3.1344 0.3713 0.4075 0.1578 1.4671 0.0401 1.1334 0.0725
+#&gt; 399: 92.2157 -5.8138 -0.0635 2.4032 -0.9373 0.1340 3.1296 0.3714 0.4074 0.1578 1.4678 0.0401 1.1336 0.0726
+#&gt; 400: 92.2165 -5.8131 -0.0638 2.4027 -0.9372 0.1340 3.1262 0.3715 0.4072 0.1579 1.4681 0.0400 1.1332 0.0726
+#&gt; 401: 92.2173 -5.8118 -0.0641 2.4022 -0.9372 0.1341 3.1220 0.3716 0.4069 0.1579 1.4686 0.0400 1.1339 0.0726
+#&gt; 402: 92.2181 -5.8107 -0.0643 2.4018 -0.9370 0.1344 3.1192 0.3718 0.4065 0.1580 1.4694 0.0400 1.1338 0.0726
+#&gt; 403: 92.2190 -5.8099 -0.0646 2.4013 -0.9371 0.1348 3.1166 0.3720 0.4061 0.1581 1.4700 0.0400 1.1344 0.0725
+#&gt; 404: 92.2198 -5.8104 -0.0649 2.4008 -0.9372 0.1348 3.1161 0.3723 0.4058 0.1582 1.4704 0.0399 1.1357 0.0725
+#&gt; 405: 92.2203 -5.8107 -0.0652 2.4004 -0.9372 0.1348 3.1177 0.3725 0.4055 0.1582 1.4705 0.0400 1.1358 0.0724
+#&gt; 406: 92.2204 -5.8103 -0.0653 2.4002 -0.9371 0.1348 3.1157 0.3724 0.4051 0.1582 1.4709 0.0400 1.1361 0.0724
+#&gt; 407: 92.2201 -5.8094 -0.0655 2.4001 -0.9369 0.1348 3.1121 0.3724 0.4048 0.1583 1.4713 0.0400 1.1360 0.0724
+#&gt; 408: 92.2201 -5.8087 -0.0657 2.3999 -0.9368 0.1350 3.1085 0.3724 0.4044 0.1582 1.4714 0.0400 1.1360 0.0723
+#&gt; 409: 92.2201 -5.8083 -0.0658 2.3998 -0.9365 0.1355 3.1073 0.3724 0.4043 0.1582 1.4713 0.0401 1.1358 0.0723
+#&gt; 410: 92.2196 -5.8094 -0.0659 2.3996 -0.9365 0.1361 3.1123 0.3724 0.4041 0.1582 1.4712 0.0401 1.1357 0.0723
+#&gt; 411: 92.2192 -5.8099 -0.0661 2.3994 -0.9366 0.1363 3.1168 0.3724 0.4038 0.1582 1.4715 0.0401 1.1354 0.0723
+#&gt; 412: 92.2187 -5.8105 -0.0662 2.3993 -0.9365 0.1365 3.1215 0.3725 0.4035 0.1582 1.4716 0.0401 1.1359 0.0723
+#&gt; 413: 92.2185 -5.8109 -0.0663 2.3992 -0.9365 0.1367 3.1268 0.3725 0.4031 0.1583 1.4719 0.0401 1.1357 0.0723
+#&gt; 414: 92.2183 -5.8111 -0.0665 2.3987 -0.9365 0.1370 3.1286 0.3727 0.4026 0.1582 1.4724 0.0400 1.1349 0.0723
+#&gt; 415: 92.2181 -5.8122 -0.0667 2.3983 -0.9366 0.1370 3.1351 0.3729 0.4021 0.1581 1.4726 0.0400 1.1341 0.0724
+#&gt; 416: 92.2180 -5.8133 -0.0669 2.3979 -0.9367 0.1372 3.1409 0.3731 0.4015 0.1578 1.4734 0.0400 1.1333 0.0724
+#&gt; 417: 92.2176 -5.8138 -0.0671 2.3976 -0.9368 0.1374 3.1426 0.3733 0.4009 0.1576 1.4739 0.0400 1.1325 0.0724
+#&gt; 418: 92.2173 -5.8150 -0.0673 2.3973 -0.9369 0.1376 3.1479 0.3735 0.4003 0.1575 1.4740 0.0400 1.1316 0.0725
+#&gt; 419: 92.2174 -5.8154 -0.0674 2.3970 -0.9369 0.1375 3.1497 0.3736 0.3998 0.1574 1.4741 0.0400 1.1314 0.0724
+#&gt; 420: 92.2175 -5.8154 -0.0676 2.3968 -0.9369 0.1375 3.1489 0.3737 0.3993 0.1574 1.4742 0.0400 1.1315 0.0724
+#&gt; 421: 92.2176 -5.8154 -0.0678 2.3964 -0.9369 0.1374 3.1485 0.3739 0.3989 0.1573 1.4743 0.0400 1.1312 0.0724
+#&gt; 422: 92.2174 -5.8155 -0.0680 2.3961 -0.9370 0.1375 3.1483 0.3741 0.3985 0.1572 1.4744 0.0400 1.1309 0.0723
+#&gt; 423: 92.2170 -5.8156 -0.0681 2.3958 -0.9371 0.1375 3.1481 0.3742 0.3980 0.1571 1.4741 0.0400 1.1308 0.0723
+#&gt; 424: 92.2169 -5.8168 -0.0683 2.3956 -0.9372 0.1374 3.1524 0.3744 0.3976 0.1571 1.4740 0.0400 1.1316 0.0722
+#&gt; 425: 92.2167 -5.8171 -0.0685 2.3954 -0.9372 0.1373 3.1520 0.3744 0.3972 0.1571 1.4736 0.0401 1.1317 0.0722
+#&gt; 426: 92.2164 -5.8170 -0.0687 2.3951 -0.9372 0.1373 3.1502 0.3745 0.3968 0.1570 1.4734 0.0401 1.1320 0.0722
+#&gt; 427: 92.2166 -5.8169 -0.0688 2.3949 -0.9372 0.1372 3.1480 0.3745 0.3964 0.1570 1.4734 0.0401 1.1317 0.0721
+#&gt; 428: 92.2166 -5.8170 -0.0689 2.3948 -0.9374 0.1371 3.1460 0.3745 0.3959 0.1570 1.4735 0.0401 1.1315 0.0721
+#&gt; 429: 92.2162 -5.8171 -0.0691 2.3946 -0.9374 0.1369 3.1446 0.3745 0.3954 0.1570 1.4736 0.0401 1.1316 0.0721
+#&gt; 430: 92.2158 -5.8178 -0.0692 2.3944 -0.9375 0.1370 3.1464 0.3745 0.3950 0.1570 1.4736 0.0401 1.1314 0.0721
+#&gt; 431: 92.2153 -5.8180 -0.0693 2.3942 -0.9375 0.1371 3.1470 0.3745 0.3946 0.1570 1.4735 0.0401 1.1314 0.0721
+#&gt; 432: 92.2150 -5.8182 -0.0695 2.3940 -0.9375 0.1372 3.1477 0.3746 0.3942 0.1570 1.4735 0.0401 1.1315 0.0721
+#&gt; 433: 92.2145 -5.8189 -0.0696 2.3938 -0.9375 0.1374 3.1512 0.3746 0.3938 0.1571 1.4736 0.0400 1.1323 0.0720
+#&gt; 434: 92.2141 -5.8186 -0.0697 2.3936 -0.9373 0.1376 3.1530 0.3746 0.3933 0.1571 1.4736 0.0400 1.1330 0.0719
+#&gt; 435: 92.2133 -5.8187 -0.0699 2.3934 -0.9373 0.1381 3.1571 0.3747 0.3929 0.1570 1.4738 0.0400 1.1325 0.0720
+#&gt; 436: 92.2129 -5.8180 -0.0700 2.3932 -0.9374 0.1380 3.1544 0.3746 0.3925 0.1570 1.4740 0.0400 1.1332 0.0719
+#&gt; 437: 92.2122 -5.8186 -0.0702 2.3930 -0.9375 0.1380 3.1574 0.3746 0.3921 0.1570 1.4739 0.0400 1.1342 0.0718
+#&gt; 438: 92.2114 -5.8187 -0.0703 2.3928 -0.9376 0.1380 3.1583 0.3745 0.3918 0.1569 1.4740 0.0400 1.1346 0.0718
+#&gt; 439: 92.2104 -5.8181 -0.0705 2.3925 -0.9377 0.1381 3.1568 0.3744 0.3914 0.1568 1.4743 0.0400 1.1352 0.0718
+#&gt; 440: 92.2095 -5.8178 -0.0706 2.3923 -0.9377 0.1381 3.1555 0.3743 0.3910 0.1566 1.4745 0.0400 1.1349 0.0718
+#&gt; 441: 92.2088 -5.8176 -0.0707 2.3923 -0.9378 0.1381 3.1559 0.3742 0.3907 0.1565 1.4748 0.0400 1.1349 0.0718
+#&gt; 442: 92.2081 -5.8172 -0.0708 2.3921 -0.9379 0.1383 3.1539 0.3741 0.3903 0.1564 1.4754 0.0400 1.1350 0.0717
+#&gt; 443: 92.2074 -5.8171 -0.0709 2.3920 -0.9380 0.1387 3.1526 0.3740 0.3901 0.1563 1.4756 0.0400 1.1349 0.0717
+#&gt; 444: 92.2068 -5.8175 -0.0711 2.3918 -0.9380 0.1390 3.1533 0.3739 0.3898 0.1562 1.4758 0.0400 1.1353 0.0717
+#&gt; 445: 92.2061 -5.8180 -0.0712 2.3915 -0.9382 0.1394 3.1529 0.3737 0.3896 0.1562 1.4758 0.0400 1.1355 0.0717
+#&gt; 446: 92.2054 -5.8177 -0.0714 2.3912 -0.9384 0.1398 3.1496 0.3735 0.3894 0.1562 1.4760 0.0399 1.1367 0.0716
+#&gt; 447: 92.2051 -5.8180 -0.0716 2.3910 -0.9385 0.1400 3.1484 0.3734 0.3891 0.1563 1.4762 0.0399 1.1370 0.0715
+#&gt; 448: 92.2053 -5.8189 -0.0717 2.3909 -0.9387 0.1405 3.1499 0.3732 0.3889 0.1563 1.4764 0.0399 1.1377 0.0715
+#&gt; 449: 92.2054 -5.8195 -0.0718 2.3908 -0.9388 0.1411 3.1497 0.3730 0.3887 0.1562 1.4768 0.0399 1.1382 0.0715
+#&gt; 450: 92.2054 -5.8205 -0.0719 2.3906 -0.9390 0.1417 3.1528 0.3728 0.3885 0.1562 1.4769 0.0399 1.1378 0.0715
+#&gt; 451: 92.2053 -5.8213 -0.0720 2.3905 -0.9391 0.1423 3.1544 0.3725 0.3883 0.1561 1.4774 0.0399 1.1379 0.0715
+#&gt; 452: 92.2054 -5.8218 -0.0720 2.3905 -0.9393 0.1426 3.1541 0.3722 0.3882 0.1560 1.4779 0.0398 1.1378 0.0715
+#&gt; 453: 92.2054 -5.8217 -0.0721 2.3903 -0.9395 0.1428 3.1530 0.3721 0.3880 0.1559 1.4785 0.0398 1.1378 0.0715
+#&gt; 454: 92.2053 -5.8214 -0.0722 2.3901 -0.9395 0.1431 3.1508 0.3720 0.3878 0.1559 1.4786 0.0398 1.1375 0.0715
+#&gt; 455: 92.2052 -5.8220 -0.0724 2.3898 -0.9396 0.1433 3.1519 0.3720 0.3875 0.1559 1.4791 0.0398 1.1379 0.0715
+#&gt; 456: 92.2053 -5.8230 -0.0727 2.3894 -0.9397 0.1434 3.1544 0.3720 0.3873 0.1560 1.4793 0.0398 1.1384 0.0714
+#&gt; 457: 92.2053 -5.8240 -0.0729 2.3889 -0.9398 0.1437 3.1568 0.3720 0.3869 0.1559 1.4793 0.0398 1.1393 0.0714
+#&gt; 458: 92.2051 -5.8245 -0.0731 2.3885 -0.9399 0.1440 3.1571 0.3721 0.3865 0.1558 1.4797 0.0397 1.1404 0.0713
+#&gt; 459: 92.2045 -5.8246 -0.0732 2.3882 -0.9402 0.1442 3.1562 0.3721 0.3862 0.1558 1.4801 0.0397 1.1407 0.0713
+#&gt; 460: 92.2040 -5.8244 -0.0734 2.3878 -0.9403 0.1442 3.1536 0.3722 0.3859 0.1558 1.4806 0.0397 1.1406 0.0713
+#&gt; 461: 92.2030 -5.8245 -0.0736 2.3874 -0.9404 0.1444 3.1517 0.3722 0.3856 0.1557 1.4811 0.0397 1.1412 0.0713
+#&gt; 462: 92.2022 -5.8253 -0.0738 2.3870 -0.9405 0.1445 3.1531 0.3723 0.3853 0.1556 1.4817 0.0396 1.1425 0.0712
+#&gt; 463: 92.2014 -5.8260 -0.0740 2.3866 -0.9405 0.1449 3.1545 0.3724 0.3849 0.1556 1.4823 0.0396 1.1441 0.0711
+#&gt; 464: 92.2008 -5.8257 -0.0742 2.3862 -0.9405 0.1453 3.1522 0.3726 0.3845 0.1555 1.4828 0.0396 1.1451 0.0711
+#&gt; 465: 92.2002 -5.8256 -0.0744 2.3859 -0.9404 0.1458 3.1511 0.3727 0.3842 0.1555 1.4830 0.0396 1.1459 0.0710
+#&gt; 466: 92.1997 -5.8256 -0.0747 2.3855 -0.9403 0.1463 3.1516 0.3728 0.3839 0.1555 1.4834 0.0396 1.1476 0.0709
+#&gt; 467: 92.1993 -5.8258 -0.0749 2.3850 -0.9404 0.1468 3.1521 0.3730 0.3836 0.1555 1.4835 0.0395 1.1490 0.0708
+#&gt; 468: 92.1990 -5.8259 -0.0752 2.3846 -0.9404 0.1473 3.1546 0.3731 0.3834 0.1555 1.4837 0.0395 1.1500 0.0708
+#&gt; 469: 92.1987 -5.8263 -0.0753 2.3844 -0.9403 0.1479 3.1598 0.3731 0.3831 0.1555 1.4839 0.0395 1.1504 0.0707
+#&gt; 470: 92.1987 -5.8267 -0.0755 2.3841 -0.9403 0.1482 3.1611 0.3730 0.3829 0.1555 1.4839 0.0395 1.1496 0.0708
+#&gt; 471: 92.1987 -5.8269 -0.0756 2.3839 -0.9404 0.1482 3.1627 0.3730 0.3826 0.1555 1.4839 0.0395 1.1492 0.0708
+#&gt; 472: 92.1983 -5.8269 -0.0758 2.3838 -0.9403 0.1480 3.1618 0.3729 0.3823 0.1555 1.4839 0.0395 1.1493 0.0708
+#&gt; 473: 92.1980 -5.8264 -0.0760 2.3836 -0.9402 0.1478 3.1602 0.3728 0.3820 0.1554 1.4839 0.0395 1.1489 0.0708
+#&gt; 474: 92.1976 -5.8256 -0.0762 2.3834 -0.9402 0.1475 3.1565 0.3727 0.3818 0.1554 1.4842 0.0395 1.1487 0.0708
+#&gt; 475: 92.1971 -5.8252 -0.0763 2.3832 -0.9402 0.1473 3.1543 0.3726 0.3816 0.1553 1.4845 0.0395 1.1487 0.0707
+#&gt; 476: 92.1965 -5.8250 -0.0765 2.3830 -0.9402 0.1469 3.1523 0.3725 0.3814 0.1552 1.4846 0.0395 1.1484 0.0707
+#&gt; 477: 92.1960 -5.8242 -0.0766 2.3827 -0.9402 0.1465 3.1483 0.3724 0.3811 0.1552 1.4849 0.0395 1.1483 0.0708
+#&gt; 478: 92.1955 -5.8236 -0.0767 2.3826 -0.9402 0.1463 3.1447 0.3722 0.3808 0.1553 1.4854 0.0395 1.1481 0.0708
+#&gt; 479: 92.1952 -5.8232 -0.0769 2.3824 -0.9401 0.1462 3.1421 0.3722 0.3805 0.1554 1.4857 0.0395 1.1478 0.0708
+#&gt; 480: 92.1948 -5.8235 -0.0770 2.3822 -0.9400 0.1461 3.1426 0.3721 0.3803 0.1554 1.4862 0.0395 1.1478 0.0708
+#&gt; 481: 92.1947 -5.8240 -0.0772 2.3820 -0.9399 0.1459 3.1455 0.3721 0.3801 0.1554 1.4868 0.0395 1.1483 0.0708
+#&gt; 482: 92.1948 -5.8244 -0.0774 2.3817 -0.9399 0.1456 3.1476 0.3720 0.3799 0.1553 1.4873 0.0395 1.1488 0.0708
+#&gt; 483: 92.1944 -5.8247 -0.0776 2.3815 -0.9397 0.1455 3.1487 0.3719 0.3797 0.1553 1.4876 0.0394 1.1494 0.0708
+#&gt; 484: 92.1941 -5.8249 -0.0778 2.3811 -0.9396 0.1454 3.1493 0.3719 0.3795 0.1554 1.4879 0.0394 1.1501 0.0707
+#&gt; 485: 92.1940 -5.8252 -0.0780 2.3809 -0.9396 0.1453 3.1501 0.3718 0.3793 0.1554 1.4881 0.0394 1.1503 0.0707
+#&gt; 486: 92.1936 -5.8249 -0.0781 2.3807 -0.9395 0.1453 3.1486 0.3717 0.3792 0.1554 1.4884 0.0394 1.1508 0.0707
+#&gt; 487: 92.1935 -5.8248 -0.0783 2.3804 -0.9394 0.1453 3.1485 0.3716 0.3791 0.1553 1.4887 0.0393 1.1507 0.0707
+#&gt; 488: 92.1932 -5.8246 -0.0785 2.3800 -0.9394 0.1454 3.1478 0.3715 0.3788 0.1552 1.4892 0.0393 1.1510 0.0707
+#&gt; 489: 92.1931 -5.8241 -0.0787 2.3796 -0.9394 0.1455 3.1468 0.3715 0.3787 0.1551 1.4895 0.0393 1.1514 0.0706
+#&gt; 490: 92.1934 -5.8242 -0.0790 2.3793 -0.9393 0.1456 3.1478 0.3715 0.3786 0.1551 1.4898 0.0393 1.1528 0.0706
+#&gt; 491: 92.1936 -5.8241 -0.0792 2.3788 -0.9392 0.1455 3.1472 0.3715 0.3785 0.1551 1.4900 0.0393 1.1533 0.0706
+#&gt; 492: 92.1940 -5.8234 -0.0794 2.3783 -0.9391 0.1455 3.1449 0.3714 0.3783 0.1551 1.4903 0.0392 1.1538 0.0705
+#&gt; 493: 92.1943 -5.8230 -0.0797 2.3779 -0.9390 0.1455 3.1426 0.3714 0.3783 0.1552 1.4907 0.0392 1.1541 0.0705
+#&gt; 494: 92.1946 -5.8226 -0.0799 2.3774 -0.9390 0.1458 3.1405 0.3713 0.3782 0.1551 1.4911 0.0392 1.1541 0.0706
+#&gt; 495: 92.1948 -5.8219 -0.0802 2.3770 -0.9391 0.1459 3.1366 0.3712 0.3782 0.1551 1.4916 0.0392 1.1543 0.0706
+#&gt; 496: 92.1948 -5.8213 -0.0804 2.3766 -0.9392 0.1460 3.1331 0.3711 0.3781 0.1552 1.4920 0.0392 1.1556 0.0705
+#&gt; 497: 92.1949 -5.8213 -0.0806 2.3762 -0.9393 0.1462 3.1326 0.3711 0.3780 0.1553 1.4923 0.0391 1.1564 0.0705
+#&gt; 498: 92.1950 -5.8215 -0.0808 2.3758 -0.9394 0.1462 3.1331 0.3710 0.3779 0.1553 1.4926 0.0391 1.1568 0.0705
+#&gt; 499: 92.1953 -5.8219 -0.0810 2.3754 -0.9395 0.1461 3.1343 0.3709 0.3778 0.1554 1.4929 0.0391 1.1567 0.0705
+#&gt; 500: 92.1957 -5.8232 -0.0812 2.3751 -0.9395 0.1459 3.1411 0.3709 0.3776 0.1554 1.4931 0.0391 1.1575 0.0705</div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
+ error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
+#&gt; |.....................| log_beta |sigma_low_parent |rsd_high_parent |sigma_low_A1 |
+#&gt; |.....................|rsd_high_A1 | o1 | o2 | o3 |
+#&gt; <span style='text-decoration: underline;'>|.....................| o4 | o5 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 1</span>| 500.20030 | 1.000 | -1.000 | -0.9113 | -0.8944 |
+#&gt; |.....................| -0.8454 | -0.8678 | -0.8916 | -0.8678 |
+#&gt; |.....................| -0.8916 | -0.8767 | -0.8743 | -0.8675 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8704 | -0.8704 |...........|...........|</span>
+#&gt; | U| 500.2003 | 93.00 | -5.300 | -0.9400 | -0.1100 |
+#&gt; |.....................| 2.300 | 1.200 | 0.03000 | 1.200 |
+#&gt; |.....................| 0.03000 | 0.7598 | 0.8758 | 1.214 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.068 | 1.071 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 500.2003</span> | 93.00 | 0.004992 | 0.2809 | 0.8958 |
+#&gt; |.....................| 9.974 | 1.200 | 0.03000 | 1.200 |
+#&gt; |.....................| 0.03000 | 0.7598 | 0.8758 | 1.214 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.068 | 1.071 |...........|...........|</span>
+#&gt; | G| Gill Diff. | 48.88 | 2.383 | 0.1231 | 0.1986 |
+#&gt; |.....................| 0.1571 | -68.85 | -20.11 | 3.616 |
+#&gt; |.....................| -2.292 | 0.6250 | 11.41 | -12.48 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.903 | -10.91 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 2</span>| 2737.7532 | 0.4556 | -1.027 | -0.9127 | -0.8966 |
+#&gt; |.....................| -0.8471 | -0.1009 | -0.6676 | -0.9080 |
+#&gt; |.....................| -0.8660 | -0.8837 | -1.001 | -0.7285 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7601 | -0.7489 |...........|...........|</span>
+#&gt; | U| 2737.7532 | 42.37 | -5.327 | -0.9413 | -0.1122 |
+#&gt; |.....................| 2.298 | 1.660 | 0.03336 | 1.176 |
+#&gt; |.....................| 0.03038 | 0.7545 | 0.7645 | 1.383 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.185 | 1.201 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 2737.7532</span> | 42.37 | 0.004861 | 0.2806 | 0.8939 |
+#&gt; |.....................| 9.957 | 1.660 | 0.03336 | 1.176 |
+#&gt; |.....................| 0.03038 | 0.7545 | 0.7645 | 1.383 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.185 | 1.201 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 3</span>| 513.07755 | 0.9456 | -1.003 | -0.9114 | -0.8946 |
+#&gt; |.....................| -0.8455 | -0.7911 | -0.8692 | -0.8718 |
+#&gt; |.....................| -0.8890 | -0.8774 | -0.8871 | -0.8536 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8594 | -0.8582 |...........|...........|</span>
+#&gt; | U| 513.07755 | 87.94 | -5.303 | -0.9401 | -0.1102 |
+#&gt; |.....................| 2.300 | 1.246 | 0.03034 | 1.198 |
+#&gt; |.....................| 0.03004 | 0.7593 | 0.8646 | 1.231 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.079 | 1.084 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 513.07755</span> | 87.94 | 0.004978 | 0.2809 | 0.8956 |
+#&gt; |.....................| 9.972 | 1.246 | 0.03034 | 1.198 |
+#&gt; |.....................| 0.03004 | 0.7593 | 0.8646 | 1.231 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.079 | 1.084 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 4</span>| 499.28604 | 0.9888 | -1.001 | -0.9113 | -0.8945 |
+#&gt; |.....................| -0.8454 | -0.8520 | -0.8870 | -0.8686 |
+#&gt; |.....................| -0.8910 | -0.8769 | -0.8770 | -0.8646 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8682 | -0.8679 |...........|...........|</span>
+#&gt; | U| 499.28604 | 91.96 | -5.301 | -0.9400 | -0.1100 |
+#&gt; |.....................| 2.300 | 1.209 | 0.03007 | 1.200 |
+#&gt; |.....................| 0.03001 | 0.7597 | 0.8735 | 1.218 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.070 | 1.074 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 499.28604</span> | 91.96 | 0.004989 | 0.2809 | 0.8958 |
+#&gt; |.....................| 9.974 | 1.209 | 0.03007 | 1.200 |
+#&gt; |.....................| 0.03001 | 0.7597 | 0.8735 | 1.218 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.070 | 1.074 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -111.5 | 2.236 | -0.2057 | 0.1035 |
+#&gt; |.....................| -0.1971 | -66.17 | -21.17 | 4.107 |
+#&gt; |.....................| -1.586 | 1.583 | 8.991 | -11.70 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.625 | -10.49 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 5</span>| 497.76004 | 1.001 | -1.001 | -0.9113 | -0.8945 |
+#&gt; |.....................| -0.8454 | -0.8366 | -0.8822 | -0.8695 |
+#&gt; |.....................| -0.8906 | -0.8771 | -0.8792 | -0.8619 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8660 | -0.8654 |...........|...........|</span>
+#&gt; | U| 497.76004 | 93.05 | -5.301 | -0.9400 | -0.1101 |
+#&gt; |.....................| 2.300 | 1.219 | 0.03014 | 1.199 |
+#&gt; |.....................| 0.03001 | 0.7595 | 0.8715 | 1.221 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.072 | 1.076 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 497.76004</span> | 93.05 | 0.004986 | 0.2809 | 0.8958 |
+#&gt; |.....................| 9.974 | 1.219 | 0.03014 | 1.199 |
+#&gt; |.....................| 0.03001 | 0.7595 | 0.8715 | 1.221 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.072 | 1.076 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 56.91 | 2.356 | 0.1468 | 0.2109 |
+#&gt; |.....................| 0.1761 | -64.61 | -18.67 | 3.291 |
+#&gt; |.....................| -1.680 | 1.108 | 8.338 | -11.70 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.518 | -10.47 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 6</span>| 496.73820 | 0.9899 | -1.002 | -0.9113 | -0.8945 |
+#&gt; |.....................| -0.8454 | -0.8205 | -0.8775 | -0.8703 |
+#&gt; |.....................| -0.8902 | -0.8774 | -0.8813 | -0.8590 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8636 | -0.8628 |...........|...........|</span>
+#&gt; | U| 496.7382 | 92.06 | -5.302 | -0.9400 | -0.1101 |
+#&gt; |.....................| 2.300 | 1.228 | 0.03021 | 1.198 |
+#&gt; |.....................| 0.03002 | 0.7593 | 0.8696 | 1.225 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.075 | 1.079 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 496.7382</span> | 92.06 | 0.004983 | 0.2809 | 0.8957 |
+#&gt; |.....................| 9.974 | 1.228 | 0.03021 | 1.198 |
+#&gt; |.....................| 0.03002 | 0.7593 | 0.8696 | 1.225 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.075 | 1.079 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -94.52 | 2.222 | -0.1721 | 0.1131 |
+#&gt; |.....................| -0.1712 | -62.76 | -19.55 | 3.974 |
+#&gt; |.....................| -1.718 | 1.304 | 7.360 | -11.47 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.402 | -10.21 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 7</span>| 495.33979 | 1.001 | -1.002 | -0.9113 | -0.8946 |
+#&gt; |.....................| -0.8454 | -0.8044 | -0.8726 | -0.8713 |
+#&gt; |.....................| -0.8897 | -0.8777 | -0.8834 | -0.8560 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8612 | -0.8602 |...........|...........|</span>
+#&gt; | U| 495.33979 | 93.05 | -5.302 | -0.9400 | -0.1102 |
+#&gt; |.....................| 2.300 | 1.238 | 0.03028 | 1.198 |
+#&gt; |.....................| 0.03003 | 0.7591 | 0.8679 | 1.228 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.077 | 1.082 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 495.33979</span> | 93.05 | 0.004981 | 0.2809 | 0.8957 |
+#&gt; |.....................| 9.974 | 1.238 | 0.03028 | 1.198 |
+#&gt; |.....................| 0.03003 | 0.7591 | 0.8679 | 1.228 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.077 | 1.082 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 56.11 | 2.327 | 0.1520 | 0.2091 |
+#&gt; |.....................| 0.1742 | -61.13 | -17.23 | 3.435 |
+#&gt; |.....................| -1.620 | 1.132 | 9.399 | -11.44 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.328 | -10.19 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 8</span>| 494.31617 | 0.9904 | -1.003 | -0.9113 | -0.8946 |
+#&gt; |.....................| -0.8455 | -0.7881 | -0.8680 | -0.8722 |
+#&gt; |.....................| -0.8893 | -0.8780 | -0.8859 | -0.8530 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8587 | -0.8575 |...........|...........|</span>
+#&gt; | U| 494.31617 | 92.11 | -5.303 | -0.9400 | -0.1102 |
+#&gt; |.....................| 2.300 | 1.248 | 0.03035 | 1.197 |
+#&gt; |.....................| 0.03003 | 0.7589 | 0.8657 | 1.232 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.080 | 1.085 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 494.31617</span> | 92.11 | 0.004977 | 0.2809 | 0.8956 |
+#&gt; |.....................| 9.973 | 1.248 | 0.03035 | 1.197 |
+#&gt; |.....................| 0.03003 | 0.7589 | 0.8657 | 1.232 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.080 | 1.085 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -86.81 | 2.198 | -0.1566 | 0.1238 |
+#&gt; |.....................| -0.1638 | -59.37 | -18.02 | 4.057 |
+#&gt; |.....................| -1.591 | 1.325 | 8.479 | -11.19 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.201 | -9.937 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 9</span>| 493.00423 | 1.001 | -1.003 | -0.9113 | -0.8947 |
+#&gt; |.....................| -0.8454 | -0.7718 | -0.8631 | -0.8732 |
+#&gt; |.....................| -0.8888 | -0.8783 | -0.8883 | -0.8499 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8562 | -0.8548 |...........|...........|</span>
+#&gt; | U| 493.00423 | 93.05 | -5.303 | -0.9400 | -0.1103 |
+#&gt; |.....................| 2.300 | 1.258 | 0.03043 | 1.197 |
+#&gt; |.....................| 0.03004 | 0.7586 | 0.8635 | 1.236 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.083 | 1.088 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 493.00423</span> | 93.05 | 0.004974 | 0.2809 | 0.8956 |
+#&gt; |.....................| 9.974 | 1.258 | 0.03043 | 1.197 |
+#&gt; |.....................| 0.03004 | 0.7586 | 0.8635 | 1.236 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.083 | 1.088 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 54.84 | 2.286 | 0.1404 | 0.2142 |
+#&gt; |.....................| 0.1628 | -57.96 | -15.94 | 3.372 |
+#&gt; |.....................| -1.642 | 1.184 | 9.036 | -11.17 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -9.110 | -9.901 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 10</span>| 491.99601 | 0.9908 | -1.004 | -0.9114 | -0.8947 |
+#&gt; |.....................| -0.8455 | -0.7552 | -0.8585 | -0.8742 |
+#&gt; |.....................| -0.8884 | -0.8786 | -0.8910 | -0.8467 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8536 | -0.8520 |...........|...........|</span>
+#&gt; | U| 491.99601 | 92.15 | -5.304 | -0.9401 | -0.1103 |
+#&gt; |.....................| 2.300 | 1.268 | 0.03050 | 1.196 |
+#&gt; |.....................| 0.03005 | 0.7584 | 0.8612 | 1.239 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.085 | 1.091 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 491.99601</span> | 92.15 | 0.004971 | 0.2809 | 0.8956 |
+#&gt; |.....................| 9.973 | 1.268 | 0.03050 | 1.196 |
+#&gt; |.....................| 0.03005 | 0.7584 | 0.8612 | 1.239 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.085 | 1.091 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -80.67 | 2.171 | -0.1367 | 0.1256 |
+#&gt; |.....................| -0.1610 | -56.13 | -16.61 | 4.047 |
+#&gt; |.....................| -1.607 | 1.226 | 8.142 | -10.92 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.982 | -9.644 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 11</span>| 490.76421 | 1.000 | -1.005 | -0.9113 | -0.8948 |
+#&gt; |.....................| -0.8455 | -0.7388 | -0.8538 | -0.8754 |
+#&gt; |.....................| -0.8879 | -0.8790 | -0.8935 | -0.8435 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8510 | -0.8492 |...........|...........|</span>
+#&gt; | U| 490.76421 | 93.04 | -5.305 | -0.9401 | -0.1104 |
+#&gt; |.....................| 2.300 | 1.277 | 0.03057 | 1.195 |
+#&gt; |.....................| 0.03006 | 0.7581 | 0.8590 | 1.243 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.088 | 1.094 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 490.76421</span> | 93.04 | 0.004968 | 0.2809 | 0.8955 |
+#&gt; |.....................| 9.973 | 1.277 | 0.03057 | 1.195 |
+#&gt; |.....................| 0.03006 | 0.7581 | 0.8590 | 1.243 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.088 | 1.094 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 54.34 | 2.256 | 0.1715 | 0.2224 |
+#&gt; |.....................| 0.1653 | -54.87 | -14.72 | 3.299 |
+#&gt; |.....................| -1.777 | 1.023 | 8.651 | -10.90 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.887 | -9.594 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 12</span>| 489.76286 | 0.9913 | -1.005 | -0.9114 | -0.8948 |
+#&gt; |.....................| -0.8455 | -0.7220 | -0.8492 | -0.8764 |
+#&gt; |.....................| -0.8873 | -0.8793 | -0.8962 | -0.8402 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8483 | -0.8462 |...........|...........|</span>
+#&gt; | U| 489.76286 | 92.19 | -5.305 | -0.9401 | -0.1104 |
+#&gt; |.....................| 2.300 | 1.287 | 0.03063 | 1.195 |
+#&gt; |.....................| 0.03006 | 0.7579 | 0.8566 | 1.247 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.091 | 1.097 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 489.76286</span> | 92.19 | 0.004965 | 0.2809 | 0.8955 |
+#&gt; |.....................| 9.973 | 1.287 | 0.03063 | 1.195 |
+#&gt; |.....................| 0.03006 | 0.7579 | 0.8566 | 1.247 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.091 | 1.097 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -73.18 | 2.145 | -0.1190 | 0.1261 |
+#&gt; |.....................| -0.1580 | -53.08 | -15.27 | 4.015 |
+#&gt; |.....................| -1.639 | 1.110 | 7.813 | -10.65 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.743 | -9.338 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 13</span>| 488.61493 | 1.000 | -1.006 | -0.9114 | -0.8949 |
+#&gt; |.....................| -0.8455 | -0.7053 | -0.8446 | -0.8776 |
+#&gt; |.....................| -0.8867 | -0.8796 | -0.8989 | -0.8368 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8455 | -0.8433 |...........|...........|</span>
+#&gt; | U| 488.61493 | 93.04 | -5.306 | -0.9401 | -0.1105 |
+#&gt; |.....................| 2.300 | 1.297 | 0.03070 | 1.194 |
+#&gt; |.....................| 0.03007 | 0.7577 | 0.8543 | 1.252 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.094 | 1.100 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 488.61493</span> | 93.04 | 0.004961 | 0.2809 | 0.8954 |
+#&gt; |.....................| 9.973 | 1.297 | 0.03070 | 1.194 |
+#&gt; |.....................| 0.03007 | 0.7577 | 0.8543 | 1.252 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.094 | 1.100 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 54.41 | 2.230 | 0.1889 | 0.2376 |
+#&gt; |.....................| 0.1637 | -52.01 | -13.54 | 3.223 |
+#&gt; |.....................| -1.937 | 0.8847 | 10.07 | -10.59 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.650 | -9.282 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 14</span>| 487.61806 | 0.9919 | -1.007 | -0.9114 | -0.8949 |
+#&gt; |.....................| -0.8455 | -0.6884 | -0.8402 | -0.8788 |
+#&gt; |.....................| -0.8861 | -0.8798 | -0.9022 | -0.8333 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8427 | -0.8402 |...........|...........|</span>
+#&gt; | U| 487.61806 | 92.24 | -5.307 | -0.9401 | -0.1105 |
+#&gt; |.....................| 2.300 | 1.308 | 0.03077 | 1.193 |
+#&gt; |.....................| 0.03008 | 0.7575 | 0.8514 | 1.256 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.097 | 1.103 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 487.61806</span> | 92.24 | 0.004958 | 0.2809 | 0.8953 |
+#&gt; |.....................| 9.973 | 1.308 | 0.03077 | 1.193 |
+#&gt; |.....................| 0.03008 | 0.7575 | 0.8514 | 1.256 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.097 | 1.103 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -64.97 | 2.116 | -0.09941 | 0.1372 |
+#&gt; |.....................| -0.1475 | -50.35 | -14.02 | 3.916 |
+#&gt; |.....................| -1.790 | 0.8979 | 9.163 | -10.32 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.505 | -9.022 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 15</span>| 486.55968 | 1.001 | -1.008 | -0.9114 | -0.8950 |
+#&gt; |.....................| -0.8455 | -0.6717 | -0.8358 | -0.8800 |
+#&gt; |.....................| -0.8854 | -0.8801 | -0.9058 | -0.8297 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8398 | -0.8372 |...........|...........|</span>
+#&gt; | U| 486.55968 | 93.05 | -5.308 | -0.9401 | -0.1106 |
+#&gt; |.....................| 2.300 | 1.318 | 0.03084 | 1.193 |
+#&gt; |.....................| 0.03009 | 0.7573 | 0.8482 | 1.260 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.100 | 1.107 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 486.55968</span> | 93.05 | 0.004954 | 0.2809 | 0.8953 |
+#&gt; |.....................| 9.973 | 1.318 | 0.03084 | 1.193 |
+#&gt; |.....................| 0.03009 | 0.7573 | 0.8482 | 1.260 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.100 | 1.107 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 55.08 | 2.188 | 0.1916 | 0.2341 |
+#&gt; |.....................| 0.1660 | -48.95 | -12.27 | 3.347 |
+#&gt; |.....................| -1.726 | 0.9589 | 6.446 | -10.30 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.390 | -8.950 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 16</span>| 485.60262 | 0.9920 | -1.008 | -0.9115 | -0.8951 |
+#&gt; |.....................| -0.8455 | -0.6547 | -0.8316 | -0.8813 |
+#&gt; |.....................| -0.8847 | -0.8804 | -0.9083 | -0.8260 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8367 | -0.8340 |...........|...........|</span>
+#&gt; | U| 485.60262 | 92.26 | -5.308 | -0.9402 | -0.1107 |
+#&gt; |.....................| 2.300 | 1.328 | 0.03090 | 1.192 |
+#&gt; |.....................| 0.03010 | 0.7571 | 0.8460 | 1.265 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.104 | 1.110 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 485.60262</span> | 92.26 | 0.004950 | 0.2809 | 0.8952 |
+#&gt; |.....................| 9.973 | 1.328 | 0.03090 | 1.192 |
+#&gt; |.....................| 0.03010 | 0.7571 | 0.8460 | 1.265 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.104 | 1.110 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -62.47 | 2.078 | -0.09882 | 0.1294 |
+#&gt; |.....................| -0.1587 | -47.42 | -12.81 | 3.926 |
+#&gt; |.....................| -1.683 | 0.9415 | 5.611 | -10.02 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.237 | -8.679 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 17</span>| 484.58535 | 1.000 | -1.009 | -0.9115 | -0.8952 |
+#&gt; |.....................| -0.8455 | -0.6375 | -0.8274 | -0.8829 |
+#&gt; |.....................| -0.8840 | -0.8807 | -0.9099 | -0.8222 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8336 | -0.8307 |...........|...........|</span>
+#&gt; | U| 484.58535 | 93.02 | -5.309 | -0.9402 | -0.1107 |
+#&gt; |.....................| 2.300 | 1.338 | 0.03096 | 1.191 |
+#&gt; |.....................| 0.03011 | 0.7568 | 0.8446 | 1.269 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.107 | 1.114 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 484.58535</span> | 93.02 | 0.004946 | 0.2809 | 0.8952 |
+#&gt; |.....................| 9.973 | 1.338 | 0.03096 | 1.191 |
+#&gt; |.....................| 0.03011 | 0.7568 | 0.8446 | 1.269 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.107 | 1.114 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 50.15 | 2.155 | 0.1960 | 0.2225 |
+#&gt; |.....................| 0.1509 | -46.14 | -11.19 | 3.405 |
+#&gt; |.....................| -1.652 | 1.035 | 7.536 | -9.951 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -8.121 | -8.609 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 18</span>| 483.66860 | 0.9923 | -1.010 | -0.9115 | -0.8952 |
+#&gt; |.....................| -0.8455 | -0.6203 | -0.8235 | -0.8844 |
+#&gt; |.....................| -0.8833 | -0.8810 | -0.9123 | -0.8182 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8303 | -0.8273 |...........|...........|</span>
+#&gt; | U| 483.6686 | 92.29 | -5.310 | -0.9402 | -0.1108 |
+#&gt; |.....................| 2.300 | 1.348 | 0.03102 | 1.190 |
+#&gt; |.....................| 0.03012 | 0.7565 | 0.8425 | 1.274 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.110 | 1.117 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 483.6686</span> | 92.29 | 0.004942 | 0.2809 | 0.8951 |
+#&gt; |.....................| 9.973 | 1.348 | 0.03102 | 1.190 |
+#&gt; |.....................| 0.03012 | 0.7565 | 0.8425 | 1.274 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.110 | 1.117 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -57.62 | 2.059 | -0.07549 | 0.1395 |
+#&gt; |.....................| -0.1501 | -44.74 | -11.66 | 3.913 |
+#&gt; |.....................| -1.664 | 0.8845 | 6.781 | -9.703 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.961 | -8.325 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 19</span>| 482.71012 | 1.000 | -1.011 | -0.9115 | -0.8953 |
+#&gt; |.....................| -0.8455 | -0.6032 | -0.8198 | -0.8861 |
+#&gt; |.....................| -0.8825 | -0.8814 | -0.9153 | -0.8141 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8270 | -0.8239 |...........|...........|</span>
+#&gt; | U| 482.71012 | 93.02 | -5.311 | -0.9402 | -0.1109 |
+#&gt; |.....................| 2.300 | 1.359 | 0.03108 | 1.189 |
+#&gt; |.....................| 0.03014 | 0.7563 | 0.8399 | 1.279 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.114 | 1.121 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 482.71012</span> | 93.02 | 0.004937 | 0.2809 | 0.8950 |
+#&gt; |.....................| 9.973 | 1.359 | 0.03108 | 1.189 |
+#&gt; |.....................| 0.03014 | 0.7563 | 0.8399 | 1.279 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.114 | 1.121 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 48.98 | 2.122 | 0.2043 | 0.2315 |
+#&gt; |.....................| 0.1449 | -43.47 | -10.15 | 3.365 |
+#&gt; |.....................| -1.703 | 0.9582 | 7.160 | -9.600 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.838 | -8.245 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 20</span>| 481.83107 | 0.9926 | -1.012 | -0.9116 | -0.8954 |
+#&gt; |.....................| -0.8455 | -0.5860 | -0.8164 | -0.8879 |
+#&gt; |.....................| -0.8817 | -0.8818 | -0.9184 | -0.8098 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8235 | -0.8203 |...........|...........|</span>
+#&gt; | U| 481.83107 | 92.31 | -5.312 | -0.9403 | -0.1110 |
+#&gt; |.....................| 2.300 | 1.369 | 0.03113 | 1.188 |
+#&gt; |.....................| 0.03015 | 0.7560 | 0.8372 | 1.284 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.118 | 1.125 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 481.83107</span> | 92.31 | 0.004932 | 0.2808 | 0.8949 |
+#&gt; |.....................| 9.973 | 1.369 | 0.03113 | 1.188 |
+#&gt; |.....................| 0.03015 | 0.7560 | 0.8372 | 1.284 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.118 | 1.125 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -54.27 | 2.027 | -0.06740 | 0.1414 |
+#&gt; |.....................| -0.1465 | -41.84 | -10.48 | 3.798 |
+#&gt; |.....................| -1.730 | 0.8044 | 6.401 | -9.335 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.662 | -7.960 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 21</span>| 480.92878 | 1.000 | -1.013 | -0.9117 | -0.8955 |
+#&gt; |.....................| -0.8455 | -0.5689 | -0.8133 | -0.8899 |
+#&gt; |.....................| -0.8807 | -0.8821 | -0.9215 | -0.8053 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8199 | -0.8166 |...........|...........|</span>
+#&gt; | U| 480.92878 | 93.01 | -5.313 | -0.9403 | -0.1111 |
+#&gt; |.....................| 2.300 | 1.379 | 0.03117 | 1.187 |
+#&gt; |.....................| 0.03016 | 0.7557 | 0.8345 | 1.290 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.122 | 1.129 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 480.92878</span> | 93.01 | 0.004927 | 0.2808 | 0.8948 |
+#&gt; |.....................| 9.973 | 1.379 | 0.03117 | 1.187 |
+#&gt; |.....................| 0.03016 | 0.7557 | 0.8345 | 1.290 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.122 | 1.129 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 47.18 | 2.077 | 0.1996 | 0.2200 |
+#&gt; |.....................| 0.1318 | -41.07 | -9.197 | 3.259 |
+#&gt; |.....................| -1.748 | 0.9101 | 6.743 | -9.229 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.511 | -7.855 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 22</span>| 480.07574 | 0.9930 | -1.014 | -0.9117 | -0.8956 |
+#&gt; |.....................| -0.8455 | -0.5517 | -0.8106 | -0.8919 |
+#&gt; |.....................| -0.8795 | -0.8825 | -0.9247 | -0.8007 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8161 | -0.8129 |...........|...........|</span>
+#&gt; | U| 480.07574 | 92.35 | -5.314 | -0.9404 | -0.1112 |
+#&gt; |.....................| 2.300 | 1.390 | 0.03121 | 1.186 |
+#&gt; |.....................| 0.03018 | 0.7555 | 0.8317 | 1.295 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.126 | 1.133 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 480.07574</span> | 92.35 | 0.004921 | 0.2808 | 0.8947 |
+#&gt; |.....................| 9.973 | 1.390 | 0.03121 | 1.186 |
+#&gt; |.....................| 0.03018 | 0.7555 | 0.8317 | 1.295 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.126 | 1.133 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -48.22 | 1.995 | -0.04658 | 0.1415 |
+#&gt; |.....................| -0.1316 | -39.56 | -9.522 | 3.639 |
+#&gt; |.....................| -1.878 | 0.6154 | 4.556 | -8.937 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.320 | -7.563 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 23</span>| 479.25211 | 1.000 | -1.015 | -0.9118 | -0.8957 |
+#&gt; |.....................| -0.8454 | -0.5343 | -0.8082 | -0.8940 |
+#&gt; |.....................| -0.8781 | -0.8826 | -0.9261 | -0.7958 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8122 | -0.8090 |...........|...........|</span>
+#&gt; | U| 479.25211 | 93.02 | -5.315 | -0.9405 | -0.1113 |
+#&gt; |.....................| 2.300 | 1.400 | 0.03125 | 1.184 |
+#&gt; |.....................| 0.03020 | 0.7553 | 0.8305 | 1.301 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.130 | 1.137 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 479.25211</span> | 93.02 | 0.004915 | 0.2808 | 0.8946 |
+#&gt; |.....................| 9.974 | 1.400 | 0.03125 | 1.184 |
+#&gt; |.....................| 0.03020 | 0.7553 | 0.8305 | 1.301 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.130 | 1.137 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 48.39 | 2.048 | 0.2189 | 0.2175 |
+#&gt; |.....................| 0.1393 | -38.80 | -8.286 | 3.169 |
+#&gt; |.....................| -1.757 | 0.9021 | 6.456 | -8.802 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -7.165 | -7.452 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 24</span>| 478.42395 | 0.9935 | -1.017 | -0.9119 | -0.8959 |
+#&gt; |.....................| -0.8454 | -0.5169 | -0.8064 | -0.8963 |
+#&gt; |.....................| -0.8766 | -0.8829 | -0.9277 | -0.7908 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8081 | -0.8051 |...........|...........|</span>
+#&gt; | U| 478.42395 | 92.40 | -5.317 | -0.9406 | -0.1115 |
+#&gt; |.....................| 2.300 | 1.411 | 0.03128 | 1.183 |
+#&gt; |.....................| 0.03022 | 0.7552 | 0.8290 | 1.307 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.134 | 1.141 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 478.42395</span> | 92.40 | 0.004909 | 0.2808 | 0.8945 |
+#&gt; |.....................| 9.974 | 1.411 | 0.03128 | 1.183 |
+#&gt; |.....................| 0.03022 | 0.7552 | 0.8290 | 1.307 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.134 | 1.141 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -41.65 | 1.977 | -0.02866 | 0.1453 |
+#&gt; |.....................| -0.1180 | -37.67 | -8.677 | 3.579 |
+#&gt; |.....................| -1.774 | 0.6894 | 5.855 | -8.506 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.962 | -7.153 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 25</span>| 477.65816 | 1.000 | -1.018 | -0.9120 | -0.8960 |
+#&gt; |.....................| -0.8454 | -0.4997 | -0.8051 | -0.8988 |
+#&gt; |.....................| -0.8750 | -0.8832 | -0.9313 | -0.7859 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8042 | -0.8013 |...........|...........|</span>
+#&gt; | U| 477.65816 | 93.02 | -5.318 | -0.9406 | -0.1116 |
+#&gt; |.....................| 2.300 | 1.421 | 0.03130 | 1.181 |
+#&gt; |.....................| 0.03025 | 0.7549 | 0.8259 | 1.313 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.138 | 1.145 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 477.65816</span> | 93.02 | 0.004901 | 0.2808 | 0.8944 |
+#&gt; |.....................| 9.974 | 1.421 | 0.03130 | 1.181 |
+#&gt; |.....................| 0.03025 | 0.7549 | 0.8259 | 1.313 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.138 | 1.145 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 47.50 | 2.013 | 0.2278 | 0.2145 |
+#&gt; |.....................| 0.1415 | -36.68 | -7.460 | 3.039 |
+#&gt; |.....................| -1.807 | 0.8669 | 6.124 | -8.373 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.814 | -7.074 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 26</span>| 476.87668 | 0.9936 | -1.020 | -0.9121 | -0.8962 |
+#&gt; |.....................| -0.8454 | -0.4825 | -0.8047 | -0.9014 |
+#&gt; |.....................| -0.8732 | -0.8836 | -0.9351 | -0.7808 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8001 | -0.7975 |...........|...........|</span>
+#&gt; | U| 476.87668 | 92.41 | -5.320 | -0.9408 | -0.1117 |
+#&gt; |.....................| 2.300 | 1.431 | 0.03130 | 1.180 |
+#&gt; |.....................| 0.03028 | 0.7546 | 0.8226 | 1.319 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.143 | 1.149 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 476.87668</span> | 92.41 | 0.004893 | 0.2807 | 0.8943 |
+#&gt; |.....................| 9.974 | 1.431 | 0.03130 | 1.180 |
+#&gt; |.....................| 0.03028 | 0.7546 | 0.8226 | 1.319 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.143 | 1.149 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -40.64 | 1.935 | -0.02164 | 0.1511 |
+#&gt; |.....................| -0.1127 | -35.59 | -7.858 | 3.450 |
+#&gt; |.....................| -1.805 | 0.6731 | 3.945 | -8.048 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.589 | -6.756 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 27</span>| 476.16299 | 1.000 | -1.022 | -0.9123 | -0.8963 |
+#&gt; |.....................| -0.8454 | -0.4651 | -0.8047 | -0.9041 |
+#&gt; |.....................| -0.8711 | -0.8840 | -0.9355 | -0.7757 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7959 | -0.7936 |...........|...........|</span>
+#&gt; | U| 476.16299 | 93.01 | -5.322 | -0.9409 | -0.1119 |
+#&gt; |.....................| 2.300 | 1.442 | 0.03130 | 1.178 |
+#&gt; |.....................| 0.03031 | 0.7543 | 0.8222 | 1.326 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.147 | 1.153 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 476.16299</span> | 93.01 | 0.004885 | 0.2807 | 0.8941 |
+#&gt; |.....................| 9.974 | 1.442 | 0.03130 | 1.178 |
+#&gt; |.....................| 0.03031 | 0.7543 | 0.8222 | 1.326 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.147 | 1.153 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 44.38 | 1.982 | 0.2331 | 0.2213 |
+#&gt; |.....................| 0.1467 | -34.64 | -6.709 | 2.894 |
+#&gt; |.....................| -1.888 | 0.7760 | 4.358 | -7.901 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.419 | -6.620 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 28</span>| 475.47434 | 0.9938 | -1.024 | -0.9125 | -0.8966 |
+#&gt; |.....................| -0.8454 | -0.4477 | -0.8058 | -0.9069 |
+#&gt; |.....................| -0.8685 | -0.8844 | -0.9328 | -0.7706 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7919 | -0.7898 |...........|...........|</span>
+#&gt; | U| 475.47434 | 92.43 | -5.324 | -0.9411 | -0.1122 |
+#&gt; |.....................| 2.300 | 1.452 | 0.03129 | 1.177 |
+#&gt; |.....................| 0.03035 | 0.7540 | 0.8246 | 1.332 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.151 | 1.157 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 475.47434</span> | 92.43 | 0.004875 | 0.2807 | 0.8939 |
+#&gt; |.....................| 9.974 | 1.452 | 0.03129 | 1.177 |
+#&gt; |.....................| 0.03035 | 0.7540 | 0.8246 | 1.332 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.151 | 1.157 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -38.01 | 1.932 | -0.02542 | 0.1483 |
+#&gt; |.....................| -0.1147 | -33.71 | -7.114 | 3.216 |
+#&gt; |.....................| -1.879 | 0.6267 | 4.067 | -7.573 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.213 | -6.338 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 29</span>| 474.82575 | 0.9998 | -1.026 | -0.9126 | -0.8968 |
+#&gt; |.....................| -0.8454 | -0.4303 | -0.8075 | -0.9096 |
+#&gt; |.....................| -0.8656 | -0.8846 | -0.9310 | -0.7657 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7878 | -0.7862 |...........|...........|</span>
+#&gt; | U| 474.82575 | 92.98 | -5.326 | -0.9413 | -0.1124 |
+#&gt; |.....................| 2.300 | 1.462 | 0.03126 | 1.175 |
+#&gt; |.....................| 0.03039 | 0.7538 | 0.8261 | 1.338 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.156 | 1.161 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 474.82575</span> | 92.98 | 0.004864 | 0.2806 | 0.8937 |
+#&gt; |.....................| 9.974 | 1.462 | 0.03126 | 1.175 |
+#&gt; |.....................| 0.03039 | 0.7538 | 0.8261 | 1.338 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.156 | 1.161 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 40.83 | 1.980 | 0.2123 | 0.2125 |
+#&gt; |.....................| 0.1324 | -32.65 | -6.032 | 2.979 |
+#&gt; |.....................| -1.922 | 0.7692 | 4.596 | -7.426 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.058 | -6.217 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 30</span>| 474.18202 | 0.9939 | -1.028 | -0.9128 | -0.8971 |
+#&gt; |.....................| -0.8454 | -0.4131 | -0.8106 | -0.9130 |
+#&gt; |.....................| -0.8620 | -0.8851 | -0.9307 | -0.7608 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7838 | -0.7828 |...........|...........|</span>
+#&gt; | U| 474.18202 | 92.44 | -5.328 | -0.9414 | -0.1127 |
+#&gt; |.....................| 2.300 | 1.473 | 0.03121 | 1.173 |
+#&gt; |.....................| 0.03044 | 0.7535 | 0.8264 | 1.344 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 | 1.165 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 474.18202</span> | 92.44 | 0.004852 | 0.2806 | 0.8935 |
+#&gt; |.....................| 9.974 | 1.473 | 0.03121 | 1.173 |
+#&gt; |.....................| 0.03044 | 0.7535 | 0.8264 | 1.344 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.160 | 1.165 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -37.33 | 1.920 | -0.03157 | 0.1462 |
+#&gt; |.....................| -0.1145 | -31.92 | -6.433 | 3.018 |
+#&gt; |.....................| -1.919 | 0.6114 | 5.640 | -7.155 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -5.876 | -5.958 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 31</span>| 473.55376 | 0.9995 | -1.031 | -0.9130 | -0.8973 |
+#&gt; |.....................| -0.8454 | -0.3971 | -0.8148 | -0.9162 |
+#&gt; |.....................| -0.8581 | -0.8855 | -0.9368 | -0.7563 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7800 | -0.7797 |...........|...........|</span>
+#&gt; | U| 473.55376 | 92.95 | -5.331 | -0.9416 | -0.1129 |
+#&gt; |.....................| 2.300 | 1.482 | 0.03115 | 1.171 |
+#&gt; |.....................| 0.03050 | 0.7531 | 0.8211 | 1.349 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.164 | 1.168 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 473.55376</span> | 92.95 | 0.004838 | 0.2806 | 0.8932 |
+#&gt; |.....................| 9.974 | 1.482 | 0.03115 | 1.171 |
+#&gt; |.....................| 0.03050 | 0.7531 | 0.8211 | 1.349 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.164 | 1.168 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 32</span>| 472.90182 | 0.9995 | -1.035 | -0.9132 | -0.8977 |
+#&gt; |.....................| -0.8453 | -0.3799 | -0.8225 | -0.9204 |
+#&gt; |.....................| -0.8527 | -0.8861 | -0.9447 | -0.7510 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7757 | -0.7763 |...........|...........|</span>
+#&gt; | U| 472.90182 | 92.96 | -5.335 | -0.9418 | -0.1133 |
+#&gt; |.....................| 2.300 | 1.493 | 0.03104 | 1.168 |
+#&gt; |.....................| 0.03058 | 0.7527 | 0.8141 | 1.356 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.169 | 1.172 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 472.90182</span> | 92.96 | 0.004819 | 0.2805 | 0.8929 |
+#&gt; |.....................| 9.975 | 1.493 | 0.03104 | 1.168 |
+#&gt; |.....................| 0.03058 | 0.7527 | 0.8141 | 1.356 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.169 | 1.172 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 33</span>| 469.90339 | 0.9997 | -1.054 | -0.9142 | -0.8996 |
+#&gt; |.....................| -0.8452 | -0.2944 | -0.8611 | -0.9412 |
+#&gt; |.....................| -0.8255 | -0.8889 | -0.9843 | -0.7249 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7539 | -0.7597 |...........|...........|</span>
+#&gt; | U| 469.90339 | 92.98 | -5.354 | -0.9427 | -0.1152 |
+#&gt; |.....................| 2.300 | 1.544 | 0.03046 | 1.156 |
+#&gt; |.....................| 0.03099 | 0.7505 | 0.7794 | 1.387 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.192 | 1.190 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 469.90339</span> | 92.98 | 0.004727 | 0.2803 | 0.8912 |
+#&gt; |.....................| 9.976 | 1.544 | 0.03046 | 1.156 |
+#&gt; |.....................| 0.03099 | 0.7505 | 0.7794 | 1.387 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.192 | 1.190 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 34</span>| 461.71523 | 1.001 | -1.134 | -0.9184 | -0.9072 |
+#&gt; |.....................| -0.8447 | 0.05742 | -1.020 | -1.027 |
+#&gt; |.....................| -0.7136 | -0.9005 | -1.147 | -0.6175 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6642 | -0.6913 |...........|...........|</span>
+#&gt; | U| 461.71523 | 93.05 | -5.434 | -0.9467 | -0.1228 |
+#&gt; |.....................| 2.301 | 1.755 | 0.02808 | 1.105 |
+#&gt; |.....................| 0.03267 | 0.7417 | 0.6368 | 1.518 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.288 | 1.263 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 461.71523</span> | 93.05 | 0.004366 | 0.2795 | 0.8844 |
+#&gt; |.....................| 9.981 | 1.755 | 0.02808 | 1.105 |
+#&gt; |.....................| 0.03267 | 0.7417 | 0.6368 | 1.518 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.288 | 1.263 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 11.20 | 1.045 | 1.020 | 0.3495 |
+#&gt; |.....................| 0.7923 | -15.00 | -0.3969 | -1.315 |
+#&gt; |.....................| -3.031 | 0.2676 | -6.780 | -1.078 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.09081 | -1.463 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 35</span>| 459.94653 | 1.009 | -1.206 | -0.9768 | -0.9283 |
+#&gt; |.....................| -0.8884 | 0.4547 | -1.238 | -0.9419 |
+#&gt; |.....................| -0.5030 | -0.9080 | -0.7892 | -0.6450 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7313 | -0.6959 |...........|...........|</span>
+#&gt; | U| 459.94653 | 93.85 | -5.506 | -1.002 | -0.1439 |
+#&gt; |.....................| 2.257 | 1.993 | 0.02480 | 1.155 |
+#&gt; |.....................| 0.03583 | 0.7361 | 0.9504 | 1.484 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.216 | 1.258 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 459.94653</span> | 93.85 | 0.004064 | 0.2686 | 0.8660 |
+#&gt; |.....................| 9.554 | 1.993 | 0.02480 | 1.155 |
+#&gt; |.....................| 0.03583 | 0.7361 | 0.9504 | 1.484 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.216 | 1.258 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 117.0 | 1.389 | -1.721 | -0.1200 |
+#&gt; |.....................| 0.004314 | -5.763 | 2.093 | 3.426 |
+#&gt; |.....................| -1.378 | 2.600 | 15.14 | -1.236 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -4.018 | -1.529 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 36</span>| 458.11528 | 1.003 | -1.307 | -0.9477 | -0.9422 |
+#&gt; |.....................| -0.9430 | 0.6906 | -1.630 | -0.8850 |
+#&gt; |.....................| -0.1864 | -1.043 | -0.8947 | -0.8359 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7822 | -0.7759 |...........|...........|</span>
+#&gt; | U| 458.11528 | 93.30 | -5.607 | -0.9742 | -0.1578 |
+#&gt; |.....................| 2.202 | 2.135 | 0.01893 | 1.190 |
+#&gt; |.....................| 0.04058 | 0.6334 | 0.8579 | 1.253 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.162 | 1.172 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 458.11528</span> | 93.30 | 0.003671 | 0.2740 | 0.8540 |
+#&gt; |.....................| 9.046 | 2.135 | 0.01893 | 1.190 |
+#&gt; |.....................| 0.04058 | 0.6334 | 0.8579 | 1.253 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.162 | 1.172 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -4.502 | 0.8367 | -0.1865 | -0.1361 |
+#&gt; |.....................| -0.6555 | -2.945 | 1.425 | 8.523 |
+#&gt; |.....................| -0.6882 | -2.700 | 7.982 | -9.961 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -6.514 | -5.474 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 37</span>| 454.42202 | 1.008 | -1.411 | -0.9501 | -0.9563 |
+#&gt; |.....................| -0.9900 | 0.8215 | -2.099 | -1.032 |
+#&gt; |.....................| 0.1520 | -1.049 | -0.9274 | -0.7533 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7158 | -0.7241 |...........|...........|</span>
+#&gt; | U| 454.42202 | 93.74 | -5.711 | -0.9765 | -0.1719 |
+#&gt; |.....................| 2.155 | 2.214 | 0.01188 | 1.102 |
+#&gt; |.....................| 0.04565 | 0.6287 | 0.8293 | 1.353 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.233 | 1.228 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 454.42202</span> | 93.74 | 0.003311 | 0.2736 | 0.8421 |
+#&gt; |.....................| 8.631 | 2.214 | 0.01188 | 1.102 |
+#&gt; |.....................| 0.04565 | 0.6287 | 0.8293 | 1.353 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.233 | 1.228 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 38</span>| 451.48622 | 1.000 | -1.659 | -0.9551 | -0.9914 |
+#&gt; |.....................| -1.111 | 1.029 | -2.892 | -1.353 |
+#&gt; |.....................| 0.9897 | -1.076 | -0.9627 | -0.6147 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.5957 | -0.6379 |...........|...........|</span>
+#&gt; | U| 451.48622 | 93.01 | -5.959 | -0.9812 | -0.2070 |
+#&gt; |.....................| 2.035 | 2.338 | 5.960e-07 | 0.9088 |
+#&gt; |.....................| 0.05822 | 0.6083 | 0.7984 | 1.521 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.361 | 1.320 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 451.48622</span> | 93.01 | 0.002583 | 0.2727 | 0.8130 |
+#&gt; |.....................| 7.651 | 2.338 | 5.960e-07 | 0.9088 |
+#&gt; |.....................| 0.05822 | 0.6083 | 0.7984 | 1.521 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.361 | 1.320 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -68.34 | 0.03355 | 0.09905 | -1.306 |
+#&gt; |.....................| -5.058 | -1.204 | -0.09883 | -1.076 |
+#&gt; |.....................| -2.726 | -4.145 | 7.646 | -0.5743 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 2.003 | 2.613 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 39</span>| 453.25472 | 1.003 | -2.027 | -1.069 | -0.8933 |
+#&gt; |.....................| -0.6960 | 1.084 | -2.892 | -1.695 |
+#&gt; |.....................| 2.689 | -0.4882 | -1.206 | -0.2814 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7545 | -0.8496 |...........|...........|</span>
+#&gt; | U| 453.25472 | 93.31 | -6.327 | -1.089 | -0.1089 |
+#&gt; |.....................| 2.449 | 2.371 | 5.960e-07 | 0.7037 |
+#&gt; |.....................| 0.08370 | 1.055 | 0.5857 | 1.926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.191 | 1.093 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 453.25472</span> | 93.31 | 0.001787 | 0.2519 | 0.8968 |
+#&gt; |.....................| 11.58 | 2.371 | 5.960e-07 | 0.7037 |
+#&gt; |.....................| 0.08370 | 1.055 | 0.5857 | 1.926 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.191 | 1.093 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 40</span>| 449.59369 | 1.000 | -1.818 | -1.010 | -0.9508 |
+#&gt; |.....................| -0.9364 | 1.052 | -2.892 | -1.498 |
+#&gt; |.....................| 1.730 | -0.8175 | -1.073 | -0.4671 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6691 | -0.7270 |...........|...........|</span>
+#&gt; | U| 449.59369 | 93.04 | -6.118 | -1.033 | -0.1664 |
+#&gt; |.....................| 2.209 | 2.352 | 5.960e-07 | 0.8216 |
+#&gt; |.....................| 0.06933 | 0.8048 | 0.7021 | 1.700 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.282 | 1.225 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 449.59369</span> | 93.04 | 0.002202 | 0.2625 | 0.8467 |
+#&gt; |.....................| 9.106 | 2.352 | 5.960e-07 | 0.8216 |
+#&gt; |.....................| 0.06933 | 0.8048 | 0.7021 | 1.700 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.282 | 1.225 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -128.1 | 0.1096 | -3.510 | -0.1773 |
+#&gt; |.....................| -0.1823 | -1.358 | -0.002263 | 1.313 |
+#&gt; |.....................| -1.294 | 5.530 | 5.100 | 4.831 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.292 | -3.851 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 41</span>| 472.13387 | 1.020 | -1.985 | -0.7592 | -0.7822 |
+#&gt; |.....................| -0.2976 | 1.062 | -2.892 | -1.866 |
+#&gt; |.....................| 3.141 | -0.7519 | -1.136 | -0.6405 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7706 | -0.2153 |...........|...........|</span>
+#&gt; | U| 472.13387 | 94.83 | -6.285 | -0.7970 | 0.002176 |
+#&gt; |.....................| 2.848 | 2.358 | 5.960e-07 | 0.6009 |
+#&gt; |.....................| 0.09049 | 0.8547 | 0.6467 | 1.490 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.174 | 1.773 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 472.13387</span> | 94.83 | 0.001864 | 0.3107 | 1.002 |
+#&gt; |.....................| 17.25 | 2.358 | 5.960e-07 | 0.6009 |
+#&gt; |.....................| 0.09049 | 0.8547 | 0.6467 | 1.490 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.174 | 1.773 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 42</span>| 454.13083 | 1.030 | -1.841 | -0.9756 | -0.9280 |
+#&gt; |.....................| -0.8501 | 1.054 | -2.892 | -1.548 |
+#&gt; |.....................| 1.921 | -0.8098 | -1.082 | -0.4916 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6825 | -0.6571 |...........|...........|</span>
+#&gt; | U| 454.13083 | 95.82 | -6.141 | -1.000 | -0.1436 |
+#&gt; |.....................| 2.295 | 2.353 | 5.960e-07 | 0.7917 |
+#&gt; |.....................| 0.07219 | 0.8106 | 0.6936 | 1.671 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.268 | 1.299 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 454.13083</span> | 95.82 | 0.002153 | 0.2688 | 0.8663 |
+#&gt; |.....................| 9.927 | 2.353 | 5.960e-07 | 0.7917 |
+#&gt; |.....................| 0.07219 | 0.8106 | 0.6936 | 1.671 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.268 | 1.299 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 43</span>| 454.81886 | 1.032 | -1.823 | -1.002 | -0.9459 |
+#&gt; |.....................| -0.9179 | 1.053 | -2.892 | -1.509 |
+#&gt; |.....................| 1.771 | -0.8169 | -1.076 | -0.4733 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6717 | -0.7113 |...........|...........|</span>
+#&gt; | U| 454.81886 | 95.94 | -6.123 | -1.025 | -0.1614 |
+#&gt; |.....................| 2.227 | 2.352 | 5.960e-07 | 0.8150 |
+#&gt; |.....................| 0.06994 | 0.8052 | 0.6994 | 1.693 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.280 | 1.241 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 454.81886</span> | 95.94 | 0.002192 | 0.2640 | 0.8509 |
+#&gt; |.....................| 9.277 | 2.352 | 5.960e-07 | 0.8150 |
+#&gt; |.....................| 0.06994 | 0.8052 | 0.6994 | 1.693 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.280 | 1.241 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 44</span>| 449.57011 | 1.014 | -1.818 | -1.010 | -0.9508 |
+#&gt; |.....................| -0.9364 | 1.053 | -2.892 | -1.499 |
+#&gt; |.....................| 1.730 | -0.8181 | -1.073 | -0.4676 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6690 | -0.7267 |...........|...........|</span>
+#&gt; | U| 449.57011 | 94.27 | -6.118 | -1.033 | -0.1664 |
+#&gt; |.....................| 2.209 | 2.352 | 5.995e-07 | 0.8215 |
+#&gt; |.....................| 0.06933 | 0.8044 | 0.7016 | 1.700 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.283 | 1.225 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 449.57011</span> | 94.27 | 0.002202 | 0.2626 | 0.8467 |
+#&gt; |.....................| 9.106 | 2.352 | 5.995e-07 | 0.8215 |
+#&gt; |.....................| 0.06933 | 0.8044 | 0.7016 | 1.700 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.283 | 1.225 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 126.9 | 0.1582 | -2.201 | 0.05331 |
+#&gt; |.....................| 0.4695 | -0.6265 | 0.01503 | 0.4241 |
+#&gt; |.....................| -1.337 | 5.854 | 6.688 | 4.536 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.410 | -4.016 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 45</span>| 449.14922 | 1.007 | -1.818 | -1.010 | -0.9508 |
+#&gt; |.....................| -0.9364 | 1.053 | -2.892 | -1.499 |
+#&gt; |.....................| 1.730 | -0.8183 | -1.074 | -0.4678 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6689 | -0.7265 |...........|...........|</span>
+#&gt; | U| 449.14922 | 93.66 | -6.118 | -1.033 | -0.1664 |
+#&gt; |.....................| 2.209 | 2.352 | 5.960e-07 | 0.8215 |
+#&gt; |.....................| 0.06933 | 0.8042 | 0.7014 | 1.699 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.283 | 1.225 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 449.14922</span> | 93.66 | 0.002202 | 0.2626 | 0.8467 |
+#&gt; |.....................| 9.106 | 2.352 | 5.960e-07 | 0.8215 |
+#&gt; |.....................| 0.06933 | 0.8042 | 0.7014 | 1.699 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.283 | 1.225 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -0.4066 | 0.1367 | -2.828 | -0.06013 |
+#&gt; |.....................| 0.1445 | -0.8286 | 0.01677 | 0.9213 |
+#&gt; |.....................| -1.224 | 4.943 | 4.017 | 5.223 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.311 | -3.922 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 46</span>| 449.08136 | 1.007 | -1.818 | -1.008 | -0.9507 |
+#&gt; |.....................| -0.9365 | 1.053 | -2.892 | -1.499 |
+#&gt; |.....................| 1.731 | -0.8217 | -1.076 | -0.4714 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6680 | -0.7238 |...........|...........|</span>
+#&gt; | U| 449.08136 | 93.68 | -6.118 | -1.031 | -0.1663 |
+#&gt; |.....................| 2.209 | 2.353 | 5.960e-07 | 0.8212 |
+#&gt; |.....................| 0.06934 | 0.8016 | 0.6990 | 1.695 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.284 | 1.228 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 449.08136</span> | 93.68 | 0.002202 | 0.2629 | 0.8468 |
+#&gt; |.....................| 9.105 | 2.353 | 5.960e-07 | 0.8212 |
+#&gt; |.....................| 0.06934 | 0.8016 | 0.6990 | 1.695 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.284 | 1.228 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 47</span>| 448.89872 | 1.008 | -1.819 | -1.002 | -0.9506 |
+#&gt; |.....................| -0.9368 | 1.055 | -2.892 | -1.501 |
+#&gt; |.....................| 1.734 | -0.8317 | -1.084 | -0.4820 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6654 | -0.7159 |...........|...........|</span>
+#&gt; | U| 448.89872 | 93.76 | -6.119 | -1.025 | -0.1662 |
+#&gt; |.....................| 2.209 | 2.354 | 5.960e-07 | 0.8200 |
+#&gt; |.....................| 0.06938 | 0.7940 | 0.6918 | 1.682 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.286 | 1.237 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 448.89872</span> | 93.76 | 0.002202 | 0.2640 | 0.8469 |
+#&gt; |.....................| 9.102 | 2.354 | 5.960e-07 | 0.8200 |
+#&gt; |.....................| 0.06938 | 0.7940 | 0.6918 | 1.682 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.286 | 1.237 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 48</span>| 448.46351 | 1.011 | -1.820 | -0.9792 | -0.9501 |
+#&gt; |.....................| -0.9380 | 1.062 | -2.892 | -1.509 |
+#&gt; |.....................| 1.744 | -0.8718 | -1.117 | -0.5244 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6547 | -0.6840 |...........|...........|</span>
+#&gt; | U| 448.46351 | 94.07 | -6.120 | -1.004 | -0.1657 |
+#&gt; |.....................| 2.207 | 2.358 | 5.960e-07 | 0.8155 |
+#&gt; |.....................| 0.06953 | 0.7635 | 0.6633 | 1.631 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.298 | 1.271 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 448.46351</span> | 94.07 | 0.002199 | 0.2682 | 0.8473 |
+#&gt; |.....................| 9.092 | 2.358 | 5.960e-07 | 0.8155 |
+#&gt; |.....................| 0.06953 | 0.7635 | 0.6633 | 1.631 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.298 | 1.271 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 75.37 | 0.2597 | -0.1569 | 0.03608 |
+#&gt; |.....................| 0.3501 | -0.3601 | -0.01324 | 0.5025 |
+#&gt; |.....................| -1.327 | 4.308 | 0.9122 | 2.456 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.5631 | -1.887 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 49</span>| 448.12149 | 1.008 | -1.833 | -0.9950 | -0.9378 |
+#&gt; |.....................| -0.8937 | 1.062 | -2.892 | -1.543 |
+#&gt; |.....................| 1.827 | -0.8899 | -1.115 | -0.5324 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6574 | -0.6703 |...........|...........|</span>
+#&gt; | U| 448.12149 | 93.73 | -6.133 | -1.019 | -0.1534 |
+#&gt; |.....................| 2.252 | 2.358 | 5.960e-07 | 0.7948 |
+#&gt; |.....................| 0.07077 | 0.7498 | 0.6653 | 1.621 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.295 | 1.285 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 448.12149</span> | 93.73 | 0.002169 | 0.2653 | 0.8578 |
+#&gt; |.....................| 9.504 | 2.358 | 5.960e-07 | 0.7948 |
+#&gt; |.....................| 0.07077 | 0.7498 | 0.6653 | 1.621 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.295 | 1.285 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 13.78 | 0.2222 | -1.381 | 0.2569 |
+#&gt; |.....................| 1.259 | -0.5740 | -0.02850 | 0.1620 |
+#&gt; |.....................| -1.241 | 3.503 | 0.9893 | 2.205 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.7124 | -1.054 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 50</span>| 447.94443 | 1.007 | -1.844 | -0.9902 | -0.9390 |
+#&gt; |.....................| -0.9059 | 1.062 | -2.881 | -1.561 |
+#&gt; |.....................| 1.911 | -0.9357 | -1.119 | -0.5167 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6474 | -0.7008 |...........|...........|</span>
+#&gt; | U| 447.94443 | 93.62 | -6.144 | -1.014 | -0.1546 |
+#&gt; |.....................| 2.239 | 2.358 | 0.0001615 | 0.7838 |
+#&gt; |.....................| 0.07204 | 0.7150 | 0.6617 | 1.640 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.306 | 1.253 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.94443</span> | 93.62 | 0.002146 | 0.2662 | 0.8567 |
+#&gt; |.....................| 9.388 | 2.358 | 0.0001615 | 0.7838 |
+#&gt; |.....................| 0.07204 | 0.7150 | 0.6617 | 1.640 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.306 | 1.253 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -5.879 | 0.2071 | -1.215 | 0.2527 |
+#&gt; |.....................| 0.8228 | -0.5096 | -0.06036 | 0.4983 |
+#&gt; |.....................| -1.183 | 1.766 | 2.266 | 2.617 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3179 | -2.389 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 51</span>| 447.77390 | 1.007 | -1.858 | -1.003 | -0.9470 |
+#&gt; |.....................| -0.9285 | 1.056 | -2.855 | -1.583 |
+#&gt; |.....................| 2.006 | -0.9406 | -1.128 | -0.5198 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6539 | -0.6964 |...........|...........|</span>
+#&gt; | U| 447.7739 | 93.69 | -6.158 | -1.026 | -0.1626 |
+#&gt; |.....................| 2.217 | 2.354 | 0.0005494 | 0.7710 |
+#&gt; |.....................| 0.07347 | 0.7113 | 0.6533 | 1.636 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.299 | 1.257 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.7739</span> | 93.69 | 0.002117 | 0.2639 | 0.8500 |
+#&gt; |.....................| 9.179 | 2.354 | 0.0005494 | 0.7710 |
+#&gt; |.....................| 0.07347 | 0.7113 | 0.6533 | 1.636 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.299 | 1.257 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 52</span>| 447.56301 | 1.006 | -1.897 | -1.041 | -0.9708 |
+#&gt; |.....................| -0.9958 | 1.039 | -2.777 | -1.647 |
+#&gt; |.....................| 2.291 | -0.9540 | -1.156 | -0.5273 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6737 | -0.6848 |...........|...........|</span>
+#&gt; | U| 447.56301 | 93.51 | -6.197 | -1.061 | -0.1864 |
+#&gt; |.....................| 2.150 | 2.344 | 0.001717 | 0.7326 |
+#&gt; |.....................| 0.07774 | 0.7011 | 0.6293 | 1.627 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.278 | 1.270 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.56301</span> | 93.51 | 0.002035 | 0.2570 | 0.8300 |
+#&gt; |.....................| 8.581 | 2.344 | 0.001717 | 0.7326 |
+#&gt; |.....................| 0.07774 | 0.7011 | 0.6293 | 1.627 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.278 | 1.270 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -30.60 | 0.2182 | -4.075 | -0.4855 |
+#&gt; |.....................| -1.237 | -0.6626 | -0.1062 | 0.6612 |
+#&gt; |.....................| -0.6049 | 1.074 | 1.318 | 2.279 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -1.614 | -1.745 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 53</span>| 447.16930 | 1.007 | -1.971 | -0.9627 | -0.9652 |
+#&gt; |.....................| -0.9709 | 1.044 | -2.781 | -1.732 |
+#&gt; |.....................| 2.691 | -0.9472 | -1.156 | -0.5162 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6828 | -0.6632 |...........|...........|</span>
+#&gt; | U| 447.1693 | 93.67 | -6.271 | -0.9883 | -0.1807 |
+#&gt; |.....................| 2.174 | 2.347 | 0.001652 | 0.6812 |
+#&gt; |.....................| 0.08374 | 0.7063 | 0.6288 | 1.641 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.268 | 1.293 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.1693</span> | 93.67 | 0.001890 | 0.2713 | 0.8346 |
+#&gt; |.....................| 8.798 | 2.347 | 0.001652 | 0.6812 |
+#&gt; |.....................| 0.08374 | 0.7063 | 0.6288 | 1.641 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.268 | 1.293 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -3.693 | 0.1048 | 0.8560 | -0.3278 |
+#&gt; |.....................| -0.6115 | -0.5188 | -0.09596 | 0.9789 |
+#&gt; |.....................| 0.02585 | 1.094 | 1.548 | 2.318 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -2.079 | -0.9259 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 54</span>| 447.68852 | 1.013 | -2.042 | -1.008 | -0.9421 |
+#&gt; |.....................| -0.9288 | 1.034 | -2.709 | -1.852 |
+#&gt; |.....................| 3.037 | -0.9368 | -1.153 | -0.6162 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.5399 | -0.6984 |...........|...........|</span>
+#&gt; | U| 447.68852 | 94.21 | -6.342 | -1.031 | -0.1577 |
+#&gt; |.....................| 2.217 | 2.341 | 0.002735 | 0.6094 |
+#&gt; |.....................| 0.08893 | 0.7142 | 0.6313 | 1.519 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.420 | 1.255 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.68852</span> | 94.21 | 0.001761 | 0.2629 | 0.8541 |
+#&gt; |.....................| 9.176 | 2.341 | 0.002735 | 0.6094 |
+#&gt; |.....................| 0.08893 | 0.7142 | 0.6313 | 1.519 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.420 | 1.255 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 55</span>| 447.15405 | 1.011 | -1.991 | -0.9760 | -0.9584 |
+#&gt; |.....................| -0.9586 | 1.042 | -2.761 | -1.767 |
+#&gt; |.....................| 2.789 | -0.9450 | -1.157 | -0.5460 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6410 | -0.6726 |...........|...........|</span>
+#&gt; | U| 447.15405 | 94.04 | -6.291 | -1.001 | -0.1740 |
+#&gt; |.....................| 2.187 | 2.346 | 0.001959 | 0.6605 |
+#&gt; |.....................| 0.08521 | 0.7080 | 0.6287 | 1.605 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.312 | 1.283 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.15405</span> | 94.04 | 0.001852 | 0.2688 | 0.8403 |
+#&gt; |.....................| 8.906 | 2.346 | 0.001959 | 0.6605 |
+#&gt; |.....................| 0.08521 | 0.7080 | 0.6287 | 1.605 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.312 | 1.283 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 53.59 | 0.07914 | 0.2662 | -0.1234 |
+#&gt; |.....................| -0.1097 | -0.6518 | -0.06086 | 0.6193 |
+#&gt; |.....................| -0.05679 | 1.445 | 0.6511 | 1.197 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.1794 | -1.326 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 56</span>| 447.09915 | 1.005 | -2.002 | -0.9768 | -0.9545 |
+#&gt; |.....................| -0.9567 | 1.042 | -2.752 | -1.789 |
+#&gt; |.....................| 2.838 | -0.9392 | -1.155 | -0.5617 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6261 | -0.6787 |...........|...........|</span>
+#&gt; | U| 447.09915 | 93.47 | -6.302 | -1.002 | -0.1701 |
+#&gt; |.....................| 2.189 | 2.346 | 0.002096 | 0.6471 |
+#&gt; |.....................| 0.08594 | 0.7123 | 0.6298 | 1.586 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.328 | 1.276 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.09915</span> | 93.47 | 0.001833 | 0.2686 | 0.8436 |
+#&gt; |.....................| 8.923 | 2.346 | 0.002096 | 0.6471 |
+#&gt; |.....................| 0.08594 | 0.7123 | 0.6298 | 1.586 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.328 | 1.276 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -33.97 | 0.05091 | -0.1219 | -0.09607 |
+#&gt; |.....................| -0.3249 | -0.8735 | -0.1278 | 0.5888 |
+#&gt; |.....................| 0.06635 | 1.636 | -1.923 | 0.5172 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 0.5270 | -1.419 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 57</span>| 447.01951 | 1.007 | -2.009 | -0.9874 | -0.9450 |
+#&gt; |.....................| -0.9329 | 1.053 | -2.780 | -1.808 |
+#&gt; |.....................| 2.841 | -0.9693 | -1.155 | -0.5556 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6514 | -0.6721 |...........|...........|</span>
+#&gt; | U| 447.01951 | 93.64 | -6.309 | -1.012 | -0.1606 |
+#&gt; |.....................| 2.212 | 2.352 | 0.001680 | 0.6361 |
+#&gt; |.....................| 0.08598 | 0.6895 | 0.6300 | 1.593 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.301 | 1.283 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.01951</span> | 93.64 | 0.001820 | 0.2667 | 0.8517 |
+#&gt; |.....................| 9.138 | 2.352 | 0.001680 | 0.6361 |
+#&gt; |.....................| 0.08598 | 0.6895 | 0.6300 | 1.593 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.301 | 1.283 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -6.500 | 0.04518 | -0.6412 | 0.1616 |
+#&gt; |.....................| 0.3106 | -0.6054 | -0.07873 | -0.1077 |
+#&gt; |.....................| -0.1002 | 0.2460 | 1.553 | 0.4490 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8245 | -1.132 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 58</span>| 447.04861 | 1.009 | -2.019 | -0.9927 | -0.9476 |
+#&gt; |.....................| -0.9252 | 1.054 | -2.796 | -1.779 |
+#&gt; |.....................| 2.878 | -0.9737 | -1.157 | -0.5487 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6291 | -0.6521 |...........|...........|</span>
+#&gt; | U| 447.04861 | 93.85 | -6.319 | -1.017 | -0.1632 |
+#&gt; |.....................| 2.220 | 2.353 | 0.001429 | 0.6532 |
+#&gt; |.....................| 0.08654 | 0.6862 | 0.6280 | 1.601 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.325 | 1.305 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.04861</span> | 93.85 | 0.001802 | 0.2657 | 0.8494 |
+#&gt; |.....................| 9.209 | 2.353 | 0.001429 | 0.6532 |
+#&gt; |.....................| 0.08654 | 0.6862 | 0.6280 | 1.601 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.325 | 1.305 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 59</span>| 447.01937 | 1.009 | -2.012 | -0.9891 | -0.9459 |
+#&gt; |.....................| -0.9304 | 1.053 | -2.785 | -1.798 |
+#&gt; |.....................| 2.853 | -0.9708 | -1.156 | -0.5534 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6439 | -0.6653 |...........|...........|</span>
+#&gt; | U| 447.01937 | 93.80 | -6.312 | -1.013 | -0.1615 |
+#&gt; |.....................| 2.215 | 2.353 | 0.001597 | 0.6418 |
+#&gt; |.....................| 0.08617 | 0.6884 | 0.6292 | 1.596 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.309 | 1.291 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.01937</span> | 93.80 | 0.001814 | 0.2664 | 0.8509 |
+#&gt; |.....................| 9.161 | 2.353 | 0.001597 | 0.6418 |
+#&gt; |.....................| 0.08617 | 0.6884 | 0.6292 | 1.596 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.309 | 1.291 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 15.62 | 0.04451 | -0.6370 | 0.1658 |
+#&gt; |.....................| 0.4720 | -0.4967 | -0.06076 | 0.2478 |
+#&gt; |.....................| 0.07878 | 0.2929 | 0.7908 | 0.7364 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.2169 | -0.8458 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 60</span>| 447.00331 | 1.007 | -2.016 | -0.9874 | -0.9487 |
+#&gt; |.....................| -0.9321 | 1.057 | -2.790 | -1.800 |
+#&gt; |.....................| 2.856 | -0.9696 | -1.156 | -0.5575 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6423 | -0.6633 |...........|...........|</span>
+#&gt; | U| 447.00331 | 93.68 | -6.316 | -1.012 | -0.1643 |
+#&gt; |.....................| 2.213 | 2.355 | 0.001526 | 0.6406 |
+#&gt; |.....................| 0.08622 | 0.6893 | 0.6295 | 1.591 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.311 | 1.293 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 447.00331</span> | 93.68 | 0.001807 | 0.2667 | 0.8485 |
+#&gt; |.....................| 9.146 | 2.355 | 0.001526 | 0.6406 |
+#&gt; |.....................| 0.08622 | 0.6893 | 0.6295 | 1.591 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.311 | 1.293 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -1.749 | 0.03581 | -0.6032 | 0.06997 |
+#&gt; |.....................| 0.3775 | -0.4012 | -0.08782 | 0.2553 |
+#&gt; |.....................| 0.001918 | 0.1783 | 1.513 | 0.3567 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3333 | -0.7379 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 61</span>| 446.99944 | 1.008 | -2.018 | -0.9851 | -0.9476 |
+#&gt; |.....................| -0.9359 | 1.058 | -2.787 | -1.806 |
+#&gt; |.....................| 2.859 | -0.9671 | -1.156 | -0.5614 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6427 | -0.6650 |...........|...........|</span>
+#&gt; | U| 446.99944 | 93.70 | -6.318 | -1.009 | -0.1632 |
+#&gt; |.....................| 2.209 | 2.355 | 0.001564 | 0.6369 |
+#&gt; |.....................| 0.08626 | 0.6911 | 0.6291 | 1.586 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.311 | 1.291 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 446.99944</span> | 93.70 | 0.001804 | 0.2671 | 0.8494 |
+#&gt; |.....................| 9.111 | 2.355 | 0.001564 | 0.6369 |
+#&gt; |.....................| 0.08626 | 0.6911 | 0.6291 | 1.586 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.311 | 1.291 |...........|...........|</span>
+#&gt; | F| Forward Diff. | 2.474 | 0.03546 | -0.4554 | 0.1057 |
+#&gt; |.....................| 0.2777 | -0.4692 | -0.06549 | 0.06429 |
+#&gt; |.....................| -0.09650 | 0.2331 | 0.6150 | 0.1626 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3753 | -0.8072 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 62</span>| 446.99641 | 1.007 | -2.020 | -0.9846 | -0.9460 |
+#&gt; |.....................| -0.9366 | 1.059 | -2.790 | -1.808 |
+#&gt; |.....................| 2.868 | -0.9676 | -1.156 | -0.5621 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6420 | -0.6633 |...........|...........|</span>
+#&gt; | U| 446.99641 | 93.67 | -6.320 | -1.009 | -0.1616 |
+#&gt; |.....................| 2.209 | 2.356 | 0.001530 | 0.6356 |
+#&gt; |.....................| 0.08639 | 0.6908 | 0.6287 | 1.585 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.311 | 1.293 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 446.99641</span> | 93.67 | 0.001800 | 0.2672 | 0.8508 |
+#&gt; |.....................| 9.105 | 2.356 | 0.001530 | 0.6356 |
+#&gt; |.....................| 0.08639 | 0.6908 | 0.6287 | 1.585 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.311 | 1.293 |...........|...........|</span>
+#&gt; | F| Forward Diff. | -2.070 | 0.03317 | -0.4443 | 0.1488 |
+#&gt; |.....................| 0.2478 | -0.4968 | -0.07674 | 0.09423 |
+#&gt; |.....................| -0.05318 | 0.2365 | 0.6058 | 0.5619 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.3013 | -0.7224 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 63</span>| 446.99641 | 1.007 | -2.020 | -0.9846 | -0.9460 |
+#&gt; |.....................| -0.9366 | 1.059 | -2.790 | -1.808 |
+#&gt; |.....................| 2.868 | -0.9676 | -1.156 | -0.5621 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6420 | -0.6633 |...........|...........|</span>
+#&gt; | U| 446.99641 | 93.67 | -6.320 | -1.009 | -0.1616 |
+#&gt; |.....................| 2.209 | 2.356 | 0.001530 | 0.6356 |
+#&gt; |.....................| 0.08639 | 0.6908 | 0.6287 | 1.585 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.311 | 1.293 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 446.99641</span> | 93.67 | 0.001800 | 0.2672 | 0.8508 |
+#&gt; |.....................| 9.105 | 2.356 | 0.001530 | 0.6356 |
+#&gt; |.....................| 0.08639 | 0.6908 | 0.6287 | 1.585 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.311 | 1.293 |...........|...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
+ error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; 1: 90.7519 -4.8586 -1.7674 -3.5599 -2.0059 0.5800 4.8899 1.4250 1.1400 2.6923 0.4845 0.4370 10.2815 0.0004 9.0437 0.4047
+#&gt; 2: 9.0763e+01 -5.2004e+00 -1.9605e+00 -4.2009e+00 -1.8767e+00 2.0341e-01 4.6454e+00 1.3537e+00 1.0830e+00 2.7771e+00 4.6027e-01 5.1181e-01 6.3469e+00 4.0033e-04 6.8216e+00 9.0448e-05
+#&gt; 3: 9.0656e+01 -5.4820e+00 -2.0937e+00 -4.0962e+00 -1.5381e+00 -1.7136e-02 4.4131e+00 1.2861e+00 1.0288e+00 3.5620e+00 4.3726e-01 6.1217e-01 4.8763e+00 4.1436e-05 5.4967e+00 1.0148e-05
+#&gt; 4: 9.0543e+01 -5.7744e+00 -2.1074e+00 -4.0393e+00 -1.3603e+00 -2.3531e-01 5.0162e+00 1.2218e+00 1.0041e+00 3.3839e+00 4.1540e-01 5.8157e-01 4.1029e+00 2.1466e-04 4.2869e+00 1.9419e-06
+#&gt; 5: 91.1621 -6.0534 -2.0430 -4.0508 -1.2523 -0.2043 6.1015 1.1715 1.1998 3.2147 0.3946 0.5525 3.5979 0.0187 3.8221 0.0271
+#&gt; 6: 91.1179 -5.9892 -2.0082 -4.1363 -1.1428 -0.1930 5.7964 1.1960 1.2360 3.4525 0.3749 0.5293 3.3091 0.0209 3.6230 0.0284
+#&gt; 7: 91.6680 -5.9609 -2.0492 -4.1163 -1.0919 -0.1505 5.6134 1.6750 1.3055 3.2799 0.3631 0.5028 3.2412 0.0254 3.5108 0.0371
+#&gt; 8: 91.6903 -5.9346 -2.0630 -4.0790 -1.1130 -0.0963 5.3327 2.2525 1.3524 3.1159 0.3449 0.4777 2.6165 0.0445 2.8556 0.0576
+#&gt; 9: 92.2564 -5.7600 -2.0460 -4.1144 -1.0635 -0.0594 5.9616 2.1399 1.2848 2.9601 0.3277 0.4538 2.3593 0.0295 2.5704 0.0491
+#&gt; 10: 92.2425 -5.7990 -2.0052 -4.0409 -1.0387 -0.1141 6.9547 2.1239 1.2205 2.8121 0.3113 0.4311 2.3237 0.0323 2.4227 0.0421
+#&gt; 11: 92.4404 -5.6829 -2.0866 -4.0010 -1.0214 -0.0587 6.6790 2.0177 1.1595 2.6715 0.2957 0.4096 1.9963 0.0407 2.2478 0.0501
+#&gt; 12: 92.0713 -5.8051 -2.1699 -4.0539 -0.9807 0.0174 6.7885 2.1380 1.1811 2.6017 0.2810 0.3891 1.8480 0.0502 2.0516 0.0522
+#&gt; 13: 91.7214 -5.6954 -2.1579 -4.0944 -0.9935 -0.0195 6.4491 2.0311 1.1221 2.4716 0.2669 0.3696 1.8299 0.0531 1.9271 0.0520
+#&gt; 14: 91.1978 -5.6733 -2.1988 -4.0794 -0.9387 0.0091 6.1267 1.9295 1.1589 2.3480 0.2536 0.3511 1.6357 0.0470 1.8899 0.0639
+#&gt; 15: 91.3746 -5.5864 -2.1484 -4.1356 -0.9126 0.0045 5.8203 1.8330 1.2078 2.3265 0.2409 0.3336 1.6218 0.0428 1.6558 0.0725
+#&gt; 16: 91.5646 -5.4931 -2.1474 -4.1242 -0.9148 0.0179 5.5293 1.7414 1.1474 2.2733 0.2288 0.3169 1.6467 0.0377 1.6977 0.0600
+#&gt; 17: 91.4767 -5.5885 -2.1424 -4.1386 -0.9308 0.0602 5.2528 1.9428 1.2141 2.1762 0.2174 0.3343 1.4916 0.0424 1.4326 0.0717
+#&gt; 18: 90.9989 -5.6364 -2.1601 -4.1606 -0.9676 0.0694 4.9902 1.8457 1.2521 2.2899 0.2065 0.3279 1.4504 0.0471 1.4267 0.0700
+#&gt; 19: 91.4050 -5.7347 -2.0985 -4.1476 -0.9656 0.0668 4.7407 2.3263 1.4064 2.2061 0.1962 0.3296 1.3679 0.0485 1.2735 0.0844
+#&gt; 20: 91.2707 -5.7623 -2.1155 -4.1538 -0.9601 0.0425 4.5037 2.6509 1.3408 2.1958 0.1864 0.3576 1.3736 0.0452 1.3454 0.0743
+#&gt; 21: 91.6878 -5.8143 -2.1261 -4.1649 -0.9325 0.0333 4.7695 2.8996 1.3244 2.1300 0.1771 0.3509 1.4793 0.0508 1.0333 0.0839
+#&gt; 22: 91.5363 -5.9047 -2.1358 -4.1655 -0.9207 0.0339 4.5310 3.4408 1.3022 2.1829 0.1682 0.3378 1.4260 0.0488 0.9436 0.0877
+#&gt; 23: 91.9969 -5.9565 -2.1378 -4.1609 -0.9243 0.0701 4.3045 3.7239 1.3446 2.2424 0.1598 0.3209 1.4182 0.0412 0.9205 0.0873
+#&gt; 24: 92.2835 -5.9272 -2.0883 -4.1651 -0.9248 0.0834 4.0892 3.7780 1.2773 2.2187 0.1518 0.3049 1.4749 0.0427 0.9837 0.0802
+#&gt; 25: 92.3389 -6.1292 -2.1033 -4.2473 -0.9069 0.0593 3.8848 4.7059 1.2740 2.4323 0.1442 0.2896 1.3656 0.0493 0.9299 0.0798
+#&gt; 26: 91.9840 -5.9821 -2.1124 -4.2150 -0.9100 0.1076 3.6905 4.4706 1.2103 2.4699 0.1458 0.2751 1.3200 0.0504 0.8256 0.0912
+#&gt; 27: 92.4671 -5.8765 -2.0910 -4.2169 -0.9356 0.0483 3.5060 4.2471 1.2302 2.4791 0.1385 0.2614 1.4252 0.0520 0.8191 0.0836
+#&gt; 28: 92.4130 -5.9480 -2.0870 -4.2191 -0.9338 0.0866 3.3859 4.1337 1.2210 2.4685 0.1412 0.2557 1.3860 0.0484 0.9189 0.0770
+#&gt; 29: 92.3064 -5.7845 -2.0759 -4.2321 -0.9270 0.0855 4.2691 3.9271 1.3369 2.5457 0.1341 0.2922 1.3848 0.0513 0.9658 0.0785
+#&gt; 30: 92.2109 -5.9347 -2.0725 -4.2042 -0.9074 0.0481 5.5659 3.9234 1.2701 2.4184 0.1370 0.2776 1.2925 0.0560 0.9058 0.0806
+#&gt; 31: 91.8912 -5.7466 -2.0912 -4.1504 -0.9087 0.0443 5.2876 3.7272 1.2690 2.2975 0.1301 0.2637 1.3348 0.0517 0.8672 0.0840
+#&gt; 32: 92.3866 -5.8560 -2.0979 -4.1547 -0.9044 0.0335 5.0232 3.5408 1.2761 2.3185 0.1307 0.2505 1.3558 0.0487 0.9422 0.0791
+#&gt; 33: 92.4555 -5.6989 -2.0956 -4.1479 -0.9038 0.0447 4.7720 3.3638 1.3253 2.2962 0.1242 0.2380 1.4321 0.0432 0.8961 0.0799
+#&gt; 34: 92.6307 -5.8831 -2.0769 -4.1319 -0.8946 0.0430 4.5334 3.7151 1.2785 2.2638 0.1201 0.2261 1.4076 0.0457 0.8269 0.0813
+#&gt; 35: 92.5659 -5.9100 -2.0748 -4.1482 -0.9079 0.0563 4.6634 3.7452 1.3141 2.3378 0.1168 0.2148 1.3571 0.0451 0.8317 0.0831
+#&gt; 36: 92.5738 -5.8574 -2.0981 -4.1214 -0.8963 0.0302 5.3272 3.7371 1.3359 2.2776 0.1331 0.2041 1.3308 0.0480 0.8953 0.0791
+#&gt; 37: 92.1615 -5.7137 -2.0922 -4.1178 -0.9035 0.0455 5.4894 3.5503 1.2691 2.2508 0.1473 0.1939 1.3692 0.0495 0.9358 0.0800
+#&gt; 38: 92.4421 -5.6978 -2.0905 -4.1275 -0.9052 0.0108 5.4295 3.3728 1.2057 2.2119 0.1432 0.1842 1.3421 0.0549 0.8932 0.0781
+#&gt; 39: 92.3995 -5.6121 -2.0804 -4.1275 -0.8903 0.0270 5.1580 3.2041 1.1454 2.2119 0.1360 0.1978 1.3353 0.0524 0.9062 0.0775
+#&gt; 40: 92.5616 -5.7907 -2.1099 -4.1127 -0.9074 0.0501 4.9001 3.0439 1.1582 2.1723 0.1387 0.1879 1.2981 0.0510 0.9517 0.0797
+#&gt; 41: 92.2655 -5.6532 -2.0631 -4.1437 -0.9128 0.0346 4.6551 2.8917 1.1202 2.1498 0.1403 0.1785 1.4500 0.0461 0.7394 0.0903
+#&gt; 42: 92.3218 -5.4916 -2.1072 -4.1312 -0.9310 0.0360 4.4224 2.7471 1.1648 2.1428 0.1332 0.1695 1.4034 0.0508 0.8131 0.0854
+#&gt; 43: 92.6165 -5.5145 -2.0838 -4.1239 -0.9215 0.0347 4.2012 2.6098 1.1892 2.1202 0.1463 0.1611 1.3416 0.0507 0.8213 0.0847
+#&gt; 44: 92.5385 -5.5590 -2.0872 -4.1376 -0.9210 0.0672 3.9912 2.4793 1.1416 2.2253 0.1450 0.1530 1.4008 0.0352 0.8639 0.0847
+#&gt; 45: 92.2152 -5.6170 -2.1014 -4.1657 -0.9331 0.0781 3.7916 2.4382 1.1250 2.2378 0.1516 0.1556 1.4612 0.0329 1.0091 0.0820
+#&gt; 46: 91.8943 -5.6650 -2.1329 -4.1649 -0.9241 0.1060 3.6020 2.6448 1.0705 2.3112 0.1441 0.1549 1.5047 0.0384 1.0179 0.0805
+#&gt; 47: 91.8153 -5.5910 -2.1514 -4.1919 -0.9169 0.0885 3.4219 2.5125 1.0386 2.3140 0.1506 0.1620 1.4759 0.0375 1.1021 0.0740
+#&gt; 48: 91.6295 -5.5438 -2.1516 -4.1570 -0.8742 0.0851 3.2508 2.3869 1.0816 2.1983 0.1630 0.1786 1.4024 0.0405 1.1135 0.0732
+#&gt; 49: 91.4363 -5.5847 -2.1732 -4.1794 -0.8634 0.0948 3.0883 2.4829 1.0865 2.2378 0.1549 0.1697 1.4314 0.0434 1.0529 0.0742
+#&gt; 50: 91.3634 -5.5794 -2.1613 -4.1507 -0.8849 0.0862 2.9339 2.6404 1.0829 2.2519 0.1493 0.1612 1.3704 0.0446 1.0081 0.0736
+#&gt; 51: 91.2150 -5.5503 -2.1675 -4.1432 -0.8749 0.1178 2.7872 2.7368 1.0605 2.2261 0.1418 0.1532 1.4312 0.0418 1.0380 0.0781
+#&gt; 52: 91.4343 -5.6336 -2.2138 -4.1552 -0.8867 0.1391 2.6677 2.7022 1.0857 2.2588 0.1493 0.1455 1.3220 0.0469 0.9272 0.0761
+#&gt; 53: 91.3310 -5.5185 -2.2340 -4.1430 -0.8855 0.1545 2.9130 2.5670 1.0720 2.3074 0.1532 0.1385 1.3224 0.0503 0.9688 0.0723
+#&gt; 54: 91.4342 -5.5008 -2.2086 -4.1777 -0.8720 0.1688 2.8202 2.4387 1.0624 2.4253 0.1631 0.1315 1.3186 0.0429 0.9425 0.0723
+#&gt; 55: 91.4983 -5.5944 -2.1709 -4.1211 -0.8638 0.1168 3.4789 2.5154 1.0549 2.3041 0.1557 0.1279 1.3800 0.0423 0.9620 0.0727
+#&gt; 56: 91.5954 -5.5317 -2.1881 -4.1263 -0.8627 0.1366 4.1396 2.3896 1.0732 2.2684 0.1562 0.1221 1.3285 0.0431 1.0156 0.0708
+#&gt; 57: 91.6591 -5.3839 -2.2082 -4.1122 -0.8929 0.1457 4.5073 2.2701 1.0672 2.3639 0.1539 0.1160 1.4074 0.0478 0.9796 0.0722
+#&gt; 58: 91.7434 -5.3597 -2.2068 -4.1214 -0.8912 0.1437 4.2819 2.1566 1.0605 2.4496 0.1667 0.1109 1.4274 0.0450 1.0782 0.0676
+#&gt; 59: 91.6597 -5.4672 -2.1918 -4.1412 -0.9021 0.1657 4.0678 2.0488 1.1306 2.5245 0.1888 0.1054 1.4745 0.0391 1.1492 0.0670
+#&gt; 60: 91.7565 -5.4513 -2.2051 -4.1618 -0.9013 0.1554 3.8644 1.9464 1.1728 2.6191 0.1793 0.1001 1.4135 0.0402 1.1572 0.0665
+#&gt; 61: 91.9484 -5.5390 -2.1973 -4.1611 -0.9011 0.1318 3.6712 1.8963 1.1460 2.6242 0.1704 0.0951 1.3855 0.0481 1.1109 0.0634
+#&gt; 62: 92.1661 -5.4985 -2.1729 -4.1352 -0.8887 0.1327 4.3155 1.8588 1.1087 2.5551 0.1633 0.0995 1.3847 0.0444 1.0736 0.0656
+#&gt; 63: 92.1727 -5.4086 -2.1610 -4.1488 -0.8998 0.1451 4.6019 1.7659 1.1413 2.6020 0.1718 0.1152 1.4299 0.0404 1.2202 0.0603
+#&gt; 64: 92.4331 -5.5220 -2.1121 -4.1300 -0.9428 0.1211 5.0354 1.8121 1.0982 2.6157 0.1775 0.1209 1.4168 0.0348 1.2148 0.0625
+#&gt; 65: 92.1871 -5.6089 -2.1258 -4.1412 -0.9127 0.1399 4.7836 2.1060 1.1568 2.5971 0.1757 0.1148 1.4000 0.0336 1.0305 0.0707
+#&gt; 66: 92.1419 -5.7752 -2.1344 -4.1493 -0.9237 0.1494 4.5444 2.7076 1.1563 2.6439 0.1740 0.1091 1.4238 0.0341 1.0285 0.0688
+#&gt; 67: 92.1187 -5.5967 -2.1430 -4.1460 -0.9074 0.1245 4.3172 2.5722 1.2052 2.6139 0.1868 0.1104 1.4100 0.0381 1.0508 0.0703
+#&gt; 68: 92.1123 -5.6882 -2.1481 -4.1269 -0.9083 0.1206 4.1014 2.5548 1.2021 2.4832 0.1781 0.1462 1.3099 0.0417 1.0099 0.0713
+#&gt; 69: 92.2511 -5.6923 -2.1456 -4.1315 -0.9077 0.1421 4.3551 2.6261 1.1850 2.3591 0.1692 0.1389 1.3546 0.0416 0.9516 0.0762
+#&gt; 70: 92.0291 -5.7376 -2.1689 -4.1364 -0.8908 0.1407 4.1373 3.0520 1.1595 2.2495 0.1608 0.1465 1.3226 0.0436 0.9904 0.0711
+#&gt; 71: 91.7690 -5.7223 -2.1773 -4.1986 -0.9036 0.1831 3.9304 2.8994 1.1015 2.4335 0.1527 0.1602 1.3135 0.0450 0.9564 0.0722
+#&gt; 72: 91.4802 -5.7302 -2.2079 -4.2000 -0.8990 0.2112 3.7339 3.2965 1.1222 2.4612 0.1451 0.1622 1.3222 0.0426 1.0215 0.0717
+#&gt; 73: 91.1247 -5.7803 -2.1827 -4.2214 -0.8876 0.1385 3.5472 3.2786 1.1612 2.5216 0.1650 0.1541 1.2811 0.0493 1.0076 0.0696
+#&gt; 74: 90.9765 -5.6534 -2.1808 -4.2511 -0.8824 0.1308 3.8553 3.1146 1.1389 2.8140 0.1725 0.1464 1.2895 0.0518 1.0100 0.0707
+#&gt; 75: 90.4805 -5.7293 -2.1481 -4.2613 -0.8704 0.1395 4.1255 2.9589 1.1623 2.7523 0.1713 0.1391 1.3112 0.0483 0.9439 0.0788
+#&gt; 76: 90.3958 -5.7635 -2.1508 -4.2426 -0.8841 0.1402 4.7427 3.0223 1.2187 2.7243 0.1789 0.1321 1.3065 0.0468 0.9303 0.0758
+#&gt; 77: 90.7518 -5.6517 -2.1498 -4.2773 -0.8730 0.1688 5.9340 2.8712 1.1840 2.8530 0.1828 0.1255 1.3553 0.0422 0.9755 0.0696
+#&gt; 78: 91.0443 -5.7462 -2.1351 -4.2601 -0.8848 0.1746 5.6373 2.9912 1.1312 2.7659 0.1887 0.1192 1.3303 0.0410 0.8578 0.0744
+#&gt; 79: 90.9631 -5.7307 -2.1618 -4.2593 -0.8965 0.1944 5.7520 3.1324 1.1206 2.8212 0.1875 0.1340 1.3519 0.0449 0.9006 0.0799
+#&gt; 80: 90.8703 -5.7665 -2.1989 -4.2476 -0.9122 0.1933 5.4644 3.4527 1.1063 2.7920 0.1781 0.1273 1.3014 0.0497 0.9305 0.0792
+#&gt; 81: 90.7781 -5.8702 -2.1789 -4.2821 -0.8828 0.1793 5.1912 3.7553 1.0662 3.0568 0.1807 0.1209 1.3120 0.0472 0.9808 0.0772
+#&gt; 82: 90.8137 -6.1164 -2.2001 -4.3046 -0.8912 0.1916 4.9316 4.9023 1.0714 3.1363 0.1716 0.1149 1.2724 0.0539 1.0644 0.0693
+#&gt; 83: 90.9900 -6.2077 -2.1695 -4.3121 -0.8924 0.1722 6.7123 5.3290 1.1120 3.2733 0.1741 0.1091 1.2822 0.0510 1.0142 0.0715
+#&gt; 84: 90.8158 -6.3282 -2.1595 -4.2907 -0.9096 0.1818 6.3767 5.9725 1.1342 3.2384 0.1763 0.1037 1.2704 0.0420 0.8891 0.0834
+#&gt; 85: 90.5926 -6.2052 -2.1643 -4.2780 -0.9000 0.1579 6.0579 5.6739 1.1472 3.0765 0.1751 0.0985 1.3263 0.0433 0.9484 0.0814
+#&gt; 86: 90.3804 -6.2707 -2.1470 -4.2627 -0.9260 0.1650 5.7550 5.5542 1.1135 2.9227 0.1956 0.0936 1.2747 0.0447 0.9731 0.0780
+#&gt; 87: 90.8425 -6.4455 -2.1135 -4.2273 -0.9294 0.1491 5.4672 6.8599 1.0716 2.7765 0.1858 0.0928 1.3204 0.0427 1.0005 0.0744
+#&gt; 88: 91.2019 -6.2302 -2.1362 -4.1982 -0.9333 0.1615 5.1939 6.5169 1.1221 2.7203 0.1841 0.0928 1.2689 0.0466 0.9914 0.0771
+#&gt; 89: 90.9907 -6.4173 -2.1174 -4.2493 -0.9182 0.1628 4.9342 6.2408 1.1719 2.9614 0.1749 0.1021 1.3580 0.0403 1.0171 0.0775
+#&gt; 90: 91.1666 -6.5154 -2.1219 -4.2011 -0.9210 0.1594 4.6875 7.4895 1.1930 2.8133 0.1745 0.0970 1.2500 0.0432 0.9467 0.0799
+#&gt; 91: 91.0165 -6.5918 -2.1465 -4.2231 -0.9079 0.1382 4.9772 7.3172 1.1706 2.6789 0.1810 0.1032 1.2958 0.0458 1.1223 0.0639
+#&gt; 92: 91.5386 -6.6567 -2.1376 -4.2247 -0.9358 0.1696 5.5955 7.4188 1.1543 2.6339 0.1754 0.0980 1.2894 0.0463 0.9927 0.0764
+#&gt; 93: 92.2552 -6.5096 -2.1645 -4.2340 -0.9393 0.1798 5.3157 7.0479 1.1612 2.6312 0.1718 0.0931 1.3698 0.0431 1.2649 0.0579
+#&gt; 94: 91.7588 -6.4124 -2.1795 -4.2305 -0.9265 0.1842 5.8275 6.6955 1.1988 2.6403 0.1891 0.0884 1.3022 0.0481 1.0741 0.0713
+#&gt; 95: 91.6694 -6.2975 -2.1946 -4.2442 -0.9392 0.2004 5.5361 6.3607 1.1399 2.7164 0.1796 0.1027 1.2519 0.0513 1.0982 0.0724
+#&gt; 96: 91.2252 -6.0124 -2.2316 -4.2701 -0.8946 0.2375 5.2593 6.0427 1.0829 2.7921 0.2024 0.1147 1.3343 0.0426 1.3064 0.0560
+#&gt; 97: 91.0388 -5.9178 -2.2563 -4.2703 -0.9093 0.2304 5.6825 5.7405 1.0890 2.7678 0.2113 0.1090 1.3517 0.0484 1.4160 0.0493
+#&gt; 98: 90.9013 -6.1325 -2.2597 -4.2776 -0.9133 0.2447 5.7546 5.4535 1.1028 2.6806 0.2130 0.1182 1.2983 0.0451 1.2436 0.0584
+#&gt; 99: 91.2086 -6.0047 -2.2719 -4.2972 -0.9136 0.2738 5.4668 5.1808 1.1776 2.7160 0.2132 0.1123 1.3301 0.0431 1.1850 0.0628
+#&gt; 100: 91.3181 -5.9175 -2.2311 -4.3202 -0.8947 0.2844 5.1935 4.9218 1.1187 2.8660 0.2289 0.1471 1.3409 0.0371 0.9566 0.0806
+#&gt; 101: 91.5112 -5.7721 -2.2292 -4.3060 -0.8842 0.3006 6.3617 4.6757 1.0628 2.7227 0.2174 0.1500 1.3269 0.0407 1.2002 0.0592
+#&gt; 102: 91.5205 -5.9982 -2.2162 -4.3041 -0.8813 0.3065 7.7957 4.4419 1.0320 2.7176 0.2290 0.1474 1.3218 0.0392 0.9685 0.0783
+#&gt; 103: 91.2416 -5.7012 -2.2204 -4.3198 -0.8610 0.3180 7.4059 4.2198 1.0242 2.5817 0.2175 0.1714 1.3003 0.0395 0.9472 0.0825
+#&gt; 104: 91.2662 -5.8136 -2.2357 -4.3063 -0.8700 0.3110 7.0356 4.0088 1.0024 2.4701 0.2067 0.1939 1.2806 0.0407 1.0387 0.0743
+#&gt; 105: 91.4688 -5.7922 -2.2204 -4.3319 -0.8703 0.2767 6.6838 3.8084 0.9751 2.6368 0.1963 0.1967 1.3320 0.0470 1.2043 0.0580
+#&gt; 106: 91.3665 -5.8505 -2.2225 -4.3614 -0.8757 0.2922 7.1982 3.6180 1.0018 2.6378 0.1865 0.2132 1.2613 0.0464 1.0683 0.0693
+#&gt; 107: 91.4934 -5.8933 -2.1993 -4.3433 -0.9112 0.3267 6.8383 3.7379 0.9616 2.5329 0.1772 0.2169 1.2911 0.0449 1.0688 0.0731
+#&gt; 108: 92.1268 -5.7807 -2.1863 -4.4348 -0.9273 0.3235 6.4964 3.5510 1.0093 2.9025 0.1718 0.2061 1.3153 0.0414 0.8982 0.0796
+#&gt; 109: 91.6585 -5.9778 -2.2083 -4.3550 -0.9061 0.3339 6.1715 4.5778 1.0600 2.7574 0.1755 0.2163 1.2754 0.0382 0.8100 0.0868
+#&gt; 110: 92.0456 -5.6784 -2.2236 -4.3483 -0.8911 0.3022 5.8630 4.3489 1.0427 2.6195 0.1667 0.2472 1.3782 0.0336 0.7819 0.0931
+#&gt; 111: 92.2862 -5.6624 -2.1985 -4.3680 -0.9178 0.3156 5.5698 4.1315 1.0149 2.5443 0.1622 0.2348 1.3541 0.0415 0.7848 0.0868
+#&gt; 112: 92.5436 -5.6572 -2.2134 -4.3290 -0.9267 0.3025 5.2913 3.9249 1.0720 2.5118 0.1541 0.2231 1.3798 0.0385 0.9087 0.0799
+#&gt; 113: 92.5970 -5.6263 -2.2030 -4.3044 -0.9123 0.2856 5.0268 3.7287 1.1371 2.4674 0.1764 0.2119 1.3007 0.0455 0.8651 0.0850
+#&gt; 114: 92.9227 -5.6379 -2.2032 -4.2926 -0.9187 0.3282 4.7754 3.5422 1.1022 2.4105 0.1676 0.2013 1.3103 0.0439 0.9003 0.0815
+#&gt; 115: 92.7678 -5.8033 -2.1888 -4.2988 -0.9406 0.3026 4.5367 3.3651 1.1127 2.5043 0.1592 0.1913 1.3643 0.0420 0.9649 0.0800
+#&gt; 116: 92.0655 -5.8531 -2.2033 -4.2989 -0.9487 0.3013 4.3098 3.6792 1.1260 2.4981 0.1513 0.1817 1.2783 0.0445 0.9812 0.0818
+#&gt; 117: 92.2258 -5.7861 -2.2095 -4.3393 -0.9399 0.2998 4.0943 3.4952 1.0697 2.7102 0.1437 0.1752 1.3037 0.0426 0.9067 0.0786
+#&gt; 118: 92.3560 -5.8080 -2.2058 -4.3166 -0.9480 0.2743 4.6025 3.3205 1.0709 2.6198 0.1432 0.1747 1.2850 0.0481 0.9236 0.0769
+#&gt; 119: 92.0489 -5.7726 -2.1972 -4.2740 -0.9087 0.2627 4.3723 3.1544 1.0892 2.4888 0.1620 0.1660 1.2659 0.0435 0.8389 0.0832
+#&gt; 120: 91.9163 -5.8211 -2.2101 -4.2770 -0.9142 0.2674 4.1537 3.1700 1.0985 2.5003 0.1795 0.1577 1.2289 0.0454 0.9280 0.0826
+#&gt; 121: 92.0274 -5.7601 -2.1916 -4.2686 -0.9055 0.2571 3.9460 3.1181 1.1026 2.3985 0.1908 0.1498 1.3015 0.0432 0.9363 0.0807
+#&gt; 122: 92.2933 -5.7972 -2.2019 -4.2888 -0.8932 0.2679 3.7487 3.1755 1.0809 2.3976 0.1843 0.1636 1.2918 0.0433 0.8760 0.0803
+#&gt; 123: 92.3361 -5.8903 -2.1745 -4.3386 -0.9157 0.2665 3.5613 3.8794 1.1308 2.5838 0.1751 0.1555 1.3219 0.0421 0.8987 0.0806
+#&gt; 124: 92.5677 -6.0471 -2.1638 -4.2764 -0.9325 0.2645 3.3832 4.6152 1.1336 2.4546 0.1664 0.1526 1.2938 0.0375 0.9412 0.0798
+#&gt; 125: 92.7852 -5.9841 -2.1661 -4.2825 -0.9373 0.2866 3.2141 4.3844 1.0770 2.3788 0.1581 0.1727 1.3137 0.0417 0.9228 0.0733
+#&gt; 126: 92.7867 -5.9126 -2.1636 -4.2413 -0.9141 0.2756 3.0534 4.1652 1.0857 2.2921 0.1502 0.1994 1.2428 0.0450 0.8206 0.0795
+#&gt; 127: 92.8733 -5.9110 -2.1546 -4.2269 -0.9258 0.2531 2.9007 3.9569 1.0914 2.3822 0.1426 0.2029 1.3043 0.0369 0.8206 0.0795
+#&gt; 128: 93.0457 -5.9202 -2.1505 -4.2076 -0.9466 0.2463 3.3353 3.7591 1.0647 2.3012 0.1355 0.2180 1.3420 0.0385 0.8503 0.0803
+#&gt; 129: 92.9207 -5.9882 -2.1704 -4.2204 -0.9319 0.2464 4.3160 4.4368 1.1187 2.3415 0.1386 0.2316 1.2546 0.0435 0.8777 0.0830
+#&gt; 130: 92.2660 -6.2043 -2.1712 -4.2251 -0.9276 0.2186 4.4370 5.1440 1.0817 2.3426 0.1338 0.2200 1.2733 0.0476 0.9132 0.0753
+#&gt; 131: 92.1286 -6.4163 -2.1634 -4.2642 -0.9223 0.2300 4.2151 6.2253 1.0614 2.5012 0.1333 0.2090 1.2690 0.0430 0.8201 0.0814
+#&gt; 132: 92.0287 -6.4297 -2.1522 -4.2717 -0.9259 0.2250 4.0044 6.1979 1.0791 2.5146 0.1314 0.1985 1.2736 0.0449 0.8671 0.0784
+#&gt; 133: 91.6843 -6.1415 -2.1685 -4.2553 -0.9349 0.2209 3.8041 5.8880 1.1445 2.4277 0.1248 0.2026 1.3381 0.0426 0.9129 0.0858
+#&gt; 134: 91.6928 -6.1408 -2.1467 -4.2709 -0.9270 0.2648 3.6139 5.5936 1.0873 2.5602 0.1305 0.1925 1.3202 0.0416 0.7626 0.0936
+#&gt; 135: 91.7984 -6.0371 -2.1673 -4.2572 -0.9497 0.2480 3.4332 5.3139 1.0649 2.4322 0.1389 0.1829 1.2592 0.0544 0.9459 0.0831
+#&gt; 136: 91.9754 -6.1770 -2.1769 -4.2311 -0.9401 0.2435 3.2616 5.0482 1.0717 2.3106 0.1691 0.1737 1.3170 0.0436 1.0497 0.0816
+#&gt; 137: 92.1546 -6.1216 -2.1731 -4.2278 -0.9401 0.2492 3.0985 4.9378 1.0200 2.1950 0.1606 0.1988 1.4019 0.0421 1.0200 0.0766
+#&gt; 138: 92.2370 -5.9463 -2.1794 -4.1949 -0.9321 0.2460 2.9436 4.6909 1.0203 2.1200 0.1535 0.1947 1.3378 0.0425 0.9448 0.0804
+#&gt; 139: 92.2025 -5.8849 -2.1820 -4.1868 -0.9200 0.2294 2.9458 4.4564 0.9875 2.1260 0.1759 0.2080 1.3244 0.0428 1.0110 0.0778
+#&gt; 140: 91.8182 -5.7494 -2.1569 -4.1998 -0.9095 0.2318 2.7985 4.2336 1.0015 2.1507 0.1830 0.2113 1.3502 0.0432 0.7716 0.0922
+#&gt; 141: 91.8292 -5.9568 -2.1640 -4.2109 -0.9122 0.2130 4.4608 4.0219 1.0180 2.1032 0.1739 0.2057 1.3594 0.0419 0.8088 0.0883
+#&gt; 142: 91.9995 -6.0927 -2.1471 -4.2313 -0.9091 0.1875 4.5415 4.7705 1.0571 2.1286 0.1810 0.1954 1.4145 0.0406 0.8943 0.0847
+#&gt; 143: 91.9160 -5.9892 -2.1546 -4.2043 -0.9355 0.1819 4.3145 4.5320 1.1337 2.1453 0.1888 0.2208 1.3449 0.0394 1.0910 0.0797
+#&gt; 144: 92.0136 -5.9765 -2.1643 -4.2346 -0.9448 0.2455 4.3041 4.3054 1.1130 2.1300 0.1817 0.3253 1.3828 0.0340 1.0535 0.0873
+#&gt; 145: 92.3893 -6.2224 -2.1211 -4.2316 -0.9405 0.2285 5.2279 4.9099 1.0573 2.1037 0.1727 0.3091 1.3797 0.0340 1.0160 0.0832
+#&gt; 146: 92.6097 -6.2204 -2.1406 -4.2210 -0.9217 0.1762 4.9665 5.4466 1.0724 2.1658 0.1640 0.2936 1.4421 0.0408 1.2412 0.0674
+#&gt; 147: 92.8499 -6.0091 -2.1165 -4.2234 -0.9682 0.1783 4.7182 5.1743 1.0188 2.1714 0.1722 0.2789 1.4545 0.0397 1.4472 0.0556
+#&gt; 148: 92.6602 -5.8003 -2.1059 -4.2132 -0.9282 0.2102 4.4823 4.9156 1.0106 2.1075 0.1880 0.2684 1.4013 0.0413 1.0748 0.0758
+#&gt; 149: 92.7388 -5.8727 -2.1569 -4.2185 -0.9266 0.1868 4.2581 4.6698 1.1447 2.0851 0.1786 0.2550 1.3137 0.0413 0.9963 0.0723
+#&gt; 150: 92.7348 -5.7926 -2.1184 -4.2257 -0.9324 0.1966 4.0452 4.4363 1.1760 2.1508 0.1697 0.2704 1.3792 0.0363 0.8204 0.0889
+#&gt; 151: 92.7968 -5.7301 -2.1179 -4.1959 -0.9275 0.1927 3.8430 4.2145 1.1707 2.1702 0.1842 0.2569 1.3789 0.0387 0.7890 0.0873
+#&gt; 152: 92.9011 -5.7417 -2.1622 -4.2086 -0.9215 0.1784 2.0089 3.0670 1.1984 2.2253 0.1814 0.2507 1.3431 0.0395 0.9622 0.0780
+#&gt; 153: 92.8020 -5.7707 -2.1494 -4.2128 -0.9228 0.1818 2.2261 2.9648 1.1192 2.3058 0.1749 0.2548 1.3671 0.0369 0.9507 0.0744
+#&gt; 154: 92.5217 -5.8043 -2.1447 -4.2074 -0.9303 0.1766 2.7638 3.1314 1.1141 2.2814 0.1811 0.2389 1.3250 0.0408 1.0538 0.0689
+#&gt; 155: 92.8765 -5.5586 -2.1275 -4.1639 -0.9320 0.1434 2.4217 2.4658 1.1231 2.1314 0.1746 0.2426 1.3785 0.0407 0.9682 0.0796
+#&gt; 156: 93.0074 -5.6819 -2.1343 -4.1819 -0.9382 0.1587 1.4756 2.7496 1.1200 2.1700 0.1849 0.2320 1.3643 0.0395 1.0875 0.0653
+#&gt; 157: 92.7950 -5.6827 -2.1178 -4.1808 -0.9553 0.1585 1.1607 2.5156 1.1129 2.2109 0.1724 0.2366 1.4045 0.0374 1.1322 0.0676
+#&gt; 158: 92.7684 -5.7106 -2.0933 -4.2149 -0.9717 0.1602 1.4884 2.6532 1.1269 2.1388 0.1838 0.2666 1.4009 0.0348 0.8728 0.0832
+#&gt; 159: 93.0980 -5.8911 -2.1297 -4.2160 -0.9660 0.1407 1.6034 3.3765 1.1182 2.1661 0.1705 0.2804 1.3557 0.0430 1.0076 0.0776
+#&gt; 160: 93.1849 -5.9433 -2.1177 -4.1735 -0.9436 0.1324 1.8692 4.0887 1.1252 2.0213 0.1642 0.2922 1.3251 0.0386 0.8586 0.0820
+#&gt; 161: 93.4771 -5.7768 -2.0899 -4.1697 -0.9670 0.1043 2.0938 2.9110 1.1069 1.9538 0.1820 0.3046 1.3270 0.0413 0.8220 0.0855
+#&gt; 162: 93.4961 -5.6516 -2.0965 -4.1633 -0.9708 0.1263 2.2053 2.3022 1.1179 1.9555 0.1758 0.2891 1.3158 0.0417 0.9943 0.0768
+#&gt; 163: 93.1627 -5.5944 -2.1527 -4.1633 -0.9488 0.1452 2.9600 2.3291 1.1027 1.9555 0.1766 0.3000 1.3626 0.0376 0.9790 0.0743
+#&gt; 164: 92.7951 -5.6646 -2.1539 -4.1699 -0.9447 0.1863 2.9195 2.7599 1.0794 1.9511 0.1651 0.2918 1.4091 0.0357 1.1005 0.0709
+#&gt; 165: 92.6045 -5.5927 -2.1842 -4.1770 -0.9436 0.1939 2.2014 2.3213 1.0622 1.9775 0.1671 0.2899 1.3945 0.0372 1.0533 0.0694
+#&gt; 166: 92.6660 -5.5922 -2.1438 -4.1611 -0.9441 0.1767 1.8951 2.3445 1.1025 2.0399 0.1802 0.2802 1.4229 0.0354 1.1552 0.0682
+#&gt; 167: 92.4353 -5.5118 -2.1415 -4.1730 -0.9124 0.1827 1.5029 1.8145 1.0701 2.0090 0.1727 0.2642 1.4525 0.0362 1.0577 0.0754
+#&gt; 168: 92.3761 -5.5522 -2.1625 -4.1911 -0.9114 0.1782 1.2703 2.0808 1.0814 2.0588 0.1810 0.2658 1.3973 0.0364 0.9874 0.0729
+#&gt; 169: 92.5240 -5.6102 -2.1396 -4.1793 -0.8972 0.1722 1.3115 2.2750 1.0759 2.0910 0.2147 0.2549 1.3553 0.0392 0.9770 0.0759
+#&gt; 170: 92.3827 -5.5942 -2.1231 -4.1847 -0.9338 0.1525 1.5707 2.3778 1.0542 2.0824 0.2042 0.2519 1.4424 0.0363 1.1270 0.0687
+#&gt; 171: 92.1706 -5.6171 -2.1619 -4.1926 -0.9056 0.1390 1.0935 2.2869 1.1239 2.1697 0.1946 0.2624 1.2980 0.0411 0.9988 0.0740
+#&gt; 172: 92.1491 -5.5704 -2.1447 -4.1913 -0.9285 0.1649 1.0292 2.2160 1.1231 2.1905 0.1860 0.2518 1.3154 0.0375 1.0152 0.0772
+#&gt; 173: 91.9987 -5.5411 -2.1434 -4.1803 -0.9056 0.1585 0.6511 1.9989 1.0892 2.2283 0.1899 0.2413 1.3814 0.0380 1.1733 0.0693
+#&gt; 174: 92.0377 -5.5419 -2.1081 -4.1928 -0.9057 0.1418 0.9013 2.0933 1.1813 2.2773 0.1756 0.2559 1.4419 0.0343 0.9942 0.0801
+#&gt; 175: 92.0266 -5.5125 -2.1014 -4.1775 -0.9119 0.1371 0.7194 2.0624 1.1848 2.2328 0.1754 0.2504 1.3987 0.0353 1.0838 0.0728
+#&gt; 176: 92.0365 -5.5658 -2.0914 -4.1646 -0.8956 0.1096 0.7557 2.0588 1.1642 2.1610 0.1617 0.2722 1.3658 0.0347 0.9405 0.0757
+#&gt; 177: 91.8661 -5.6799 -2.0950 -4.1695 -0.9010 0.1193 0.8835 2.8899 1.1394 2.1886 0.1809 0.2777 1.3841 0.0351 0.9178 0.0794
+#&gt; 178: 91.9392 -5.7853 -2.1139 -4.1711 -0.9190 0.1222 0.6673 3.0461 1.1712 2.1948 0.1576 0.2237 1.3623 0.0383 0.9060 0.0795
+#&gt; 179: 92.0116 -5.7560 -2.1418 -4.1711 -0.9153 0.1034 0.4356 2.9139 1.1653 2.1948 0.1497 0.2364 1.3387 0.0392 0.9327 0.0793
+#&gt; 180: 92.1013 -5.7920 -2.1368 -4.1654 -0.9059 0.0912 0.3859 3.2592 1.1357 2.1744 0.1570 0.2337 1.3622 0.0408 1.0299 0.0739
+#&gt; 181: 92.1032 -5.8125 -2.1260 -4.1791 -0.9404 0.1731 0.4091 3.0817 1.1113 2.2356 0.1572 0.2742 1.4509 0.0340 0.9180 0.0865
+#&gt; 182: 92.1315 -5.7991 -2.1327 -4.1737 -0.9319 0.1519 0.3145 3.0292 1.1520 2.1360 0.1661 0.2482 1.4105 0.0361 1.1338 0.0748
+#&gt; 183: 92.1350 -6.0470 -2.1264 -4.1707 -0.9525 0.1787 0.2045 3.8296 1.1229 2.1369 0.1735 0.2453 1.3132 0.0350 1.0507 0.0759
+#&gt; 184: 92.0539 -5.9856 -2.1289 -4.1968 -0.9281 0.1789 0.1166 3.9425 1.0558 2.2320 0.1658 0.2253 1.3390 0.0355 1.1271 0.0720
+#&gt; 185: 92.0755 -6.0524 -2.1385 -4.2076 -0.9313 0.1794 0.1193 4.2430 1.0465 2.3571 0.1566 0.2152 1.3777 0.0368 1.2013 0.0631
+#&gt; 186: 92.1639 -6.0663 -2.1399 -4.1869 -0.9311 0.1817 0.1392 4.4053 1.0495 2.4857 0.1532 0.2331 1.3751 0.0365 1.0497 0.0697
+#&gt; 187: 92.1759 -6.3052 -2.1469 -4.2221 -0.9428 0.1970 0.1356 5.5622 0.9953 2.3367 0.1451 0.2359 1.3754 0.0367 1.0969 0.0656
+#&gt; 188: 92.1744 -6.0494 -2.1406 -4.2445 -0.9595 0.2089 0.1364 4.3818 0.9882 2.4074 0.1480 0.2364 1.3709 0.0396 1.1259 0.0642
+#&gt; 189: 92.1989 -6.1255 -2.1138 -4.2037 -0.9368 0.1796 0.1444 4.6756 0.9840 2.3786 0.1502 0.2303 1.3979 0.0393 1.2011 0.0630
+#&gt; 190: 92.0944 -6.1343 -2.1536 -4.2106 -0.9267 0.2105 0.1288 4.4977 1.0475 2.3593 0.1443 0.2396 1.3247 0.0384 1.1304 0.0711
+#&gt; 191: 92.1238 -6.0639 -2.1462 -4.2883 -0.9311 0.2155 0.1246 4.1066 1.0428 2.6836 0.1442 0.2344 1.4041 0.0344 1.1631 0.0684
+#&gt; 192: 92.1328 -6.0743 -2.1232 -4.3119 -0.9586 0.2319 0.1192 4.1348 1.0020 2.7067 0.1466 0.2515 1.4039 0.0355 1.0021 0.0772
+#&gt; 193: 92.0881 -5.8697 -2.1298 -4.2691 -0.9309 0.2295 0.1050 3.4476 0.9879 2.5496 0.1344 0.2348 1.4677 0.0351 1.0332 0.0705
+#&gt; 194: 92.1086 -5.7557 -2.1176 -4.3249 -0.9029 0.2183 0.0702 2.7793 1.0043 2.8853 0.1460 0.2213 1.4733 0.0325 1.0929 0.0681
+#&gt; 195: 92.1265 -5.8976 -2.1506 -4.2932 -0.9267 0.2511 0.0593 3.4959 0.9881 2.6806 0.1278 0.2505 1.6138 0.0350 1.1327 0.0703
+#&gt; 196: 92.1316 -5.7018 -2.1627 -4.2889 -0.9278 0.2392 0.0717 2.9210 1.0160 2.7067 0.1470 0.2350 1.5063 0.0418 1.0525 0.0734
+#&gt; 197: 92.1756 -5.7899 -2.1604 -4.2819 -0.9248 0.2765 0.0754 2.9991 1.0167 2.6170 0.1465 0.2314 1.4982 0.0387 1.0504 0.0774
+#&gt; 198: 92.2153 -5.8248 -2.1571 -4.2245 -0.9350 0.2195 0.0651 3.0128 0.9196 2.3123 0.1451 0.2363 1.3965 0.0453 1.1561 0.0650
+#&gt; 199: 92.1935 -5.8187 -2.1505 -4.2123 -0.9452 0.2406 0.0535 3.0017 0.9553 2.2771 0.1338 0.2415 1.4485 0.0407 1.0647 0.0699
+#&gt; 200: 92.2308 -5.6732 -2.1578 -4.2182 -0.9324 0.2330 0.0618 2.4070 1.0687 2.2978 0.1513 0.2199 1.4101 0.0385 1.0283 0.0741
+#&gt; 201: 92.2305 -5.6796 -2.1604 -4.2064 -0.9320 0.2262 0.0530 2.4360 1.0551 2.2994 0.1529 0.2219 1.3653 0.0407 1.0115 0.0757
+#&gt; 202: 92.2259 -5.7201 -2.1550 -4.2058 -0.9263 0.2208 0.0461 2.6422 1.0351 2.2888 0.1520 0.2100 1.3739 0.0418 1.0474 0.0730
+#&gt; 203: 92.2212 -5.7539 -2.1457 -4.2037 -0.9303 0.2163 0.0422 2.8480 1.0403 2.2723 0.1465 0.2070 1.3973 0.0404 1.0518 0.0729
+#&gt; 204: 92.2164 -5.8068 -2.1371 -4.2093 -0.9300 0.2163 0.0383 3.1313 1.0426 2.2984 0.1423 0.2091 1.4025 0.0391 1.0284 0.0737
+#&gt; 205: 92.2120 -5.8371 -2.1369 -4.2142 -0.9308 0.2156 0.0347 3.2786 1.0392 2.3249 0.1390 0.2048 1.4115 0.0385 1.0161 0.0733
+#&gt; 206: 92.2071 -5.8681 -2.1391 -4.2176 -0.9287 0.2158 0.0336 3.4917 1.0442 2.3461 0.1388 0.2041 1.4017 0.0394 0.9977 0.0735
+#&gt; 207: 92.2078 -5.8966 -2.1424 -4.2230 -0.9286 0.2181 0.0337 3.6741 1.0456 2.3743 0.1369 0.2009 1.3988 0.0397 0.9792 0.0740
+#&gt; 208: 92.2077 -5.8972 -2.1459 -4.2249 -0.9300 0.2208 0.0340 3.6775 1.0460 2.3889 0.1362 0.1985 1.3969 0.0394 0.9729 0.0742
+#&gt; 209: 92.2091 -5.8831 -2.1488 -4.2271 -0.9326 0.2227 0.0337 3.6019 1.0465 2.4005 0.1380 0.1967 1.3949 0.0395 0.9745 0.0741
+#&gt; 210: 92.2115 -5.8806 -2.1490 -4.2282 -0.9349 0.2238 0.0324 3.5652 1.0516 2.4211 0.1386 0.1979 1.3941 0.0391 0.9820 0.0740
+#&gt; 211: 92.2151 -5.8791 -2.1516 -4.2291 -0.9363 0.2258 0.0318 3.5315 1.0458 2.4465 0.1390 0.1989 1.3918 0.0394 0.9901 0.0735
+#&gt; 212: 92.2189 -5.8789 -2.1532 -4.2297 -0.9380 0.2269 0.0312 3.4989 1.0434 2.4718 0.1409 0.1993 1.3884 0.0394 1.0007 0.0732
+#&gt; 213: 92.2226 -5.8714 -2.1556 -4.2287 -0.9395 0.2255 0.0313 3.4460 1.0440 2.4800 0.1413 0.1993 1.3859 0.0397 1.0157 0.0722
+#&gt; 214: 92.2233 -5.8706 -2.1553 -4.2279 -0.9394 0.2237 0.0309 3.4283 1.0431 2.4809 0.1414 0.2003 1.3849 0.0399 1.0186 0.0720
+#&gt; 215: 92.2242 -5.8750 -2.1536 -4.2285 -0.9390 0.2212 0.0312 3.4442 1.0455 2.4800 0.1417 0.2015 1.3830 0.0401 1.0126 0.0723
+#&gt; 216: 92.2252 -5.8788 -2.1521 -4.2277 -0.9393 0.2192 0.0316 3.4718 1.0459 2.4791 0.1410 0.2028 1.3817 0.0402 1.0046 0.0726
+#&gt; 217: 92.2255 -5.8869 -2.1516 -4.2268 -0.9400 0.2177 0.0322 3.5295 1.0456 2.4751 0.1407 0.2042 1.3814 0.0401 1.0011 0.0729
+#&gt; 218: 92.2230 -5.8819 -2.1511 -4.2259 -0.9400 0.2164 0.0327 3.5004 1.0473 2.4693 0.1399 0.2051 1.3784 0.0401 0.9962 0.0731
+#&gt; 219: 92.2206 -5.8761 -2.1499 -4.2269 -0.9393 0.2156 0.0325 3.4736 1.0494 2.4667 0.1399 0.2066 1.3794 0.0399 0.9925 0.0734
+#&gt; 220: 92.2185 -5.8775 -2.1494 -4.2267 -0.9380 0.2150 0.0331 3.4894 1.0511 2.4596 0.1396 0.2090 1.3788 0.0398 0.9881 0.0734
+#&gt; 221: 92.2180 -5.8774 -2.1499 -4.2271 -0.9369 0.2142 0.0328 3.4873 1.0518 2.4559 0.1399 0.2109 1.3776 0.0399 0.9842 0.0735
+#&gt; 222: 92.2191 -5.8833 -2.1503 -4.2280 -0.9359 0.2127 0.0328 3.5384 1.0518 2.4533 0.1400 0.2114 1.3778 0.0400 0.9825 0.0735
+#&gt; 223: 92.2199 -5.8831 -2.1486 -4.2288 -0.9343 0.2112 0.0326 3.5474 1.0539 2.4515 0.1396 0.2127 1.3795 0.0398 0.9806 0.0735
+#&gt; 224: 92.2206 -5.8870 -2.1467 -4.2283 -0.9331 0.2093 0.0324 3.5619 1.0550 2.4482 0.1395 0.2133 1.3805 0.0395 0.9792 0.0735
+#&gt; 225: 92.2218 -5.8929 -2.1459 -4.2289 -0.9328 0.2086 0.0322 3.6001 1.0548 2.4492 0.1388 0.2142 1.3804 0.0393 0.9809 0.0734
+#&gt; 226: 92.2228 -5.8909 -2.1440 -4.2293 -0.9322 0.2082 0.0320 3.6007 1.0566 2.4513 0.1383 0.2143 1.3826 0.0390 0.9815 0.0737
+#&gt; 227: 92.2234 -5.8838 -2.1444 -4.2304 -0.9319 0.2088 0.0319 3.5748 1.0551 2.4562 0.1381 0.2140 1.3814 0.0390 0.9836 0.0736
+#&gt; 228: 92.2243 -5.8835 -2.1444 -4.2314 -0.9326 0.2093 0.0317 3.5756 1.0526 2.4607 0.1377 0.2143 1.3824 0.0389 0.9901 0.0733
+#&gt; 229: 92.2251 -5.8916 -2.1442 -4.2307 -0.9330 0.2095 0.0318 3.6344 1.0501 2.4580 0.1371 0.2148 1.3850 0.0388 0.9930 0.0733
+#&gt; 230: 92.2250 -5.8951 -2.1442 -4.2303 -0.9334 0.2107 0.0318 3.6533 1.0475 2.4550 0.1369 0.2150 1.3872 0.0387 0.9953 0.0734
+#&gt; 231: 92.2247 -5.8964 -2.1444 -4.2300 -0.9345 0.2119 0.0322 3.6564 1.0446 2.4549 0.1368 0.2151 1.3899 0.0388 0.9991 0.0733
+#&gt; 232: 92.2230 -5.8982 -2.1451 -4.2306 -0.9352 0.2132 0.0326 3.6643 1.0422 2.4591 0.1365 0.2155 1.3934 0.0388 1.0052 0.0729
+#&gt; 233: 92.2223 -5.9022 -2.1455 -4.2327 -0.9354 0.2141 0.0329 3.6824 1.0396 2.4697 0.1362 0.2165 1.3970 0.0388 1.0107 0.0726
+#&gt; 234: 92.2200 -5.9075 -2.1457 -4.2324 -0.9348 0.2140 0.0335 3.7056 1.0364 2.4735 0.1366 0.2174 1.3977 0.0388 1.0163 0.0723
+#&gt; 235: 92.2171 -5.9094 -2.1457 -4.2338 -0.9342 0.2142 0.0342 3.7222 1.0339 2.4854 0.1372 0.2189 1.3999 0.0389 1.0228 0.0721
+#&gt; 236: 92.2161 -5.9195 -2.1464 -4.2368 -0.9340 0.2140 0.0346 3.7789 1.0329 2.4986 0.1376 0.2200 1.4007 0.0389 1.0281 0.0721
+#&gt; 237: 92.2163 -5.9214 -2.1469 -4.2390 -0.9330 0.2143 0.0347 3.7862 1.0329 2.5074 0.1378 0.2195 1.4030 0.0389 1.0320 0.0719
+#&gt; 238: 92.2165 -5.9203 -2.1473 -4.2399 -0.9326 0.2143 0.0347 3.7781 1.0336 2.5100 0.1381 0.2186 1.4031 0.0388 1.0347 0.0719
+#&gt; 239: 92.2173 -5.9212 -2.1471 -4.2403 -0.9325 0.2136 0.0344 3.7908 1.0350 2.5128 0.1384 0.2175 1.4021 0.0389 1.0352 0.0718
+#&gt; 240: 92.2178 -5.9217 -2.1470 -4.2394 -0.9322 0.2133 0.0342 3.8082 1.0363 2.5118 0.1384 0.2169 1.4025 0.0387 1.0345 0.0719
+#&gt; 241: 92.2177 -5.9200 -2.1470 -4.2383 -0.9318 0.2136 0.0340 3.8123 1.0381 2.5110 0.1385 0.2161 1.4028 0.0387 1.0336 0.0720
+#&gt; 242: 92.2170 -5.9109 -2.1478 -4.2371 -0.9308 0.2136 0.0340 3.7766 1.0387 2.5090 0.1385 0.2157 1.4027 0.0386 1.0322 0.0720
+#&gt; 243: 92.2165 -5.9029 -2.1484 -4.2371 -0.9300 0.2140 0.0340 3.7433 1.0389 2.5128 0.1386 0.2150 1.4032 0.0385 1.0342 0.0720
+#&gt; 244: 92.2161 -5.8998 -2.1489 -4.2374 -0.9294 0.2143 0.0340 3.7242 1.0392 2.5173 0.1386 0.2148 1.4030 0.0384 1.0343 0.0720
+#&gt; 245: 92.2153 -5.9048 -2.1494 -4.2370 -0.9291 0.2149 0.0339 3.7491 1.0399 2.5182 0.1386 0.2146 1.4019 0.0383 1.0317 0.0722
+#&gt; 246: 92.2147 -5.9093 -2.1498 -4.2371 -0.9289 0.2156 0.0339 3.7727 1.0409 2.5218 0.1384 0.2145 1.4016 0.0382 1.0309 0.0724
+#&gt; 247: 92.2143 -5.9124 -2.1503 -4.2368 -0.9286 0.2159 0.0338 3.7972 1.0408 2.5232 0.1383 0.2144 1.4012 0.0382 1.0297 0.0725
+#&gt; 248: 92.2137 -5.9122 -2.1500 -4.2367 -0.9286 0.2160 0.0336 3.8036 1.0409 2.5245 0.1382 0.2141 1.4022 0.0381 1.0272 0.0727
+#&gt; 249: 92.2133 -5.9101 -2.1501 -4.2364 -0.9288 0.2160 0.0334 3.7984 1.0406 2.5268 0.1383 0.2136 1.4031 0.0381 1.0273 0.0726
+#&gt; 250: 92.2139 -5.9115 -2.1502 -4.2368 -0.9289 0.2167 0.0335 3.8015 1.0412 2.5326 0.1380 0.2132 1.4035 0.0381 1.0261 0.0727
+#&gt; 251: 92.2132 -5.9123 -2.1502 -4.2373 -0.9297 0.2170 0.0338 3.8015 1.0421 2.5362 0.1376 0.2126 1.4053 0.0379 1.0274 0.0727
+#&gt; 252: 92.2128 -5.9106 -2.1502 -4.2366 -0.9299 0.2174 0.0338 3.7931 1.0427 2.5345 0.1371 0.2120 1.4062 0.0379 1.0262 0.0728
+#&gt; 253: 92.2118 -5.9098 -2.1492 -4.2364 -0.9297 0.2173 0.0340 3.8011 1.0420 2.5338 0.1369 0.2121 1.4074 0.0378 1.0232 0.0731
+#&gt; 254: 92.2107 -5.9104 -2.1479 -4.2362 -0.9296 0.2171 0.0341 3.8085 1.0398 2.5330 0.1366 0.2123 1.4093 0.0377 1.0230 0.0731
+#&gt; 255: 92.2103 -5.9133 -2.1466 -4.2359 -0.9299 0.2166 0.0341 3.8219 1.0381 2.5346 0.1363 0.2122 1.4105 0.0377 1.0230 0.0731
+#&gt; 256: 92.2094 -5.9171 -2.1453 -4.2356 -0.9299 0.2161 0.0341 3.8498 1.0366 2.5366 0.1362 0.2123 1.4114 0.0375 1.0239 0.0731
+#&gt; 257: 92.2091 -5.9169 -2.1441 -4.2353 -0.9302 0.2153 0.0341 3.8529 1.0347 2.5385 0.1360 0.2118 1.4126 0.0375 1.0265 0.0729
+#&gt; 258: 92.2089 -5.9191 -2.1431 -4.2349 -0.9301 0.2145 0.0340 3.8608 1.0331 2.5392 0.1359 0.2119 1.4126 0.0375 1.0282 0.0728
+#&gt; 259: 92.2093 -5.9249 -2.1426 -4.2337 -0.9301 0.2145 0.0341 3.8853 1.0321 2.5385 0.1361 0.2120 1.4114 0.0374 1.0280 0.0728
+#&gt; 260: 92.2095 -5.9297 -2.1415 -4.2328 -0.9303 0.2146 0.0339 3.9108 1.0302 2.5367 0.1358 0.2125 1.4112 0.0373 1.0265 0.0729
+#&gt; 261: 92.2096 -5.9341 -2.1407 -4.2321 -0.9307 0.2147 0.0338 3.9343 1.0278 2.5343 0.1356 0.2131 1.4121 0.0373 1.0272 0.0728
+#&gt; 262: 92.2094 -5.9342 -2.1398 -4.2312 -0.9310 0.2149 0.0336 3.9314 1.0254 2.5313 0.1356 0.2139 1.4115 0.0372 1.0249 0.0729
+#&gt; 263: 92.2088 -5.9376 -2.1388 -4.2304 -0.9313 0.2153 0.0334 3.9452 1.0232 2.5289 0.1357 0.2143 1.4109 0.0371 1.0228 0.0731
+#&gt; 264: 92.2077 -5.9410 -2.1379 -4.2301 -0.9317 0.2153 0.0333 3.9571 1.0204 2.5265 0.1356 0.2147 1.4105 0.0371 1.0224 0.0731
+#&gt; 265: 92.2069 -5.9454 -2.1374 -4.2296 -0.9322 0.2154 0.0332 3.9800 1.0182 2.5230 0.1356 0.2147 1.4115 0.0371 1.0232 0.0730
+#&gt; 266: 92.2067 -5.9463 -2.1370 -4.2291 -0.9324 0.2155 0.0330 3.9809 1.0165 2.5217 0.1354 0.2148 1.4121 0.0371 1.0220 0.0730
+#&gt; 267: 92.2064 -5.9492 -2.1368 -4.2282 -0.9329 0.2154 0.0328 3.9874 1.0150 2.5199 0.1357 0.2150 1.4124 0.0370 1.0233 0.0729
+#&gt; 268: 92.2065 -5.9468 -2.1360 -4.2276 -0.9333 0.2155 0.0328 3.9722 1.0133 2.5171 0.1362 0.2155 1.4133 0.0369 1.0243 0.0729
+#&gt; 269: 92.2066 -5.9438 -2.1352 -4.2267 -0.9335 0.2151 0.0328 3.9526 1.0122 2.5142 0.1367 0.2154 1.4140 0.0369 1.0244 0.0728
+#&gt; 270: 92.2067 -5.9388 -2.1351 -4.2259 -0.9339 0.2151 0.0326 3.9283 1.0112 2.5114 0.1370 0.2157 1.4137 0.0368 1.0240 0.0729
+#&gt; 271: 92.2069 -5.9350 -2.1344 -4.2252 -0.9342 0.2152 0.0324 3.9072 1.0107 2.5094 0.1370 0.2158 1.4136 0.0367 1.0222 0.0730
+#&gt; 272: 92.2069 -5.9317 -2.1341 -4.2246 -0.9348 0.2153 0.0321 3.8870 1.0104 2.5082 0.1372 0.2157 1.4139 0.0366 1.0219 0.0731
+#&gt; 273: 92.2068 -5.9289 -2.1340 -4.2240 -0.9348 0.2152 0.0320 3.8711 1.0101 2.5075 0.1373 0.2159 1.4146 0.0366 1.0232 0.0730
+#&gt; 274: 92.2067 -5.9271 -2.1337 -4.2239 -0.9350 0.2153 0.0318 3.8569 1.0101 2.5085 0.1377 0.2157 1.4144 0.0366 1.0239 0.0731
+#&gt; 275: 92.2063 -5.9264 -2.1339 -4.2235 -0.9353 0.2156 0.0317 3.8476 1.0097 2.5078 0.1382 0.2157 1.4143 0.0365 1.0256 0.0730
+#&gt; 276: 92.2059 -5.9271 -2.1339 -4.2231 -0.9354 0.2160 0.0316 3.8417 1.0097 2.5074 0.1387 0.2156 1.4132 0.0365 1.0260 0.0730
+#&gt; 277: 92.2059 -5.9283 -2.1342 -4.2225 -0.9356 0.2163 0.0316 3.8412 1.0094 2.5073 0.1393 0.2155 1.4122 0.0364 1.0283 0.0729
+#&gt; 278: 92.2062 -5.9278 -2.1341 -4.2220 -0.9361 0.2166 0.0318 3.8331 1.0081 2.5069 0.1397 0.2154 1.4117 0.0364 1.0321 0.0727
+#&gt; 279: 92.2061 -5.9264 -2.1341 -4.2214 -0.9363 0.2168 0.0319 3.8188 1.0072 2.5051 0.1402 0.2155 1.4111 0.0364 1.0342 0.0726
+#&gt; 280: 92.2057 -5.9263 -2.1344 -4.2211 -0.9365 0.2167 0.0321 3.8114 1.0072 2.5061 0.1406 0.2148 1.4108 0.0365 1.0361 0.0725
+#&gt; 281: 92.2048 -5.9269 -2.1344 -4.2208 -0.9365 0.2166 0.0324 3.8082 1.0076 2.5077 0.1410 0.2142 1.4098 0.0365 1.0363 0.0726
+#&gt; 282: 92.2045 -5.9257 -2.1347 -4.2205 -0.9366 0.2165 0.0328 3.8040 1.0082 2.5092 0.1413 0.2138 1.4090 0.0365 1.0364 0.0726
+#&gt; 283: 92.2038 -5.9235 -2.1348 -4.2201 -0.9363 0.2163 0.0331 3.7955 1.0089 2.5108 0.1415 0.2134 1.4086 0.0365 1.0362 0.0726
+#&gt; 284: 92.2032 -5.9234 -2.1348 -4.2198 -0.9359 0.2162 0.0335 3.7945 1.0100 2.5118 0.1420 0.2129 1.4083 0.0365 1.0362 0.0726
+#&gt; 285: 92.2028 -5.9236 -2.1347 -4.2193 -0.9360 0.2161 0.0339 3.7930 1.0104 2.5124 0.1422 0.2125 1.4080 0.0365 1.0373 0.0725
+#&gt; 286: 92.2020 -5.9221 -2.1344 -4.2187 -0.9355 0.2156 0.0341 3.7872 1.0104 2.5134 0.1425 0.2121 1.4074 0.0364 1.0377 0.0725
+#&gt; 287: 92.2013 -5.9213 -2.1341 -4.2183 -0.9354 0.2154 0.0343 3.7888 1.0098 2.5151 0.1428 0.2119 1.4075 0.0364 1.0390 0.0724
+#&gt; 288: 92.2003 -5.9195 -2.1339 -4.2182 -0.9355 0.2152 0.0343 3.7831 1.0090 2.5180 0.1430 0.2116 1.4082 0.0364 1.0408 0.0723
+#&gt; 289: 92.1995 -5.9186 -2.1339 -4.2182 -0.9355 0.2154 0.0343 3.7805 1.0083 2.5217 0.1429 0.2115 1.4085 0.0364 1.0426 0.0722
+#&gt; 290: 92.1984 -5.9180 -2.1339 -4.2177 -0.9354 0.2153 0.0343 3.7767 1.0080 2.5219 0.1427 0.2113 1.4083 0.0365 1.0429 0.0721
+#&gt; 291: 92.1975 -5.9167 -2.1334 -4.2175 -0.9355 0.2151 0.0343 3.7701 1.0080 2.5230 0.1427 0.2108 1.4083 0.0364 1.0439 0.0721
+#&gt; 292: 92.1971 -5.9175 -2.1330 -4.2166 -0.9356 0.2144 0.0342 3.7722 1.0081 2.5227 0.1426 0.2107 1.4079 0.0364 1.0443 0.0721
+#&gt; 293: 92.1963 -5.9188 -2.1330 -4.2157 -0.9357 0.2141 0.0342 3.7768 1.0083 2.5242 0.1425 0.2103 1.4073 0.0364 1.0439 0.0721
+#&gt; 294: 92.1953 -5.9189 -2.1328 -4.2157 -0.9357 0.2136 0.0344 3.7727 1.0078 2.5294 0.1427 0.2095 1.4079 0.0364 1.0456 0.0720
+#&gt; 295: 92.1946 -5.9171 -2.1329 -4.2153 -0.9355 0.2135 0.0345 3.7623 1.0081 2.5331 0.1426 0.2090 1.4080 0.0364 1.0462 0.0720
+#&gt; 296: 92.1940 -5.9154 -2.1329 -4.2150 -0.9354 0.2130 0.0346 3.7523 1.0082 2.5354 0.1425 0.2084 1.4075 0.0365 1.0463 0.0720
+#&gt; 297: 92.1934 -5.9128 -2.1330 -4.2145 -0.9351 0.2127 0.0349 3.7395 1.0084 2.5373 0.1423 0.2079 1.4072 0.0365 1.0453 0.0720
+#&gt; 298: 92.1932 -5.9128 -2.1332 -4.2138 -0.9347 0.2120 0.0350 3.7372 1.0085 2.5368 0.1423 0.2075 1.4068 0.0365 1.0449 0.0720
+#&gt; 299: 92.1927 -5.9120 -2.1333 -4.2131 -0.9344 0.2112 0.0352 3.7324 1.0088 2.5366 0.1422 0.2070 1.4059 0.0366 1.0441 0.0721
+#&gt; 300: 92.1921 -5.9097 -2.1335 -4.2122 -0.9343 0.2105 0.0353 3.7211 1.0096 2.5357 0.1425 0.2066 1.4050 0.0367 1.0443 0.0721
+#&gt; 301: 92.1915 -5.9081 -2.1337 -4.2116 -0.9343 0.2098 0.0355 3.7110 1.0104 2.5355 0.1427 0.2061 1.4041 0.0368 1.0448 0.0721
+#&gt; 302: 92.1912 -5.9067 -2.1340 -4.2108 -0.9342 0.2092 0.0355 3.7052 1.0114 2.5348 0.1428 0.2055 1.4036 0.0369 1.0442 0.0722
+#&gt; 303: 92.1913 -5.9039 -2.1342 -4.2113 -0.9342 0.2087 0.0355 3.6925 1.0123 2.5408 0.1430 0.2049 1.4028 0.0369 1.0436 0.0723
+#&gt; 304: 92.1920 -5.9012 -2.1342 -4.2119 -0.9342 0.2081 0.0356 3.6781 1.0129 2.5476 0.1432 0.2044 1.4026 0.0369 1.0436 0.0723
+#&gt; 305: 92.1923 -5.8984 -2.1343 -4.2123 -0.9341 0.2076 0.0354 3.6633 1.0134 2.5525 0.1434 0.2038 1.4022 0.0370 1.0434 0.0724
+#&gt; 306: 92.1926 -5.8977 -2.1343 -4.2121 -0.9343 0.2072 0.0354 3.6603 1.0144 2.5567 0.1436 0.2030 1.4022 0.0369 1.0431 0.0724
+#&gt; 307: 92.1931 -5.8970 -2.1346 -4.2124 -0.9344 0.2068 0.0353 3.6555 1.0154 2.5617 0.1438 0.2021 1.4017 0.0370 1.0431 0.0725
+#&gt; 308: 92.1935 -5.8963 -2.1347 -4.2127 -0.9343 0.2062 0.0351 3.6486 1.0166 2.5665 0.1439 0.2012 1.4017 0.0370 1.0431 0.0724
+#&gt; 309: 92.1934 -5.8965 -2.1349 -4.2130 -0.9344 0.2058 0.0350 3.6454 1.0180 2.5711 0.1439 0.2003 1.4013 0.0370 1.0427 0.0725
+#&gt; 310: 92.1935 -5.8965 -2.1349 -4.2133 -0.9345 0.2055 0.0350 3.6401 1.0193 2.5761 0.1439 0.1993 1.4013 0.0371 1.0418 0.0725
+#&gt; 311: 92.1931 -5.8976 -2.1349 -4.2139 -0.9346 0.2052 0.0349 3.6416 1.0207 2.5820 0.1437 0.1982 1.4015 0.0370 1.0411 0.0726
+#&gt; 312: 92.1928 -5.8995 -2.1350 -4.2149 -0.9349 0.2053 0.0350 3.6472 1.0222 2.5902 0.1437 0.1972 1.4018 0.0370 1.0412 0.0727
+#&gt; 313: 92.1922 -5.8999 -2.1350 -4.2159 -0.9352 0.2055 0.0350 3.6450 1.0236 2.5989 0.1436 0.1962 1.4017 0.0369 1.0407 0.0728
+#&gt; 314: 92.1913 -5.9021 -2.1353 -4.2171 -0.9353 0.2055 0.0350 3.6532 1.0244 2.6086 0.1437 0.1951 1.4019 0.0369 1.0409 0.0728
+#&gt; 315: 92.1905 -5.9033 -2.1358 -4.2178 -0.9354 0.2055 0.0351 3.6591 1.0252 2.6142 0.1438 0.1941 1.4018 0.0369 1.0420 0.0728
+#&gt; 316: 92.1895 -5.9043 -2.1358 -4.2186 -0.9352 0.2053 0.0352 3.6648 1.0266 2.6207 0.1441 0.1934 1.4016 0.0369 1.0420 0.0729
+#&gt; 317: 92.1888 -5.9041 -2.1359 -4.2200 -0.9352 0.2052 0.0352 3.6673 1.0278 2.6312 0.1444 0.1926 1.4014 0.0369 1.0416 0.0729
+#&gt; 318: 92.1879 -5.9039 -2.1360 -4.2212 -0.9352 0.2052 0.0354 3.6670 1.0292 2.6380 0.1446 0.1919 1.4010 0.0369 1.0403 0.0730
+#&gt; 319: 92.1871 -5.9046 -2.1361 -4.2222 -0.9353 0.2052 0.0354 3.6709 1.0306 2.6432 0.1448 0.1912 1.4008 0.0369 1.0394 0.0731
+#&gt; 320: 92.1863 -5.9023 -2.1365 -4.2229 -0.9355 0.2052 0.0355 3.6602 1.0318 2.6466 0.1448 0.1903 1.4011 0.0369 1.0398 0.0731
+#&gt; 321: 92.1855 -5.8996 -2.1368 -4.2236 -0.9354 0.2053 0.0355 3.6491 1.0329 2.6505 0.1448 0.1895 1.4017 0.0369 1.0402 0.0731
+#&gt; 322: 92.1850 -5.8979 -2.1370 -4.2243 -0.9353 0.2057 0.0356 3.6399 1.0341 2.6534 0.1447 0.1888 1.4020 0.0368 1.0394 0.0732
+#&gt; 323: 92.1844 -5.8984 -2.1371 -4.2251 -0.9352 0.2059 0.0356 3.6431 1.0346 2.6566 0.1447 0.1882 1.4026 0.0368 1.0389 0.0733
+#&gt; 324: 92.1838 -5.8967 -2.1372 -4.2257 -0.9353 0.2062 0.0356 3.6392 1.0351 2.6598 0.1445 0.1875 1.4031 0.0368 1.0382 0.0734
+#&gt; 325: 92.1835 -5.8936 -2.1374 -4.2264 -0.9351 0.2066 0.0355 3.6288 1.0352 2.6633 0.1444 0.1869 1.4043 0.0367 1.0391 0.0734
+#&gt; 326: 92.1837 -5.8936 -2.1376 -4.2276 -0.9350 0.2071 0.0354 3.6296 1.0354 2.6684 0.1444 0.1865 1.4043 0.0367 1.0380 0.0735
+#&gt; 327: 92.1837 -5.8943 -2.1378 -4.2289 -0.9347 0.2076 0.0354 3.6348 1.0357 2.6746 0.1444 0.1860 1.4043 0.0366 1.0380 0.0735
+#&gt; 328: 92.1838 -5.8953 -2.1380 -4.2297 -0.9345 0.2081 0.0354 3.6456 1.0360 2.6776 0.1444 0.1856 1.4043 0.0366 1.0379 0.0735
+#&gt; 329: 92.1836 -5.8974 -2.1383 -4.2305 -0.9342 0.2085 0.0356 3.6591 1.0361 2.6802 0.1444 0.1852 1.4043 0.0366 1.0385 0.0735
+#&gt; 330: 92.1832 -5.8994 -2.1387 -4.2305 -0.9342 0.2088 0.0358 3.6715 1.0364 2.6798 0.1443 0.1849 1.4037 0.0367 1.0378 0.0736
+#&gt; 331: 92.1826 -5.8983 -2.1391 -4.2302 -0.9342 0.2091 0.0357 3.6670 1.0368 2.6800 0.1442 0.1845 1.4038 0.0367 1.0379 0.0736
+#&gt; 332: 92.1824 -5.8959 -2.1396 -4.2301 -0.9341 0.2097 0.0357 3.6576 1.0375 2.6792 0.1442 0.1842 1.4034 0.0367 1.0372 0.0737
+#&gt; 333: 92.1826 -5.8937 -2.1401 -4.2304 -0.9340 0.2104 0.0356 3.6487 1.0383 2.6798 0.1442 0.1838 1.4029 0.0367 1.0360 0.0738
+#&gt; 334: 92.1825 -5.8911 -2.1407 -4.2311 -0.9339 0.2112 0.0355 3.6378 1.0390 2.6825 0.1444 0.1834 1.4025 0.0367 1.0349 0.0739
+#&gt; 335: 92.1830 -5.8887 -2.1411 -4.2317 -0.9336 0.2118 0.0355 3.6294 1.0396 2.6850 0.1444 0.1830 1.4022 0.0367 1.0338 0.0740
+#&gt; 336: 92.1834 -5.8872 -2.1413 -4.2324 -0.9334 0.2124 0.0356 3.6249 1.0402 2.6880 0.1444 0.1825 1.4024 0.0367 1.0339 0.0740
+#&gt; 337: 92.1835 -5.8869 -2.1416 -4.2334 -0.9332 0.2131 0.0356 3.6252 1.0411 2.6926 0.1443 0.1821 1.4029 0.0366 1.0330 0.0741
+#&gt; 338: 92.1839 -5.8882 -2.1418 -4.2346 -0.9333 0.2137 0.0357 3.6332 1.0421 2.6972 0.1441 0.1815 1.4036 0.0366 1.0324 0.0742
+#&gt; 339: 92.1845 -5.8869 -2.1420 -4.2358 -0.9332 0.2143 0.0357 3.6261 1.0428 2.7021 0.1439 0.1810 1.4043 0.0366 1.0322 0.0742
+#&gt; 340: 92.1846 -5.8863 -2.1421 -4.2367 -0.9331 0.2147 0.0357 3.6242 1.0436 2.7060 0.1439 0.1804 1.4049 0.0365 1.0328 0.0743
+#&gt; 341: 92.1848 -5.8847 -2.1421 -4.2378 -0.9330 0.2150 0.0356 3.6177 1.0442 2.7099 0.1439 0.1798 1.4056 0.0366 1.0334 0.0743
+#&gt; 342: 92.1848 -5.8838 -2.1421 -4.2390 -0.9330 0.2154 0.0355 3.6114 1.0449 2.7151 0.1438 0.1792 1.4064 0.0365 1.0332 0.0743
+#&gt; 343: 92.1849 -5.8840 -2.1423 -4.2398 -0.9330 0.2157 0.0353 3.6109 1.0459 2.7191 0.1438 0.1785 1.4060 0.0366 1.0334 0.0743
+#&gt; 344: 92.1851 -5.8839 -2.1423 -4.2406 -0.9330 0.2159 0.0352 3.6092 1.0467 2.7229 0.1440 0.1779 1.4060 0.0365 1.0338 0.0743
+#&gt; 345: 92.1850 -5.8841 -2.1424 -4.2414 -0.9331 0.2162 0.0352 3.6070 1.0472 2.7263 0.1441 0.1774 1.4056 0.0365 1.0341 0.0743
+#&gt; 346: 92.1848 -5.8839 -2.1424 -4.2420 -0.9333 0.2164 0.0352 3.6048 1.0479 2.7292 0.1443 0.1769 1.4058 0.0365 1.0344 0.0743
+#&gt; 347: 92.1846 -5.8835 -2.1425 -4.2427 -0.9334 0.2166 0.0353 3.6017 1.0495 2.7330 0.1444 0.1763 1.4053 0.0365 1.0343 0.0743
+#&gt; 348: 92.1846 -5.8825 -2.1427 -4.2434 -0.9336 0.2168 0.0353 3.5968 1.0508 2.7362 0.1445 0.1757 1.4051 0.0365 1.0343 0.0743
+#&gt; 349: 92.1846 -5.8820 -2.1432 -4.2444 -0.9337 0.2172 0.0352 3.5937 1.0519 2.7412 0.1446 0.1752 1.4047 0.0365 1.0343 0.0743
+#&gt; 350: 92.1845 -5.8817 -2.1435 -4.2454 -0.9338 0.2179 0.0351 3.5899 1.0526 2.7460 0.1448 0.1747 1.4042 0.0365 1.0339 0.0744
+#&gt; 351: 92.1844 -5.8824 -2.1439 -4.2468 -0.9338 0.2184 0.0350 3.5917 1.0535 2.7531 0.1448 0.1740 1.4041 0.0365 1.0336 0.0744
+#&gt; 352: 92.1840 -5.8840 -2.1442 -4.2482 -0.9338 0.2189 0.0350 3.6013 1.0543 2.7603 0.1450 0.1734 1.4044 0.0364 1.0342 0.0744
+#&gt; 353: 92.1838 -5.8848 -2.1445 -4.2492 -0.9336 0.2194 0.0349 3.6030 1.0552 2.7652 0.1451 0.1730 1.4043 0.0364 1.0338 0.0744
+#&gt; 354: 92.1838 -5.8835 -2.1449 -4.2501 -0.9336 0.2197 0.0349 3.5961 1.0563 2.7697 0.1452 0.1723 1.4044 0.0364 1.0342 0.0744
+#&gt; 355: 92.1837 -5.8826 -2.1453 -4.2511 -0.9335 0.2199 0.0348 3.5910 1.0569 2.7757 0.1451 0.1718 1.4053 0.0364 1.0348 0.0744
+#&gt; 356: 92.1835 -5.8826 -2.1456 -4.2520 -0.9334 0.2198 0.0348 3.5922 1.0577 2.7815 0.1451 0.1712 1.4054 0.0364 1.0352 0.0744
+#&gt; 357: 92.1834 -5.8818 -2.1457 -4.2525 -0.9334 0.2198 0.0349 3.5894 1.0588 2.7852 0.1449 0.1706 1.4058 0.0364 1.0354 0.0744
+#&gt; 358: 92.1834 -5.8808 -2.1459 -4.2531 -0.9334 0.2197 0.0348 3.5861 1.0600 2.7891 0.1449 0.1701 1.4062 0.0364 1.0361 0.0744
+#&gt; 359: 92.1833 -5.8799 -2.1459 -4.2533 -0.9333 0.2197 0.0350 3.5822 1.0607 2.7903 0.1448 0.1696 1.4063 0.0364 1.0360 0.0744
+#&gt; 360: 92.1831 -5.8792 -2.1460 -4.2534 -0.9332 0.2196 0.0351 3.5787 1.0613 2.7914 0.1446 0.1691 1.4065 0.0364 1.0361 0.0744
+#&gt; 361: 92.1831 -5.8785 -2.1460 -4.2542 -0.9331 0.2196 0.0351 3.5771 1.0620 2.7969 0.1445 0.1688 1.4072 0.0364 1.0366 0.0744
+#&gt; 362: 92.1832 -5.8780 -2.1462 -4.2547 -0.9331 0.2195 0.0351 3.5750 1.0625 2.8017 0.1443 0.1683 1.4079 0.0363 1.0369 0.0744
+#&gt; 363: 92.1830 -5.8788 -2.1464 -4.2551 -0.9331 0.2192 0.0351 3.5785 1.0630 2.8057 0.1443 0.1677 1.4081 0.0363 1.0377 0.0743
+#&gt; 364: 92.1829 -5.8778 -2.1466 -4.2554 -0.9332 0.2193 0.0350 3.5747 1.0634 2.8092 0.1443 0.1672 1.4084 0.0363 1.0386 0.0743
+#&gt; 365: 92.1830 -5.8782 -2.1466 -4.2558 -0.9332 0.2192 0.0350 3.5771 1.0638 2.8135 0.1443 0.1667 1.4086 0.0363 1.0385 0.0743
+#&gt; 366: 92.1830 -5.8795 -2.1465 -4.2564 -0.9332 0.2190 0.0350 3.5838 1.0645 2.8190 0.1444 0.1661 1.4086 0.0363 1.0390 0.0743
+#&gt; 367: 92.1826 -5.8801 -2.1465 -4.2569 -0.9333 0.2191 0.0349 3.5867 1.0652 2.8232 0.1445 0.1657 1.4086 0.0362 1.0388 0.0744
+#&gt; 368: 92.1824 -5.8799 -2.1465 -4.2571 -0.9333 0.2193 0.0348 3.5859 1.0654 2.8252 0.1445 0.1653 1.4088 0.0362 1.0385 0.0744
+#&gt; 369: 92.1822 -5.8803 -2.1467 -4.2572 -0.9333 0.2193 0.0348 3.5846 1.0653 2.8261 0.1444 0.1648 1.4086 0.0362 1.0393 0.0744
+#&gt; 370: 92.1820 -5.8802 -2.1469 -4.2575 -0.9333 0.2195 0.0348 3.5822 1.0653 2.8273 0.1444 0.1645 1.4088 0.0362 1.0396 0.0744
+#&gt; 371: 92.1818 -5.8806 -2.1470 -4.2575 -0.9333 0.2198 0.0348 3.5819 1.0649 2.8277 0.1443 0.1642 1.4091 0.0362 1.0403 0.0743
+#&gt; 372: 92.1818 -5.8804 -2.1473 -4.2580 -0.9332 0.2202 0.0348 3.5795 1.0645 2.8300 0.1441 0.1640 1.4096 0.0362 1.0418 0.0743
+#&gt; 373: 92.1816 -5.8812 -2.1475 -4.2580 -0.9332 0.2203 0.0348 3.5816 1.0644 2.8298 0.1441 0.1639 1.4100 0.0362 1.0439 0.0741
+#&gt; 374: 92.1815 -5.8817 -2.1477 -4.2578 -0.9333 0.2203 0.0349 3.5819 1.0641 2.8282 0.1440 0.1641 1.4099 0.0362 1.0443 0.0741
+#&gt; 375: 92.1817 -5.8828 -2.1479 -4.2574 -0.9335 0.2204 0.0351 3.5853 1.0636 2.8267 0.1440 0.1642 1.4100 0.0362 1.0457 0.0740
+#&gt; 376: 92.1819 -5.8826 -2.1479 -4.2573 -0.9338 0.2206 0.0353 3.5843 1.0634 2.8246 0.1440 0.1643 1.4100 0.0362 1.0464 0.0740
+#&gt; 377: 92.1819 -5.8826 -2.1480 -4.2572 -0.9339 0.2206 0.0354 3.5819 1.0633 2.8225 0.1440 0.1644 1.4097 0.0363 1.0470 0.0739
+#&gt; 378: 92.1819 -5.8821 -2.1481 -4.2571 -0.9340 0.2205 0.0355 3.5777 1.0633 2.8206 0.1440 0.1644 1.4093 0.0363 1.0468 0.0739
+#&gt; 379: 92.1819 -5.8823 -2.1481 -4.2573 -0.9340 0.2205 0.0356 3.5746 1.0633 2.8201 0.1439 0.1645 1.4092 0.0363 1.0468 0.0739
+#&gt; 380: 92.1820 -5.8809 -2.1481 -4.2570 -0.9340 0.2205 0.0356 3.5665 1.0634 2.8178 0.1439 0.1647 1.4093 0.0363 1.0463 0.0739
+#&gt; 381: 92.1823 -5.8795 -2.1481 -4.2568 -0.9338 0.2204 0.0357 3.5586 1.0635 2.8170 0.1439 0.1648 1.4095 0.0363 1.0456 0.0740
+#&gt; 382: 92.1828 -5.8783 -2.1481 -4.2571 -0.9339 0.2203 0.0357 3.5514 1.0636 2.8183 0.1441 0.1649 1.4093 0.0363 1.0462 0.0740
+#&gt; 383: 92.1827 -5.8773 -2.1480 -4.2569 -0.9340 0.2202 0.0357 3.5459 1.0633 2.8173 0.1441 0.1650 1.4094 0.0363 1.0465 0.0739
+#&gt; 384: 92.1825 -5.8763 -2.1482 -4.2568 -0.9341 0.2202 0.0357 3.5397 1.0636 2.8165 0.1441 0.1650 1.4094 0.0363 1.0467 0.0739
+#&gt; 385: 92.1822 -5.8761 -2.1483 -4.2567 -0.9341 0.2201 0.0357 3.5363 1.0641 2.8160 0.1440 0.1650 1.4094 0.0363 1.0469 0.0739
+#&gt; 386: 92.1820 -5.8763 -2.1485 -4.2567 -0.9342 0.2200 0.0356 3.5365 1.0645 2.8157 0.1441 0.1648 1.4092 0.0364 1.0478 0.0738
+#&gt; 387: 92.1819 -5.8767 -2.1486 -4.2567 -0.9343 0.2201 0.0358 3.5383 1.0652 2.8156 0.1442 0.1646 1.4090 0.0364 1.0480 0.0738
+#&gt; 388: 92.1818 -5.8772 -2.1488 -4.2569 -0.9344 0.2202 0.0359 3.5400 1.0656 2.8153 0.1443 0.1645 1.4086 0.0364 1.0480 0.0738
+#&gt; 389: 92.1816 -5.8765 -2.1489 -4.2569 -0.9344 0.2203 0.0359 3.5369 1.0660 2.8145 0.1443 0.1644 1.4083 0.0364 1.0476 0.0738
+#&gt; 390: 92.1815 -5.8761 -2.1490 -4.2569 -0.9343 0.2205 0.0359 3.5349 1.0664 2.8136 0.1444 0.1644 1.4080 0.0364 1.0472 0.0738
+#&gt; 391: 92.1814 -5.8749 -2.1492 -4.2572 -0.9343 0.2207 0.0359 3.5313 1.0668 2.8153 0.1445 0.1643 1.4077 0.0364 1.0465 0.0739
+#&gt; 392: 92.1812 -5.8733 -2.1494 -4.2571 -0.9344 0.2210 0.0359 3.5248 1.0674 2.8141 0.1445 0.1642 1.4073 0.0364 1.0457 0.0739
+#&gt; 393: 92.1811 -5.8727 -2.1497 -4.2570 -0.9345 0.2212 0.0359 3.5226 1.0679 2.8127 0.1445 0.1642 1.4071 0.0364 1.0457 0.0739
+#&gt; 394: 92.1811 -5.8712 -2.1500 -4.2572 -0.9346 0.2214 0.0360 3.5174 1.0684 2.8132 0.1446 0.1641 1.4067 0.0364 1.0456 0.0739
+#&gt; 395: 92.1810 -5.8714 -2.1501 -4.2579 -0.9348 0.2217 0.0361 3.5182 1.0685 2.8171 0.1445 0.1641 1.4065 0.0364 1.0452 0.0740
+#&gt; 396: 92.1809 -5.8711 -2.1501 -4.2582 -0.9350 0.2220 0.0363 3.5161 1.0681 2.8184 0.1446 0.1639 1.4063 0.0364 1.0447 0.0740
+#&gt; 397: 92.1809 -5.8707 -2.1503 -4.2585 -0.9352 0.2222 0.0363 3.5119 1.0684 2.8197 0.1446 0.1637 1.4065 0.0364 1.0442 0.0740
+#&gt; 398: 92.1808 -5.8703 -2.1503 -4.2591 -0.9354 0.2224 0.0363 3.5084 1.0689 2.8218 0.1447 0.1634 1.4064 0.0364 1.0445 0.0740
+#&gt; 399: 92.1806 -5.8711 -2.1503 -4.2596 -0.9355 0.2226 0.0364 3.5114 1.0691 2.8234 0.1447 0.1629 1.4061 0.0364 1.0447 0.0740
+#&gt; 400: 92.1806 -5.8713 -2.1503 -4.2601 -0.9356 0.2229 0.0366 3.5113 1.0695 2.8253 0.1448 0.1626 1.4059 0.0364 1.0440 0.0740
+#&gt; 401: 92.1804 -5.8709 -2.1503 -4.2604 -0.9357 0.2231 0.0367 3.5089 1.0696 2.8266 0.1448 0.1624 1.4058 0.0364 1.0440 0.0740
+#&gt; 402: 92.1801 -5.8705 -2.1502 -4.2606 -0.9358 0.2232 0.0368 3.5071 1.0695 2.8268 0.1447 0.1621 1.4060 0.0364 1.0447 0.0740
+#&gt; 403: 92.1800 -5.8708 -2.1503 -4.2610 -0.9359 0.2234 0.0369 3.5083 1.0697 2.8271 0.1447 0.1618 1.4056 0.0365 1.0448 0.0739
+#&gt; 404: 92.1798 -5.8709 -2.1505 -4.2612 -0.9360 0.2237 0.0369 3.5085 1.0699 2.8262 0.1447 0.1616 1.4055 0.0365 1.0449 0.0739
+#&gt; 405: 92.1795 -5.8705 -2.1503 -4.2613 -0.9360 0.2239 0.0370 3.5059 1.0698 2.8254 0.1448 0.1615 1.4052 0.0364 1.0449 0.0739
+#&gt; 406: 92.1792 -5.8710 -2.1504 -4.2613 -0.9359 0.2243 0.0371 3.5069 1.0696 2.8244 0.1449 0.1614 1.4049 0.0364 1.0447 0.0739
+#&gt; 407: 92.1788 -5.8718 -2.1505 -4.2614 -0.9359 0.2243 0.0372 3.5092 1.0697 2.8234 0.1449 0.1614 1.4046 0.0364 1.0448 0.0739
+#&gt; 408: 92.1786 -5.8729 -2.1505 -4.2615 -0.9360 0.2245 0.0373 3.5140 1.0699 2.8223 0.1449 0.1612 1.4045 0.0365 1.0455 0.0739
+#&gt; 409: 92.1784 -5.8740 -2.1506 -4.2615 -0.9360 0.2246 0.0373 3.5192 1.0700 2.8213 0.1450 0.1610 1.4042 0.0365 1.0462 0.0738
+#&gt; 410: 92.1782 -5.8753 -2.1505 -4.2616 -0.9361 0.2246 0.0373 3.5248 1.0705 2.8205 0.1450 0.1607 1.4040 0.0365 1.0465 0.0738
+#&gt; 411: 92.1780 -5.8758 -2.1503 -4.2619 -0.9362 0.2247 0.0374 3.5249 1.0707 2.8204 0.1449 0.1605 1.4043 0.0364 1.0467 0.0738
+#&gt; 412: 92.1778 -5.8759 -2.1502 -4.2621 -0.9363 0.2248 0.0374 3.5238 1.0707 2.8209 0.1448 0.1602 1.4045 0.0364 1.0466 0.0738
+#&gt; 413: 92.1779 -5.8759 -2.1501 -4.2623 -0.9364 0.2249 0.0374 3.5225 1.0711 2.8213 0.1448 0.1600 1.4043 0.0364 1.0460 0.0738
+#&gt; 414: 92.1781 -5.8754 -2.1500 -4.2622 -0.9364 0.2250 0.0374 3.5205 1.0710 2.8203 0.1448 0.1599 1.4047 0.0364 1.0456 0.0738
+#&gt; 415: 92.1781 -5.8750 -2.1499 -4.2623 -0.9363 0.2251 0.0374 3.5187 1.0709 2.8190 0.1448 0.1598 1.4050 0.0364 1.0448 0.0738
+#&gt; 416: 92.1783 -5.8747 -2.1500 -4.2624 -0.9363 0.2252 0.0375 3.5216 1.0708 2.8187 0.1448 0.1598 1.4052 0.0364 1.0440 0.0738
+#&gt; 417: 92.1783 -5.8738 -2.1500 -4.2625 -0.9362 0.2252 0.0375 3.5219 1.0712 2.8188 0.1447 0.1597 1.4055 0.0364 1.0438 0.0739
+#&gt; 418: 92.1784 -5.8735 -2.1501 -4.2627 -0.9360 0.2254 0.0375 3.5222 1.0715 2.8193 0.1448 0.1596 1.4057 0.0364 1.0438 0.0739
+#&gt; 419: 92.1784 -5.8725 -2.1501 -4.2629 -0.9358 0.2255 0.0376 3.5190 1.0719 2.8202 0.1447 0.1594 1.4060 0.0364 1.0436 0.0739
+#&gt; 420: 92.1785 -5.8713 -2.1500 -4.2633 -0.9357 0.2256 0.0377 3.5152 1.0723 2.8213 0.1447 0.1592 1.4065 0.0364 1.0439 0.0738
+#&gt; 421: 92.1786 -5.8697 -2.1500 -4.2639 -0.9355 0.2257 0.0377 3.5100 1.0728 2.8232 0.1448 0.1592 1.4068 0.0364 1.0436 0.0739
+#&gt; 422: 92.1787 -5.8683 -2.1502 -4.2645 -0.9352 0.2260 0.0377 3.5051 1.0732 2.8258 0.1448 0.1592 1.4069 0.0364 1.0432 0.0739
+#&gt; 423: 92.1788 -5.8667 -2.1504 -4.2653 -0.9350 0.2262 0.0377 3.4992 1.0736 2.8292 0.1448 0.1592 1.4071 0.0364 1.0435 0.0738
+#&gt; 424: 92.1789 -5.8659 -2.1505 -4.2661 -0.9349 0.2263 0.0378 3.4972 1.0739 2.8324 0.1448 0.1591 1.4069 0.0364 1.0439 0.0738
+#&gt; 425: 92.1788 -5.8649 -2.1505 -4.2669 -0.9349 0.2263 0.0378 3.4947 1.0740 2.8358 0.1448 0.1590 1.4071 0.0364 1.0438 0.0738
+#&gt; 426: 92.1788 -5.8643 -2.1506 -4.2677 -0.9348 0.2265 0.0377 3.4922 1.0743 2.8389 0.1448 0.1589 1.4070 0.0365 1.0437 0.0738
+#&gt; 427: 92.1785 -5.8637 -2.1506 -4.2683 -0.9347 0.2266 0.0378 3.4895 1.0747 2.8425 0.1448 0.1588 1.4068 0.0365 1.0434 0.0738
+#&gt; 428: 92.1783 -5.8627 -2.1507 -4.2689 -0.9347 0.2268 0.0378 3.4870 1.0749 2.8464 0.1447 0.1586 1.4070 0.0365 1.0434 0.0738
+#&gt; 429: 92.1782 -5.8617 -2.1509 -4.2696 -0.9347 0.2271 0.0379 3.4845 1.0752 2.8500 0.1446 0.1584 1.4072 0.0365 1.0439 0.0738
+#&gt; 430: 92.1783 -5.8608 -2.1510 -4.2701 -0.9347 0.2274 0.0379 3.4830 1.0755 2.8526 0.1446 0.1582 1.4075 0.0365 1.0443 0.0738
+#&gt; 431: 92.1784 -5.8606 -2.1511 -4.2704 -0.9348 0.2275 0.0379 3.4825 1.0757 2.8532 0.1446 0.1580 1.4076 0.0365 1.0439 0.0738
+#&gt; 432: 92.1784 -5.8610 -2.1512 -4.2707 -0.9350 0.2275 0.0378 3.4833 1.0761 2.8539 0.1447 0.1578 1.4079 0.0365 1.0443 0.0738
+#&gt; 433: 92.1783 -5.8618 -2.1512 -4.2711 -0.9351 0.2276 0.0378 3.4867 1.0768 2.8554 0.1447 0.1577 1.4078 0.0366 1.0440 0.0738
+#&gt; 434: 92.1784 -5.8612 -2.1513 -4.2714 -0.9350 0.2278 0.0378 3.4858 1.0774 2.8564 0.1448 0.1577 1.4074 0.0365 1.0430 0.0739
+#&gt; 435: 92.1783 -5.8610 -2.1513 -4.2718 -0.9348 0.2279 0.0377 3.4874 1.0779 2.8581 0.1448 0.1576 1.4072 0.0366 1.0423 0.0739
+#&gt; 436: 92.1781 -5.8610 -2.1513 -4.2721 -0.9346 0.2280 0.0376 3.4879 1.0789 2.8598 0.1448 0.1575 1.4070 0.0365 1.0417 0.0739
+#&gt; 437: 92.1781 -5.8610 -2.1511 -4.2726 -0.9345 0.2279 0.0376 3.4886 1.0794 2.8618 0.1449 0.1574 1.4071 0.0365 1.0417 0.0739
+#&gt; 438: 92.1781 -5.8609 -2.1510 -4.2730 -0.9345 0.2280 0.0375 3.4893 1.0797 2.8641 0.1449 0.1573 1.4075 0.0365 1.0420 0.0739
+#&gt; 439: 92.1781 -5.8608 -2.1509 -4.2734 -0.9343 0.2280 0.0374 3.4894 1.0803 2.8659 0.1449 0.1573 1.4076 0.0365 1.0421 0.0739
+#&gt; 440: 92.1780 -5.8603 -2.1510 -4.2737 -0.9343 0.2279 0.0374 3.4885 1.0808 2.8674 0.1448 0.1573 1.4079 0.0365 1.0430 0.0738
+#&gt; 441: 92.1779 -5.8600 -2.1510 -4.2738 -0.9342 0.2279 0.0373 3.4899 1.0811 2.8686 0.1447 0.1574 1.4086 0.0365 1.0445 0.0737
+#&gt; 442: 92.1779 -5.8600 -2.1509 -4.2737 -0.9343 0.2278 0.0372 3.4925 1.0814 2.8691 0.1447 0.1575 1.4088 0.0365 1.0451 0.0737
+#&gt; 443: 92.1780 -5.8598 -2.1509 -4.2739 -0.9341 0.2278 0.0372 3.4949 1.0819 2.8705 0.1447 0.1576 1.4092 0.0365 1.0453 0.0737
+#&gt; 444: 92.1779 -5.8593 -2.1510 -4.2742 -0.9340 0.2277 0.0371 3.4951 1.0824 2.8717 0.1447 0.1576 1.4096 0.0365 1.0455 0.0737
+#&gt; 445: 92.1777 -5.8593 -2.1511 -4.2744 -0.9338 0.2275 0.0371 3.4999 1.0828 2.8729 0.1448 0.1576 1.4100 0.0365 1.0461 0.0736
+#&gt; 446: 92.1774 -5.8600 -2.1511 -4.2748 -0.9338 0.2274 0.0372 3.5051 1.0837 2.8747 0.1449 0.1576 1.4099 0.0365 1.0464 0.0736
+#&gt; 447: 92.1771 -5.8604 -2.1512 -4.2751 -0.9338 0.2273 0.0373 3.5087 1.0844 2.8758 0.1449 0.1575 1.4097 0.0365 1.0467 0.0736
+#&gt; 448: 92.1769 -5.8607 -2.1513 -4.2756 -0.9336 0.2272 0.0374 3.5124 1.0849 2.8778 0.1449 0.1575 1.4098 0.0365 1.0470 0.0735
+#&gt; 449: 92.1768 -5.8611 -2.1515 -4.2759 -0.9337 0.2270 0.0374 3.5165 1.0853 2.8789 0.1449 0.1575 1.4101 0.0365 1.0473 0.0735
+#&gt; 450: 92.1766 -5.8611 -2.1515 -4.2762 -0.9337 0.2269 0.0374 3.5158 1.0859 2.8800 0.1448 0.1576 1.4102 0.0365 1.0474 0.0735
+#&gt; 451: 92.1762 -5.8615 -2.1514 -4.2765 -0.9337 0.2267 0.0374 3.5202 1.0866 2.8812 0.1447 0.1576 1.4104 0.0365 1.0477 0.0735
+#&gt; 452: 92.1761 -5.8622 -2.1514 -4.2767 -0.9337 0.2264 0.0374 3.5232 1.0871 2.8824 0.1447 0.1576 1.4103 0.0365 1.0479 0.0734
+#&gt; 453: 92.1760 -5.8621 -2.1514 -4.2776 -0.9336 0.2261 0.0373 3.5247 1.0878 2.8901 0.1447 0.1576 1.4103 0.0365 1.0480 0.0734
+#&gt; 454: 92.1759 -5.8611 -2.1513 -4.2781 -0.9335 0.2259 0.0373 3.5206 1.0882 2.8939 0.1448 0.1575 1.4104 0.0365 1.0483 0.0734
+#&gt; 455: 92.1758 -5.8599 -2.1513 -4.2788 -0.9336 0.2258 0.0372 3.5151 1.0887 2.9010 0.1448 0.1575 1.4104 0.0365 1.0485 0.0734
+#&gt; 456: 92.1760 -5.8583 -2.1512 -4.2797 -0.9335 0.2258 0.0372 3.5086 1.0892 2.9081 0.1448 0.1574 1.4105 0.0365 1.0483 0.0734
+#&gt; 457: 92.1761 -5.8575 -2.1513 -4.2804 -0.9334 0.2257 0.0371 3.5041 1.0896 2.9144 0.1449 0.1574 1.4103 0.0365 1.0480 0.0733
+#&gt; 458: 92.1763 -5.8569 -2.1512 -4.2813 -0.9334 0.2257 0.0370 3.5014 1.0901 2.9227 0.1449 0.1574 1.4102 0.0365 1.0476 0.0734
+#&gt; 459: 92.1763 -5.8565 -2.1512 -4.2816 -0.9334 0.2256 0.0370 3.4991 1.0908 2.9248 0.1449 0.1573 1.4100 0.0365 1.0471 0.0734
+#&gt; 460: 92.1764 -5.8557 -2.1513 -4.2818 -0.9333 0.2256 0.0370 3.4957 1.0915 2.9258 0.1449 0.1572 1.4097 0.0365 1.0466 0.0734
+#&gt; 461: 92.1765 -5.8550 -2.1515 -4.2822 -0.9333 0.2255 0.0370 3.4923 1.0921 2.9296 0.1449 0.1571 1.4097 0.0365 1.0464 0.0734
+#&gt; 462: 92.1764 -5.8546 -2.1517 -4.2824 -0.9333 0.2256 0.0370 3.4897 1.0925 2.9319 0.1448 0.1569 1.4093 0.0365 1.0463 0.0733
+#&gt; 463: 92.1763 -5.8539 -2.1519 -4.2830 -0.9333 0.2256 0.0369 3.4863 1.0928 2.9373 0.1449 0.1568 1.4093 0.0366 1.0463 0.0733
+#&gt; 464: 92.1763 -5.8532 -2.1520 -4.2833 -0.9333 0.2257 0.0370 3.4825 1.0933 2.9405 0.1448 0.1567 1.4093 0.0366 1.0462 0.0733
+#&gt; 465: 92.1762 -5.8528 -2.1521 -4.2837 -0.9335 0.2257 0.0370 3.4795 1.0938 2.9433 0.1448 0.1567 1.4093 0.0366 1.0464 0.0733
+#&gt; 466: 92.1762 -5.8530 -2.1523 -4.2840 -0.9336 0.2256 0.0370 3.4780 1.0943 2.9462 0.1448 0.1566 1.4089 0.0366 1.0466 0.0733
+#&gt; 467: 92.1764 -5.8529 -2.1524 -4.2846 -0.9337 0.2256 0.0371 3.4751 1.0948 2.9506 0.1447 0.1565 1.4087 0.0366 1.0465 0.0733
+#&gt; 468: 92.1765 -5.8531 -2.1525 -4.2849 -0.9337 0.2255 0.0371 3.4734 1.0952 2.9523 0.1447 0.1563 1.4087 0.0366 1.0465 0.0733
+#&gt; 469: 92.1767 -5.8533 -2.1525 -4.2853 -0.9337 0.2254 0.0372 3.4754 1.0958 2.9540 0.1447 0.1561 1.4090 0.0366 1.0472 0.0733
+#&gt; 470: 92.1767 -5.8536 -2.1525 -4.2858 -0.9338 0.2254 0.0373 3.4780 1.0965 2.9571 0.1448 0.1559 1.4094 0.0366 1.0478 0.0732
+#&gt; 471: 92.1767 -5.8540 -2.1525 -4.2864 -0.9338 0.2254 0.0373 3.4812 1.0970 2.9606 0.1447 0.1558 1.4099 0.0366 1.0482 0.0732
+#&gt; 472: 92.1766 -5.8547 -2.1526 -4.2871 -0.9339 0.2255 0.0373 3.4844 1.0975 2.9645 0.1446 0.1556 1.4101 0.0366 1.0482 0.0732
+#&gt; 473: 92.1764 -5.8549 -2.1527 -4.2875 -0.9339 0.2255 0.0373 3.4848 1.0977 2.9672 0.1446 0.1554 1.4100 0.0366 1.0482 0.0732
+#&gt; 474: 92.1762 -5.8553 -2.1528 -4.2880 -0.9338 0.2256 0.0373 3.4855 1.0979 2.9700 0.1445 0.1552 1.4104 0.0366 1.0484 0.0732
+#&gt; 475: 92.1763 -5.8561 -2.1530 -4.2884 -0.9338 0.2256 0.0374 3.4885 1.0981 2.9726 0.1445 0.1549 1.4103 0.0366 1.0484 0.0731
+#&gt; 476: 92.1763 -5.8564 -2.1530 -4.2885 -0.9339 0.2258 0.0374 3.4914 1.0983 2.9734 0.1444 0.1548 1.4106 0.0366 1.0484 0.0731
+#&gt; 477: 92.1763 -5.8565 -2.1531 -4.2888 -0.9340 0.2259 0.0373 3.4941 1.0985 2.9755 0.1443 0.1546 1.4108 0.0366 1.0487 0.0731
+#&gt; 478: 92.1763 -5.8576 -2.1532 -4.2889 -0.9340 0.2258 0.0373 3.4995 1.0987 2.9772 0.1442 0.1544 1.4111 0.0366 1.0490 0.0731
+#&gt; 479: 92.1765 -5.8593 -2.1533 -4.2890 -0.9342 0.2259 0.0372 3.5086 1.0990 2.9787 0.1442 0.1544 1.4113 0.0366 1.0495 0.0731
+#&gt; 480: 92.1766 -5.8613 -2.1535 -4.2892 -0.9342 0.2260 0.0372 3.5233 1.0991 2.9800 0.1442 0.1543 1.4116 0.0367 1.0496 0.0730
+#&gt; 481: 92.1768 -5.8624 -2.1536 -4.2894 -0.9341 0.2260 0.0371 3.5309 1.0993 2.9820 0.1442 0.1542 1.4117 0.0367 1.0497 0.0730
+#&gt; 482: 92.1766 -5.8634 -2.1537 -4.2896 -0.9341 0.2260 0.0371 3.5393 1.0995 2.9833 0.1443 0.1542 1.4116 0.0367 1.0496 0.0730
+#&gt; 483: 92.1762 -5.8645 -2.1538 -4.2896 -0.9340 0.2260 0.0372 3.5472 1.0997 2.9840 0.1443 0.1542 1.4115 0.0367 1.0498 0.0730
+#&gt; 484: 92.1757 -5.8648 -2.1538 -4.2896 -0.9340 0.2261 0.0373 3.5508 1.0998 2.9843 0.1445 0.1542 1.4115 0.0366 1.0498 0.0730
+#&gt; 485: 92.1752 -5.8648 -2.1539 -4.2896 -0.9340 0.2262 0.0374 3.5516 1.1000 2.9846 0.1445 0.1542 1.4115 0.0366 1.0497 0.0730
+#&gt; 486: 92.1747 -5.8649 -2.1539 -4.2897 -0.9340 0.2262 0.0375 3.5517 1.1003 2.9856 0.1446 0.1541 1.4113 0.0366 1.0498 0.0730
+#&gt; 487: 92.1743 -5.8649 -2.1539 -4.2896 -0.9340 0.2262 0.0376 3.5502 1.1006 2.9856 0.1447 0.1539 1.4110 0.0367 1.0498 0.0730
+#&gt; 488: 92.1739 -5.8645 -2.1540 -4.2893 -0.9340 0.2261 0.0377 3.5475 1.1008 2.9848 0.1447 0.1537 1.4106 0.0367 1.0497 0.0729
+#&gt; 489: 92.1736 -5.8640 -2.1539 -4.2892 -0.9340 0.2260 0.0376 3.5445 1.1011 2.9844 0.1448 0.1536 1.4105 0.0367 1.0496 0.0729
+#&gt; 490: 92.1736 -5.8631 -2.1539 -4.2889 -0.9340 0.2260 0.0376 3.5402 1.1014 2.9835 0.1448 0.1534 1.4103 0.0366 1.0496 0.0729
+#&gt; 491: 92.1735 -5.8617 -2.1539 -4.2887 -0.9339 0.2260 0.0375 3.5343 1.1016 2.9825 0.1449 0.1532 1.4103 0.0366 1.0497 0.0729
+#&gt; 492: 92.1736 -5.8609 -2.1539 -4.2884 -0.9339 0.2259 0.0375 3.5298 1.1017 2.9816 0.1449 0.1530 1.4101 0.0367 1.0499 0.0729
+#&gt; 493: 92.1737 -5.8605 -2.1539 -4.2882 -0.9339 0.2260 0.0375 3.5266 1.1018 2.9807 0.1450 0.1529 1.4098 0.0367 1.0496 0.0729
+#&gt; 494: 92.1739 -5.8609 -2.1539 -4.2881 -0.9340 0.2261 0.0375 3.5273 1.1018 2.9802 0.1450 0.1528 1.4097 0.0367 1.0495 0.0729
+#&gt; 495: 92.1741 -5.8614 -2.1540 -4.2880 -0.9340 0.2262 0.0376 3.5290 1.1019 2.9797 0.1450 0.1526 1.4096 0.0367 1.0492 0.0729
+#&gt; 496: 92.1742 -5.8623 -2.1540 -4.2879 -0.9341 0.2262 0.0376 3.5348 1.1020 2.9791 0.1449 0.1525 1.4096 0.0367 1.0491 0.0729
+#&gt; 497: 92.1742 -5.8634 -2.1541 -4.2879 -0.9341 0.2264 0.0377 3.5402 1.1020 2.9789 0.1449 0.1524 1.4097 0.0367 1.0493 0.0729
+#&gt; 498: 92.1744 -5.8637 -2.1543 -4.2879 -0.9341 0.2266 0.0377 3.5406 1.1019 2.9787 0.1449 0.1524 1.4096 0.0367 1.0496 0.0729
+#&gt; 499: 92.1744 -5.8635 -2.1544 -4.2880 -0.9341 0.2268 0.0376 3.5400 1.1019 2.9789 0.1450 0.1523 1.4095 0.0367 1.0500 0.0728
+#&gt; 500: 92.1744 -5.8628 -2.1545 -4.2882 -0.9341 0.2270 0.0377 3.5381 1.1020 2.9795 0.1450 0.1522 1.4096 0.0367 1.0503 0.0728</div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
+ error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
+#&gt; |.....................| log_k2 | g_qlogis |sigma_low_parent |rsd_high_parent |
+#&gt; |.....................|sigma_low_A1 |rsd_high_A1 | o1 | o2 |
+#&gt; |.....................| o3 | o4 | o5 | o6 |
+#&gt; |<span style='font-weight: bold;'> 1</span>| 495.48573 | 1.000 | -1.000 | -0.9104 | -0.9376 |
+#&gt; |.....................| -0.9875 | -0.8823 | -0.8746 | -0.8907 |
+#&gt; |.....................| -0.8746 | -0.8907 | -0.8767 | -0.8731 |
+#&gt; |.....................| -0.8673 | -0.8720 | -0.8739 | -0.8666 |
+#&gt; | U| 495.48573 | 91.00 | -5.200 | -0.8900 | -2.200 |
+#&gt; |.....................| -4.600 | 0.4600 | 0.8300 | 0.05800 |
+#&gt; |.....................| 0.8300 | 0.05800 | 0.7311 | 0.9036 |
+#&gt; |.....................| 1.183 | 0.9554 | 0.8633 | 1.214 |
+#&gt; | X|<span style='font-weight: bold;'> 495.48573</span> | 91.00 | 0.005517 | 0.2911 | 0.1108 |
+#&gt; |.....................| 0.01005 | 0.6130 | 0.8300 | 0.05800 |
+#&gt; |.....................| 0.8300 | 0.05800 | 0.7311 | 0.9036 |
+#&gt; |.....................| 1.183 | 0.9554 | 0.8633 | 1.214 |
+#&gt; | G| Gill Diff. | -0.9648 | 2.223 | -0.3153 | -0.01817 |
+#&gt; |.....................| -0.3350 | 0.6789 | -23.42 | -17.64 |
+#&gt; |.....................| -5.440 | -1.950 | 0.9642 | 9.851 |
+#&gt; |.....................| -11.94 | -1.319 | 8.578 | -12.45 |
+#&gt; |<span style='font-weight: bold;'> 2</span>| 481.75012 | 1.026 | -1.060 | -0.9019 | -0.9371 |
+#&gt; |.....................| -0.9785 | -0.9007 | -0.2420 | -0.4142 |
+#&gt; |.....................| -0.7277 | -0.8380 | -0.9027 | -1.139 |
+#&gt; |.....................| -0.5448 | -0.8364 | -1.106 | -0.5303 |
+#&gt; | U| 481.75012 | 93.37 | -5.260 | -0.8824 | -2.200 |
+#&gt; |.....................| -4.591 | 0.4516 | 1.093 | 0.07182 |
+#&gt; |.....................| 0.8910 | 0.05953 | 0.7121 | 0.6631 |
+#&gt; |.....................| 1.565 | 0.9895 | 0.6633 | 1.623 |
+#&gt; | X|<span style='font-weight: bold;'> 481.75012</span> | 93.37 | 0.005195 | 0.2927 | 0.1109 |
+#&gt; |.....................| 0.01014 | 0.6110 | 1.093 | 0.07182 |
+#&gt; |.....................| 0.8910 | 0.05953 | 0.7121 | 0.6631 |
+#&gt; |.....................| 1.565 | 0.9895 | 0.6633 | 1.623 |
+#&gt; | F| Forward Diff. | 152.5 | 1.317 | 3.315 | -0.1772 |
+#&gt; |.....................| 0.3391 | 0.1426 | -4.513 | 6.696 |
+#&gt; |.....................| 1.211 | 0.7988 | 0.6299 | -5.324 |
+#&gt; |.....................| 0.009964 | 3.044 | -5.727 | -6.694 |
+#&gt; |<span style='font-weight: bold;'> 3</span>| 3004.9713 | 0.2745 | -1.093 | -0.9147 | -0.9360 |
+#&gt; |.....................| -0.9762 | -0.9095 | 0.05941 | -0.2377 |
+#&gt; |.....................| -0.6690 | -0.8188 | -0.9174 | -1.204 |
+#&gt; |.....................| -0.4027 | -0.8359 | -1.205 | -0.3486 |
+#&gt; | U| 3004.9713 | 24.98 | -5.293 | -0.8938 | -2.198 |
+#&gt; |.....................| -4.589 | 0.4475 | 1.218 | 0.07694 |
+#&gt; |.....................| 0.9154 | 0.06008 | 0.7014 | 0.6043 |
+#&gt; |.....................| 1.733 | 0.9899 | 0.5774 | 1.843 |
+#&gt; | X|<span style='font-weight: bold;'> 3004.9713</span> | 24.98 | 0.005026 | 0.2903 | 0.1110 |
+#&gt; |.....................| 0.01017 | 0.6100 | 1.218 | 0.07694 |
+#&gt; |.....................| 0.9154 | 0.06008 | 0.7014 | 0.6043 |
+#&gt; |.....................| 1.733 | 0.9899 | 0.5774 | 1.843 |
+#&gt; |<span style='font-weight: bold;'> 4</span>| 491.68825 | 0.9393 | -1.061 | -0.9038 | -0.9370 |
+#&gt; |.....................| -0.9787 | -0.9008 | -0.2394 | -0.4180 |
+#&gt; |.....................| -0.7284 | -0.8385 | -0.9031 | -1.136 |
+#&gt; |.....................| -0.5448 | -0.8381 | -1.102 | -0.5265 |
+#&gt; | U| 491.68825 | 85.47 | -5.261 | -0.8841 | -2.199 |
+#&gt; |.....................| -4.591 | 0.4515 | 1.094 | 0.07171 |
+#&gt; |.....................| 0.8907 | 0.05951 | 0.7118 | 0.6659 |
+#&gt; |.....................| 1.565 | 0.9878 | 0.6661 | 1.627 |
+#&gt; | X|<span style='font-weight: bold;'> 491.68825</span> | 85.47 | 0.005191 | 0.2923 | 0.1109 |
+#&gt; |.....................| 0.01014 | 0.6110 | 1.094 | 0.07171 |
+#&gt; |.....................| 0.8907 | 0.05951 | 0.7118 | 0.6659 |
+#&gt; |.....................| 1.565 | 0.9878 | 0.6661 | 1.627 |
+#&gt; |<span style='font-weight: bold;'> 5</span>| 479.72282 | 1.001 | -1.060 | -0.9024 | -0.9371 |
+#&gt; |.....................| -0.9785 | -0.9007 | -0.2413 | -0.4153 |
+#&gt; |.....................| -0.7279 | -0.8381 | -0.9028 | -1.138 |
+#&gt; |.....................| -0.5448 | -0.8369 | -1.105 | -0.5292 |
+#&gt; | U| 479.72282 | 91.11 | -5.260 | -0.8829 | -2.199 |
+#&gt; |.....................| -4.591 | 0.4516 | 1.093 | 0.07179 |
+#&gt; |.....................| 0.8909 | 0.05952 | 0.7120 | 0.6639 |
+#&gt; |.....................| 1.565 | 0.9890 | 0.6641 | 1.624 |
+#&gt; | X|<span style='font-weight: bold;'> 479.72282</span> | 91.11 | 0.005194 | 0.2926 | 0.1109 |
+#&gt; |.....................| 0.01014 | 0.6110 | 1.093 | 0.07179 |
+#&gt; |.....................| 0.8909 | 0.05952 | 0.7120 | 0.6639 |
+#&gt; |.....................| 1.565 | 0.9890 | 0.6641 | 1.624 |
+#&gt; | F| Forward Diff. | 6.589 | 1.222 | 0.9137 | 0.1103 |
+#&gt; |.....................| 0.3993 | 0.5206 | -3.904 | 6.654 |
+#&gt; |.....................| 0.9090 | 1.134 | -1.839 | -6.108 |
+#&gt; |.....................| 1.622 | 4.007 | -4.921 | -6.374 |
+#&gt; |<span style='font-weight: bold;'> 6</span>| 479.56384 | 0.9950 | -1.061 | -0.9037 | -0.9373 |
+#&gt; |.....................| -0.9792 | -0.9012 | -0.2438 | -0.4298 |
+#&gt; |.....................| -0.7309 | -0.8403 | -0.9001 | -1.126 |
+#&gt; |.....................| -0.5509 | -0.8426 | -1.095 | -0.5241 |
+#&gt; | U| 479.56384 | 90.55 | -5.261 | -0.8840 | -2.200 |
+#&gt; |.....................| -4.592 | 0.4513 | 1.092 | 0.07137 |
+#&gt; |.....................| 0.8897 | 0.05946 | 0.7140 | 0.6748 |
+#&gt; |.....................| 1.558 | 0.9836 | 0.6729 | 1.630 |
+#&gt; | X|<span style='font-weight: bold;'> 479.56384</span> | 90.55 | 0.005189 | 0.2923 | 0.1108 |
+#&gt; |.....................| 0.01014 | 0.6110 | 1.092 | 0.07137 |
+#&gt; |.....................| 0.8897 | 0.05946 | 0.7140 | 0.6748 |
+#&gt; |.....................| 1.558 | 0.9836 | 0.6729 | 1.630 |
+#&gt; | F| Forward Diff. | -31.71 | 1.225 | 0.1963 | 0.1681 |
+#&gt; |.....................| 0.4113 | 0.6853 | -4.208 | 6.141 |
+#&gt; |.....................| 0.7033 | 1.163 | -2.029 | -4.071 |
+#&gt; |.....................| -1.106 | 3.494 | -3.921 | -6.098 |
+#&gt; |<span style='font-weight: bold;'> 7</span>| 479.23599 | 1.003 | -1.063 | -0.9048 | -0.9375 |
+#&gt; |.....................| -0.9799 | -0.9023 | -0.2352 | -0.4403 |
+#&gt; |.....................| -0.7320 | -0.8422 | -0.8974 | -1.117 |
+#&gt; |.....................| -0.5472 | -0.8484 | -1.086 | -0.5115 |
+#&gt; | U| 479.23599 | 91.29 | -5.263 | -0.8850 | -2.200 |
+#&gt; |.....................| -4.592 | 0.4508 | 1.095 | 0.07106 |
+#&gt; |.....................| 0.8892 | 0.05941 | 0.7160 | 0.6828 |
+#&gt; |.....................| 1.562 | 0.9781 | 0.6800 | 1.645 |
+#&gt; | X|<span style='font-weight: bold;'> 479.23599</span> | 91.29 | 0.005177 | 0.2921 | 0.1108 |
+#&gt; |.....................| 0.01013 | 0.6108 | 1.095 | 0.07106 |
+#&gt; |.....................| 0.8892 | 0.05941 | 0.7160 | 0.6828 |
+#&gt; |.....................| 1.562 | 0.9781 | 0.6800 | 1.645 |
+#&gt; | F| Forward Diff. | 18.36 | 1.286 | 0.8956 | 0.06941 |
+#&gt; |.....................| 0.3942 | 0.6495 | -3.460 | 6.349 |
+#&gt; |.....................| 0.7828 | 0.9998 | -1.947 | -2.931 |
+#&gt; |.....................| 0.1591 | 2.144 | -3.375 | -5.909 |
+#&gt; |<span style='font-weight: bold;'> 8</span>| 479.05200 | 0.9982 | -1.066 | -0.9056 | -0.9376 |
+#&gt; |.....................| -0.9803 | -0.9037 | -0.2181 | -0.4407 |
+#&gt; |.....................| -0.7304 | -0.8427 | -0.8951 | -1.119 |
+#&gt; |.....................| -0.5384 | -0.8504 | -1.087 | -0.4972 |
+#&gt; | U| 479.052 | 90.84 | -5.266 | -0.8857 | -2.200 |
+#&gt; |.....................| -4.593 | 0.4502 | 1.102 | 0.07105 |
+#&gt; |.....................| 0.8899 | 0.05939 | 0.7177 | 0.6818 |
+#&gt; |.....................| 1.572 | 0.9761 | 0.6797 | 1.663 |
+#&gt; | X|<span style='font-weight: bold;'> 479.052</span> | 90.84 | 0.005162 | 0.2920 | 0.1108 |
+#&gt; |.....................| 0.01012 | 0.6107 | 1.102 | 0.07105 |
+#&gt; |.....................| 0.8899 | 0.05939 | 0.7177 | 0.6818 |
+#&gt; |.....................| 1.572 | 0.9761 | 0.6797 | 1.663 |
+#&gt; |<span style='font-weight: bold;'> 9</span>| 478.91507 | 0.9977 | -1.070 | -0.9061 | -0.9377 |
+#&gt; |.....................| -0.9807 | -0.9051 | -0.2002 | -0.4395 |
+#&gt; |.....................| -0.7284 | -0.8431 | -0.8930 | -1.121 |
+#&gt; |.....................| -0.5287 | -0.8520 | -1.088 | -0.4828 |
+#&gt; | U| 478.91507 | 90.79 | -5.270 | -0.8862 | -2.200 |
+#&gt; |.....................| -4.593 | 0.4495 | 1.110 | 0.07109 |
+#&gt; |.....................| 0.8907 | 0.05938 | 0.7192 | 0.6799 |
+#&gt; |.....................| 1.584 | 0.9745 | 0.6785 | 1.680 |
+#&gt; | X|<span style='font-weight: bold;'> 478.91507</span> | 90.79 | 0.005146 | 0.2919 | 0.1108 |
+#&gt; |.....................| 0.01012 | 0.6105 | 1.110 | 0.07109 |
+#&gt; |.....................| 0.8907 | 0.05938 | 0.7192 | 0.6799 |
+#&gt; |.....................| 1.584 | 0.9745 | 0.6785 | 1.680 |
+#&gt; |<span style='font-weight: bold;'> 10</span>| 478.54700 | 0.9959 | -1.080 | -0.9081 | -0.9381 |
+#&gt; |.....................| -0.9820 | -0.9099 | -0.1391 | -0.4353 |
+#&gt; |.....................| -0.7215 | -0.8442 | -0.8862 | -1.128 |
+#&gt; |.....................| -0.4957 | -0.8577 | -1.093 | -0.4342 |
+#&gt; | U| 478.547 | 90.63 | -5.280 | -0.8880 | -2.200 |
+#&gt; |.....................| -4.594 | 0.4473 | 1.135 | 0.07121 |
+#&gt; |.....................| 0.8936 | 0.05935 | 0.7242 | 0.6734 |
+#&gt; |.....................| 1.623 | 0.9691 | 0.6746 | 1.739 |
+#&gt; | X|<span style='font-weight: bold;'> 478.547</span> | 90.63 | 0.005094 | 0.2915 | 0.1108 |
+#&gt; |.....................| 0.01011 | 0.6100 | 1.135 | 0.07121 |
+#&gt; |.....................| 0.8936 | 0.05935 | 0.7242 | 0.6734 |
+#&gt; |.....................| 1.623 | 0.9691 | 0.6746 | 1.739 |
+#&gt; |<span style='font-weight: bold;'> 11</span>| 478.24707 | 0.9926 | -1.098 | -0.9118 | -0.9388 |
+#&gt; |.....................| -0.9843 | -0.9186 | -0.02735 | -0.4276 |
+#&gt; |.....................| -0.7088 | -0.8464 | -0.8736 | -1.141 |
+#&gt; |.....................| -0.4354 | -0.8680 | -1.101 | -0.3451 |
+#&gt; | U| 478.24707 | 90.33 | -5.298 | -0.8913 | -2.201 |
+#&gt; |.....................| -4.597 | 0.4433 | 1.182 | 0.07143 |
+#&gt; |.....................| 0.8988 | 0.05929 | 0.7334 | 0.6616 |
+#&gt; |.....................| 1.694 | 0.9593 | 0.6674 | 1.848 |
+#&gt; | X|<span style='font-weight: bold;'> 478.24707</span> | 90.33 | 0.004999 | 0.2909 | 0.1107 |
+#&gt; |.....................| 0.01008 | 0.6090 | 1.182 | 0.07143 |
+#&gt; |.....................| 0.8988 | 0.05929 | 0.7334 | 0.6616 |
+#&gt; |.....................| 1.694 | 0.9593 | 0.6674 | 1.848 |
+#&gt; | F| Forward Diff. | -54.86 | 1.159 | -0.2545 | 0.1198 |
+#&gt; |.....................| 0.4779 | 1.320 | -1.627 | 7.719 |
+#&gt; |.....................| 1.488 | 1.194 | -2.008 | -4.434 |
+#&gt; |.....................| 3.563 | 0.8010 | -2.393 | -3.495 |
+#&gt; |<span style='font-weight: bold;'> 12</span>| 475.90466 | 1.002 | -1.127 | -0.9233 | -0.9398 |
+#&gt; |.....................| -0.9978 | -0.9482 | -0.05448 | -0.6822 |
+#&gt; |.....................| -0.7579 | -0.8801 | -0.8190 | -1.095 |
+#&gt; |.....................| -0.4550 | -0.8498 | -1.031 | -0.2699 |
+#&gt; | U| 475.90466 | 91.18 | -5.327 | -0.9014 | -2.202 |
+#&gt; |.....................| -4.610 | 0.4297 | 1.170 | 0.06405 |
+#&gt; |.....................| 0.8785 | 0.05831 | 0.7733 | 0.7032 |
+#&gt; |.....................| 1.671 | 0.9767 | 0.7277 | 1.939 |
+#&gt; | X|<span style='font-weight: bold;'> 475.90466</span> | 91.18 | 0.004860 | 0.2888 | 0.1106 |
+#&gt; |.....................| 0.009950 | 0.6058 | 1.170 | 0.06405 |
+#&gt; |.....................| 0.8785 | 0.05831 | 0.7733 | 0.7032 |
+#&gt; |.....................| 1.671 | 0.9767 | 0.7277 | 1.939 |
+#&gt; | F| Forward Diff. | -5.773 | 1.281 | 0.05418 | -0.06269 |
+#&gt; |.....................| 0.4104 | 1.812 | -4.981 | 3.640 |
+#&gt; |.....................| -0.08126 | 0.09477 | -1.092 | -2.966 |
+#&gt; |.....................| 5.262 | 2.712 | 3.245 | -2.012 |
+#&gt; |<span style='font-weight: bold;'> 13</span>| 477.06760 | 1.030 | -1.176 | -0.9281 | -0.9377 |
+#&gt; |.....................| -1.013 | -1.011 | 0.09564 | -0.8420 |
+#&gt; |.....................| -0.7668 | -0.8907 | -0.7738 | -1.073 |
+#&gt; |.....................| -0.5619 | -0.8693 | -1.126 | -0.1773 |
+#&gt; | U| 477.0676 | 93.71 | -5.376 | -0.9057 | -2.200 |
+#&gt; |.....................| -4.625 | 0.4008 | 1.233 | 0.05941 |
+#&gt; |.....................| 0.8748 | 0.05800 | 0.8064 | 0.7234 |
+#&gt; |.....................| 1.545 | 0.9581 | 0.6461 | 2.051 |
+#&gt; | X|<span style='font-weight: bold;'> 477.0676</span> | 93.71 | 0.004627 | 0.2879 | 0.1108 |
+#&gt; |.....................| 0.009799 | 0.5989 | 1.233 | 0.05941 |
+#&gt; |.....................| 0.8748 | 0.05800 | 0.8064 | 0.7234 |
+#&gt; |.....................| 1.545 | 0.9581 | 0.6461 | 2.051 |
+#&gt; |<span style='font-weight: bold;'> 14</span>| 477.20174 | 1.026 | -1.143 | -0.9246 | -0.9391 |
+#&gt; |.....................| -1.003 | -0.9695 | -0.001726 | -0.7335 |
+#&gt; |.....................| -0.7599 | -0.8831 | -0.8043 | -1.080 |
+#&gt; |.....................| -0.4976 | -0.8627 | -1.065 | -0.2404 |
+#&gt; | U| 477.20174 | 93.37 | -5.343 | -0.9027 | -2.201 |
+#&gt; |.....................| -4.615 | 0.4199 | 1.192 | 0.06256 |
+#&gt; |.....................| 0.8776 | 0.05822 | 0.7840 | 0.7162 |
+#&gt; |.....................| 1.621 | 0.9644 | 0.6988 | 1.975 |
+#&gt; | X|<span style='font-weight: bold;'> 477.20174</span> | 93.37 | 0.004782 | 0.2885 | 0.1106 |
+#&gt; |.....................| 0.009899 | 0.6035 | 1.192 | 0.06256 |
+#&gt; |.....................| 0.8776 | 0.05822 | 0.7840 | 0.7162 |
+#&gt; |.....................| 1.621 | 0.9644 | 0.6988 | 1.975 |
+#&gt; |<span style='font-weight: bold;'> 15</span>| 476.22973 | 1.014 | -1.129 | -0.9234 | -0.9397 |
+#&gt; |.....................| -0.9986 | -0.9521 | -0.04396 | -0.6899 |
+#&gt; |.....................| -0.7577 | -0.8803 | -0.8167 | -1.089 |
+#&gt; |.....................| -0.4661 | -0.8555 | -1.038 | -0.2656 |
+#&gt; | U| 476.22973 | 92.29 | -5.329 | -0.9015 | -2.202 |
+#&gt; |.....................| -4.611 | 0.4279 | 1.175 | 0.06382 |
+#&gt; |.....................| 0.8785 | 0.05830 | 0.7750 | 0.7089 |
+#&gt; |.....................| 1.658 | 0.9712 | 0.7218 | 1.944 |
+#&gt; | X|<span style='font-weight: bold;'> 476.22973</span> | 92.29 | 0.004847 | 0.2887 | 0.1106 |
+#&gt; |.....................| 0.009941 | 0.6054 | 1.175 | 0.06382 |
+#&gt; |.....................| 0.8785 | 0.05830 | 0.7750 | 0.7089 |
+#&gt; |.....................| 1.658 | 0.9712 | 0.7218 | 1.944 |
+#&gt; |<span style='font-weight: bold;'> 16</span>| 475.87776 | 1.005 | -1.127 | -0.9233 | -0.9398 |
+#&gt; |.....................| -0.9980 | -0.9491 | -0.05201 | -0.6840 |
+#&gt; |.....................| -0.7578 | -0.8802 | -0.8184 | -1.093 |
+#&gt; |.....................| -0.4576 | -0.8511 | -1.033 | -0.2689 |
+#&gt; | U| 475.87776 | 91.44 | -5.327 | -0.9015 | -2.202 |
+#&gt; |.....................| -4.610 | 0.4293 | 1.171 | 0.06399 |
+#&gt; |.....................| 0.8785 | 0.05830 | 0.7737 | 0.7045 |
+#&gt; |.....................| 1.668 | 0.9754 | 0.7263 | 1.940 |
+#&gt; | X|<span style='font-weight: bold;'> 475.87776</span> | 91.44 | 0.004857 | 0.2887 | 0.1106 |
+#&gt; |.....................| 0.009948 | 0.6057 | 1.171 | 0.06399 |
+#&gt; |.....................| 0.8785 | 0.05830 | 0.7737 | 0.7045 |
+#&gt; |.....................| 1.668 | 0.9754 | 0.7263 | 1.940 |
+#&gt; | F| Forward Diff. | 16.12 | 1.298 | 0.4116 | -0.09723 |
+#&gt; |.....................| 0.4002 | 1.728 | -4.991 | 3.781 |
+#&gt; |.....................| -0.06392 | 0.04117 | -1.251 | -0.6787 |
+#&gt; |.....................| 5.079 | 2.620 | 3.013 | -2.074 |
+#&gt; |<span style='font-weight: bold;'> 17</span>| 475.82399 | 1.002 | -1.128 | -0.9234 | -0.9397 |
+#&gt; |.....................| -0.9982 | -0.9501 | -0.04950 | -0.6866 |
+#&gt; |.....................| -0.7580 | -0.8803 | -0.8177 | -1.093 |
+#&gt; |.....................| -0.4596 | -0.8518 | -1.034 | -0.2675 |
+#&gt; | U| 475.82399 | 91.17 | -5.328 | -0.9016 | -2.202 |
+#&gt; |.....................| -4.611 | 0.4288 | 1.172 | 0.06392 |
+#&gt; |.....................| 0.8784 | 0.05830 | 0.7743 | 0.7045 |
+#&gt; |.....................| 1.666 | 0.9748 | 0.7251 | 1.942 |
+#&gt; | X|<span style='font-weight: bold;'> 475.82399</span> | 91.17 | 0.004853 | 0.2887 | 0.1106 |
+#&gt; |.....................| 0.009945 | 0.6056 | 1.172 | 0.06392 |
+#&gt; |.....................| 0.8784 | 0.05830 | 0.7743 | 0.7045 |
+#&gt; |.....................| 1.666 | 0.9748 | 0.7251 | 1.942 |
+#&gt; | F| Forward Diff. | -7.267 | 1.279 | 0.007095 | -0.05940 |
+#&gt; |.....................| 0.4115 | 1.783 | -5.114 | 3.652 |
+#&gt; |.....................| -0.1068 | 0.1083 | -1.295 | -0.9578 |
+#&gt; |.....................| 2.682 | 2.514 | 3.014 | -2.035 |
+#&gt; |<span style='font-weight: bold;'> 18</span>| 475.78862 | 1.005 | -1.129 | -0.9235 | -0.9397 |
+#&gt; |.....................| -0.9985 | -0.9512 | -0.04657 | -0.6892 |
+#&gt; |.....................| -0.7580 | -0.8804 | -0.8168 | -1.093 |
+#&gt; |.....................| -0.4611 | -0.8527 | -1.036 | -0.2661 |
+#&gt; | U| 475.78862 | 91.41 | -5.329 | -0.9016 | -2.202 |
+#&gt; |.....................| -4.611 | 0.4283 | 1.174 | 0.06384 |
+#&gt; |.....................| 0.8784 | 0.05830 | 0.7749 | 0.7045 |
+#&gt; |.....................| 1.664 | 0.9739 | 0.7236 | 1.943 |
+#&gt; | X|<span style='font-weight: bold;'> 475.78862</span> | 91.41 | 0.004849 | 0.2887 | 0.1106 |
+#&gt; |.....................| 0.009942 | 0.6055 | 1.174 | 0.06384 |
+#&gt; |.....................| 0.8784 | 0.05830 | 0.7749 | 0.7045 |
+#&gt; |.....................| 1.664 | 0.9739 | 0.7236 | 1.943 |
+#&gt; | F| Forward Diff. | 13.19 | 1.292 | 0.3498 | -0.09321 |
+#&gt; |.....................| 0.4023 | 1.703 | -5.372 | 3.699 |
+#&gt; |.....................| -0.1234 | 0.05429 | -1.241 | -0.7588 |
+#&gt; |.....................| 4.815 | 2.436 | 2.783 | -2.083 |
+#&gt; |<span style='font-weight: bold;'> 19</span>| 475.73531 | 1.002 | -1.130 | -0.9236 | -0.9397 |
+#&gt; |.....................| -0.9987 | -0.9524 | -0.04361 | -0.6921 |
+#&gt; |.....................| -0.7582 | -0.8806 | -0.8159 | -1.094 |
+#&gt; |.....................| -0.4630 | -0.8531 | -1.037 | -0.2646 |
+#&gt; | U| 475.73531 | 91.21 | -5.330 | -0.9018 | -2.202 |
+#&gt; |.....................| -4.611 | 0.4278 | 1.175 | 0.06376 |
+#&gt; |.....................| 0.8783 | 0.05829 | 0.7756 | 0.7041 |
+#&gt; |.....................| 1.662 | 0.9735 | 0.7222 | 1.945 |
+#&gt; | X|<span style='font-weight: bold;'> 475.73531</span> | 91.21 | 0.004845 | 0.2887 | 0.1106 |
+#&gt; |.....................| 0.009940 | 0.6053 | 1.175 | 0.06376 |
+#&gt; |.....................| 0.8783 | 0.05829 | 0.7756 | 0.7041 |
+#&gt; |.....................| 1.662 | 0.9735 | 0.7222 | 1.945 |
+#&gt; | F| Forward Diff. | -3.312 | 1.277 | 0.06663 | -0.06695 |
+#&gt; |.....................| 0.4102 | 1.736 | -5.095 | 3.555 |
+#&gt; |.....................| -0.08175 | 0.08515 | -1.253 | -0.9364 |
+#&gt; |.....................| 4.836 | 2.452 | 2.739 | -2.058 |
+#&gt; |<span style='font-weight: bold;'> 20</span>| 475.69941 | 1.004 | -1.131 | -0.9237 | -0.9396 |
+#&gt; |.....................| -0.9990 | -0.9534 | -0.04063 | -0.6942 |
+#&gt; |.....................| -0.7581 | -0.8807 | -0.8151 | -1.093 |
+#&gt; |.....................| -0.4658 | -0.8545 | -1.039 | -0.2634 |
+#&gt; | U| 475.69941 | 91.39 | -5.331 | -0.9018 | -2.202 |
+#&gt; |.....................| -4.611 | 0.4273 | 1.176 | 0.06370 |
+#&gt; |.....................| 0.8783 | 0.05829 | 0.7761 | 0.7046 |
+#&gt; |.....................| 1.658 | 0.9722 | 0.7208 | 1.947 |
+#&gt; | X|<span style='font-weight: bold;'> 475.69941</span> | 91.39 | 0.004841 | 0.2887 | 0.1106 |
+#&gt; |.....................| 0.009937 | 0.6052 | 1.176 | 0.06370 |
+#&gt; |.....................| 0.8783 | 0.05829 | 0.7761 | 0.7046 |
+#&gt; |.....................| 1.658 | 0.9722 | 0.7208 | 1.947 |
+#&gt; | F| Forward Diff. | 11.57 | 1.287 | 0.3079 | -0.08979 |
+#&gt; |.....................| 0.4039 | 1.674 | -5.153 | 3.653 |
+#&gt; |.....................| -0.06063 | 0.04440 | -1.200 | -0.7646 |
+#&gt; |.....................| 2.452 | 2.339 | 2.552 | -2.095 |
+#&gt; |<span style='font-weight: bold;'> 21</span>| 475.66307 | 1.001 | -1.131 | -0.9238 | -0.9396 |
+#&gt; |.....................| -0.9992 | -0.9545 | -0.03780 | -0.6969 |
+#&gt; |.....................| -0.7583 | -0.8808 | -0.8143 | -1.094 |
+#&gt; |.....................| -0.4671 | -0.8550 | -1.041 | -0.2620 |
+#&gt; | U| 475.66307 | 91.11 | -5.331 | -0.9019 | -2.202 |
+#&gt; |.....................| -4.612 | 0.4268 | 1.177 | 0.06362 |
+#&gt; |.....................| 0.8783 | 0.05829 | 0.7767 | 0.7044 |
+#&gt; |.....................| 1.657 | 0.9717 | 0.7195 | 1.948 |
+#&gt; | X|<span style='font-weight: bold;'> 475.66307</span> | 91.11 | 0.004837 | 0.2887 | 0.1106 |
+#&gt; |.....................| 0.009935 | 0.6051 | 1.177 | 0.06362 |
+#&gt; |.....................| 0.8783 | 0.05829 | 0.7767 | 0.7044 |
+#&gt; |.....................| 1.657 | 0.9717 | 0.7195 | 1.948 |
+#&gt; | F| Forward Diff. | -12.57 | 1.267 | -0.09715 | -0.05310 |
+#&gt; |.....................| 0.4138 | 1.728 | -5.558 | 3.438 |
+#&gt; |.....................| -0.1081 | 0.1203 | -1.232 | -1.053 |
+#&gt; |.....................| 2.344 | 2.291 | 2.543 | -2.059 |
+#&gt; |<span style='font-weight: bold;'> 22</span>| 475.61346 | 1.003 | -1.132 | -0.9238 | -0.9395 |
+#&gt; |.....................| -0.9995 | -0.9557 | -0.03467 | -0.6999 |
+#&gt; |.....................| -0.7585 | -0.8810 | -0.8134 | -1.094 |
+#&gt; |.....................| -0.4680 | -0.8550 | -1.042 | -0.2607 |
+#&gt; | U| 475.61346 | 91.32 | -5.332 | -0.9020 | -2.202 |
+#&gt; |.....................| -4.612 | 0.4262 | 1.179 | 0.06353 |
+#&gt; |.....................| 0.8782 | 0.05828 | 0.7774 | 0.7040 |
+#&gt; |.....................| 1.656 | 0.9717 | 0.7181 | 1.950 |
+#&gt; | X|<span style='font-weight: bold;'> 475.61346</span> | 91.32 | 0.004833 | 0.2886 | 0.1106 |
+#&gt; |.....................| 0.009932 | 0.6050 | 1.179 | 0.06353 |
+#&gt; |.....................| 0.8782 | 0.05828 | 0.7774 | 0.7040 |
+#&gt; |.....................| 1.656 | 0.9717 | 0.7181 | 1.950 |
+#&gt; | F| Forward Diff. | 5.192 | 1.277 | 0.1967 | -0.08157 |
+#&gt; |.....................| 0.4060 | 1.656 | -5.231 | 3.627 |
+#&gt; |.....................| -0.1038 | 0.05786 | -1.199 | -0.8859 |
+#&gt; |.....................| 2.283 | 2.293 | 2.331 | -2.101 |
+#&gt; |<span style='font-weight: bold;'> 23</span>| 475.58436 | 1.001 | -1.133 | -0.9239 | -0.9395 |
+#&gt; |.....................| -0.9998 | -0.9568 | -0.03140 | -0.7025 |
+#&gt; |.....................| -0.7585 | -0.8810 | -0.8126 | -1.094 |
+#&gt; |.....................| -0.4692 | -0.8560 | -1.044 | -0.2594 |
+#&gt; | U| 475.58436 | 91.09 | -5.333 | -0.9021 | -2.202 |
+#&gt; |.....................| -4.612 | 0.4257 | 1.180 | 0.06346 |
+#&gt; |.....................| 0.8782 | 0.05828 | 0.7780 | 0.7043 |
+#&gt; |.....................| 1.654 | 0.9707 | 0.7167 | 1.952 |
+#&gt; | X|<span style='font-weight: bold;'> 475.58436</span> | 91.09 | 0.004829 | 0.2886 | 0.1106 |
+#&gt; |.....................| 0.009929 | 0.6049 | 1.180 | 0.06346 |
+#&gt; |.....................| 0.8782 | 0.05828 | 0.7780 | 0.7043 |
+#&gt; |.....................| 1.654 | 0.9707 | 0.7167 | 1.952 |
+#&gt; | F| Forward Diff. | -14.46 | 1.261 | -0.1306 | -0.05131 |
+#&gt; |.....................| 0.4140 | 1.696 | -5.518 | 3.404 |
+#&gt; |.....................| -0.1407 | 0.1181 | -1.199 | -1.071 |
+#&gt; |.....................| 2.272 | 2.212 | 2.296 | -2.075 |
+#&gt; |<span style='font-weight: bold;'> 24</span>| 475.53229 | 1.003 | -1.134 | -0.9240 | -0.9394 |
+#&gt; |.....................| -1.000 | -0.9581 | -0.02828 | -0.7055 |
+#&gt; |.....................| -0.7587 | -0.8812 | -0.8117 | -1.094 |
+#&gt; |.....................| -0.4701 | -0.8560 | -1.045 | -0.2580 |
+#&gt; | U| 475.53229 | 91.31 | -5.334 | -0.9021 | -2.202 |
+#&gt; |.....................| -4.613 | 0.4251 | 1.181 | 0.06337 |
+#&gt; |.....................| 0.8781 | 0.05828 | 0.7786 | 0.7039 |
+#&gt; |.....................| 1.653 | 0.9708 | 0.7153 | 1.953 |
+#&gt; | X|<span style='font-weight: bold;'> 475.53229</span> | 91.31 | 0.004824 | 0.2886 | 0.1106 |
+#&gt; |.....................| 0.009926 | 0.6047 | 1.181 | 0.06337 |
+#&gt; |.....................| 0.8781 | 0.05828 | 0.7786 | 0.7039 |
+#&gt; |.....................| 1.653 | 0.9708 | 0.7153 | 1.953 |
+#&gt; | F| Forward Diff. | 4.355 | 1.271 | 0.1786 | -0.08149 |
+#&gt; |.....................| 0.4055 | 1.621 | -5.117 | 3.557 |
+#&gt; |.....................| -0.1060 | 0.04285 | -0.9518 | -2.902 |
+#&gt; |.....................| 4.469 | 2.204 | 2.093 | -2.115 |
+#&gt; |<span style='font-weight: bold;'> 25</span>| 475.50379 | 1.001 | -1.135 | -0.9241 | -0.9394 |
+#&gt; |.....................| -1.000 | -0.9591 | -0.02533 | -0.7076 |
+#&gt; |.....................| -0.7587 | -0.8812 | -0.8111 | -1.093 |
+#&gt; |.....................| -0.4726 | -0.8571 | -1.047 | -0.2568 |
+#&gt; | U| 475.50379 | 91.10 | -5.335 | -0.9022 | -2.202 |
+#&gt; |.....................| -4.613 | 0.4247 | 1.182 | 0.06331 |
+#&gt; |.....................| 0.8781 | 0.05828 | 0.7790 | 0.7053 |
+#&gt; |.....................| 1.650 | 0.9697 | 0.7143 | 1.955 |
+#&gt; | X|<span style='font-weight: bold;'> 475.50379</span> | 91.10 | 0.004820 | 0.2886 | 0.1106 |
+#&gt; |.....................| 0.009924 | 0.6046 | 1.182 | 0.06331 |
+#&gt; |.....................| 0.8781 | 0.05828 | 0.7790 | 0.7053 |
+#&gt; |.....................| 1.650 | 0.9697 | 0.7143 | 1.955 |
+#&gt; | F| Forward Diff. | -13.73 | 1.259 | -0.1294 | -0.05234 |
+#&gt; |.....................| 0.4131 | 1.659 | -5.626 | 3.356 |
+#&gt; |.....................| -0.1179 | 0.1182 | -1.163 | -0.9759 |
+#&gt; |.....................| 2.282 | 2.162 | 2.085 | -2.085 |
+#&gt; |<span style='font-weight: bold;'> 26</span>| 475.45890 | 1.004 | -1.136 | -0.9240 | -0.9393 |
+#&gt; |.....................| -1.001 | -0.9602 | -0.02221 | -0.7103 |
+#&gt; |.....................| -0.7588 | -0.8813 | -0.8104 | -1.092 |
+#&gt; |.....................| -0.4738 | -0.8571 | -1.048 | -0.2555 |
+#&gt; | U| 475.4589 | 91.37 | -5.336 | -0.9021 | -2.202 |
+#&gt; |.....................| -4.613 | 0.4242 | 1.184 | 0.06323 |
+#&gt; |.....................| 0.8781 | 0.05827 | 0.7796 | 0.7056 |
+#&gt; |.....................| 1.649 | 0.9697 | 0.7132 | 1.956 |
+#&gt; | X|<span style='font-weight: bold;'> 475.4589</span> | 91.37 | 0.004816 | 0.2886 | 0.1106 |
+#&gt; |.....................| 0.009921 | 0.6045 | 1.184 | 0.06323 |
+#&gt; |.....................| 0.8781 | 0.05827 | 0.7796 | 0.7056 |
+#&gt; |.....................| 1.649 | 0.9697 | 0.7132 | 1.956 |
+#&gt; | F| Forward Diff. | 9.388 | 1.275 | 0.2447 | -0.08891 |
+#&gt; |.....................| 0.4027 | 1.576 | -4.598 | 3.539 |
+#&gt; |.....................| -0.08390 | 0.04261 | -0.9004 | -2.725 |
+#&gt; |.....................| 4.305 | 2.111 | 1.882 | -2.135 |
+#&gt; |<span style='font-weight: bold;'> 27</span>| 475.41657 | 1.002 | -1.137 | -0.9241 | -0.9392 |
+#&gt; |.....................| -1.001 | -0.9615 | -0.01910 | -0.7133 |
+#&gt; |.....................| -0.7590 | -0.8814 | -0.8097 | -1.092 |
+#&gt; |.....................| -0.4754 | -0.8571 | -1.049 | -0.2540 |
+#&gt; | U| 475.41657 | 91.17 | -5.337 | -0.9022 | -2.202 |
+#&gt; |.....................| -4.613 | 0.4236 | 1.185 | 0.06314 |
+#&gt; |.....................| 0.8780 | 0.05827 | 0.7801 | 0.7060 |
+#&gt; |.....................| 1.647 | 0.9697 | 0.7121 | 1.958 |
+#&gt; | X|<span style='font-weight: bold;'> 475.41657</span> | 91.17 | 0.004811 | 0.2886 | 0.1106 |
+#&gt; |.....................| 0.009918 | 0.6043 | 1.185 | 0.06314 |
+#&gt; |.....................| 0.8780 | 0.05827 | 0.7801 | 0.7060 |
+#&gt; |.....................| 1.647 | 0.9697 | 0.7121 | 1.958 |
+#&gt; | F| Forward Diff. | -7.291 | 1.263 | -0.02799 | -0.06240 |
+#&gt; |.....................| 0.4098 | 1.607 | -5.561 | 3.409 |
+#&gt; |.....................| -0.1363 | 0.09124 | -1.126 | -0.9025 |
+#&gt; |.....................| 4.264 | 2.123 | 1.858 | -2.103 |
+#&gt; |<span style='font-weight: bold;'> 28</span>| 475.37603 | 1.004 | -1.138 | -0.9241 | -0.9392 |
+#&gt; |.....................| -1.001 | -0.9626 | -0.01569 | -0.7160 |
+#&gt; |.....................| -0.7590 | -0.8815 | -0.8090 | -1.092 |
+#&gt; |.....................| -0.4775 | -0.8574 | -1.050 | -0.2525 |
+#&gt; | U| 475.37603 | 91.35 | -5.338 | -0.9022 | -2.202 |
+#&gt; |.....................| -4.614 | 0.4231 | 1.186 | 0.06307 |
+#&gt; |.....................| 0.8780 | 0.05827 | 0.7806 | 0.7060 |
+#&gt; |.....................| 1.645 | 0.9695 | 0.7112 | 1.960 |
+#&gt; | X|<span style='font-weight: bold;'> 475.37603</span> | 91.35 | 0.004807 | 0.2886 | 0.1106 |
+#&gt; |.....................| 0.009915 | 0.6042 | 1.186 | 0.06307 |
+#&gt; |.....................| 0.8780 | 0.05827 | 0.7806 | 0.7060 |
+#&gt; |.....................| 1.645 | 0.9695 | 0.7112 | 1.960 |
+#&gt; | F| Forward Diff. | 7.976 | 1.271 | 0.2167 | -0.08766 |
+#&gt; |.....................| 0.4024 | 1.550 | -5.132 | 3.516 |
+#&gt; |.....................| -0.09627 | 0.04106 | -1.088 | -0.7404 |
+#&gt; |.....................| 4.103 | 2.126 | 1.707 | -2.133 |
+#&gt; |<span style='font-weight: bold;'> 29</span>| 475.34297 | 1.001 | -1.139 | -0.9242 | -0.9391 |
+#&gt; |.....................| -1.002 | -0.9636 | -0.01242 | -0.7185 |
+#&gt; |.....................| -0.7591 | -0.8816 | -0.8082 | -1.092 |
+#&gt; |.....................| -0.4796 | -0.8578 | -1.051 | -0.2511 |
+#&gt; | U| 475.34297 | 91.13 | -5.339 | -0.9023 | -2.201 |
+#&gt; |.....................| -4.614 | 0.4226 | 1.188 | 0.06299 |
+#&gt; |.....................| 0.8779 | 0.05826 | 0.7812 | 0.7056 |
+#&gt; |.....................| 1.642 | 0.9691 | 0.7103 | 1.962 |
+#&gt; | X|<span style='font-weight: bold;'> 475.34297</span> | 91.13 | 0.004803 | 0.2886 | 0.1106 |
+#&gt; |.....................| 0.009912 | 0.6041 | 1.188 | 0.06299 |
+#&gt; |.....................| 0.8779 | 0.05826 | 0.7812 | 0.7056 |
+#&gt; |.....................| 1.642 | 0.9691 | 0.7103 | 1.962 |
+#&gt; | F| Forward Diff. | -11.69 | 1.251 | -0.09758 | -0.05188 |
+#&gt; |.....................| 0.4100 | 1.596 | -5.544 | 3.338 |
+#&gt; |.....................| -0.1288 | 0.09302 | -1.103 | -0.9943 |
+#&gt; |.....................| 4.044 | 2.113 | 1.726 | -2.096 |
+#&gt; |<span style='font-weight: bold;'> 30</span>| 475.29763 | 1.004 | -1.140 | -0.9242 | -0.9391 |
+#&gt; |.....................| -1.002 | -0.9647 | -0.009016 | -0.7212 |
+#&gt; |.....................| -0.7592 | -0.8817 | -0.8074 | -1.093 |
+#&gt; |.....................| -0.4815 | -0.8578 | -1.052 | -0.2496 |
+#&gt; | U| 475.29763 | 91.33 | -5.340 | -0.9023 | -2.201 |
+#&gt; |.....................| -4.614 | 0.4221 | 1.189 | 0.06292 |
+#&gt; |.....................| 0.8779 | 0.05826 | 0.7818 | 0.7049 |
+#&gt; |.....................| 1.640 | 0.9691 | 0.7096 | 1.964 |
+#&gt; | X|<span style='font-weight: bold;'> 475.29763</span> | 91.33 | 0.004798 | 0.2886 | 0.1106 |
+#&gt; |.....................| 0.009909 | 0.6040 | 1.189 | 0.06292 |
+#&gt; |.....................| 0.8779 | 0.05826 | 0.7818 | 0.7049 |
+#&gt; |.....................| 1.640 | 0.9691 | 0.7096 | 1.964 |
+#&gt; | F| Forward Diff. | 5.626 | 1.261 | 0.1834 | -0.08674 |
+#&gt; |.....................| 0.4019 | 1.535 | -5.612 | 3.466 |
+#&gt; |.....................| -0.1091 | 0.03444 | -1.082 | -0.8814 |
+#&gt; |.....................| 3.882 | 2.084 | 1.576 | -2.128 |
+#&gt; |<span style='font-weight: bold;'> 31</span>| 475.26968 | 1.001 | -1.140 | -0.9243 | -0.9390 |
+#&gt; |.....................| -1.002 | -0.9656 | -0.005554 | -0.7235 |
+#&gt; |.....................| -0.7592 | -0.8818 | -0.8067 | -1.093 |
+#&gt; |.....................| -0.4837 | -0.8585 | -1.053 | -0.2482 |
+#&gt; | U| 475.26968 | 91.11 | -5.340 | -0.9024 | -2.201 |
+#&gt; |.....................| -4.615 | 0.4217 | 1.191 | 0.06285 |
+#&gt; |.....................| 0.8779 | 0.05826 | 0.7823 | 0.7049 |
+#&gt; |.....................| 1.637 | 0.9684 | 0.7088 | 1.965 |
+#&gt; | X|<span style='font-weight: bold;'> 475.26968</span> | 91.11 | 0.004794 | 0.2886 | 0.1106 |
+#&gt; |.....................| 0.009907 | 0.6039 | 1.191 | 0.06285 |
+#&gt; |.....................| 0.8779 | 0.05826 | 0.7823 | 0.7049 |
+#&gt; |.....................| 1.637 | 0.9684 | 0.7088 | 1.965 |
+#&gt; | F| Forward Diff. | -13.71 | 1.246 | -0.1255 | -0.05322 |
+#&gt; |.....................| 0.4099 | 1.581 | -5.546 | 3.317 |
+#&gt; |.....................| -0.1509 | 0.1096 | -0.8594 | -3.000 |
+#&gt; |.....................| 3.990 | 2.056 | 1.604 | -2.087 |
+#&gt; |<span style='font-weight: bold;'> 32</span>| 475.22190 | 1.004 | -1.141 | -0.9243 | -0.9390 |
+#&gt; |.....................| -1.002 | -0.9667 | -0.002058 | -0.7261 |
+#&gt; |.....................| -0.7593 | -0.8819 | -0.8061 | -1.093 |
+#&gt; |.....................| -0.4854 | -0.8583 | -1.054 | -0.2469 |
+#&gt; | U| 475.2219 | 91.33 | -5.341 | -0.9024 | -2.201 |
+#&gt; |.....................| -4.615 | 0.4212 | 1.192 | 0.06277 |
+#&gt; |.....................| 0.8778 | 0.05826 | 0.7828 | 0.7049 |
+#&gt; |.....................| 1.635 | 0.9686 | 0.7081 | 1.967 |
+#&gt; | X|<span style='font-weight: bold;'> 475.2219</span> | 91.33 | 0.004790 | 0.2886 | 0.1107 |
+#&gt; |.....................| 0.009904 | 0.6038 | 1.192 | 0.06277 |
+#&gt; |.....................| 0.8778 | 0.05826 | 0.7828 | 0.7049 |
+#&gt; |.....................| 1.635 | 0.9686 | 0.7081 | 1.967 |
+#&gt; | F| Forward Diff. | 5.841 | 1.258 | 0.1840 | -0.08823 |
+#&gt; |.....................| 0.4011 | 1.514 | -4.992 | 3.441 |
+#&gt; |.....................| -0.1080 | 0.03852 | -1.043 | -0.8514 |
+#&gt; |.....................| 3.826 | 2.019 | 1.451 | -2.125 |
+#&gt; |<span style='font-weight: bold;'> 33</span>| 475.19540 | 1.001 | -1.142 | -0.9244 | -0.9389 |
+#&gt; |.....................| -1.003 | -0.9677 | 0.001228 | -0.7286 |
+#&gt; |.....................| -0.7593 | -0.8819 | -0.8054 | -1.093 |
+#&gt; |.....................| -0.4876 | -0.8589 | -1.055 | -0.2455 |
+#&gt; | U| 475.1954 | 91.10 | -5.342 | -0.9025 | -2.201 |
+#&gt; |.....................| -4.615 | 0.4207 | 1.193 | 0.06270 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7833 | 0.7050 |
+#&gt; |.....................| 1.633 | 0.9680 | 0.7073 | 1.969 |
+#&gt; | X|<span style='font-weight: bold;'> 475.1954</span> | 91.10 | 0.004786 | 0.2885 | 0.1107 |
+#&gt; |.....................| 0.009901 | 0.6037 | 1.193 | 0.06270 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7833 | 0.7050 |
+#&gt; |.....................| 1.633 | 0.9680 | 0.7073 | 1.969 |
+#&gt; | F| Forward Diff. | -14.17 | 1.239 | -0.1323 | -0.05443 |
+#&gt; |.....................| 0.4093 | 1.561 | -5.475 | 3.262 |
+#&gt; |.....................| -0.1301 | 0.09817 | -1.038 | -1.045 |
+#&gt; |.....................| 3.818 | 2.054 | 1.474 | -2.085 |
+#&gt; |<span style='font-weight: bold;'> 34</span>| 475.14668 | 1.003 | -1.143 | -0.9244 | -0.9388 |
+#&gt; |.....................| -1.003 | -0.9688 | 0.004635 | -0.7312 |
+#&gt; |.....................| -0.7595 | -0.8820 | -0.8046 | -1.094 |
+#&gt; |.....................| -0.4894 | -0.8588 | -1.055 | -0.2440 |
+#&gt; | U| 475.14668 | 91.31 | -5.343 | -0.9025 | -2.201 |
+#&gt; |.....................| -4.615 | 0.4202 | 1.195 | 0.06262 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7838 | 0.7043 |
+#&gt; |.....................| 1.631 | 0.9681 | 0.7066 | 1.970 |
+#&gt; | X|<span style='font-weight: bold;'> 475.14668</span> | 91.31 | 0.004781 | 0.2885 | 0.1107 |
+#&gt; |.....................| 0.009898 | 0.6035 | 1.195 | 0.06262 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7838 | 0.7043 |
+#&gt; |.....................| 1.631 | 0.9681 | 0.7066 | 1.970 |
+#&gt; | F| Forward Diff. | 3.838 | 1.251 | 0.1547 | -0.08725 |
+#&gt; |.....................| 0.4006 | 1.498 | -4.927 | 3.416 |
+#&gt; |.....................| -0.1219 | 0.06473 | -1.010 | -2.917 |
+#&gt; |.....................| 3.712 | 2.020 | 1.337 | -2.117 |
+#&gt; |<span style='font-weight: bold;'> 35</span>| 475.12366 | 1.001 | -1.144 | -0.9245 | -0.9388 |
+#&gt; |.....................| -1.003 | -0.9698 | 0.007665 | -0.7333 |
+#&gt; |.....................| -0.7594 | -0.8821 | -0.8040 | -1.092 |
+#&gt; |.....................| -0.4916 | -0.8600 | -1.056 | -0.2427 |
+#&gt; | U| 475.12366 | 91.10 | -5.344 | -0.9025 | -2.201 |
+#&gt; |.....................| -4.616 | 0.4198 | 1.196 | 0.06256 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7843 | 0.7059 |
+#&gt; |.....................| 1.628 | 0.9669 | 0.7059 | 1.972 |
+#&gt; | X|<span style='font-weight: bold;'> 475.12366</span> | 91.10 | 0.004777 | 0.2885 | 0.1107 |
+#&gt; |.....................| 0.009896 | 0.6034 | 1.196 | 0.06256 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7843 | 0.7059 |
+#&gt; |.....................| 1.628 | 0.9669 | 0.7059 | 1.972 |
+#&gt; | F| Forward Diff. | -14.75 | 1.239 | -0.1466 | -0.05465 |
+#&gt; |.....................| 0.4082 | 1.541 | -5.471 | 3.270 |
+#&gt; |.....................| -0.1342 | 0.09829 | -1.014 | -1.026 |
+#&gt; |.....................| 3.624 | 1.932 | 1.359 | -2.081 |
+#&gt; |<span style='font-weight: bold;'> 36</span>| 475.07465 | 1.004 | -1.145 | -0.9245 | -0.9387 |
+#&gt; |.....................| -1.003 | -0.9709 | 0.01108 | -0.7360 |
+#&gt; |.....................| -0.7595 | -0.8821 | -0.8033 | -1.092 |
+#&gt; |.....................| -0.4933 | -0.8597 | -1.057 | -0.2414 |
+#&gt; | U| 475.07465 | 91.33 | -5.345 | -0.9025 | -2.201 |
+#&gt; |.....................| -4.616 | 0.4193 | 1.198 | 0.06248 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7848 | 0.7058 |
+#&gt; |.....................| 1.626 | 0.9672 | 0.7053 | 1.974 |
+#&gt; | X|<span style='font-weight: bold;'> 475.07465</span> | 91.33 | 0.004773 | 0.2885 | 0.1107 |
+#&gt; |.....................| 0.009893 | 0.6033 | 1.198 | 0.06248 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7848 | 0.7058 |
+#&gt; |.....................| 1.626 | 0.9672 | 0.7053 | 1.974 |
+#&gt; | F| Forward Diff. | 5.021 | 1.249 | 0.1599 | -0.08992 |
+#&gt; |.....................| 0.3985 | 1.471 | -4.995 | 3.410 |
+#&gt; |.....................| -0.1196 | 0.03779 | -0.9990 | -2.873 |
+#&gt; |.....................| 3.497 | 1.906 | 1.211 | -2.119 |
+#&gt; |<span style='font-weight: bold;'> 37</span>| 475.04940 | 1.001 | -1.146 | -0.9245 | -0.9386 |
+#&gt; |.....................| -1.004 | -0.9719 | 0.01438 | -0.7384 |
+#&gt; |.....................| -0.7594 | -0.8822 | -0.8026 | -1.091 |
+#&gt; |.....................| -0.4953 | -0.8604 | -1.058 | -0.2400 |
+#&gt; | U| 475.0494 | 91.11 | -5.346 | -0.9026 | -2.201 |
+#&gt; |.....................| -4.616 | 0.4188 | 1.199 | 0.06242 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7853 | 0.7070 |
+#&gt; |.....................| 1.623 | 0.9666 | 0.7046 | 1.975 |
+#&gt; | X|<span style='font-weight: bold;'> 475.0494</span> | 91.11 | 0.004769 | 0.2885 | 0.1107 |
+#&gt; |.....................| 0.009890 | 0.6032 | 1.199 | 0.06242 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7853 | 0.7070 |
+#&gt; |.....................| 1.623 | 0.9666 | 0.7046 | 1.975 |
+#&gt; | F| Forward Diff. | -14.15 | 1.235 | -0.1370 | -0.05688 |
+#&gt; |.....................| 0.4085 | 1.517 | -5.494 | 3.160 |
+#&gt; |.....................| -0.1583 | 0.1112 | -0.7821 | -2.927 |
+#&gt; |.....................| 3.432 | 1.909 | 1.245 | -2.084 |
+#&gt; |<span style='font-weight: bold;'> 38</span>| 475.00092 | 1.004 | -1.147 | -0.9245 | -0.9386 |
+#&gt; |.....................| -1.004 | -0.9731 | 0.01792 | -0.7411 |
+#&gt; |.....................| -0.7595 | -0.8822 | -0.8020 | -1.090 |
+#&gt; |.....................| -0.4968 | -0.8598 | -1.059 | -0.2387 |
+#&gt; | U| 475.00092 | 91.32 | -5.347 | -0.9025 | -2.201 |
+#&gt; |.....................| -4.617 | 0.4182 | 1.200 | 0.06234 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7857 | 0.7077 |
+#&gt; |.....................| 1.622 | 0.9671 | 0.7039 | 1.977 |
+#&gt; | X|<span style='font-weight: bold;'> 475.00092</span> | 91.32 | 0.004764 | 0.2885 | 0.1107 |
+#&gt; |.....................| 0.009887 | 0.6031 | 1.200 | 0.06234 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7857 | 0.7077 |
+#&gt; |.....................| 1.622 | 0.9671 | 0.7039 | 1.977 |
+#&gt; | F| Forward Diff. | 4.379 | 1.249 | 0.1419 | -0.08698 |
+#&gt; |.....................| 0.3989 | 1.449 | -4.966 | 3.395 |
+#&gt; |.....................| -0.1055 | 0.03295 | -0.9696 | -0.7580 |
+#&gt; |.....................| 3.283 | 1.918 | 1.096 | -2.115 |
+#&gt; |<span style='font-weight: bold;'> 39</span>| 474.98492 | 1.001 | -1.147 | -0.9246 | -0.9385 |
+#&gt; |.....................| -1.004 | -0.9740 | 0.02115 | -0.7433 |
+#&gt; |.....................| -0.7595 | -0.8822 | -0.8014 | -1.089 |
+#&gt; |.....................| -0.4989 | -0.8610 | -1.059 | -0.2373 |
+#&gt; | U| 474.98492 | 91.07 | -5.347 | -0.9026 | -2.201 |
+#&gt; |.....................| -4.617 | 0.4178 | 1.202 | 0.06227 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7862 | 0.7081 |
+#&gt; |.....................| 1.619 | 0.9660 | 0.7033 | 1.978 |
+#&gt; | X|<span style='font-weight: bold;'> 474.98492</span> | 91.07 | 0.004760 | 0.2885 | 0.1107 |
+#&gt; |.....................| 0.009884 | 0.6030 | 1.202 | 0.06227 |
+#&gt; |.....................| 0.8778 | 0.05825 | 0.7862 | 0.7081 |
+#&gt; |.....................| 1.619 | 0.9660 | 0.7033 | 1.978 |
+#&gt; | F| Forward Diff. | -17.65 | 1.231 | -0.1920 | -0.05242 |
+#&gt; |.....................| 0.4084 | 1.504 | -5.397 | 3.171 |
+#&gt; |.....................| -0.1354 | 0.1061 | -0.9468 | -0.9144 |
+#&gt; |.....................| 1.271 | 1.859 | 1.156 | -2.067 |
+#&gt; |<span style='font-weight: bold;'> 40</span>| 474.93249 | 1.004 | -1.148 | -0.9245 | -0.9384 |
+#&gt; |.....................| -1.005 | -0.9752 | 0.02452 | -0.7460 |
+#&gt; |.....................| -0.7596 | -0.8823 | -0.8007 | -1.090 |
+#&gt; |.....................| -0.5000 | -0.8607 | -1.060 | -0.2361 |
+#&gt; | U| 474.93249 | 91.32 | -5.348 | -0.9026 | -2.201 |
+#&gt; |.....................| -4.617 | 0.4173 | 1.203 | 0.06220 |
+#&gt; |.....................| 0.8778 | 0.05824 | 0.7867 | 0.7073 |
+#&gt; |.....................| 1.618 | 0.9663 | 0.7027 | 1.980 |
+#&gt; | X|<span style='font-weight: bold;'> 474.93249</span> | 91.32 | 0.004755 | 0.2885 | 0.1107 |
+#&gt; |.....................| 0.009881 | 0.6028 | 1.203 | 0.06220 |
+#&gt; |.....................| 0.8778 | 0.05824 | 0.7867 | 0.7073 |
+#&gt; |.....................| 1.618 | 0.9663 | 0.7027 | 1.980 |
+#&gt; | F| Forward Diff. | 4.492 | 1.243 | 0.1448 | -0.09052 |
+#&gt; |.....................| 0.3963 | 1.427 | -4.973 | 3.376 |
+#&gt; |.....................| -0.06414 | 0.02300 | -0.7344 | -2.787 |
+#&gt; |.....................| 3.083 | 1.834 | 0.9813 | -2.110 |
+#&gt; |<span style='font-weight: bold;'> 41</span>| 474.90355 | 1.001 | -1.149 | -0.9246 | -0.9383 |
+#&gt; |.....................| -1.005 | -0.9763 | 0.02806 | -0.7486 |
+#&gt; |.....................| -0.7596 | -0.8823 | -0.8002 | -1.089 |
+#&gt; |.....................| -0.5018 | -0.8611 | -1.061 | -0.2347 |
+#&gt; | U| 474.90355 | 91.13 | -5.349 | -0.9026 | -2.201 |
+#&gt; |.....................| -4.617 | 0.4168 | 1.205 | 0.06212 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7870 | 0.7084 |
+#&gt; |.....................| 1.616 | 0.9659 | 0.7020 | 1.982 |
+#&gt; | X|<span style='font-weight: bold;'> 474.90355</span> | 91.13 | 0.004751 | 0.2885 | 0.1107 |
+#&gt; |.....................| 0.009878 | 0.6027 | 1.205 | 0.06212 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7870 | 0.7084 |
+#&gt; |.....................| 1.616 | 0.9659 | 0.7020 | 1.982 |
+#&gt; | F| Forward Diff. | -12.15 | 1.229 | -0.1075 | -0.06320 |
+#&gt; |.....................| 0.4033 | 1.463 | -5.606 | 3.135 |
+#&gt; |.....................| -0.1416 | 0.07801 | -0.9461 | -2.867 |
+#&gt; |.....................| 3.063 | 1.817 | 1.008 | -2.075 |
+#&gt; |<span style='font-weight: bold;'> 42</span>| 474.85832 | 1.003 | -1.150 | -0.9245 | -0.9383 |
+#&gt; |.....................| -1.005 | -0.9775 | 0.03184 | -0.7513 |
+#&gt; |.....................| -0.7597 | -0.8823 | -0.7996 | -1.089 |
+#&gt; |.....................| -0.5032 | -0.8605 | -1.061 | -0.2334 |
+#&gt; | U| 474.85832 | 91.32 | -5.350 | -0.9026 | -2.201 |
+#&gt; |.....................| -4.618 | 0.4162 | 1.206 | 0.06204 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7875 | 0.7089 |
+#&gt; |.....................| 1.614 | 0.9665 | 0.7015 | 1.983 |
+#&gt; | X|<span style='font-weight: bold;'> 474.85832</span> | 91.32 | 0.004746 | 0.2885 | 0.1107 |
+#&gt; |.....................| 0.009875 | 0.6026 | 1.206 | 0.06204 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7875 | 0.7089 |
+#&gt; |.....................| 1.614 | 0.9665 | 0.7015 | 1.983 |
+#&gt; | F| Forward Diff. | 3.689 | 1.242 | 0.1265 | -0.09001 |
+#&gt; |.....................| 0.3949 | 1.405 | -5.495 | 3.344 |
+#&gt; |.....................| -0.1166 | 0.02645 | -0.9105 | -0.7126 |
+#&gt; |.....................| 2.952 | 1.861 | 0.8779 | -2.102 |
+#&gt; |<span style='font-weight: bold;'> 43</span>| 474.83791 | 1.001 | -1.151 | -0.9246 | -0.9382 |
+#&gt; |.....................| -1.006 | -0.9784 | 0.03545 | -0.7535 |
+#&gt; |.....................| -0.7596 | -0.8823 | -0.7990 | -1.088 |
+#&gt; |.....................| -0.5052 | -0.8617 | -1.062 | -0.2320 |
+#&gt; | U| 474.83791 | 91.10 | -5.351 | -0.9027 | -2.201 |
+#&gt; |.....................| -4.618 | 0.4158 | 1.208 | 0.06198 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7879 | 0.7094 |
+#&gt; |.....................| 1.612 | 0.9653 | 0.7010 | 1.985 |
+#&gt; | X|<span style='font-weight: bold;'> 474.83791</span> | 91.10 | 0.004742 | 0.2885 | 0.1107 |
+#&gt; |.....................| 0.009872 | 0.6025 | 1.208 | 0.06198 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7879 | 0.7094 |
+#&gt; |.....................| 1.612 | 0.9653 | 0.7010 | 1.985 |
+#&gt; | F| Forward Diff. | -15.77 | 1.225 | -0.1616 | -0.05944 |
+#&gt; |.....................| 0.4032 | 1.455 | -5.461 | 3.071 |
+#&gt; |.....................| -0.1419 | 0.08593 | -0.9091 | -0.8855 |
+#&gt; |.....................| 2.951 | 1.791 | 0.9091 | -2.062 |
+#&gt; |<span style='font-weight: bold;'> 44</span>| 474.78971 | 1.004 | -1.152 | -0.9246 | -0.9381 |
+#&gt; |.....................| -1.006 | -0.9794 | 0.03911 | -0.7559 |
+#&gt; |.....................| -0.7597 | -0.8824 | -0.7984 | -1.089 |
+#&gt; |.....................| -0.5068 | -0.8614 | -1.062 | -0.2307 |
+#&gt; | U| 474.78971 | 91.33 | -5.352 | -0.9026 | -2.200 |
+#&gt; |.....................| -4.618 | 0.4153 | 1.209 | 0.06191 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7883 | 0.7086 |
+#&gt; |.....................| 1.610 | 0.9656 | 0.7006 | 1.986 |
+#&gt; | X|<span style='font-weight: bold;'> 474.78971</span> | 91.33 | 0.004738 | 0.2885 | 0.1107 |
+#&gt; |.....................| 0.009869 | 0.6024 | 1.209 | 0.06191 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7883 | 0.7086 |
+#&gt; |.....................| 1.610 | 0.9656 | 0.7006 | 1.986 |
+#&gt; | F| Forward Diff. | 4.398 | 1.237 | 0.1402 | -0.09195 |
+#&gt; |.....................| 0.3940 | 1.388 | -4.885 | 3.322 |
+#&gt; |.....................| -0.1374 | 0.01792 | -0.6865 | -2.709 |
+#&gt; |.....................| 2.810 | 1.778 | 0.8100 | -2.095 |
+#&gt; |<span style='font-weight: bold;'> 45</span>| 474.76763 | 1.001 | -1.153 | -0.9247 | -0.9380 |
+#&gt; |.....................| -1.006 | -0.9804 | 0.04256 | -0.7584 |
+#&gt; |.....................| -0.7597 | -0.8824 | -0.7979 | -1.088 |
+#&gt; |.....................| -0.5086 | -0.8621 | -1.063 | -0.2293 |
+#&gt; | U| 474.76763 | 91.11 | -5.353 | -0.9027 | -2.200 |
+#&gt; |.....................| -4.619 | 0.4149 | 1.211 | 0.06184 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7887 | 0.7097 |
+#&gt; |.....................| 1.608 | 0.9650 | 0.7001 | 1.988 |
+#&gt; | X|<span style='font-weight: bold;'> 474.76763</span> | 91.11 | 0.004734 | 0.2885 | 0.1108 |
+#&gt; |.....................| 0.009867 | 0.6023 | 1.211 | 0.06184 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7887 | 0.7097 |
+#&gt; |.....................| 1.608 | 0.9650 | 0.7001 | 1.988 |
+#&gt; | F| Forward Diff. | -14.92 | 1.222 | -0.1466 | -0.06186 |
+#&gt; |.....................| 0.4014 | 1.433 | -4.989 | 3.157 |
+#&gt; |.....................| -0.1326 | 0.08284 | -0.6789 | -2.803 |
+#&gt; |.....................| 2.814 | 1.775 | 0.8327 | -2.053 |
+#&gt; |<span style='font-weight: bold;'> 46</span>| 474.71973 | 1.004 | -1.154 | -0.9246 | -0.9379 |
+#&gt; |.....................| -1.006 | -0.9816 | 0.04617 | -0.7611 |
+#&gt; |.....................| -0.7597 | -0.8824 | -0.7975 | -1.087 |
+#&gt; |.....................| -0.5100 | -0.8614 | -1.064 | -0.2281 |
+#&gt; | U| 474.71973 | 91.32 | -5.354 | -0.9026 | -2.200 |
+#&gt; |.....................| -4.619 | 0.4143 | 1.212 | 0.06176 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7890 | 0.7100 |
+#&gt; |.....................| 1.606 | 0.9656 | 0.6996 | 1.990 |
+#&gt; | X|<span style='font-weight: bold;'> 474.71973</span> | 91.32 | 0.004729 | 0.2885 | 0.1108 |
+#&gt; |.....................| 0.009863 | 0.6021 | 1.212 | 0.06176 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7890 | 0.7100 |
+#&gt; |.....................| 1.606 | 0.9656 | 0.6996 | 1.990 |
+#&gt; | F| Forward Diff. | 4.021 | 1.236 | 0.1299 | -0.09158 |
+#&gt; |.....................| 0.3929 | 1.368 | -4.925 | 3.331 |
+#&gt; |.....................| -0.07142 | 0.08893 | -0.6522 | -2.634 |
+#&gt; |.....................| 2.639 | 1.780 | 0.7273 | -2.085 |
+#&gt; |<span style='font-weight: bold;'> 47</span>| 474.70040 | 1.001 | -1.155 | -0.9247 | -0.9379 |
+#&gt; |.....................| -1.007 | -0.9826 | 0.04954 | -0.7634 |
+#&gt; |.....................| -0.7597 | -0.8825 | -0.7971 | -1.086 |
+#&gt; |.....................| -0.5117 | -0.8624 | -1.064 | -0.2267 |
+#&gt; | U| 474.7004 | 91.10 | -5.355 | -0.9027 | -2.200 |
+#&gt; |.....................| -4.619 | 0.4139 | 1.214 | 0.06169 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7893 | 0.7114 |
+#&gt; |.....................| 1.604 | 0.9647 | 0.6992 | 1.991 |
+#&gt; | X|<span style='font-weight: bold;'> 474.7004</span> | 91.10 | 0.004724 | 0.2885 | 0.1108 |
+#&gt; |.....................| 0.009861 | 0.6020 | 1.214 | 0.06169 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7893 | 0.7114 |
+#&gt; |.....................| 1.604 | 0.9647 | 0.6992 | 1.991 |
+#&gt; | F| Forward Diff. | -15.76 | 1.220 | -0.1617 | -0.06091 |
+#&gt; |.....................| 0.4007 | 1.415 | -5.116 | 3.166 |
+#&gt; |.....................| -0.1298 | 0.07714 | -0.6701 | -2.700 |
+#&gt; |.....................| 2.670 | 1.748 | 0.7590 | -2.043 |
+#&gt; |<span style='font-weight: bold;'> 48</span>| 474.65116 | 1.003 | -1.156 | -0.9246 | -0.9378 |
+#&gt; |.....................| -1.007 | -0.9837 | 0.05321 | -0.7662 |
+#&gt; |.....................| -0.7598 | -0.8825 | -0.7967 | -1.086 |
+#&gt; |.....................| -0.5130 | -0.8617 | -1.065 | -0.2255 |
+#&gt; | U| 474.65116 | 91.32 | -5.356 | -0.9026 | -2.200 |
+#&gt; |.....................| -4.620 | 0.4134 | 1.215 | 0.06161 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7896 | 0.7116 |
+#&gt; |.....................| 1.603 | 0.9653 | 0.6987 | 1.993 |
+#&gt; | X|<span style='font-weight: bold;'> 474.65116</span> | 91.32 | 0.004720 | 0.2885 | 0.1108 |
+#&gt; |.....................| 0.009857 | 0.6019 | 1.215 | 0.06161 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7896 | 0.7116 |
+#&gt; |.....................| 1.603 | 0.9653 | 0.6987 | 1.993 |
+#&gt; | F| Forward Diff. | 3.462 | 1.239 | 0.1107 | -0.09136 |
+#&gt; |.....................| 0.3915 | 1.348 | -5.441 | 3.268 |
+#&gt; |.....................| -0.1113 | 0.02510 | -0.6252 | -2.485 |
+#&gt; |.....................| 2.647 | 1.796 | 0.6587 | -2.076 |
+#&gt; |<span style='font-weight: bold;'> 49</span>| 474.63065 | 1.001 | -1.157 | -0.9247 | -0.9377 |
+#&gt; |.....................| -1.007 | -0.9846 | 0.05678 | -0.7683 |
+#&gt; |.....................| -0.7597 | -0.8825 | -0.7963 | -1.084 |
+#&gt; |.....................| -0.5148 | -0.8629 | -1.065 | -0.2241 |
+#&gt; | U| 474.63065 | 91.11 | -5.357 | -0.9027 | -2.200 |
+#&gt; |.....................| -4.620 | 0.4129 | 1.217 | 0.06155 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7899 | 0.7131 |
+#&gt; |.....................| 1.600 | 0.9642 | 0.6984 | 1.994 |
+#&gt; | X|<span style='font-weight: bold;'> 474.63065</span> | 91.11 | 0.004716 | 0.2885 | 0.1108 |
+#&gt; |.....................| 0.009855 | 0.6018 | 1.217 | 0.06155 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7899 | 0.7131 |
+#&gt; |.....................| 1.600 | 0.9642 | 0.6984 | 1.994 |
+#&gt; | F| Forward Diff. | -14.93 | 1.220 | -0.1531 | -0.06288 |
+#&gt; |.....................| 0.3983 | 1.394 | -5.436 | 3.113 |
+#&gt; |.....................| -0.1458 | 0.07621 | -0.8397 | -0.6848 |
+#&gt; |.....................| 2.501 | 1.690 | 0.6891 | -2.034 |
+#&gt; |<span style='font-weight: bold;'> 50</span>| 474.58497 | 1.004 | -1.158 | -0.9246 | -0.9376 |
+#&gt; |.....................| -1.008 | -0.9857 | 0.06060 | -0.7708 |
+#&gt; |.....................| -0.7598 | -0.8826 | -0.7958 | -1.084 |
+#&gt; |.....................| -0.5162 | -0.8624 | -1.065 | -0.2230 |
+#&gt; | U| 474.58497 | 91.34 | -5.358 | -0.9027 | -2.200 |
+#&gt; |.....................| -4.620 | 0.4125 | 1.218 | 0.06148 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7902 | 0.7126 |
+#&gt; |.....................| 1.599 | 0.9647 | 0.6980 | 1.996 |
+#&gt; | X|<span style='font-weight: bold;'> 474.58497</span> | 91.34 | 0.004711 | 0.2885 | 0.1108 |
+#&gt; |.....................| 0.009852 | 0.6017 | 1.218 | 0.06148 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7902 | 0.7126 |
+#&gt; |.....................| 1.599 | 0.9647 | 0.6980 | 1.996 |
+#&gt; | F| Forward Diff. | 5.248 | 1.234 | 0.1371 | -0.09456 |
+#&gt; |.....................| 0.3896 | 1.328 | -5.011 | 3.180 |
+#&gt; |.....................| -0.1110 | 0.004022 | -0.8103 | -0.4964 |
+#&gt; |.....................| 2.349 | 1.713 | 0.5705 | -2.061 |
+#&gt; |<span style='font-weight: bold;'> 51</span>| 474.55760 | 1.002 | -1.159 | -0.9247 | -0.9376 |
+#&gt; |.....................| -1.008 | -0.9867 | 0.06444 | -0.7734 |
+#&gt; |.....................| -0.7598 | -0.8826 | -0.7952 | -1.085 |
+#&gt; |.....................| -0.5178 | -0.8626 | -1.066 | -0.2215 |
+#&gt; | U| 474.5576 | 91.15 | -5.359 | -0.9027 | -2.200 |
+#&gt; |.....................| -4.620 | 0.4120 | 1.220 | 0.06140 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7907 | 0.7122 |
+#&gt; |.....................| 1.597 | 0.9645 | 0.6977 | 1.998 |
+#&gt; | X|<span style='font-weight: bold;'> 474.5576</span> | 91.15 | 0.004706 | 0.2885 | 0.1108 |
+#&gt; |.....................| 0.009849 | 0.6016 | 1.220 | 0.06140 |
+#&gt; |.....................| 0.8777 | 0.05824 | 0.7907 | 0.7122 |
+#&gt; |.....................| 1.597 | 0.9645 | 0.6977 | 1.998 |
+#&gt; | F| Forward Diff. | -11.86 | 1.219 | -0.1003 | -0.07615 |
+#&gt; |.....................| 0.3954 | 1.369 | -4.929 | 3.171 |
+#&gt; |.....................| -0.1229 | 0.06540 | -0.8183 | -0.7141 |
+#&gt; |.....................| 2.360 | 1.696 | 0.6359 | -2.032 |
+#&gt; |<span style='font-weight: bold;'> 52</span>| 474.51619 | 1.004 | -1.160 | -0.9246 | -0.9375 |
+#&gt; |.....................| -1.008 | -0.9878 | 0.06816 | -0.7761 |
+#&gt; |.....................| -0.7599 | -0.8826 | -0.7946 | -1.086 |
+#&gt; |.....................| -0.5193 | -0.8622 | -1.066 | -0.2202 |
+#&gt; | U| 474.51619 | 91.33 | -5.360 | -0.9027 | -2.200 |
+#&gt; |.....................| -4.621 | 0.4115 | 1.221 | 0.06132 |
+#&gt; |.....................| 0.8776 | 0.05823 | 0.7911 | 0.7113 |
+#&gt; |.....................| 1.595 | 0.9648 | 0.6972 | 1.999 |
+#&gt; | X|<span style='font-weight: bold;'> 474.51619</span> | 91.33 | 0.004702 | 0.2885 | 0.1108 |
+#&gt; |.....................| 0.009846 | 0.6014 | 1.221 | 0.06132 |
+#&gt; |.....................| 0.8776 | 0.05823 | 0.7911 | 0.7113 |
+#&gt; |.....................| 1.595 | 0.9648 | 0.6972 | 1.999 |
+#&gt; | F| Forward Diff. | 4.413 | 1.225 | 0.1371 | -0.09620 |
+#&gt; |.....................| 0.3880 | 1.314 | -5.554 | 3.197 |
+#&gt; |.....................| -0.07604 | 0.008867 | -0.7931 | -0.6282 |
+#&gt; |.....................| 2.148 | 1.715 | 0.5273 | -2.052 |
+#&gt; |<span style='font-weight: bold;'> 53</span>| 474.48673 | 1.002 | -1.161 | -0.9247 | -0.9374 |
+#&gt; |.....................| -1.009 | -0.9889 | 0.07224 | -0.7786 |
+#&gt; |.....................| -0.7599 | -0.8826 | -0.7941 | -1.086 |
+#&gt; |.....................| -0.5208 | -0.8625 | -1.067 | -0.2188 |
+#&gt; | U| 474.48673 | 91.17 | -5.361 | -0.9027 | -2.200 |
+#&gt; |.....................| -4.621 | 0.4110 | 1.223 | 0.06125 |
+#&gt; |.....................| 0.8776 | 0.05823 | 0.7915 | 0.7110 |
+#&gt; |.....................| 1.593 | 0.9645 | 0.6969 | 2.001 |
+#&gt; | X|<span style='font-weight: bold;'> 474.48673</span> | 91.17 | 0.004697 | 0.2885 | 0.1108 |
+#&gt; |.....................| 0.009843 | 0.6013 | 1.223 | 0.06125 |
+#&gt; |.....................| 0.8776 | 0.05823 | 0.7915 | 0.7110 |
+#&gt; |.....................| 1.593 | 0.9645 | 0.6969 | 2.001 |
+#&gt; | F| Forward Diff. | -10.51 | 1.211 | -0.06554 | -0.07429 |
+#&gt; |.....................| 0.3932 | 1.350 | -4.456 | 3.182 |
+#&gt; |.....................| -0.08901 | 0.05354 | -0.5957 | -2.739 |
+#&gt; |.....................| 2.160 | 1.696 | 0.5687 | -2.022 |
+#&gt; |<span style='font-weight: bold;'> 54</span>| 474.45218 | 1.004 | -1.162 | -0.9246 | -0.9373 |
+#&gt; |.....................| -1.009 | -0.9900 | 0.07590 | -0.7814 |
+#&gt; |.....................| -0.7601 | -0.8826 | -0.7937 | -1.086 |
+#&gt; |.....................| -0.5220 | -0.8620 | -1.067 | -0.2177 |
+#&gt; | U| 474.45218 | 91.40 | -5.362 | -0.9027 | -2.200 |
+#&gt; |.....................| -4.621 | 0.4105 | 1.224 | 0.06117 |
+#&gt; |.....................| 0.8776 | 0.05823 | 0.7918 | 0.7111 |
+#&gt; |.....................| 1.592 | 0.9650 | 0.6965 | 2.002 |
+#&gt; | X|<span style='font-weight: bold;'> 474.45218</span> | 91.40 | 0.004692 | 0.2885 | 0.1108 |
+#&gt; |.....................| 0.009840 | 0.6012 | 1.224 | 0.06117 |
+#&gt; |.....................| 0.8776 | 0.05823 | 0.7918 | 0.7111 |
+#&gt; |.....................| 1.592 | 0.9650 | 0.6965 | 2.002 |
+#&gt; | F| Forward Diff. | 9.724 | 1.224 | 0.2009 | -0.1069 |
+#&gt; |.....................| 0.3834 | 1.279 | -5.556 | 3.324 |
+#&gt; |.....................| -0.1101 | -0.01912 | -0.5638 | -2.553 |
+#&gt; |.....................| 2.043 | 1.731 | 0.4140 | -2.044 |
+#&gt; |<span style='font-weight: bold;'> 55</span>| 474.41257 | 1.003 | -1.163 | -0.9246 | -0.9371 |
+#&gt; |.....................| -1.009 | -0.9913 | 0.07979 | -0.7844 |
+#&gt; |.....................| -0.7601 | -0.8825 | -0.7935 | -1.085 |
+#&gt; |.....................| -0.5231 | -0.8612 | -1.068 | -0.2167 |
+#&gt; | U| 474.41257 | 91.25 | -5.363 | -0.9026 | -2.199 |
+#&gt; |.....................| -4.622 | 0.4099 | 1.226 | 0.06108 |
+#&gt; |.....................| 0.8775 | 0.05824 | 0.7919 | 0.7118 |
+#&gt; |.....................| 1.591 | 0.9658 | 0.6961 | 2.004 |
+#&gt; | X|<span style='font-weight: bold;'> 474.41257</span> | 91.25 | 0.004687 | 0.2885 | 0.1109 |
+#&gt; |.....................| 0.009836 | 0.6011 | 1.226 | 0.06108 |
+#&gt; |.....................| 0.8775 | 0.05824 | 0.7919 | 0.7118 |
+#&gt; |.....................| 1.591 | 0.9658 | 0.6961 | 2.004 |
+#&gt; | F| Forward Diff. | -3.208 | 1.213 | 0.03978 | -0.08693 |
+#&gt; |.....................| 0.3876 | 1.303 | -5.023 | 3.218 |
+#&gt; |.....................| -0.1347 | 0.02311 | -0.7771 | -0.6556 |
+#&gt; |.....................| 2.056 | 1.822 | 0.4520 | -2.025 |
+#&gt; |<span style='font-weight: bold;'> 56</span>| 474.39271 | 1.005 | -1.164 | -0.9246 | -0.9371 |
+#&gt; |.....................| -1.010 | -0.9922 | 0.08348 | -0.7867 |
+#&gt; |.....................| -0.7600 | -0.8825 | -0.7930 | -1.085 |
+#&gt; |.....................| -0.5246 | -0.8625 | -1.068 | -0.2152 |
+#&gt; | U| 474.39271 | 91.47 | -5.364 | -0.9027 | -2.199 |
+#&gt; |.....................| -4.622 | 0.4094 | 1.228 | 0.06101 |
+#&gt; |.....................| 0.8776 | 0.05824 | 0.7923 | 0.7123 |
+#&gt; |.....................| 1.589 | 0.9645 | 0.6958 | 2.005 |
+#&gt; | X|<span style='font-weight: bold;'> 474.39271</span> | 91.47 | 0.004683 | 0.2885 | 0.1109 |
+#&gt; |.....................| 0.009833 | 0.6010 | 1.228 | 0.06101 |
+#&gt; |.....................| 0.8776 | 0.05824 | 0.7923 | 0.7123 |
+#&gt; |.....................| 1.589 | 0.9645 | 0.6958 | 2.005 |
+#&gt; | F| Forward Diff. | 15.86 | 1.227 | 0.2807 | -0.1163 |
+#&gt; |.....................| 0.3793 | 1.243 | -5.494 | 3.329 |
+#&gt; |.....................| -0.09368 | 0.01293 | -0.5149 | -2.407 |
+#&gt; |.....................| 1.979 | 1.686 | 0.3308 | -2.044 |
+#&gt; |<span style='font-weight: bold;'> 57</span>| 474.34538 | 1.003 | -1.165 | -0.9247 | -0.9369 |
+#&gt; |.....................| -1.010 | -0.9934 | 0.08718 | -0.7897 |
+#&gt; |.....................| -0.7601 | -0.8825 | -0.7926 | -1.086 |
+#&gt; |.....................| -0.5258 | -0.8620 | -1.068 | -0.2141 |
+#&gt; | U| 474.34538 | 91.27 | -5.365 | -0.9027 | -2.199 |
+#&gt; |.....................| -4.622 | 0.4089 | 1.229 | 0.06093 |
+#&gt; |.....................| 0.8775 | 0.05824 | 0.7926 | 0.7117 |
+#&gt; |.....................| 1.587 | 0.9650 | 0.6954 | 2.007 |
+#&gt; | X|<span style='font-weight: bold;'> 474.34538</span> | 91.27 | 0.004677 | 0.2885 | 0.1109 |
+#&gt; |.....................| 0.009830 | 0.6008 | 1.229 | 0.06093 |
+#&gt; |.....................| 0.8775 | 0.05824 | 0.7926 | 0.7117 |
+#&gt; |.....................| 1.587 | 0.9650 | 0.6954 | 2.007 |
+#&gt; | F| Forward Diff. | -2.345 | 1.210 | 0.04189 | -0.08986 |
+#&gt; |.....................| 0.3855 | 1.284 | -5.145 | 3.218 |
+#&gt; |.....................| -0.1284 | 0.01309 | -0.7466 | -0.6536 |
+#&gt; |.....................| 1.964 | 1.743 | 0.3816 | -2.008 |
+#&gt; |<span style='font-weight: bold;'> 58</span>| 474.31834 | 1.005 | -1.166 | -0.9247 | -0.9369 |
+#&gt; |.....................| -1.010 | -0.9944 | 0.09109 | -0.7921 |
+#&gt; |.....................| -0.7600 | -0.8825 | -0.7920 | -1.085 |
+#&gt; |.....................| -0.5273 | -0.8633 | -1.069 | -0.2126 |
+#&gt; | U| 474.31834 | 91.43 | -5.366 | -0.9027 | -2.199 |
+#&gt; |.....................| -4.623 | 0.4085 | 1.231 | 0.06086 |
+#&gt; |.....................| 0.8776 | 0.05824 | 0.7930 | 0.7121 |
+#&gt; |.....................| 1.586 | 0.9638 | 0.6952 | 2.008 |
+#&gt; | X|<span style='font-weight: bold;'> 474.31834</span> | 91.43 | 0.004673 | 0.2885 | 0.1109 |
+#&gt; |.....................| 0.009827 | 0.6007 | 1.231 | 0.06086 |
+#&gt; |.....................| 0.8776 | 0.05824 | 0.7930 | 0.7121 |
+#&gt; |.....................| 1.586 | 0.9638 | 0.6952 | 2.008 |
+#&gt; | F| Forward Diff. | 12.13 | 1.219 | 0.2312 | -0.1125 |
+#&gt; |.....................| 0.3787 | 1.238 | -5.317 | 3.196 |
+#&gt; |.....................| -0.08361 | -0.02599 | -0.7000 | -0.4940 |
+#&gt; |.....................| 1.837 | 1.637 | 0.3211 | -2.028 |
+#&gt; |<span style='font-weight: bold;'> 59</span>| 474.27833 | 1.003 | -1.167 | -0.9247 | -0.9368 |
+#&gt; |.....................| -1.010 | -0.9955 | 0.09487 | -0.7949 |
+#&gt; |.....................| -0.7601 | -0.8825 | -0.7915 | -1.086 |
+#&gt; |.....................| -0.5286 | -0.8630 | -1.069 | -0.2114 |
+#&gt; | U| 474.27833 | 91.25 | -5.367 | -0.9028 | -2.199 |
+#&gt; |.....................| -4.623 | 0.4080 | 1.232 | 0.06078 |
+#&gt; |.....................| 0.8775 | 0.05824 | 0.7934 | 0.7111 |
+#&gt; |.....................| 1.584 | 0.9640 | 0.6948 | 2.010 |
+#&gt; | X|<span style='font-weight: bold;'> 474.27833</span> | 91.25 | 0.004668 | 0.2885 | 0.1109 |
+#&gt; |.....................| 0.009824 | 0.6006 | 1.232 | 0.06078 |
+#&gt; |.....................| 0.8775 | 0.05824 | 0.7934 | 0.7111 |
+#&gt; |.....................| 1.584 | 0.9640 | 0.6948 | 2.010 |
+#&gt; | F| Forward Diff. | -4.145 | 1.202 | 0.02355 | -0.08919 |
+#&gt; |.....................| 0.3842 | 1.275 | -5.102 | 3.189 |
+#&gt; |.....................| -0.1071 | 0.01700 | -0.7283 | -0.7209 |
+#&gt; |.....................| 1.776 | 1.686 | 0.3249 | -1.982 |
+#&gt; |<span style='font-weight: bold;'> 60</span>| 474.25305 | 1.005 | -1.168 | -0.9247 | -0.9367 |
+#&gt; |.....................| -1.011 | -0.9965 | 0.09878 | -0.7975 |
+#&gt; |.....................| -0.7601 | -0.8825 | -0.7909 | -1.086 |
+#&gt; |.....................| -0.5300 | -0.8636 | -1.069 | -0.2100 |
+#&gt; | U| 474.25305 | 91.44 | -5.368 | -0.9028 | -2.199 |
+#&gt; |.....................| -4.623 | 0.4075 | 1.234 | 0.06070 |
+#&gt; |.....................| 0.8775 | 0.05824 | 0.7938 | 0.7109 |
+#&gt; |.....................| 1.583 | 0.9635 | 0.6946 | 2.012 |
+#&gt; | X|<span style='font-weight: bold;'> 474.25305</span> | 91.44 | 0.004663 | 0.2885 | 0.1109 |
+#&gt; |.....................| 0.009821 | 0.6005 | 1.234 | 0.06070 |
+#&gt; |.....................| 0.8775 | 0.05824 | 0.7938 | 0.7109 |
+#&gt; |.....................| 1.583 | 0.9635 | 0.6946 | 2.012 |
+#&gt; | F| Forward Diff. | 13.11 | 1.213 | 0.2527 | -0.1161 |
+#&gt; |.....................| 0.3767 | 1.219 | -5.003 | 3.213 |
+#&gt; |.....................| -0.09270 | -0.04298 | -0.4814 | -2.533 |
+#&gt; |.....................| 1.730 | 1.613 | 0.2495 | -2.014 |
+#&gt; |<span style='font-weight: bold;'> 61</span>| 474.21254 | 1.003 | -1.169 | -0.9248 | -0.9365 |
+#&gt; |.....................| -1.011 | -0.9977 | 0.1025 | -0.8005 |
+#&gt; |.....................| -0.7602 | -0.8824 | -0.7906 | -1.087 |
+#&gt; |.....................| -0.5311 | -0.8630 | -1.070 | -0.2089 |
+#&gt; | U| 474.21254 | 91.24 | -5.369 | -0.9028 | -2.199 |
+#&gt; |.....................| -4.624 | 0.4069 | 1.236 | 0.06062 |
+#&gt; |.....................| 0.8775 | 0.05824 | 0.7941 | 0.7105 |
+#&gt; |.....................| 1.581 | 0.9641 | 0.6942 | 2.013 |
+#&gt; | X|<span style='font-weight: bold;'> 474.21254</span> | 91.24 | 0.004658 | 0.2885 | 0.1109 |
+#&gt; |.....................| 0.009817 | 0.6003 | 1.236 | 0.06062 |
+#&gt; |.....................| 0.8775 | 0.05824 | 0.7941 | 0.7105 |
+#&gt; |.....................| 1.581 | 0.9641 | 0.6942 | 2.013 |
+#&gt; | F| Forward Diff. | -5.267 | 1.195 | 0.01760 | -0.08987 |
+#&gt; |.....................| 0.3825 | 1.260 | -5.272 | 3.141 |
+#&gt; |.....................| -0.1336 | 0.009843 | -0.5186 | -2.706 |
+#&gt; |.....................| 1.727 | 1.652 | 0.2904 | -1.976 |
+#&gt; |<span style='font-weight: bold;'> 62</span>| 474.18171 | 1.004 | -1.170 | -0.9247 | -0.9364 |
+#&gt; |.....................| -1.011 | -0.9989 | 0.1065 | -0.8033 |
+#&gt; |.....................| -0.7602 | -0.8823 | -0.7904 | -1.086 |
+#&gt; |.....................| -0.5322 | -0.8627 | -1.070 | -0.2078 |
+#&gt; | U| 474.18171 | 91.41 | -5.370 | -0.9028 | -2.199 |
+#&gt; |.....................| -4.624 | 0.4064 | 1.237 | 0.06054 |
+#&gt; |.....................| 0.8775 | 0.05824 | 0.7942 | 0.7112 |
+#&gt; |.....................| 1.580 | 0.9644 | 0.6939 | 2.014 |
+#&gt; | X|<span style='font-weight: bold;'> 474.18171</span> | 91.41 | 0.004653 | 0.2885 | 0.1109 |
+#&gt; |.....................| 0.009814 | 0.6002 | 1.237 | 0.06054 |
+#&gt; |.....................| 0.8775 | 0.05824 | 0.7942 | 0.7112 |
+#&gt; |.....................| 1.580 | 0.9644 | 0.6939 | 2.014 |
+#&gt; | F| Forward Diff. | 9.716 | 1.206 | 0.2113 | -0.1128 |
+#&gt; |.....................| 0.3755 | 1.207 | -5.399 | 3.226 |
+#&gt; |.....................| -0.09670 | -0.03459 | -0.6713 | -0.5638 |
+#&gt; |.....................| 1.619 | 1.687 | 0.2005 | -1.998 |
+#&gt; |<span style='font-weight: bold;'> 63</span>| 474.14509 | 1.003 | -1.171 | -0.9248 | -0.9363 |
+#&gt; |.....................| -1.012 | -1.000 | 0.1105 | -0.8061 |
+#&gt; |.....................| -0.7602 | -0.8822 | -0.7900 | -1.087 |
+#&gt; |.....................| -0.5333 | -0.8621 | -1.071 | -0.2068 |
+#&gt; | U| 474.14509 | 91.25 | -5.371 | -0.9028 | -2.199 |
+#&gt; |.....................| -4.624 | 0.4059 | 1.239 | 0.06045 |
+#&gt; |.....................| 0.8775 | 0.05825 | 0.7945 | 0.7106 |
+#&gt; |.....................| 1.579 | 0.9649 | 0.6936 | 2.015 |
+#&gt; | X|<span style='font-weight: bold;'> 474.14509</span> | 91.25 | 0.004648 | 0.2885 | 0.1110 |
+#&gt; |.....................| 0.009811 | 0.6001 | 1.239 | 0.06045 |
+#&gt; |.....................| 0.8775 | 0.05825 | 0.7945 | 0.7106 |
+#&gt; |.....................| 1.579 | 0.9649 | 0.6936 | 2.015 |
+#&gt; | F| Forward Diff. | -5.280 | 1.192 | 0.02321 | -0.09129 |
+#&gt; |.....................| 0.3799 | 1.239 | -5.339 | 3.156 |
+#&gt; |.....................| -0.1074 | 0.06181 | -0.4875 | -2.680 |
+#&gt; |.....................| 1.648 | 1.743 | 0.2195 | -1.955 |
+#&gt; |<span style='font-weight: bold;'> 64</span>| 474.11542 | 1.005 | -1.172 | -0.9248 | -0.9361 |
+#&gt; |.....................| -1.012 | -1.001 | 0.1146 | -0.8089 |
+#&gt; |.....................| -0.7603 | -0.8821 | -0.7897 | -1.086 |
+#&gt; |.....................| -0.5344 | -0.8621 | -1.071 | -0.2057 |
+#&gt; | U| 474.11542 | 91.42 | -5.372 | -0.9028 | -2.199 |
+#&gt; |.....................| -4.625 | 0.4054 | 1.241 | 0.06037 |
+#&gt; |.....................| 0.8774 | 0.05825 | 0.7947 | 0.7110 |
+#&gt; |.....................| 1.577 | 0.9649 | 0.6934 | 2.017 |
+#&gt; | X|<span style='font-weight: bold;'> 474.11542</span> | 91.42 | 0.004643 | 0.2885 | 0.1110 |
+#&gt; |.....................| 0.009807 | 0.6000 | 1.241 | 0.06037 |
+#&gt; |.....................| 0.8774 | 0.05825 | 0.7947 | 0.7110 |
+#&gt; |.....................| 1.577 | 0.9649 | 0.6934 | 2.017 |
+#&gt; | F| Forward Diff. | 10.52 | 1.202 | 0.2258 | -0.1162 |
+#&gt; |.....................| 0.3725 | 1.186 | -5.381 | 3.222 |
+#&gt; |.....................| -0.1104 | -0.04157 | -0.6550 | -0.5841 |
+#&gt; |.....................| 1.505 | 1.701 | 0.1753 | -1.993 |
+#&gt; |<span style='font-weight: bold;'> 65</span>| 474.07794 | 1.003 | -1.173 | -0.9248 | -0.9360 |
+#&gt; |.....................| -1.012 | -1.002 | 0.1187 | -0.8117 |
+#&gt; |.....................| -0.7604 | -0.8821 | -0.7895 | -1.087 |
+#&gt; |.....................| -0.5355 | -0.8615 | -1.071 | -0.2048 |
+#&gt; | U| 474.07794 | 91.25 | -5.373 | -0.9028 | -2.198 |
+#&gt; |.....................| -4.625 | 0.4048 | 1.242 | 0.06029 |
+#&gt; |.....................| 0.8774 | 0.05825 | 0.7949 | 0.7104 |
+#&gt; |.....................| 1.576 | 0.9655 | 0.6932 | 2.018 |
+#&gt; | X|<span style='font-weight: bold;'> 474.07794</span> | 91.25 | 0.004638 | 0.2885 | 0.1110 |
+#&gt; |.....................| 0.009804 | 0.5999 | 1.242 | 0.06029 |
+#&gt; |.....................| 0.8774 | 0.05825 | 0.7949 | 0.7104 |
+#&gt; |.....................| 1.576 | 0.9655 | 0.6932 | 2.018 |
+#&gt; | F| Forward Diff. | -4.801 | 1.188 | 0.03689 | -0.09236 |
+#&gt; |.....................| 0.3785 | 1.221 | -5.368 | 3.104 |
+#&gt; |.....................| -0.1066 | 0.003449 | -0.6711 | -0.7398 |
+#&gt; |.....................| 1.563 | 1.803 | 0.1884 | -1.939 |
+#&gt; |<span style='font-weight: bold;'> 66</span>| 474.04951 | 1.005 | -1.175 | -0.9248 | -0.9359 |
+#&gt; |.....................| -1.013 | -1.003 | 0.1228 | -0.8144 |
+#&gt; |.....................| -0.7604 | -0.8820 | -0.7890 | -1.087 |
+#&gt; |.....................| -0.5367 | -0.8618 | -1.071 | -0.2036 |
+#&gt; | U| 474.04951 | 91.43 | -5.375 | -0.9028 | -2.198 |
+#&gt; |.....................| -4.625 | 0.4044 | 1.244 | 0.06021 |
+#&gt; |.....................| 0.8774 | 0.05825 | 0.7952 | 0.7100 |
+#&gt; |.....................| 1.575 | 0.9652 | 0.6930 | 2.019 |
+#&gt; | X|<span style='font-weight: bold;'> 474.04951</span> | 91.43 | 0.004633 | 0.2885 | 0.1110 |
+#&gt; |.....................| 0.009801 | 0.5997 | 1.244 | 0.06021 |
+#&gt; |.....................| 0.8774 | 0.05825 | 0.7952 | 0.7100 |
+#&gt; |.....................| 1.575 | 0.9652 | 0.6930 | 2.019 |
+#&gt; | F| Forward Diff. | 10.86 | 1.196 | 0.2377 | -0.1190 |
+#&gt; |.....................| 0.3700 | 1.169 | -5.399 | 3.259 |
+#&gt; |.....................| -0.09645 | -0.03914 | -0.4400 | -2.610 |
+#&gt; |.....................| 1.421 | 1.705 | 0.1351 | -1.978 |
+#&gt; |<span style='font-weight: bold;'> 67</span>| 474.01246 | 1.003 | -1.176 | -0.9249 | -0.9357 |
+#&gt; |.....................| -1.013 | -1.004 | 0.1268 | -0.8173 |
+#&gt; |.....................| -0.7606 | -0.8819 | -0.7888 | -1.088 |
+#&gt; |.....................| -0.5377 | -0.8613 | -1.072 | -0.2028 |
+#&gt; | U| 474.01246 | 91.25 | -5.376 | -0.9029 | -2.198 |
+#&gt; |.....................| -4.626 | 0.4039 | 1.246 | 0.06013 |
+#&gt; |.....................| 0.8773 | 0.05825 | 0.7954 | 0.7098 |
+#&gt; |.....................| 1.573 | 0.9657 | 0.6927 | 2.020 |
+#&gt; | X|<span style='font-weight: bold;'> 474.01246</span> | 91.25 | 0.004628 | 0.2885 | 0.1110 |
+#&gt; |.....................| 0.009798 | 0.5996 | 1.246 | 0.06013 |
+#&gt; |.....................| 0.8773 | 0.05825 | 0.7954 | 0.7098 |
+#&gt; |.....................| 1.573 | 0.9657 | 0.6927 | 2.020 |
+#&gt; | F| Forward Diff. | -5.724 | 1.179 | 0.03043 | -0.09493 |
+#&gt; |.....................| 0.3750 | 1.206 | -5.283 | 3.092 |
+#&gt; |.....................| -0.09863 | -0.01543 | -0.6573 | -0.7980 |
+#&gt; |.....................| 1.377 | 1.778 | 0.1578 | -1.944 |
+#&gt; |<span style='font-weight: bold;'> 68</span>| 473.98155 | 1.005 | -1.177 | -0.9249 | -0.9356 |
+#&gt; |.....................| -1.013 | -1.005 | 0.1310 | -0.8202 |
+#&gt; |.....................| -0.7607 | -0.8818 | -0.7885 | -1.088 |
+#&gt; |.....................| -0.5387 | -0.8611 | -1.072 | -0.2018 |
+#&gt; | U| 473.98155 | 91.42 | -5.377 | -0.9029 | -2.198 |
+#&gt; |.....................| -4.626 | 0.4034 | 1.247 | 0.06004 |
+#&gt; |.....................| 0.8773 | 0.05826 | 0.7956 | 0.7095 |
+#&gt; |.....................| 1.572 | 0.9659 | 0.6925 | 2.022 |
+#&gt; | X|<span style='font-weight: bold;'> 473.98155</span> | 91.42 | 0.004623 | 0.2885 | 0.1110 |
+#&gt; |.....................| 0.009794 | 0.5995 | 1.247 | 0.06004 |
+#&gt; |.....................| 0.8773 | 0.05826 | 0.7956 | 0.7095 |
+#&gt; |.....................| 1.572 | 0.9659 | 0.6925 | 2.022 |
+#&gt; | F| Forward Diff. | 9.125 | 1.189 | 0.2215 | -0.1183 |
+#&gt; |.....................| 0.3680 | 1.157 | -5.346 | 3.214 |
+#&gt; |.....................| -0.06695 | -0.05805 | -0.6245 | -0.6678 |
+#&gt; |.....................| 1.365 | 1.770 | 0.07348 | -1.960 |
+#&gt; |<span style='font-weight: bold;'> 69</span>| 473.94647 | 1.003 | -1.178 | -0.9250 | -0.9354 |
+#&gt; |.....................| -1.014 | -1.007 | 0.1350 | -0.8231 |
+#&gt; |.....................| -0.7608 | -0.8817 | -0.7881 | -1.089 |
+#&gt; |.....................| -0.5397 | -0.8608 | -1.072 | -0.2009 |
+#&gt; | U| 473.94647 | 91.26 | -5.378 | -0.9030 | -2.198 |
+#&gt; |.....................| -4.626 | 0.4029 | 1.249 | 0.05996 |
+#&gt; |.....................| 0.8772 | 0.05826 | 0.7959 | 0.7086 |
+#&gt; |.....................| 1.571 | 0.9661 | 0.6923 | 2.023 |
+#&gt; | X|<span style='font-weight: bold;'> 473.94647</span> | 91.26 | 0.004618 | 0.2884 | 0.1110 |
+#&gt; |.....................| 0.009791 | 0.5994 | 1.249 | 0.05996 |
+#&gt; |.....................| 0.8772 | 0.05826 | 0.7959 | 0.7086 |
+#&gt; |.....................| 1.571 | 0.9661 | 0.6923 | 2.023 |
+#&gt; | F| Forward Diff. | -5.271 | 1.174 | 0.04603 | -0.09766 |
+#&gt; |.....................| 0.3725 | 1.188 | -5.320 | 3.084 |
+#&gt; |.....................| -0.09768 | -0.01918 | -0.6378 | -0.8469 |
+#&gt; |.....................| 1.360 | 1.825 | 0.08453 | -1.920 |
+#&gt; |<span style='font-weight: bold;'> 70</span>| 473.91708 | 1.005 | -1.179 | -0.9250 | -0.9353 |
+#&gt; |.....................| -1.014 | -1.008 | 0.1391 | -0.8259 |
+#&gt; |.....................| -0.7609 | -0.8816 | -0.7877 | -1.089 |
+#&gt; |.....................| -0.5408 | -0.8610 | -1.072 | -0.1999 |
+#&gt; | U| 473.91708 | 91.43 | -5.379 | -0.9030 | -2.198 |
+#&gt; |.....................| -4.627 | 0.4024 | 1.251 | 0.05988 |
+#&gt; |.....................| 0.8772 | 0.05826 | 0.7962 | 0.7081 |
+#&gt; |.....................| 1.570 | 0.9660 | 0.6921 | 2.024 |
+#&gt; | X|<span style='font-weight: bold;'> 473.91708</span> | 91.43 | 0.004613 | 0.2884 | 0.1111 |
+#&gt; |.....................| 0.009788 | 0.5993 | 1.251 | 0.05988 |
+#&gt; |.....................| 0.8772 | 0.05826 | 0.7962 | 0.7081 |
+#&gt; |.....................| 1.570 | 0.9660 | 0.6921 | 2.024 |
+#&gt; | F| Forward Diff. | 9.919 | 1.183 | 0.2388 | -0.1221 |
+#&gt; |.....................| 0.3649 | 1.138 | -5.295 | 3.201 |
+#&gt; |.....................| -0.05759 | -0.06746 | -0.6018 | -0.7458 |
+#&gt; |.....................| 1.218 | 1.797 | 0.02666 | -1.950 |
+#&gt; |<span style='font-weight: bold;'> 71</span>| 473.88166 | 1.003 | -1.180 | -0.9251 | -0.9351 |
+#&gt; |.....................| -1.014 | -1.009 | 0.1432 | -0.8289 |
+#&gt; |.....................| -0.7611 | -0.8814 | -0.7874 | -1.090 |
+#&gt; |.....................| -0.5418 | -0.8607 | -1.072 | -0.1991 |
+#&gt; | U| 473.88166 | 91.26 | -5.380 | -0.9031 | -2.198 |
+#&gt; |.....................| -4.627 | 0.4019 | 1.252 | 0.05979 |
+#&gt; |.....................| 0.8771 | 0.05827 | 0.7964 | 0.7073 |
+#&gt; |.....................| 1.568 | 0.9662 | 0.6919 | 2.025 |
+#&gt; | X|<span style='font-weight: bold;'> 473.88166</span> | 91.26 | 0.004608 | 0.2884 | 0.1111 |
+#&gt; |.....................| 0.009785 | 0.5991 | 1.252 | 0.05979 |
+#&gt; |.....................| 0.8771 | 0.05827 | 0.7964 | 0.7073 |
+#&gt; |.....................| 1.568 | 0.9662 | 0.6919 | 2.025 |
+#&gt; | F| Forward Diff. | -5.370 | 1.167 | 0.05346 | -0.09978 |
+#&gt; |.....................| 0.3701 | 1.174 | -5.172 | 3.105 |
+#&gt; |.....................| -0.07011 | -0.02516 | -0.4239 | -2.943 |
+#&gt; |.....................| 1.187 | 1.854 | 0.07395 | -1.907 |
+#&gt; |<span style='font-weight: bold;'> 72</span>| 473.85215 | 1.005 | -1.181 | -0.9251 | -0.9350 |
+#&gt; |.....................| -1.015 | -1.010 | 0.1472 | -0.8318 |
+#&gt; |.....................| -0.7612 | -0.8813 | -0.7872 | -1.090 |
+#&gt; |.....................| -0.5427 | -0.8608 | -1.073 | -0.1983 |
+#&gt; | U| 473.85215 | 91.44 | -5.381 | -0.9031 | -2.197 |
+#&gt; |.....................| -4.627 | 0.4014 | 1.254 | 0.05971 |
+#&gt; |.....................| 0.8771 | 0.05827 | 0.7965 | 0.7078 |
+#&gt; |.....................| 1.567 | 0.9662 | 0.6918 | 2.026 |
+#&gt; | X|<span style='font-weight: bold;'> 473.85215</span> | 91.44 | 0.004603 | 0.2884 | 0.1111 |
+#&gt; |.....................| 0.009781 | 0.5990 | 1.254 | 0.05971 |
+#&gt; |.....................| 0.8771 | 0.05827 | 0.7965 | 0.7078 |
+#&gt; |.....................| 1.567 | 0.9662 | 0.6918 | 2.026 |
+#&gt; | F| Forward Diff. | 10.42 | 1.179 | 0.2474 | -0.1240 |
+#&gt; |.....................| 0.3627 | 1.120 | -5.345 | 3.221 |
+#&gt; |.....................| -0.07960 | -0.04998 | -0.3836 | -2.755 |
+#&gt; |.....................| 1.094 | 1.797 | -0.01014 | -1.939 |
+#&gt; |<span style='font-weight: bold;'> 73</span>| 473.81514 | 1.003 | -1.182 | -0.9251 | -0.9348 |
+#&gt; |.....................| -1.015 | -1.011 | 0.1513 | -0.8349 |
+#&gt; |.....................| -0.7614 | -0.8810 | -0.7873 | -1.089 |
+#&gt; |.....................| -0.5432 | -0.8601 | -1.073 | -0.1979 |
+#&gt; | U| 473.81514 | 91.27 | -5.382 | -0.9031 | -2.197 |
+#&gt; |.....................| -4.628 | 0.4008 | 1.256 | 0.05962 |
+#&gt; |.....................| 0.8770 | 0.05828 | 0.7964 | 0.7084 |
+#&gt; |.....................| 1.567 | 0.9669 | 0.6916 | 2.026 |
+#&gt; | X|<span style='font-weight: bold;'> 473.81514</span> | 91.27 | 0.004598 | 0.2884 | 0.1111 |
+#&gt; |.....................| 0.009778 | 0.5989 | 1.256 | 0.05962 |
+#&gt; |.....................| 0.8770 | 0.05828 | 0.7964 | 0.7084 |
+#&gt; |.....................| 1.567 | 0.9669 | 0.6916 | 2.026 |
+#&gt; | F| Forward Diff. | -4.811 | 1.166 | 0.05684 | -0.1019 |
+#&gt; |.....................| 0.3663 | 1.150 | -5.276 | 3.057 |
+#&gt; |.....................| -0.06818 | -0.03474 | -0.4125 | -2.836 |
+#&gt; |.....................| 1.158 | 1.851 | 0.03258 | -1.914 |
+#&gt; |<span style='font-weight: bold;'> 74</span>| 473.78884 | 1.005 | -1.183 | -0.9252 | -0.9346 |
+#&gt; |.....................| -1.015 | -1.012 | 0.1554 | -0.8377 |
+#&gt; |.....................| -0.7615 | -0.8808 | -0.7873 | -1.088 |
+#&gt; |.....................| -0.5439 | -0.8602 | -1.073 | -0.1971 |
+#&gt; | U| 473.78884 | 91.46 | -5.383 | -0.9031 | -2.197 |
+#&gt; |.....................| -4.628 | 0.4003 | 1.257 | 0.05954 |
+#&gt; |.....................| 0.8770 | 0.05829 | 0.7965 | 0.7095 |
+#&gt; |.....................| 1.566 | 0.9667 | 0.6915 | 2.027 |
+#&gt; | X|<span style='font-weight: bold;'> 473.78884</span> | 91.46 | 0.004593 | 0.2884 | 0.1111 |
+#&gt; |.....................| 0.009775 | 0.5988 | 1.257 | 0.05954 |
+#&gt; |.....................| 0.8770 | 0.05829 | 0.7965 | 0.7095 |
+#&gt; |.....................| 1.566 | 0.9667 | 0.6915 | 2.027 |
+#&gt; | F| Forward Diff. | 12.26 | 1.178 | 0.2628 | -0.1282 |
+#&gt; |.....................| 0.3579 | 1.094 | -5.180 | 3.234 |
+#&gt; |.....................| -0.08932 | -0.09780 | -0.5652 | -0.6340 |
+#&gt; |.....................| 1.031 | 1.841 | -0.06209 | -1.938 |
+#&gt; |<span style='font-weight: bold;'> 75</span>| 473.75065 | 1.003 | -1.184 | -0.9252 | -0.9344 |
+#&gt; |.....................| -1.016 | -1.013 | 0.1594 | -0.8407 |
+#&gt; |.....................| -0.7617 | -0.8806 | -0.7872 | -1.088 |
+#&gt; |.....................| -0.5446 | -0.8597 | -1.073 | -0.1966 |
+#&gt; | U| 473.75065 | 91.27 | -5.384 | -0.9032 | -2.197 |
+#&gt; |.....................| -4.628 | 0.3998 | 1.259 | 0.05945 |
+#&gt; |.....................| 0.8769 | 0.05829 | 0.7965 | 0.7092 |
+#&gt; |.....................| 1.565 | 0.9672 | 0.6914 | 2.028 |
+#&gt; | X|<span style='font-weight: bold;'> 473.75065</span> | 91.27 | 0.004588 | 0.2884 | 0.1112 |
+#&gt; |.....................| 0.009772 | 0.5986 | 1.259 | 0.05945 |
+#&gt; |.....................| 0.8769 | 0.05829 | 0.7965 | 0.7092 |
+#&gt; |.....................| 1.565 | 0.9672 | 0.6914 | 2.028 |
+#&gt; | F| Forward Diff. | -5.250 | 1.164 | 0.05078 | -0.1019 |
+#&gt; |.....................| 0.3635 | 1.132 | -5.308 | 3.057 |
+#&gt; |.....................| -0.09569 | -0.05602 | -0.5891 | -0.8121 |
+#&gt; |.....................| 1.074 | 1.883 | 0.002586 | -1.906 |
+#&gt; |<span style='font-weight: bold;'> 76</span>| 473.72028 | 1.005 | -1.185 | -0.9252 | -0.9343 |
+#&gt; |.....................| -1.016 | -1.014 | 0.1635 | -0.8437 |
+#&gt; |.....................| -0.7618 | -0.8804 | -0.7870 | -1.089 |
+#&gt; |.....................| -0.5455 | -0.8599 | -1.073 | -0.1958 |
+#&gt; | U| 473.72028 | 91.43 | -5.385 | -0.9032 | -2.197 |
+#&gt; |.....................| -4.629 | 0.3993 | 1.261 | 0.05936 |
+#&gt; |.....................| 0.8768 | 0.05830 | 0.7967 | 0.7088 |
+#&gt; |.....................| 1.564 | 0.9671 | 0.6912 | 2.029 |
+#&gt; | X|<span style='font-weight: bold;'> 473.72028</span> | 91.43 | 0.004583 | 0.2884 | 0.1112 |
+#&gt; |.....................| 0.009768 | 0.5985 | 1.261 | 0.05936 |
+#&gt; |.....................| 0.8768 | 0.05830 | 0.7967 | 0.7088 |
+#&gt; |.....................| 1.564 | 0.9671 | 0.6912 | 2.029 |
+#&gt; | F| Forward Diff. | 8.975 | 1.171 | 0.2290 | -0.1246 |
+#&gt; |.....................| 0.3563 | 1.085 | -5.320 | 3.173 |
+#&gt; |.....................| -0.08707 | -0.1016 | -0.5561 | -0.7117 |
+#&gt; |.....................| 0.9536 | 1.850 | -0.07963 | -1.922 |
+#&gt; |<span style='font-weight: bold;'> 77</span>| 473.68600 | 1.003 | -1.186 | -0.9253 | -0.9341 |
+#&gt; |.....................| -1.016 | -1.015 | 0.1676 | -0.8467 |
+#&gt; |.....................| -0.7620 | -0.8801 | -0.7868 | -1.089 |
+#&gt; |.....................| -0.5463 | -0.8596 | -1.073 | -0.1952 |
+#&gt; | U| 473.686 | 91.28 | -5.386 | -0.9033 | -2.196 |
+#&gt; |.....................| -4.629 | 0.3989 | 1.263 | 0.05928 |
+#&gt; |.....................| 0.8768 | 0.05831 | 0.7968 | 0.7081 |
+#&gt; |.....................| 1.563 | 0.9673 | 0.6911 | 2.030 |
+#&gt; | X|<span style='font-weight: bold;'> 473.686</span> | 91.28 | 0.004578 | 0.2884 | 0.1112 |
+#&gt; |.....................| 0.009765 | 0.5984 | 1.263 | 0.05928 |
+#&gt; |.....................| 0.8768 | 0.05831 | 0.7968 | 0.7081 |
+#&gt; |.....................| 1.563 | 0.9673 | 0.6911 | 2.030 |
+#&gt; | F| Forward Diff. | -5.608 | 1.155 | 0.05506 | -0.1036 |
+#&gt; |.....................| 0.3607 | 1.118 | -5.212 | 3.031 |
+#&gt; |.....................| -0.08611 | -0.04336 | -0.3798 | -2.808 |
+#&gt; |.....................| 1.093 | 1.880 | -0.02731 | -1.896 |
+#&gt; |<span style='font-weight: bold;'> 78</span>| 473.65599 | 1.005 | -1.188 | -0.9253 | -0.9339 |
+#&gt; |.....................| -1.017 | -1.016 | 0.1718 | -0.8497 |
+#&gt; |.....................| -0.7621 | -0.8799 | -0.7868 | -1.089 |
+#&gt; |.....................| -0.5471 | -0.8595 | -1.074 | -0.1946 |
+#&gt; | U| 473.65599 | 91.44 | -5.388 | -0.9033 | -2.196 |
+#&gt; |.....................| -4.629 | 0.3984 | 1.264 | 0.05919 |
+#&gt; |.....................| 0.8767 | 0.05831 | 0.7968 | 0.7087 |
+#&gt; |.....................| 1.562 | 0.9674 | 0.6910 | 2.030 |
+#&gt; | X|<span style='font-weight: bold;'> 473.65599</span> | 91.44 | 0.004573 | 0.2884 | 0.1112 |
+#&gt; |.....................| 0.009762 | 0.5983 | 1.264 | 0.05919 |
+#&gt; |.....................| 0.8767 | 0.05831 | 0.7968 | 0.7087 |
+#&gt; |.....................| 1.562 | 0.9674 | 0.6910 | 2.030 |
+#&gt; | F| Forward Diff. | 9.720 | 1.170 | 0.2444 | -0.1229 |
+#&gt; |.....................| 0.3557 | 1.067 | -5.275 | 3.173 |
+#&gt; |.....................| -0.07850 | -0.1042 | -0.5348 | -0.6844 |
+#&gt; |.....................| 0.9479 | 1.915 | -0.1018 | -1.917 |
+#&gt; |<span style='font-weight: bold;'> 79</span>| 473.62083 | 1.003 | -1.189 | -0.9254 | -0.9337 |
+#&gt; |.....................| -1.017 | -1.017 | 0.1759 | -0.8528 |
+#&gt; |.....................| -0.7623 | -0.8795 | -0.7869 | -1.089 |
+#&gt; |.....................| -0.5477 | -0.8591 | -1.074 | -0.1942 |
+#&gt; | U| 473.62083 | 91.28 | -5.389 | -0.9033 | -2.196 |
+#&gt; |.....................| -4.630 | 0.3979 | 1.266 | 0.05910 |
+#&gt; |.....................| 0.8766 | 0.05832 | 0.7968 | 0.7085 |
+#&gt; |.....................| 1.562 | 0.9678 | 0.6909 | 2.031 |
+#&gt; | X|<span style='font-weight: bold;'> 473.62083</span> | 91.28 | 0.004568 | 0.2884 | 0.1112 |
+#&gt; |.....................| 0.009758 | 0.5982 | 1.266 | 0.05910 |
+#&gt; |.....................| 0.8766 | 0.05832 | 0.7968 | 0.7085 |
+#&gt; |.....................| 1.562 | 0.9678 | 0.6909 | 2.031 |
+#&gt; | F| Forward Diff. | -5.323 | 1.153 | 0.05982 | -0.1053 |
+#&gt; |.....................| 0.3572 | 1.098 | -4.702 | 3.058 |
+#&gt; |.....................| -0.1117 | -0.04281 | -0.5573 | -0.7999 |
+#&gt; |.....................| 1.039 | 1.912 | -0.05974 | -1.890 |
+#&gt; |<span style='font-weight: bold;'> 80</span>| 473.59326 | 1.005 | -1.190 | -0.9254 | -0.9335 |
+#&gt; |.....................| -1.018 | -1.019 | 0.1798 | -0.8560 |
+#&gt; |.....................| -0.7624 | -0.8793 | -0.7867 | -1.090 |
+#&gt; |.....................| -0.5486 | -0.8595 | -1.074 | -0.1934 |
+#&gt; | U| 473.59326 | 91.46 | -5.390 | -0.9034 | -2.196 |
+#&gt; |.....................| -4.630 | 0.3974 | 1.268 | 0.05901 |
+#&gt; |.....................| 0.8766 | 0.05833 | 0.7969 | 0.7081 |
+#&gt; |.....................| 1.560 | 0.9674 | 0.6908 | 2.032 |
+#&gt; | X|<span style='font-weight: bold;'> 473.59326</span> | 91.46 | 0.004562 | 0.2884 | 0.1113 |
+#&gt; |.....................| 0.009755 | 0.5981 | 1.268 | 0.05901 |
+#&gt; |.....................| 0.8766 | 0.05833 | 0.7969 | 0.7081 |
+#&gt; |.....................| 1.560 | 0.9674 | 0.6908 | 2.032 |
+#&gt; | F| Forward Diff. | 11.25 | 1.162 | 0.2586 | -0.1299 |
+#&gt; |.....................| 0.3499 | 1.048 | -5.229 | 3.126 |
+#&gt; |.....................| -0.05642 | -0.09930 | -0.3252 | -2.718 |
+#&gt; |.....................| 0.8202 | 1.876 | -0.1477 | -1.910 |
+#&gt; |<span style='font-weight: bold;'> 81</span>| 473.55541 | 1.003 | -1.191 | -0.9255 | -0.9333 |
+#&gt; |.....................| -1.018 | -1.020 | 0.1836 | -0.8595 |
+#&gt; |.....................| -0.7626 | -0.8789 | -0.7868 | -1.090 |
+#&gt; |.....................| -0.5492 | -0.8592 | -1.074 | -0.1932 |
+#&gt; | U| 473.55541 | 91.31 | -5.391 | -0.9034 | -2.196 |
+#&gt; |.....................| -4.630 | 0.3968 | 1.269 | 0.05891 |
+#&gt; |.....................| 0.8765 | 0.05834 | 0.7968 | 0.7080 |
+#&gt; |.....................| 1.560 | 0.9677 | 0.6906 | 2.032 |
+#&gt; | X|<span style='font-weight: bold;'> 473.55541</span> | 91.31 | 0.004557 | 0.2883 | 0.1113 |
+#&gt; |.....................| 0.009751 | 0.5979 | 1.269 | 0.05891 |
+#&gt; |.....................| 0.8765 | 0.05834 | 0.7968 | 0.7080 |
+#&gt; |.....................| 1.560 | 0.9677 | 0.6906 | 2.032 |
+#&gt; | F| Forward Diff. | -3.062 | 1.149 | 0.09224 | -0.1103 |
+#&gt; |.....................| 0.3525 | 1.070 | -5.098 | 2.994 |
+#&gt; |.....................| -0.1095 | -0.04877 | -0.3504 | -2.828 |
+#&gt; |.....................| 0.8255 | 1.898 | -0.1147 | -1.889 |
+#&gt; |<span style='font-weight: bold;'> 82</span>| 473.53708 | 1.006 | -1.192 | -0.9256 | -0.9332 |
+#&gt; |.....................| -1.018 | -1.021 | 0.1873 | -0.8616 |
+#&gt; |.....................| -0.7625 | -0.8789 | -0.7866 | -1.087 |
+#&gt; |.....................| -0.5498 | -0.8606 | -1.074 | -0.1918 |
+#&gt; | U| 473.53708 | 91.52 | -5.392 | -0.9035 | -2.196 |
+#&gt; |.....................| -4.631 | 0.3964 | 1.271 | 0.05884 |
+#&gt; |.....................| 0.8765 | 0.05834 | 0.7970 | 0.7099 |
+#&gt; |.....................| 1.559 | 0.9664 | 0.6907 | 2.034 |
+#&gt; | X|<span style='font-weight: bold;'> 473.53708</span> | 91.52 | 0.004553 | 0.2883 | 0.1113 |
+#&gt; |.....................| 0.009749 | 0.5978 | 1.271 | 0.05884 |
+#&gt; |.....................| 0.8765 | 0.05834 | 0.7970 | 0.7099 |
+#&gt; |.....................| 1.559 | 0.9664 | 0.6907 | 2.034 |
+#&gt; | F| Forward Diff. | 16.25 | 1.165 | 0.3077 | -0.1378 |
+#&gt; |.....................| 0.3448 | 1.019 | -5.264 | 3.150 |
+#&gt; |.....................| -0.09278 | -0.1366 | -0.2969 | -2.557 |
+#&gt; |.....................| 0.7485 | 1.781 | -0.1828 | -1.909 |
+#&gt; |<span style='font-weight: bold;'> 83</span>| 473.49312 | 1.003 | -1.193 | -0.9256 | -0.9329 |
+#&gt; |.....................| -1.018 | -1.022 | 0.1912 | -0.8647 |
+#&gt; |.....................| -0.7626 | -0.8785 | -0.7869 | -1.087 |
+#&gt; |.....................| -0.5501 | -0.8598 | -1.074 | -0.1918 |
+#&gt; | U| 473.49312 | 91.32 | -5.393 | -0.9035 | -2.195 |
+#&gt; |.....................| -4.631 | 0.3959 | 1.272 | 0.05875 |
+#&gt; |.....................| 0.8765 | 0.05835 | 0.7967 | 0.7106 |
+#&gt; |.....................| 1.559 | 0.9671 | 0.6906 | 2.034 |
+#&gt; | X|<span style='font-weight: bold;'> 473.49312</span> | 91.32 | 0.004547 | 0.2883 | 0.1113 |
+#&gt; |.....................| 0.009745 | 0.5977 | 1.272 | 0.05875 |
+#&gt; |.....................| 0.8765 | 0.05835 | 0.7967 | 0.7106 |
+#&gt; |.....................| 1.559 | 0.9671 | 0.6906 | 2.034 |
+#&gt; | F| Forward Diff. | -2.793 | 1.150 | 0.08391 | -0.1095 |
+#&gt; |.....................| 0.3500 | 1.057 | -5.154 | 2.847 |
+#&gt; |.....................| -0.07414 | -0.06025 | -0.5244 | -0.6779 |
+#&gt; |.....................| 0.8291 | 1.867 | -0.1201 | -1.880 |
+#&gt; |<span style='font-weight: bold;'> 84</span>| 473.47390 | 1.006 | -1.194 | -0.9256 | -0.9329 |
+#&gt; |.....................| -1.019 | -1.022 | 0.1953 | -0.8670 |
+#&gt; |.....................| -0.7626 | -0.8785 | -0.7865 | -1.086 |
+#&gt; |.....................| -0.5507 | -0.8613 | -1.074 | -0.1903 |
+#&gt; | U| 473.4739 | 91.52 | -5.394 | -0.9036 | -2.195 |
+#&gt; |.....................| -4.631 | 0.3955 | 1.274 | 0.05869 |
+#&gt; |.....................| 0.8765 | 0.05835 | 0.7970 | 0.7110 |
+#&gt; |.....................| 1.558 | 0.9657 | 0.6907 | 2.036 |
+#&gt; | X|<span style='font-weight: bold;'> 473.4739</span> | 91.52 | 0.004543 | 0.2883 | 0.1113 |
+#&gt; |.....................| 0.009743 | 0.5976 | 1.274 | 0.05869 |
+#&gt; |.....................| 0.8765 | 0.05835 | 0.7970 | 0.7110 |
+#&gt; |.....................| 1.558 | 0.9657 | 0.6907 | 2.036 |
+#&gt; | F| Forward Diff. | 15.82 | 1.163 | 0.3026 | -0.1376 |
+#&gt; |.....................| 0.3423 | 1.007 | -4.821 | 3.176 |
+#&gt; |.....................| -0.06207 | -0.1161 | -0.4712 | -0.4774 |
+#&gt; |.....................| 0.7015 | 1.725 | -0.1877 | -1.896 |
+#&gt; |<span style='font-weight: bold;'> 85</span>| 473.43080 | 1.003 | -1.195 | -0.9257 | -0.9326 |
+#&gt; |.....................| -1.019 | -1.024 | 0.1991 | -0.8700 |
+#&gt; |.....................| -0.7628 | -0.8781 | -0.7866 | -1.087 |
+#&gt; |.....................| -0.5513 | -0.8608 | -1.074 | -0.1899 |
+#&gt; | U| 473.4308 | 91.31 | -5.395 | -0.9036 | -2.195 |
+#&gt; |.....................| -4.632 | 0.3950 | 1.276 | 0.05860 |
+#&gt; |.....................| 0.8764 | 0.05836 | 0.7970 | 0.7105 |
+#&gt; |.....................| 1.557 | 0.9662 | 0.6906 | 2.036 |
+#&gt; | X|<span style='font-weight: bold;'> 473.4308</span> | 91.31 | 0.004538 | 0.2883 | 0.1114 |
+#&gt; |.....................| 0.009739 | 0.5975 | 1.276 | 0.05860 |
+#&gt; |.....................| 0.8764 | 0.05836 | 0.7970 | 0.7105 |
+#&gt; |.....................| 1.557 | 0.9662 | 0.6906 | 2.036 |
+#&gt; | F| Forward Diff. | -3.611 | 1.145 | 0.07564 | -0.1091 |
+#&gt; |.....................| 0.3478 | 1.048 | -5.196 | 2.853 |
+#&gt; |.....................| -0.07176 | -0.06153 | -0.5100 | -0.6862 |
+#&gt; |.....................| 0.7701 | 1.783 | -0.1204 | -1.866 |
+#&gt; |<span style='font-weight: bold;'> 86</span>| 473.40390 | 1.005 | -1.196 | -0.9258 | -0.9324 |
+#&gt; |.....................| -1.019 | -1.025 | 0.2034 | -0.8728 |
+#&gt; |.....................| -0.7629 | -0.8779 | -0.7864 | -1.087 |
+#&gt; |.....................| -0.5520 | -0.8612 | -1.074 | -0.1890 |
+#&gt; | U| 473.4039 | 91.48 | -5.396 | -0.9037 | -2.195 |
+#&gt; |.....................| -4.632 | 0.3946 | 1.277 | 0.05852 |
+#&gt; |.....................| 0.8764 | 0.05837 | 0.7971 | 0.7105 |
+#&gt; |.....................| 1.556 | 0.9658 | 0.6906 | 2.037 |
+#&gt; | X|<span style='font-weight: bold;'> 473.4039</span> | 91.48 | 0.004533 | 0.2883 | 0.1114 |
+#&gt; |.....................| 0.009736 | 0.5974 | 1.277 | 0.05852 |
+#&gt; |.....................| 0.8764 | 0.05837 | 0.7971 | 0.7105 |
+#&gt; |.....................| 1.556 | 0.9658 | 0.6906 | 2.037 |
+#&gt; | F| Forward Diff. | 11.82 | 1.154 | 0.2542 | -0.1321 |
+#&gt; |.....................| 0.3410 | 1.002 | -5.150 | 3.097 |
+#&gt; |.....................| -0.04820 | -0.1059 | -0.4698 | -0.5387 |
+#&gt; |.....................| 0.6891 | 1.733 | -0.1906 | -1.879 |
+#&gt; |<span style='font-weight: bold;'> 87</span>| 473.36686 | 1.003 | -1.198 | -0.9258 | -0.9322 |
+#&gt; |.....................| -1.020 | -1.026 | 0.2076 | -0.8758 |
+#&gt; |.....................| -0.7631 | -0.8776 | -0.7865 | -1.087 |
+#&gt; |.....................| -0.5525 | -0.8606 | -1.074 | -0.1886 |
+#&gt; | U| 473.36686 | 91.32 | -5.398 | -0.9037 | -2.195 |
+#&gt; |.....................| -4.632 | 0.3941 | 1.279 | 0.05843 |
+#&gt; |.....................| 0.8763 | 0.05838 | 0.7970 | 0.7100 |
+#&gt; |.....................| 1.556 | 0.9664 | 0.6905 | 2.038 |
+#&gt; | X|<span style='font-weight: bold;'> 473.36686</span> | 91.32 | 0.004527 | 0.2883 | 0.1114 |
+#&gt; |.....................| 0.009733 | 0.5973 | 1.279 | 0.05843 |
+#&gt; |.....................| 0.8763 | 0.05838 | 0.7970 | 0.7100 |
+#&gt; |.....................| 1.556 | 0.9664 | 0.6905 | 2.038 |
+#&gt; | F| Forward Diff. | -3.686 | 1.139 | 0.08028 | -0.1103 |
+#&gt; |.....................| 0.3450 | 1.034 | -5.059 | 2.983 |
+#&gt; |.....................| -0.07022 | -0.06541 | -0.4954 | -0.7148 |
+#&gt; |.....................| 0.6839 | 1.782 | -0.1353 | -1.853 |
+#&gt; |<span style='font-weight: bold;'> 88</span>| 473.34117 | 1.005 | -1.199 | -0.9259 | -0.9321 |
+#&gt; |.....................| -1.020 | -1.027 | 0.2118 | -0.8787 |
+#&gt; |.....................| -0.7632 | -0.8774 | -0.7864 | -1.087 |
+#&gt; |.....................| -0.5531 | -0.8611 | -1.074 | -0.1877 |
+#&gt; | U| 473.34117 | 91.49 | -5.399 | -0.9038 | -2.194 |
+#&gt; |.....................| -4.633 | 0.3936 | 1.281 | 0.05835 |
+#&gt; |.....................| 0.8763 | 0.05838 | 0.7971 | 0.7100 |
+#&gt; |.....................| 1.555 | 0.9659 | 0.6904 | 2.039 |
+#&gt; | X|<span style='font-weight: bold;'> 473.34117</span> | 91.49 | 0.004522 | 0.2883 | 0.1114 |
+#&gt; |.....................| 0.009730 | 0.5972 | 1.281 | 0.05835 |
+#&gt; |.....................| 0.8763 | 0.05838 | 0.7971 | 0.7100 |
+#&gt; |.....................| 1.555 | 0.9659 | 0.6904 | 2.039 |
+#&gt; | F| Forward Diff. | 12.62 | 1.149 | 0.2679 | -0.1346 |
+#&gt; |.....................| 0.3379 | 0.9875 | -5.147 | 2.965 |
+#&gt; |.....................| -0.07400 | -0.1145 | -0.4542 | -0.5455 |
+#&gt; |.....................| 0.6283 | 1.734 | -0.2097 | -1.869 |
+#&gt; |<span style='font-weight: bold;'> 89</span>| 473.30326 | 1.004 | -1.200 | -0.9259 | -0.9318 |
+#&gt; |.....................| -1.020 | -1.028 | 0.2159 | -0.8818 |
+#&gt; |.....................| -0.7634 | -0.8771 | -0.7865 | -1.088 |
+#&gt; |.....................| -0.5535 | -0.8604 | -1.074 | -0.1874 |
+#&gt; | U| 473.30326 | 91.32 | -5.400 | -0.9038 | -2.194 |
+#&gt; |.....................| -4.633 | 0.3932 | 1.283 | 0.05826 |
+#&gt; |.....................| 0.8762 | 0.05839 | 0.7970 | 0.7096 |
+#&gt; |.....................| 1.555 | 0.9665 | 0.6903 | 2.039 |
+#&gt; | X|<span style='font-weight: bold;'> 473.30326</span> | 91.32 | 0.004517 | 0.2883 | 0.1114 |
+#&gt; |.....................| 0.009726 | 0.5970 | 1.283 | 0.05826 |
+#&gt; |.....................| 0.8762 | 0.05839 | 0.7970 | 0.7096 |
+#&gt; |.....................| 1.555 | 0.9665 | 0.6903 | 2.039 |
+#&gt; | F| Forward Diff. | -3.609 | 1.134 | 0.08636 | -0.1114 |
+#&gt; |.....................| 0.3423 | 1.018 | -5.228 | 2.880 |
+#&gt; |.....................| -0.1079 | -0.06580 | -0.2896 | -2.686 |
+#&gt; |.....................| 0.6917 | 1.801 | -0.1599 | -1.842 |
+#&gt; |<span style='font-weight: bold;'> 90</span>| 473.27616 | 1.005 | -1.201 | -0.9260 | -0.9316 |
+#&gt; |.....................| -1.021 | -1.029 | 0.2202 | -0.8845 |
+#&gt; |.....................| -0.7634 | -0.8768 | -0.7866 | -1.087 |
+#&gt; |.....................| -0.5540 | -0.8607 | -1.074 | -0.1867 |
+#&gt; | U| 473.27616 | 91.48 | -5.401 | -0.9039 | -2.194 |
+#&gt; |.....................| -4.633 | 0.3927 | 1.284 | 0.05818 |
+#&gt; |.....................| 0.8762 | 0.05840 | 0.7970 | 0.7107 |
+#&gt; |.....................| 1.554 | 0.9663 | 0.6904 | 2.040 |
+#&gt; | X|<span style='font-weight: bold;'> 473.27616</span> | 91.48 | 0.004512 | 0.2883 | 0.1115 |
+#&gt; |.....................| 0.009723 | 0.5969 | 1.284 | 0.05818 |
+#&gt; |.....................| 0.8762 | 0.05840 | 0.7970 | 0.7107 |
+#&gt; |.....................| 1.554 | 0.9663 | 0.6904 | 2.040 |
+#&gt; | F| Forward Diff. | 11.44 | 1.145 | 0.2516 | -0.1333 |
+#&gt; |.....................| 0.3351 | 0.9744 | -4.753 | 3.090 |
+#&gt; |.....................| -0.05028 | -0.1148 | -0.4450 | -0.5198 |
+#&gt; |.....................| 0.5573 | 1.743 | -0.2240 | -1.858 |
+#&gt; |<span style='font-weight: bold;'> 91</span>| 473.24283 | 1.003 | -1.202 | -0.9260 | -0.9314 |
+#&gt; |.....................| -1.021 | -1.030 | 0.2240 | -0.8877 |
+#&gt; |.....................| -0.7636 | -0.8764 | -0.7870 | -1.087 |
+#&gt; |.....................| -0.5543 | -0.8601 | -1.074 | -0.1866 |
+#&gt; | U| 473.24283 | 91.29 | -5.402 | -0.9039 | -2.194 |
+#&gt; |.....................| -4.634 | 0.3922 | 1.286 | 0.05809 |
+#&gt; |.....................| 0.8761 | 0.05841 | 0.7967 | 0.7107 |
+#&gt; |.....................| 1.554 | 0.9668 | 0.6903 | 2.040 |
+#&gt; | X|<span style='font-weight: bold;'> 473.24283</span> | 91.29 | 0.004506 | 0.2882 | 0.1115 |
+#&gt; |.....................| 0.009720 | 0.5968 | 1.286 | 0.05809 |
+#&gt; |.....................| 0.8761 | 0.05841 | 0.7967 | 0.7107 |
+#&gt; |.....................| 1.554 | 0.9668 | 0.6903 | 2.040 |
+#&gt; | F| Forward Diff. | -7.383 | 1.129 | 0.03939 | -0.1057 |
+#&gt; |.....................| 0.3410 | 1.013 | -4.733 | 2.907 |
+#&gt; |.....................| -0.07460 | -0.06623 | -0.4732 | -0.6761 |
+#&gt; |.....................| 0.6495 | 1.823 | -0.1637 | -1.832 |
+#&gt; |<span style='font-weight: bold;'> 92</span>| 473.20973 | 1.005 | -1.204 | -0.9260 | -0.9311 |
+#&gt; |.....................| -1.021 | -1.031 | 0.2279 | -0.8912 |
+#&gt; |.....................| -0.7638 | -0.8760 | -0.7872 | -1.087 |
+#&gt; |.....................| -0.5548 | -0.8600 | -1.075 | -0.1862 |
+#&gt; | U| 473.20973 | 91.43 | -5.404 | -0.9039 | -2.193 |
+#&gt; |.....................| -4.634 | 0.3917 | 1.288 | 0.05799 |
+#&gt; |.....................| 0.8760 | 0.05843 | 0.7966 | 0.7102 |
+#&gt; |.....................| 1.553 | 0.9669 | 0.6900 | 2.040 |
+#&gt; | X|<span style='font-weight: bold;'> 473.20973</span> | 91.43 | 0.004500 | 0.2882 | 0.1115 |
+#&gt; |.....................| 0.009716 | 0.5967 | 1.288 | 0.05799 |
+#&gt; |.....................| 0.8760 | 0.05843 | 0.7966 | 0.7102 |
+#&gt; |.....................| 1.553 | 0.9669 | 0.6900 | 2.040 |
+#&gt; |<span style='font-weight: bold;'> 93</span>| 473.17178 | 1.005 | -1.205 | -0.9261 | -0.9307 |
+#&gt; |.....................| -1.022 | -1.032 | 0.2326 | -0.8959 |
+#&gt; |.....................| -0.7641 | -0.8754 | -0.7876 | -1.088 |
+#&gt; |.....................| -0.5554 | -0.8593 | -1.075 | -0.1863 |
+#&gt; | U| 473.17178 | 91.43 | -5.405 | -0.9040 | -2.193 |
+#&gt; |.....................| -4.634 | 0.3910 | 1.289 | 0.05785 |
+#&gt; |.....................| 0.8759 | 0.05844 | 0.7963 | 0.7092 |
+#&gt; |.....................| 1.552 | 0.9676 | 0.6896 | 2.040 |
+#&gt; | X|<span style='font-weight: bold;'> 473.17178</span> | 91.43 | 0.004492 | 0.2882 | 0.1116 |
+#&gt; |.....................| 0.009711 | 0.5965 | 1.289 | 0.05785 |
+#&gt; |.....................| 0.8759 | 0.05844 | 0.7963 | 0.7092 |
+#&gt; |.....................| 1.552 | 0.9676 | 0.6896 | 2.040 |
+#&gt; |<span style='font-weight: bold;'> 94</span>| 472.97479 | 1.005 | -1.215 | -0.9262 | -0.9287 |
+#&gt; |.....................| -1.025 | -1.041 | 0.2575 | -0.9212 |
+#&gt; |.....................| -0.7657 | -0.8720 | -0.7899 | -1.094 |
+#&gt; |.....................| -0.5585 | -0.8552 | -1.078 | -0.1866 |
+#&gt; | U| 472.97479 | 91.45 | -5.415 | -0.9041 | -2.191 |
+#&gt; |.....................| -4.637 | 0.3872 | 1.300 | 0.05712 |
+#&gt; |.....................| 0.8752 | 0.05854 | 0.7946 | 0.7037 |
+#&gt; |.....................| 1.549 | 0.9715 | 0.6874 | 2.040 |
+#&gt; | X|<span style='font-weight: bold;'> 472.97479</span> | 91.45 | 0.004449 | 0.2882 | 0.1118 |
+#&gt; |.....................| 0.009685 | 0.5956 | 1.300 | 0.05712 |
+#&gt; |.....................| 0.8752 | 0.05854 | 0.7946 | 0.7037 |
+#&gt; |.....................| 1.549 | 0.9715 | 0.6874 | 2.040 |
+#&gt; |<span style='font-weight: bold;'> 95</span>| 472.26932 | 1.006 | -1.253 | -0.9268 | -0.9205 |
+#&gt; |.....................| -1.035 | -1.074 | 0.3572 | -1.022 |
+#&gt; |.....................| -0.7723 | -0.8583 | -0.7991 | -1.118 |
+#&gt; |.....................| -0.5709 | -0.8392 | -1.088 | -0.1877 |
+#&gt; | U| 472.26932 | 91.55 | -5.453 | -0.9046 | -2.183 |
+#&gt; |.....................| -4.648 | 0.3719 | 1.341 | 0.05419 |
+#&gt; |.....................| 0.8725 | 0.05894 | 0.7878 | 0.6819 |
+#&gt; |.....................| 1.534 | 0.9868 | 0.6787 | 2.039 |
+#&gt; | X|<span style='font-weight: bold;'> 472.26932</span> | 91.55 | 0.004282 | 0.2881 | 0.1127 |
+#&gt; |.....................| 0.009582 | 0.5919 | 1.341 | 0.05419 |
+#&gt; |.....................| 0.8725 | 0.05894 | 0.7878 | 0.6819 |
+#&gt; |.....................| 1.534 | 0.9868 | 0.6787 | 2.039 |
+#&gt; |<span style='font-weight: bold;'> 96</span>| 470.90347 | 1.012 | -1.408 | -0.9286 | -0.8872 |
+#&gt; |.....................| -1.078 | -1.207 | 0.7550 | -1.427 |
+#&gt; |.....................| -0.7985 | -0.8024 | -0.8343 | -1.204 |
+#&gt; |.....................| -0.6170 | -0.7722 | -1.128 | -0.1957 |
+#&gt; | U| 470.90347 | 92.06 | -5.608 | -0.9062 | -2.150 |
+#&gt; |.....................| -4.691 | 0.3105 | 1.506 | 0.04245 |
+#&gt; |.....................| 0.8616 | 0.06056 | 0.7621 | 0.6043 |
+#&gt; |.....................| 1.480 | 1.051 | 0.6438 | 2.029 |
+#&gt; | X|<span style='font-weight: bold;'> 470.90347</span> | 92.06 | 0.003670 | 0.2878 | 0.1165 |
+#&gt; |.....................| 0.009180 | 0.5770 | 1.506 | 0.04245 |
+#&gt; |.....................| 0.8616 | 0.06056 | 0.7621 | 0.6043 |
+#&gt; |.....................| 1.480 | 1.051 | 0.6438 | 2.029 |
+#&gt; | F| Forward Diff. | 16.46 | 0.7178 | 1.137 | -0.2842 |
+#&gt; |.....................| 0.06515 | -1.058 | -6.810 | -2.325 |
+#&gt; |.....................| -0.1903 | -0.6630 | 1.424 | -9.046 |
+#&gt; |.....................| -1.659 | 8.235 | -7.307 | -1.506 |
+#&gt; |<span style='font-weight: bold;'> 97</span>| 469.55066 | 1.016 | -1.623 | -0.9529 | -0.8214 |
+#&gt; |.....................| -1.136 | -1.353 | 1.295 | -1.874 |
+#&gt; |.....................| -0.8595 | -0.6716 | -0.9513 | -1.204 |
+#&gt; |.....................| -0.7087 | -0.8316 | -0.9499 | -0.4083 |
+#&gt; | U| 469.55066 | 92.47 | -5.823 | -0.9279 | -2.084 |
+#&gt; |.....................| -4.749 | 0.2437 | 1.731 | 0.02949 |
+#&gt; |.....................| 0.8363 | 0.06435 | 0.6766 | 0.6043 |
+#&gt; |.....................| 1.371 | 0.9940 | 0.7978 | 1.771 |
+#&gt; | X|<span style='font-weight: bold;'> 469.55066</span> | 92.47 | 0.002960 | 0.2834 | 0.1245 |
+#&gt; |.....................| 0.008661 | 0.5606 | 1.731 | 0.02949 |
+#&gt; |.....................| 0.8363 | 0.06435 | 0.6766 | 0.6043 |
+#&gt; |.....................| 1.371 | 0.9940 | 0.7978 | 1.771 |
+#&gt; | F| Forward Diff. | -5.003 | 0.4823 | 0.6025 | -0.2481 |
+#&gt; |.....................| -1.135 | 0.1015 | -5.875 | -8.309 |
+#&gt; |.....................| -0.8363 | -0.7839 | 1.711 | -6.097 |
+#&gt; |.....................| -4.755 | 1.794 | 4.040 | -0.5408 |
+#&gt; |<span style='font-weight: bold;'> 98</span>| 471.32255 | 1.022 | -1.880 | -1.043 | -0.7426 |
+#&gt; |.....................| -1.107 | -1.512 | 1.956 | -1.964 |
+#&gt; |.....................| -0.9773 | -0.5429 | -1.097 | -1.122 |
+#&gt; |.....................| -0.6469 | -0.5662 | -0.9027 | -0.4752 |
+#&gt; | U| 471.32255 | 93.00 | -6.080 | -1.008 | -2.005 |
+#&gt; |.....................| -4.719 | 0.1705 | 2.005 | 0.02687 |
+#&gt; |.....................| 0.7874 | 0.06809 | 0.5704 | 0.6787 |
+#&gt; |.....................| 1.444 | 1.248 | 0.8385 | 1.690 |
+#&gt; | X|<span style='font-weight: bold;'> 471.32255</span> | 93.00 | 0.002289 | 0.2674 | 0.1347 |
+#&gt; |.....................| 0.008922 | 0.5425 | 2.005 | 0.02687 |
+#&gt; |.....................| 0.7874 | 0.06809 | 0.5704 | 0.6787 |
+#&gt; |.....................| 1.444 | 1.248 | 0.8385 | 1.690 |
+#&gt; |<span style='font-weight: bold;'> 99</span>| 468.82475 | 1.022 | -1.709 | -0.9836 | -0.7948 |
+#&gt; |.....................| -1.126 | -1.406 | 1.521 | -1.898 |
+#&gt; |.....................| -0.8984 | -0.6279 | -1.001 | -1.172 |
+#&gt; |.....................| -0.6845 | -0.7440 | -0.9371 | -0.4303 |
+#&gt; | U| 468.82475 | 92.98 | -5.909 | -0.9551 | -2.057 |
+#&gt; |.....................| -4.738 | 0.2191 | 1.824 | 0.02879 |
+#&gt; |.....................| 0.8201 | 0.06562 | 0.6400 | 0.6333 |
+#&gt; |.....................| 1.400 | 1.078 | 0.8088 | 1.744 |
+#&gt; | X|<span style='font-weight: bold;'> 468.82475</span> | 92.98 | 0.002714 | 0.2779 | 0.1278 |
+#&gt; |.....................| 0.008755 | 0.5546 | 1.824 | 0.02879 |
+#&gt; |.....................| 0.8201 | 0.06562 | 0.6400 | 0.6333 |
+#&gt; |.....................| 1.400 | 1.078 | 0.8088 | 1.744 |
+#&gt; | F| Forward Diff. | 40.86 | 0.3767 | -0.09575 | -0.1893 |
+#&gt; |.....................| -1.313 | -0.2132 | -3.864 | -4.927 |
+#&gt; |.....................| -1.292 | -1.079 | -0.1017 | -3.329 |
+#&gt; |.....................| -4.248 | 8.116 | 3.916 | -0.3530 |
+#&gt; |<span style='font-weight: bold;'> 100</span>| 467.75171 | 1.017 | -1.816 | -0.9824 | -0.7623 |
+#&gt; |.....................| -1.067 | -1.470 | 1.678 | -1.962 |
+#&gt; |.....................| -0.9501 | -0.5667 | -0.9995 | -1.140 |
+#&gt; |.....................| -0.5909 | -0.8204 | -1.012 | -0.4878 |
+#&gt; | U| 467.75171 | 92.51 | -6.016 | -0.9541 | -2.025 |
+#&gt; |.....................| -4.679 | 0.1896 | 1.889 | 0.02693 |
+#&gt; |.....................| 0.7987 | 0.06740 | 0.6413 | 0.6622 |
+#&gt; |.....................| 1.510 | 1.005 | 0.7438 | 1.674 |
+#&gt; | X|<span style='font-weight: bold;'> 467.75171</span> | 92.51 | 0.002440 | 0.2781 | 0.1320 |
+#&gt; |.....................| 0.009285 | 0.5473 | 1.889 | 0.02693 |
+#&gt; |.....................| 0.7987 | 0.06740 | 0.6413 | 0.6622 |
+#&gt; |.....................| 1.510 | 1.005 | 0.7438 | 1.674 |
+#&gt; | F| Forward Diff. | -11.72 | 0.1617 | -0.2966 | 0.1391 |
+#&gt; |.....................| -0.7722 | -0.6625 | -3.136 | -6.222 |
+#&gt; |.....................| -1.617 | -0.9189 | -0.2811 | -3.105 |
+#&gt; |.....................| 0.05355 | 2.320 | -3.473 | -2.160 |
+#&gt; |<span style='font-weight: bold;'> 101</span>| 467.28745 | 1.018 | -1.902 | -0.9107 | -0.7577 |
+#&gt; |.....................| -0.9795 | -1.517 | 1.777 | -1.860 |
+#&gt; |.....................| -0.8874 | -0.4787 | -0.8826 | -1.170 |
+#&gt; |.....................| -0.6199 | -0.8544 | -0.9952 | -0.3962 |
+#&gt; | U| 467.28745 | 92.66 | -6.102 | -0.8902 | -2.020 |
+#&gt; |.....................| -4.592 | 0.1682 | 1.931 | 0.02990 |
+#&gt; |.....................| 0.8247 | 0.06995 | 0.7268 | 0.6357 |
+#&gt; |.....................| 1.476 | 0.9723 | 0.7587 | 1.785 |
+#&gt; | X|<span style='font-weight: bold;'> 467.28745</span> | 92.66 | 0.002239 | 0.2911 | 0.1327 |
+#&gt; |.....................| 0.01013 | 0.5420 | 1.931 | 0.02990 |
+#&gt; |.....................| 0.8247 | 0.06995 | 0.7268 | 0.6357 |
+#&gt; |.....................| 1.476 | 0.9723 | 0.7587 | 1.785 |
+#&gt; | F| Forward Diff. | 21.75 | 0.1003 | 2.571 | 0.1450 |
+#&gt; |.....................| -0.5415 | -1.471 | -1.062 | -1.774 |
+#&gt; |.....................| 1.363 | 0.7539 | 2.182 | -3.357 |
+#&gt; |.....................| -1.337 | 0.2346 | -1.234 | -0.8531 |
+#&gt; |<span style='font-weight: bold;'> 102</span>| 469.68385 | 0.9954 | -1.950 | -1.032 | -0.7900 |
+#&gt; |.....................| -0.8810 | -1.433 | 1.783 | -1.785 |
+#&gt; |.....................| -0.9418 | -0.5114 | -0.9107 | -1.204 |
+#&gt; |.....................| -0.6798 | -0.8966 | -1.014 | -0.2565 |
+#&gt; | U| 469.68385 | 90.58 | -6.150 | -0.9984 | -2.052 |
+#&gt; |.....................| -4.493 | 0.2066 | 1.933 | 0.03207 |
+#&gt; |.....................| 0.8021 | 0.06900 | 0.7062 | 0.6043 |
+#&gt; |.....................| 1.405 | 0.9320 | 0.7422 | 1.955 |
+#&gt; | X|<span style='font-weight: bold;'> 469.68385</span> | 90.58 | 0.002133 | 0.2693 | 0.1284 |
+#&gt; |.....................| 0.01118 | 0.5515 | 1.933 | 0.03207 |
+#&gt; |.....................| 0.8021 | 0.06900 | 0.7062 | 0.6043 |
+#&gt; |.....................| 1.405 | 0.9320 | 0.7422 | 1.955 |
+#&gt; |<span style='font-weight: bold;'> 103</span>| 467.87907 | 1.005 | -1.909 | -0.9308 | -0.7628 |
+#&gt; |.....................| -0.9639 | -1.503 | 1.779 | -1.847 |
+#&gt; |.....................| -0.8965 | -0.4841 | -0.8880 | -1.173 |
+#&gt; |.....................| -0.6287 | -0.8610 | -0.9975 | -0.3740 |
+#&gt; | U| 467.87907 | 91.48 | -6.109 | -0.9081 | -2.025 |
+#&gt; |.....................| -4.576 | 0.1745 | 1.931 | 0.03026 |
+#&gt; |.....................| 0.8209 | 0.06979 | 0.7229 | 0.6325 |
+#&gt; |.....................| 1.466 | 0.9660 | 0.7566 | 1.812 |
+#&gt; | X|<span style='font-weight: bold;'> 467.87907</span> | 91.48 | 0.002222 | 0.2874 | 0.1320 |
+#&gt; |.....................| 0.01029 | 0.5435 | 1.931 | 0.03026 |
+#&gt; |.....................| 0.8209 | 0.06979 | 0.7229 | 0.6325 |
+#&gt; |.....................| 1.466 | 0.9660 | 0.7566 | 1.812 |
+#&gt; |<span style='font-weight: bold;'> 104</span>| 467.53566 | 1.009 | -1.902 | -0.9117 | -0.7577 |
+#&gt; |.....................| -0.9793 | -1.516 | 1.778 | -1.859 |
+#&gt; |.....................| -0.8880 | -0.4790 | -0.8835 | -1.168 |
+#&gt; |.....................| -0.6194 | -0.8545 | -0.9947 | -0.3959 |
+#&gt; | U| 467.53566 | 91.86 | -6.102 | -0.8912 | -2.020 |
+#&gt; |.....................| -4.592 | 0.1685 | 1.931 | 0.02992 |
+#&gt; |.....................| 0.8245 | 0.06994 | 0.7261 | 0.6369 |
+#&gt; |.....................| 1.477 | 0.9722 | 0.7591 | 1.786 |
+#&gt; | X|<span style='font-weight: bold;'> 467.53566</span> | 91.86 | 0.002239 | 0.2909 | 0.1326 |
+#&gt; |.....................| 0.01013 | 0.5420 | 1.931 | 0.02992 |
+#&gt; |.....................| 0.8245 | 0.06994 | 0.7261 | 0.6369 |
+#&gt; |.....................| 1.477 | 0.9722 | 0.7591 | 1.786 |
+#&gt; |<span style='font-weight: bold;'> 105</span>| 467.26444 | 1.016 | -1.902 | -0.9109 | -0.7577 |
+#&gt; |.....................| -0.9795 | -1.516 | 1.777 | -1.860 |
+#&gt; |.....................| -0.8875 | -0.4788 | -0.8828 | -1.169 |
+#&gt; |.....................| -0.6198 | -0.8544 | -0.9951 | -0.3961 |
+#&gt; | U| 467.26444 | 92.48 | -6.102 | -0.8905 | -2.020 |
+#&gt; |.....................| -4.592 | 0.1683 | 1.931 | 0.02990 |
+#&gt; |.....................| 0.8246 | 0.06995 | 0.7266 | 0.6360 |
+#&gt; |.....................| 1.476 | 0.9723 | 0.7588 | 1.786 |
+#&gt; | X|<span style='font-weight: bold;'> 467.26444</span> | 92.48 | 0.002239 | 0.2910 | 0.1326 |
+#&gt; |.....................| 0.01013 | 0.5420 | 1.931 | 0.02990 |
+#&gt; |.....................| 0.8246 | 0.06995 | 0.7266 | 0.6360 |
+#&gt; |.....................| 1.476 | 0.9723 | 0.7588 | 1.786 |
+#&gt; | F| Forward Diff. | -1.458 | 0.09189 | 2.450 | 0.1713 |
+#&gt; |.....................| -0.5320 | -1.492 | -1.346 | -2.030 |
+#&gt; |.....................| 1.374 | 0.8089 | 1.804 | -5.854 |
+#&gt; |.....................| -1.303 | 0.2787 | -1.170 | -0.8602 |
+#&gt; |<span style='font-weight: bold;'> 106</span>| 467.25360 | 1.017 | -1.902 | -0.9116 | -0.7577 |
+#&gt; |.....................| -0.9793 | -1.516 | 1.778 | -1.859 |
+#&gt; |.....................| -0.8879 | -0.4790 | -0.8833 | -1.168 |
+#&gt; |.....................| -0.6195 | -0.8545 | -0.9948 | -0.3959 |
+#&gt; | U| 467.2536 | 92.51 | -6.102 | -0.8910 | -2.020 |
+#&gt; |.....................| -4.592 | 0.1685 | 1.931 | 0.02992 |
+#&gt; |.....................| 0.8245 | 0.06994 | 0.7263 | 0.6374 |
+#&gt; |.....................| 1.477 | 0.9722 | 0.7590 | 1.786 |
+#&gt; | X|<span style='font-weight: bold;'> 467.2536</span> | 92.51 | 0.002239 | 0.2909 | 0.1326 |
+#&gt; |.....................| 0.01013 | 0.5420 | 1.931 | 0.02992 |
+#&gt; |.....................| 0.8245 | 0.06994 | 0.7263 | 0.6374 |
+#&gt; |.....................| 1.477 | 0.9722 | 0.7590 | 1.786 |
+#&gt; | F| Forward Diff. | 3.196 | 0.08873 | 2.446 | 0.1672 |
+#&gt; |.....................| -0.5342 | -1.484 | -1.056 | -1.956 |
+#&gt; |.....................| 1.373 | 0.7965 | 2.077 | -5.722 |
+#&gt; |.....................| -1.292 | 0.2471 | -1.040 | -0.8496 |
+#&gt; |<span style='font-weight: bold;'> 107</span>| 467.24389 | 1.015 | -1.902 | -0.9128 | -0.7578 |
+#&gt; |.....................| -0.9790 | -1.515 | 1.778 | -1.858 |
+#&gt; |.....................| -0.8886 | -0.4794 | -0.8844 | -1.165 |
+#&gt; |.....................| -0.6188 | -0.8546 | -0.9942 | -0.3955 |
+#&gt; | U| 467.24389 | 92.37 | -6.102 | -0.8922 | -2.020 |
+#&gt; |.....................| -4.592 | 0.1688 | 1.931 | 0.02995 |
+#&gt; |.....................| 0.8242 | 0.06993 | 0.7255 | 0.6400 |
+#&gt; |.....................| 1.477 | 0.9721 | 0.7595 | 1.786 |
+#&gt; | X|<span style='font-weight: bold;'> 467.24389</span> | 92.37 | 0.002239 | 0.2907 | 0.1326 |
+#&gt; |.....................| 0.01014 | 0.5421 | 1.931 | 0.02995 |
+#&gt; |.....................| 0.8242 | 0.06993 | 0.7255 | 0.6400 |
+#&gt; |.....................| 1.477 | 0.9721 | 0.7595 | 1.786 |
+#&gt; | F| Forward Diff. | -15.43 | 0.07336 | 2.305 | 0.1893 |
+#&gt; |.....................| -0.5256 | -1.495 | -1.329 | -2.142 |
+#&gt; |.....................| 1.357 | 0.9382 | 1.940 | -3.165 |
+#&gt; |.....................| -1.157 | 0.2760 | -0.9277 | -0.8566 |
+#&gt; |<span style='font-weight: bold;'> 108</span>| 467.22397 | 1.017 | -1.902 | -0.9138 | -0.7581 |
+#&gt; |.....................| -0.9782 | -1.514 | 1.778 | -1.857 |
+#&gt; |.....................| -0.8889 | -0.4797 | -0.8863 | -1.164 |
+#&gt; |.....................| -0.6190 | -0.8552 | -0.9945 | -0.3935 |
+#&gt; | U| 467.22397 | 92.56 | -6.102 | -0.8930 | -2.020 |
+#&gt; |.....................| -4.591 | 0.1692 | 1.931 | 0.02998 |
+#&gt; |.....................| 0.8241 | 0.06992 | 0.7241 | 0.6409 |
+#&gt; |.....................| 1.477 | 0.9715 | 0.7593 | 1.789 |
+#&gt; | X|<span style='font-weight: bold;'> 467.22397</span> | 92.56 | 0.002238 | 0.2905 | 0.1326 |
+#&gt; |.....................| 0.01015 | 0.5422 | 1.931 | 0.02998 |
+#&gt; |.....................| 0.8241 | 0.06992 | 0.7241 | 0.6409 |
+#&gt; |.....................| 1.477 | 0.9715 | 0.7593 | 1.789 |
+#&gt; | F| Forward Diff. | 8.612 | 0.07601 | 2.377 | 0.1597 |
+#&gt; |.....................| -0.5308 | -1.476 | -1.038 | -1.834 |
+#&gt; |.....................| 1.332 | 0.7679 | 2.039 | -3.039 |
+#&gt; |.....................| -1.288 | 0.2037 | -1.093 | -0.8313 |
+#&gt; |<span style='font-weight: bold;'> 109</span>| 467.20858 | 1.016 | -1.903 | -0.9153 | -0.7584 |
+#&gt; |.....................| -0.9772 | -1.513 | 1.777 | -1.856 |
+#&gt; |.....................| -0.8896 | -0.4802 | -0.8882 | -1.164 |
+#&gt; |.....................| -0.6194 | -0.8560 | -0.9946 | -0.3915 |
+#&gt; | U| 467.20858 | 92.46 | -6.103 | -0.8944 | -2.021 |
+#&gt; |.....................| -4.590 | 0.1698 | 1.931 | 0.03001 |
+#&gt; |.....................| 0.8238 | 0.06990 | 0.7227 | 0.6411 |
+#&gt; |.....................| 1.477 | 0.9707 | 0.7591 | 1.791 |
+#&gt; | X|<span style='font-weight: bold;'> 467.20858</span> | 92.46 | 0.002236 | 0.2902 | 0.1325 |
+#&gt; |.....................| 0.01016 | 0.5423 | 1.931 | 0.03001 |
+#&gt; |.....................| 0.8238 | 0.06990 | 0.7227 | 0.6411 |
+#&gt; |.....................| 1.477 | 0.9707 | 0.7591 | 1.791 |
+#&gt; | F| Forward Diff. | -3.651 | 0.07137 | 2.259 | 0.1744 |
+#&gt; |.....................| -0.5171 | -1.486 | -1.304 | -1.934 |
+#&gt; |.....................| 1.324 | 0.7910 | 1.690 | -3.053 |
+#&gt; |.....................| -1.233 | 0.1999 | -1.046 | -0.8164 |
+#&gt; |<span style='font-weight: bold;'> 110</span>| 467.19548 | 1.017 | -1.903 | -0.9170 | -0.7588 |
+#&gt; |.....................| -0.9762 | -1.512 | 1.778 | -1.855 |
+#&gt; |.....................| -0.8906 | -0.4808 | -0.8898 | -1.163 |
+#&gt; |.....................| -0.6195 | -0.8567 | -0.9946 | -0.3897 |
+#&gt; | U| 467.19548 | 92.56 | -6.103 | -0.8959 | -2.021 |
+#&gt; |.....................| -4.589 | 0.1705 | 1.931 | 0.03005 |
+#&gt; |.....................| 0.8234 | 0.06989 | 0.7215 | 0.6417 |
+#&gt; |.....................| 1.477 | 0.9701 | 0.7592 | 1.793 |
+#&gt; | X|<span style='font-weight: bold;'> 467.19548</span> | 92.56 | 0.002235 | 0.2899 | 0.1325 |
+#&gt; |.....................| 0.01017 | 0.5425 | 1.931 | 0.03005 |
+#&gt; |.....................| 0.8234 | 0.06989 | 0.7215 | 0.6417 |
+#&gt; |.....................| 1.477 | 0.9701 | 0.7592 | 1.793 |
+#&gt; | F| Forward Diff. | 9.695 | 0.07360 | 2.256 | 0.1610 |
+#&gt; |.....................| -0.5147 | -1.467 | -1.275 | -1.734 |
+#&gt; |.....................| 1.307 | 0.8740 | 2.039 | -5.568 |
+#&gt; |.....................| -1.898 | -0.2550 | -1.273 | -0.7762 |
+#&gt; |<span style='font-weight: bold;'> 111</span>| 467.17845 | 1.016 | -1.904 | -0.9175 | -0.7593 |
+#&gt; |.....................| -0.9751 | -1.510 | 1.777 | -1.854 |
+#&gt; |.....................| -0.8907 | -0.4813 | -0.8918 | -1.161 |
+#&gt; |.....................| -0.6194 | -0.8571 | -0.9949 | -0.3876 |
+#&gt; | U| 467.17845 | 92.50 | -6.104 | -0.8963 | -2.022 |
+#&gt; |.....................| -4.588 | 0.1711 | 1.930 | 0.03007 |
+#&gt; |.....................| 0.8234 | 0.06987 | 0.7201 | 0.6433 |
+#&gt; |.....................| 1.477 | 0.9697 | 0.7589 | 1.796 |
+#&gt; | X|<span style='font-weight: bold;'> 467.17845</span> | 92.50 | 0.002234 | 0.2898 | 0.1324 |
+#&gt; |.....................| 0.01018 | 0.5427 | 1.930 | 0.03007 |
+#&gt; |.....................| 0.8234 | 0.06987 | 0.7201 | 0.6433 |
+#&gt; |.....................| 1.477 | 0.9697 | 0.7589 | 1.796 |
+#&gt; | F| Forward Diff. | 2.021 | 0.06308 | 2.194 | 0.1658 |
+#&gt; |.....................| -0.5050 | -1.471 | -1.283 | -1.811 |
+#&gt; |.....................| 1.304 | 0.7659 | 1.629 | -2.860 |
+#&gt; |.....................| -1.234 | 0.1434 | -1.025 | -0.7796 |
+#&gt; |<span style='font-weight: bold;'> 112</span>| 467.16518 | 1.015 | -1.904 | -0.9192 | -0.7596 |
+#&gt; |.....................| -0.9742 | -1.509 | 1.777 | -1.853 |
+#&gt; |.....................| -0.8917 | -0.4819 | -0.8931 | -1.160 |
+#&gt; |.....................| -0.6190 | -0.8574 | -0.9946 | -0.3864 |
+#&gt; | U| 467.16518 | 92.39 | -6.104 | -0.8978 | -2.022 |
+#&gt; |.....................| -4.587 | 0.1719 | 1.931 | 0.03011 |
+#&gt; |.....................| 0.8229 | 0.06985 | 0.7191 | 0.6447 |
+#&gt; |.....................| 1.477 | 0.9694 | 0.7592 | 1.797 |
+#&gt; | X|<span style='font-weight: bold;'> 467.16518</span> | 92.39 | 0.002234 | 0.2895 | 0.1324 |
+#&gt; |.....................| 0.01019 | 0.5429 | 1.931 | 0.03011 |
+#&gt; |.....................| 0.8229 | 0.06985 | 0.7191 | 0.6447 |
+#&gt; |.....................| 1.477 | 0.9694 | 0.7592 | 1.797 |
+#&gt; | F| Forward Diff. | -11.15 | 0.05292 | 2.063 | 0.1800 |
+#&gt; |.....................| -0.4962 | -1.473 | -0.9311 | -1.912 |
+#&gt; |.....................| 1.287 | 0.8965 | 1.659 | -5.399 |
+#&gt; |.....................| -1.766 | -0.2649 | -1.228 | -0.7899 |
+#&gt; |<span style='font-weight: bold;'> 113</span>| 467.14275 | 1.016 | -1.904 | -0.9201 | -0.7599 |
+#&gt; |.....................| -0.9736 | -1.507 | 1.777 | -1.851 |
+#&gt; |.....................| -0.8922 | -0.4826 | -0.8948 | -1.157 |
+#&gt; |.....................| -0.6182 | -0.8576 | -0.9943 | -0.3850 |
+#&gt; | U| 467.14275 | 92.43 | -6.104 | -0.8986 | -2.022 |
+#&gt; |.....................| -4.586 | 0.1725 | 1.931 | 0.03014 |
+#&gt; |.....................| 0.8227 | 0.06984 | 0.7179 | 0.6470 |
+#&gt; |.....................| 1.478 | 0.9693 | 0.7594 | 1.799 |
+#&gt; | X|<span style='font-weight: bold;'> 467.14275</span> | 92.43 | 0.002233 | 0.2893 | 0.1324 |
+#&gt; |.....................| 0.01019 | 0.5430 | 1.931 | 0.03014 |
+#&gt; |.....................| 0.8227 | 0.06984 | 0.7179 | 0.6470 |
+#&gt; |.....................| 1.478 | 0.9693 | 0.7594 | 1.799 |
+#&gt; | F| Forward Diff. | -6.177 | 0.04590 | 2.051 | 0.1758 |
+#&gt; |.....................| -0.4936 | -1.461 | -0.9893 | -1.828 |
+#&gt; |.....................| 1.266 | 0.7615 | 1.545 | -5.206 |
+#&gt; |.....................| -1.792 | -0.2512 | -1.220 | -0.7551 |
+#&gt; |<span style='font-weight: bold;'> 114</span>| 467.10820 | 1.017 | -1.905 | -0.9220 | -0.7605 |
+#&gt; |.....................| -0.9724 | -1.505 | 1.777 | -1.849 |
+#&gt; |.....................| -0.8932 | -0.4835 | -0.8976 | -1.151 |
+#&gt; |.....................| -0.6164 | -0.8576 | -0.9935 | -0.3828 |
+#&gt; | U| 467.1082 | 92.55 | -6.105 | -0.9003 | -2.023 |
+#&gt; |.....................| -4.585 | 0.1737 | 1.930 | 0.03020 |
+#&gt; |.....................| 0.8223 | 0.06981 | 0.7158 | 0.6522 |
+#&gt; |.....................| 1.480 | 0.9692 | 0.7601 | 1.802 |
+#&gt; | X|<span style='font-weight: bold;'> 467.1082</span> | 92.55 | 0.002232 | 0.2890 | 0.1323 |
+#&gt; |.....................| 0.01020 | 0.5433 | 1.930 | 0.03020 |
+#&gt; |.....................| 0.8223 | 0.06981 | 0.7158 | 0.6522 |
+#&gt; |.....................| 1.480 | 0.9692 | 0.7601 | 1.802 |
+#&gt; | F| Forward Diff. | 8.449 | 0.03092 | 2.044 | 0.1611 |
+#&gt; |.....................| -0.4934 | -1.430 | -1.221 | -1.596 |
+#&gt; |.....................| 1.229 | 0.8691 | 1.875 | -2.123 |
+#&gt; |.....................| -1.605 | -0.2558 | -1.009 | -0.7122 |
+#&gt; |<span style='font-weight: bold;'> 115</span>| 467.10106 | 1.014 | -1.905 | -0.9236 | -0.7611 |
+#&gt; |.....................| -0.9712 | -1.502 | 1.777 | -1.847 |
+#&gt; |.....................| -0.8940 | -0.4849 | -0.9012 | -1.147 |
+#&gt; |.....................| -0.6148 | -0.8578 | -0.9928 | -0.3803 |
+#&gt; | U| 467.10106 | 92.28 | -6.105 | -0.9017 | -2.023 |
+#&gt; |.....................| -4.584 | 0.1749 | 1.930 | 0.03026 |
+#&gt; |.....................| 0.8220 | 0.06977 | 0.7132 | 0.6562 |
+#&gt; |.....................| 1.482 | 0.9690 | 0.7607 | 1.805 |
+#&gt; | X|<span style='font-weight: bold;'> 467.10106</span> | 92.28 | 0.002232 | 0.2887 | 0.1322 |
+#&gt; |.....................| 0.01022 | 0.5436 | 1.930 | 0.03026 |
+#&gt; |.....................| 0.8220 | 0.06977 | 0.7132 | 0.6562 |
+#&gt; |.....................| 1.482 | 0.9690 | 0.7607 | 1.805 |
+#&gt; | F| Forward Diff. | -24.17 | 0.001665 | 1.814 | 0.1960 |
+#&gt; |.....................| -0.4738 | -1.444 | -0.8955 | -1.908 |
+#&gt; |.....................| 1.221 | 0.7910 | 1.755 | -3.560 |
+#&gt; |.....................| -2.244 | -0.2675 | -0.8607 | -0.7175 |
+#&gt; |<span style='font-weight: bold;'> 116</span>| 467.04630 | 1.016 | -1.905 | -0.9246 | -0.7619 |
+#&gt; |.....................| -0.9696 | -1.499 | 1.777 | -1.845 |
+#&gt; |.....................| -0.8944 | -0.4866 | -0.9055 | -1.143 |
+#&gt; |.....................| -0.6133 | -0.8582 | -0.9923 | -0.3775 |
+#&gt; | U| 467.0463 | 92.45 | -6.105 | -0.9026 | -2.024 |
+#&gt; |.....................| -4.582 | 0.1762 | 1.930 | 0.03032 |
+#&gt; |.....................| 0.8218 | 0.06972 | 0.7101 | 0.6601 |
+#&gt; |.....................| 1.484 | 0.9686 | 0.7611 | 1.808 |
+#&gt; | X|<span style='font-weight: bold;'> 467.0463</span> | 92.45 | 0.002231 | 0.2885 | 0.1321 |
+#&gt; |.....................| 0.01023 | 0.5439 | 1.930 | 0.03032 |
+#&gt; |.....................| 0.8218 | 0.06972 | 0.7101 | 0.6601 |
+#&gt; |.....................| 1.484 | 0.9686 | 0.7611 | 1.808 |
+#&gt; | F| Forward Diff. | -2.647 | -0.007887 | 1.876 | 0.1719 |
+#&gt; |.....................| -0.4730 | -1.410 | -0.8701 | -1.589 |
+#&gt; |.....................| 1.184 | 0.7244 | 1.544 | -4.110 |
+#&gt; |.....................| -1.544 | -0.3120 | -0.9430 | -0.6527 |
+#&gt; |<span style='font-weight: bold;'> 117</span>| 467.02543 | 1.017 | -1.906 | -0.9263 | -0.7625 |
+#&gt; |.....................| -0.9684 | -1.497 | 1.777 | -1.843 |
+#&gt; |.....................| -0.8954 | -0.4879 | -0.9089 | -1.137 |
+#&gt; |.....................| -0.6116 | -0.8583 | -0.9915 | -0.3753 |
+#&gt; | U| 467.02543 | 92.58 | -6.106 | -0.9041 | -2.025 |
+#&gt; |.....................| -4.581 | 0.1775 | 1.930 | 0.03038 |
+#&gt; |.....................| 0.8214 | 0.06968 | 0.7076 | 0.6649 |
+#&gt; |.....................| 1.486 | 0.9686 | 0.7618 | 1.811 |
+#&gt; | X|<span style='font-weight: bold;'> 467.02543</span> | 92.58 | 0.002230 | 0.2882 | 0.1320 |
+#&gt; |.....................| 0.01025 | 0.5443 | 1.930 | 0.03038 |
+#&gt; |.....................| 0.8214 | 0.06968 | 0.7076 | 0.6649 |
+#&gt; |.....................| 1.486 | 0.9686 | 0.7618 | 1.811 |
+#&gt; | F| Forward Diff. | 12.94 | -0.02385 | 1.879 | 0.1542 |
+#&gt; |.....................| -0.4735 | -1.378 | -0.8918 | -1.355 |
+#&gt; |.....................| 1.131 | 0.6590 | 1.631 | -3.618 |
+#&gt; |.....................| -1.430 | -0.2321 | -0.8462 | -0.6495 |
+#&gt; |<span style='font-weight: bold;'> 118</span>| 466.99646 | 1.016 | -1.906 | -0.9273 | -0.7632 |
+#&gt; |.....................| -0.9670 | -1.494 | 1.776 | -1.841 |
+#&gt; |.....................| -0.8958 | -0.4892 | -0.9132 | -1.133 |
+#&gt; |.....................| -0.6101 | -0.8587 | -0.9911 | -0.3725 |
+#&gt; | U| 466.99646 | 92.42 | -6.106 | -0.9050 | -2.026 |
+#&gt; |.....................| -4.579 | 0.1788 | 1.930 | 0.03043 |
+#&gt; |.....................| 0.8212 | 0.06964 | 0.7044 | 0.6690 |
+#&gt; |.....................| 1.488 | 0.9682 | 0.7622 | 1.814 |
+#&gt; | X|<span style='font-weight: bold;'> 466.99646</span> | 92.42 | 0.002230 | 0.2880 | 0.1319 |
+#&gt; |.....................| 0.01026 | 0.5446 | 1.930 | 0.03043 |
+#&gt; |.....................| 0.8212 | 0.06964 | 0.7044 | 0.6690 |
+#&gt; |.....................| 1.488 | 0.9682 | 0.7622 | 1.814 |
+#&gt; | F| Forward Diff. | -5.590 | -0.05004 | 1.738 | 0.1737 |
+#&gt; |.....................| -0.4573 | -1.378 | -0.8791 | -1.534 |
+#&gt; |.....................| 1.117 | 0.8064 | 1.528 | -3.141 |
+#&gt; |.....................| -0.8220 | 0.1296 | -0.3838 | -0.6246 |
+#&gt; |<span style='font-weight: bold;'> 119</span>| 466.97639 | 1.017 | -1.906 | -0.9282 | -0.7640 |
+#&gt; |.....................| -0.9655 | -1.490 | 1.776 | -1.839 |
+#&gt; |.....................| -0.8964 | -0.4910 | -0.9175 | -1.129 |
+#&gt; |.....................| -0.6092 | -0.8593 | -0.9910 | -0.3693 |
+#&gt; | U| 466.97639 | 92.52 | -6.106 | -0.9059 | -2.026 |
+#&gt; |.....................| -4.578 | 0.1803 | 1.930 | 0.03049 |
+#&gt; |.....................| 0.8210 | 0.06959 | 0.7013 | 0.6726 |
+#&gt; |.....................| 1.489 | 0.9676 | 0.7623 | 1.818 |
+#&gt; | X|<span style='font-weight: bold;'> 466.97639</span> | 92.52 | 0.002230 | 0.2878 | 0.1318 |
+#&gt; |.....................| 0.01028 | 0.5450 | 1.930 | 0.03049 |
+#&gt; |.....................| 0.8210 | 0.06959 | 0.7013 | 0.6726 |
+#&gt; |.....................| 1.489 | 0.9676 | 0.7623 | 1.818 |
+#&gt; | F| Forward Diff. | 7.027 | -0.06281 | 1.755 | 0.1604 |
+#&gt; |.....................| -0.4507 | -1.349 | -0.8053 | -1.299 |
+#&gt; |.....................| 1.095 | 0.6623 | 1.032 | -2.794 |
+#&gt; |.....................| -0.8171 | 0.07286 | -0.3538 | -0.5889 |
+#&gt; |<span style='font-weight: bold;'> 120</span>| 466.96001 | 1.015 | -1.906 | -0.9299 | -0.7649 |
+#&gt; |.....................| -0.9637 | -1.486 | 1.775 | -1.837 |
+#&gt; |.....................| -0.8976 | -0.4931 | -0.9192 | -1.125 |
+#&gt; |.....................| -0.6091 | -0.8600 | -0.9916 | -0.3657 |
+#&gt; | U| 466.96001 | 92.40 | -6.106 | -0.9074 | -2.027 |
+#&gt; |.....................| -4.576 | 0.1824 | 1.930 | 0.03055 |
+#&gt; |.....................| 0.8205 | 0.06953 | 0.7000 | 0.6758 |
+#&gt; |.....................| 1.489 | 0.9669 | 0.7618 | 1.823 |
+#&gt; | X|<span style='font-weight: bold;'> 466.96001</span> | 92.40 | 0.002230 | 0.2875 | 0.1317 |
+#&gt; |.....................| 0.01029 | 0.5455 | 1.930 | 0.03055 |
+#&gt; |.....................| 0.8205 | 0.06953 | 0.7000 | 0.6758 |
+#&gt; |.....................| 1.489 | 0.9669 | 0.7618 | 1.823 |
+#&gt; | F| Forward Diff. | -7.315 | -0.08361 | 1.595 | 0.1755 |
+#&gt; |.....................| -0.4289 | -1.331 | -0.8104 | -1.428 |
+#&gt; |.....................| 1.055 | 0.7710 | 1.242 | -2.826 |
+#&gt; |.....................| -1.346 | -0.3282 | -0.6399 | -0.5709 |
+#&gt; |<span style='font-weight: bold;'> 121</span>| 466.94053 | 1.016 | -1.905 | -0.9315 | -0.7662 |
+#&gt; |.....................| -0.9617 | -1.480 | 1.774 | -1.835 |
+#&gt; |.....................| -0.8987 | -0.4954 | -0.9193 | -1.121 |
+#&gt; |.....................| -0.6079 | -0.8601 | -0.9919 | -0.3632 |
+#&gt; | U| 466.94053 | 92.48 | -6.105 | -0.9088 | -2.029 |
+#&gt; |.....................| -4.574 | 0.1849 | 1.929 | 0.03061 |
+#&gt; |.....................| 0.8200 | 0.06946 | 0.6999 | 0.6792 |
+#&gt; |.....................| 1.490 | 0.9668 | 0.7615 | 1.826 |
+#&gt; | X|<span style='font-weight: bold;'> 466.94053</span> | 92.48 | 0.002231 | 0.2873 | 0.1315 |
+#&gt; |.....................| 0.01031 | 0.5461 | 1.929 | 0.03061 |
+#&gt; |.....................| 0.8200 | 0.06946 | 0.6999 | 0.6792 |
+#&gt; |.....................| 1.490 | 0.9668 | 0.7615 | 1.826 |
+#&gt; | F| Forward Diff. | 2.448 | -0.09452 | 1.578 | 0.1631 |
+#&gt; |.....................| -0.4178 | -1.275 | -0.7880 | -1.291 |
+#&gt; |.....................| 1.013 | 0.7275 | 1.336 | -0.1176 |
+#&gt; |.....................| -1.297 | -0.2757 | -0.6338 | -0.5586 |
+#&gt; |<span style='font-weight: bold;'> 122</span>| 466.92529 | 1.015 | -1.905 | -0.9321 | -0.7676 |
+#&gt; |.....................| -0.9593 | -1.476 | 1.775 | -1.833 |
+#&gt; |.....................| -0.8992 | -0.4984 | -0.9232 | -1.122 |
+#&gt; |.....................| -0.6063 | -0.8604 | -0.9916 | -0.3612 |
+#&gt; | U| 466.92529 | 92.34 | -6.105 | -0.9093 | -2.030 |
+#&gt; |.....................| -4.572 | 0.1871 | 1.930 | 0.03066 |
+#&gt; |.....................| 0.8198 | 0.06938 | 0.6971 | 0.6791 |
+#&gt; |.....................| 1.492 | 0.9666 | 0.7618 | 1.828 |
+#&gt; | X|<span style='font-weight: bold;'> 466.92529</span> | 92.34 | 0.002233 | 0.2871 | 0.1313 |
+#&gt; |.....................| 0.01034 | 0.5466 | 1.930 | 0.03066 |
+#&gt; |.....................| 0.8198 | 0.06938 | 0.6971 | 0.6791 |
+#&gt; |.....................| 1.492 | 0.9666 | 0.7618 | 1.828 |
+#&gt; | F| Forward Diff. | -12.72 | -0.09950 | 1.479 | 0.1754 |
+#&gt; |.....................| -0.4012 | -1.242 | -0.7866 | -1.413 |
+#&gt; |.....................| 0.9668 | 0.6187 | 0.9349 | -2.630 |
+#&gt; |.....................| -1.260 | -0.3489 | -0.4063 | -0.5476 |
+#&gt; |<span style='font-weight: bold;'> 123</span>| 466.89942 | 1.016 | -1.904 | -0.9326 | -0.7693 |
+#&gt; |.....................| -0.9564 | -1.470 | 1.775 | -1.832 |
+#&gt; |.....................| -0.8995 | -0.5006 | -0.9260 | -1.122 |
+#&gt; |.....................| -0.6055 | -0.8609 | -0.9921 | -0.3587 |
+#&gt; | U| 466.89942 | 92.48 | -6.104 | -0.9097 | -2.032 |
+#&gt; |.....................| -4.569 | 0.1897 | 1.929 | 0.03069 |
+#&gt; |.....................| 0.8197 | 0.06931 | 0.6950 | 0.6788 |
+#&gt; |.....................| 1.493 | 0.9661 | 0.7614 | 1.831 |
+#&gt; | X|<span style='font-weight: bold;'> 466.89942</span> | 92.48 | 0.002235 | 0.2871 | 0.1311 |
+#&gt; |.....................| 0.01037 | 0.5473 | 1.929 | 0.03069 |
+#&gt; |.....................| 0.8197 | 0.06931 | 0.6950 | 0.6788 |
+#&gt; |.....................| 1.493 | 0.9661 | 0.7614 | 1.831 |
+#&gt; | F| Forward Diff. | 3.439 | -0.09008 | 1.544 | 0.1555 |
+#&gt; |.....................| -0.3845 | -1.174 | -0.7709 | -1.201 |
+#&gt; |.....................| 0.9305 | 0.6799 | 1.153 | -2.871 |
+#&gt; |.....................| -1.766 | -0.2963 | -0.5389 | -0.5305 |
+#&gt; |<span style='font-weight: bold;'> 124</span>| 466.87885 | 1.016 | -1.902 | -0.9335 | -0.7713 |
+#&gt; |.....................| -0.9544 | -1.465 | 1.775 | -1.831 |
+#&gt; |.....................| -0.8988 | -0.5028 | -0.9291 | -1.120 |
+#&gt; |.....................| -0.6025 | -0.8609 | -0.9918 | -0.3573 |
+#&gt; | U| 466.87885 | 92.42 | -6.102 | -0.9106 | -2.034 |
+#&gt; |.....................| -4.567 | 0.1922 | 1.930 | 0.03072 |
+#&gt; |.....................| 0.8200 | 0.06925 | 0.6928 | 0.6803 |
+#&gt; |.....................| 1.497 | 0.9661 | 0.7616 | 1.833 |
+#&gt; | X|<span style='font-weight: bold;'> 466.87885</span> | 92.42 | 0.002239 | 0.2869 | 0.1309 |
+#&gt; |.....................| 0.01039 | 0.5479 | 1.930 | 0.03072 |
+#&gt; |.....................| 0.8200 | 0.06925 | 0.6928 | 0.6803 |
+#&gt; |.....................| 1.497 | 0.9661 | 0.7616 | 1.833 |
+#&gt; | F| Forward Diff. | -3.274 | -0.09794 | 1.477 | 0.1445 |
+#&gt; |.....................| -0.3711 | -1.126 | -0.7697 | -1.253 |
+#&gt; |.....................| 0.9213 | 0.5797 | 0.6929 | -2.254 |
+#&gt; |.....................| -0.4364 | 0.05549 | -0.07007 | -0.5105 |
+#&gt; |<span style='font-weight: bold;'> 125</span>| 466.87374 | 1.017 | -1.901 | -0.9363 | -0.7725 |
+#&gt; |.....................| -0.9523 | -1.459 | 1.775 | -1.829 |
+#&gt; |.....................| -0.9004 | -0.5050 | -0.9284 | -1.119 |
+#&gt; |.....................| -0.6029 | -0.8616 | -0.9930 | -0.3542 |
+#&gt; | U| 466.87374 | 92.57 | -6.101 | -0.9131 | -2.035 |
+#&gt; |.....................| -4.565 | 0.1945 | 1.929 | 0.03078 |
+#&gt; |.....................| 0.8193 | 0.06919 | 0.6933 | 0.6817 |
+#&gt; |.....................| 1.496 | 0.9655 | 0.7605 | 1.836 |
+#&gt; | X|<span style='font-weight: bold;'> 466.87374</span> | 92.57 | 0.002241 | 0.2864 | 0.1307 |
+#&gt; |.....................| 0.01041 | 0.5485 | 1.929 | 0.03078 |
+#&gt; |.....................| 0.8193 | 0.06919 | 0.6933 | 0.6817 |
+#&gt; |.....................| 1.496 | 0.9655 | 0.7605 | 1.836 |
+#&gt; | F| Forward Diff. | 13.60 | -0.09484 | 1.445 | 0.1251 |
+#&gt; |.....................| -0.3584 | -1.070 | -0.7354 | -1.048 |
+#&gt; |.....................| 0.8551 | 0.6144 | 0.8824 | -0.009520 |
+#&gt; |.....................| -0.4410 | 0.04024 | -0.2274 | -0.5153 |
+#&gt; |<span style='font-weight: bold;'> 126</span>| 466.85547 | 1.016 | -1.900 | -0.9388 | -0.7737 |
+#&gt; |.....................| -0.9500 | -1.454 | 1.774 | -1.828 |
+#&gt; |.....................| -0.9020 | -0.5070 | -0.9271 | -1.119 |
+#&gt; |.....................| -0.6040 | -0.8622 | -0.9946 | -0.3509 |
+#&gt; | U| 466.85547 | 92.42 | -6.100 | -0.9152 | -2.036 |
+#&gt; |.....................| -4.562 | 0.1970 | 1.929 | 0.03083 |
+#&gt; |.....................| 0.8186 | 0.06913 | 0.6942 | 0.6818 |
+#&gt; |.....................| 1.495 | 0.9648 | 0.7592 | 1.841 |
+#&gt; | X|<span style='font-weight: bold;'> 466.85547</span> | 92.42 | 0.002243 | 0.2859 | 0.1305 |
+#&gt; |.....................| 0.01044 | 0.5491 | 1.929 | 0.03083 |
+#&gt; |.....................| 0.8186 | 0.06913 | 0.6942 | 0.6818 |
+#&gt; |.....................| 1.495 | 0.9648 | 0.7592 | 1.841 |
+#&gt; | F| Forward Diff. | -2.539 | -0.09755 | 1.262 | 0.1433 |
+#&gt; |.....................| -0.3291 | -1.038 | -0.7482 | -1.225 |
+#&gt; |.....................| 0.8087 | 0.5023 | 0.8171 | -0.005344 |
+#&gt; |.....................| -0.4685 | 0.01356 | -0.1499 | -0.5112 |
+#&gt; |<span style='font-weight: bold;'> 127</span>| 466.84409 | 1.016 | -1.899 | -0.9408 | -0.7751 |
+#&gt; |.....................| -0.9477 | -1.449 | 1.774 | -1.826 |
+#&gt; |.....................| -0.9037 | -0.5088 | -0.9269 | -1.119 |
+#&gt; |.....................| -0.6048 | -0.8630 | -0.9960 | -0.3473 |
+#&gt; | U| 466.84409 | 92.47 | -6.099 | -0.9171 | -2.037 |
+#&gt; |.....................| -4.560 | 0.1996 | 1.929 | 0.03088 |
+#&gt; |.....................| 0.8179 | 0.06907 | 0.6944 | 0.6816 |
+#&gt; |.....................| 1.494 | 0.9641 | 0.7580 | 1.845 |
+#&gt; | X|<span style='font-weight: bold;'> 466.84409</span> | 92.47 | 0.002245 | 0.2856 | 0.1304 |
+#&gt; |.....................| 0.01046 | 0.5497 | 1.929 | 0.03088 |
+#&gt; |.....................| 0.8179 | 0.06907 | 0.6944 | 0.6816 |
+#&gt; |.....................| 1.494 | 0.9641 | 0.7580 | 1.845 |
+#&gt; | F| Forward Diff. | 3.205 | -0.09489 | 1.201 | 0.1289 |
+#&gt; |.....................| -0.3142 | -0.9889 | -0.7667 | -1.156 |
+#&gt; |.....................| 0.7401 | 0.5570 | 1.301 | -1.479 |
+#&gt; |.....................| -1.860 | -0.4540 | -0.5722 | -0.5005 |
+#&gt; |<span style='font-weight: bold;'> 128</span>| 466.83069 | 1.016 | -1.897 | -0.9405 | -0.7762 |
+#&gt; |.....................| -0.9462 | -1.443 | 1.775 | -1.825 |
+#&gt; |.....................| -0.9047 | -0.5101 | -0.9307 | -1.119 |
+#&gt; |.....................| -0.6046 | -0.8636 | -0.9969 | -0.3435 |
+#&gt; | U| 466.83069 | 92.41 | -6.097 | -0.9168 | -2.039 |
+#&gt; |.....................| -4.559 | 0.2019 | 1.929 | 0.03091 |
+#&gt; |.....................| 0.8175 | 0.06904 | 0.6917 | 0.6819 |
+#&gt; |.....................| 1.494 | 0.9635 | 0.7572 | 1.850 |
+#&gt; | X|<span style='font-weight: bold;'> 466.83069</span> | 92.41 | 0.002250 | 0.2856 | 0.1302 |
+#&gt; |.....................| 0.01048 | 0.5503 | 1.929 | 0.03091 |
+#&gt; |.....................| 0.8175 | 0.06904 | 0.6917 | 0.6819 |
+#&gt; |.....................| 1.494 | 0.9635 | 0.7572 | 1.850 |
+#&gt; |<span style='font-weight: bold;'> 129</span>| 466.81923 | 1.016 | -1.894 | -0.9398 | -0.7773 |
+#&gt; |.....................| -0.9447 | -1.438 | 1.775 | -1.824 |
+#&gt; |.....................| -0.9056 | -0.5113 | -0.9343 | -1.119 |
+#&gt; |.....................| -0.6049 | -0.8643 | -0.9979 | -0.3395 |
+#&gt; | U| 466.81923 | 92.43 | -6.094 | -0.9162 | -2.040 |
+#&gt; |.....................| -4.557 | 0.2043 | 1.930 | 0.03094 |
+#&gt; |.....................| 0.8171 | 0.06900 | 0.6890 | 0.6818 |
+#&gt; |.....................| 1.494 | 0.9628 | 0.7563 | 1.854 |
+#&gt; | X|<span style='font-weight: bold;'> 466.81923</span> | 92.43 | 0.002255 | 0.2857 | 0.1301 |
+#&gt; |.....................| 0.01049 | 0.5509 | 1.930 | 0.03094 |
+#&gt; |.....................| 0.8171 | 0.06900 | 0.6890 | 0.6818 |
+#&gt; |.....................| 1.494 | 0.9628 | 0.7563 | 1.854 |
+#&gt; |<span style='font-weight: bold;'> 130</span>| 466.78977 | 1.016 | -1.887 | -0.9376 | -0.7810 |
+#&gt; |.....................| -0.9400 | -1.422 | 1.776 | -1.820 |
+#&gt; |.....................| -0.9086 | -0.5153 | -0.9461 | -1.119 |
+#&gt; |.....................| -0.6057 | -0.8666 | -1.001 | -0.3266 |
+#&gt; | U| 466.78977 | 92.47 | -6.087 | -0.9142 | -2.043 |
+#&gt; |.....................| -4.552 | 0.2120 | 1.930 | 0.03105 |
+#&gt; |.....................| 0.8159 | 0.06889 | 0.6804 | 0.6815 |
+#&gt; |.....................| 1.493 | 0.9606 | 0.7533 | 1.870 |
+#&gt; | X|<span style='font-weight: bold;'> 466.78977</span> | 92.47 | 0.002272 | 0.2861 | 0.1296 |
+#&gt; |.....................| 0.01054 | 0.5528 | 1.930 | 0.03105 |
+#&gt; |.....................| 0.8159 | 0.06889 | 0.6804 | 0.6815 |
+#&gt; |.....................| 1.493 | 0.9606 | 0.7533 | 1.870 |
+#&gt; |<span style='font-weight: bold;'> 131</span>| 466.76586 | 1.017 | -1.875 | -0.9340 | -0.7871 |
+#&gt; |.....................| -0.9321 | -1.394 | 1.779 | -1.814 |
+#&gt; |.....................| -0.9134 | -0.5218 | -0.9656 | -1.119 |
+#&gt; |.....................| -0.6071 | -0.8705 | -1.007 | -0.3052 |
+#&gt; | U| 466.76586 | 92.53 | -6.075 | -0.9110 | -2.049 |
+#&gt; |.....................| -4.545 | 0.2247 | 1.931 | 0.03121 |
+#&gt; |.....................| 0.8139 | 0.06870 | 0.6661 | 0.6811 |
+#&gt; |.....................| 1.491 | 0.9569 | 0.7485 | 1.896 |
+#&gt; | X|<span style='font-weight: bold;'> 466.76586</span> | 92.53 | 0.002300 | 0.2868 | 0.1288 |
+#&gt; |.....................| 0.01062 | 0.5559 | 1.931 | 0.03121 |
+#&gt; |.....................| 0.8139 | 0.06870 | 0.6661 | 0.6811 |
+#&gt; |.....................| 1.491 | 0.9569 | 0.7485 | 1.896 |
+#&gt; | F| Forward Diff. | 10.71 | -0.05605 | 1.440 | 0.09508 |
+#&gt; |.....................| -0.1459 | -0.5070 | -0.9907 | -0.8007 |
+#&gt; |.....................| 0.4069 | 0.2923 | 0.01818 | -1.553 |
+#&gt; |.....................| -1.109 | -0.3306 | -0.3991 | -0.2309 |
+#&gt; |<span style='font-weight: bold;'> 132</span>| 466.72646 | 1.014 | -1.848 | -0.9815 | -0.8092 |
+#&gt; |.....................| -0.9160 | -1.342 | 1.783 | -1.808 |
+#&gt; |.....................| -0.9032 | -0.5322 | -0.9570 | -1.117 |
+#&gt; |.....................| -0.6032 | -0.8748 | -1.022 | -0.2748 |
+#&gt; | U| 466.72646 | 92.30 | -6.048 | -0.9533 | -2.072 |
+#&gt; |.....................| -4.528 | 0.2483 | 1.933 | 0.03140 |
+#&gt; |.....................| 0.8182 | 0.06840 | 0.6724 | 0.6828 |
+#&gt; |.....................| 1.496 | 0.9528 | 0.7357 | 1.933 |
+#&gt; | X|<span style='font-weight: bold;'> 466.72646</span> | 92.30 | 0.002362 | 0.2782 | 0.1260 |
+#&gt; |.....................| 0.01080 | 0.5618 | 1.933 | 0.03140 |
+#&gt; |.....................| 0.8182 | 0.06840 | 0.6724 | 0.6828 |
+#&gt; |.....................| 1.496 | 0.9528 | 0.7357 | 1.933 |
+#&gt; | F| Forward Diff. | -13.11 | -0.01237 | -0.5306 | 0.001870 |
+#&gt; |.....................| 0.01074 | -0.001553 | -0.5011 | -1.124 |
+#&gt; |.....................| 0.5240 | 0.3999 | 0.1337 | 0.6209 |
+#&gt; |.....................| -0.3667 | -0.5464 | -0.9326 | -0.1861 |
+#&gt; |<span style='font-weight: bold;'> 133</span>| 466.72714 | 1.014 | -1.830 | -0.9704 | -0.8250 |
+#&gt; |.....................| -0.9153 | -1.342 | 1.791 | -1.785 |
+#&gt; |.....................| -0.9449 | -0.5943 | -0.9266 | -1.116 |
+#&gt; |.....................| -0.5962 | -0.8737 | -1.020 | -0.2698 |
+#&gt; | U| 466.72714 | 92.32 | -6.030 | -0.9434 | -2.087 |
+#&gt; |.....................| -4.528 | 0.2486 | 1.936 | 0.03205 |
+#&gt; |.....................| 0.8009 | 0.06660 | 0.6946 | 0.6846 |
+#&gt; |.....................| 1.504 | 0.9539 | 0.7372 | 1.939 |
+#&gt; | X|<span style='font-weight: bold;'> 466.72714</span> | 92.32 | 0.002405 | 0.2802 | 0.1240 |
+#&gt; |.....................| 0.01081 | 0.5618 | 1.936 | 0.03205 |
+#&gt; |.....................| 0.8009 | 0.06660 | 0.6946 | 0.6846 |
+#&gt; |.....................| 1.504 | 0.9539 | 0.7372 | 1.939 |
+#&gt; |<span style='font-weight: bold;'> 134</span>| 466.69721 | 1.015 | -1.839 | -0.9760 | -0.8170 |
+#&gt; |.....................| -0.9156 | -1.342 | 1.787 | -1.797 |
+#&gt; |.....................| -0.9238 | -0.5630 | -0.9420 | -1.117 |
+#&gt; |.....................| -0.5997 | -0.8742 | -1.021 | -0.2723 |
+#&gt; | U| 466.69721 | 92.41 | -6.039 | -0.9484 | -2.079 |
+#&gt; |.....................| -4.528 | 0.2485 | 1.935 | 0.03173 |
+#&gt; |.....................| 0.8096 | 0.06750 | 0.6834 | 0.6836 |
+#&gt; |.....................| 1.500 | 0.9534 | 0.7365 | 1.936 |
+#&gt; | X|<span style='font-weight: bold;'> 466.69721</span> | 92.41 | 0.002383 | 0.2792 | 0.1250 |
+#&gt; |.....................| 0.01080 | 0.5618 | 1.935 | 0.03173 |
+#&gt; |.....................| 0.8096 | 0.06750 | 0.6834 | 0.6836 |
+#&gt; |.....................| 1.500 | 0.9534 | 0.7365 | 1.936 |
+#&gt; | F| Forward Diff. | 0.5723 | 0.006769 | -0.2879 | -0.06332 |
+#&gt; |.....................| 0.01114 | -0.03155 | -0.3915 | -0.7923 |
+#&gt; |.....................| -0.3201 | -0.2330 | 0.8086 | -1.424 |
+#&gt; |.....................| -0.3663 | -0.4815 | -0.7933 | -0.2384 |
+#&gt; |<span style='font-weight: bold;'> 135</span>| 466.73286 | 1.017 | -1.834 | -0.9731 | -0.8131 |
+#&gt; |.....................| -0.9227 | -1.351 | 1.796 | -1.779 |
+#&gt; |.....................| -0.9201 | -0.5595 | -0.9572 | -1.109 |
+#&gt; |.....................| -0.6142 | -0.8686 | -1.016 | -0.2440 |
+#&gt; | U| 466.73286 | 92.54 | -6.034 | -0.9458 | -2.075 |
+#&gt; |.....................| -4.535 | 0.2444 | 1.938 | 0.03223 |
+#&gt; |.....................| 0.8111 | 0.06760 | 0.6723 | 0.6901 |
+#&gt; |.....................| 1.483 | 0.9587 | 0.7409 | 1.970 |
+#&gt; | X|<span style='font-weight: bold;'> 466.73286</span> | 92.54 | 0.002396 | 0.2797 | 0.1255 |
+#&gt; |.....................| 0.01072 | 0.5608 | 1.938 | 0.03223 |
+#&gt; |.....................| 0.8111 | 0.06760 | 0.6723 | 0.6901 |
+#&gt; |.....................| 1.483 | 0.9587 | 0.7409 | 1.970 |
+#&gt; |<span style='font-weight: bold;'> 136</span>| 466.69733 | 1.015 | -1.838 | -0.9750 | -0.8159 |
+#&gt; |.....................| -0.9176 | -1.345 | 1.790 | -1.791 |
+#&gt; |.....................| -0.9226 | -0.5619 | -0.9467 | -1.114 |
+#&gt; |.....................| -0.6033 | -0.8723 | -1.019 | -0.2644 |
+#&gt; | U| 466.69733 | 92.40 | -6.038 | -0.9475 | -2.078 |
+#&gt; |.....................| -4.530 | 0.2474 | 1.936 | 0.03188 |
+#&gt; |.....................| 0.8101 | 0.06754 | 0.6799 | 0.6863 |
+#&gt; |.....................| 1.496 | 0.9552 | 0.7382 | 1.945 |
+#&gt; | X|<span style='font-weight: bold;'> 466.69733</span> | 92.40 | 0.002386 | 0.2794 | 0.1251 |
+#&gt; |.....................| 0.01078 | 0.5615 | 1.936 | 0.03188 |
+#&gt; |.....................| 0.8101 | 0.06754 | 0.6799 | 0.6863 |
+#&gt; |.....................| 1.496 | 0.9552 | 0.7382 | 1.945 |
+#&gt; |<span style='font-weight: bold;'> 137</span>| 466.69584 | 1.015 | -1.839 | -0.9754 | -0.8165 |
+#&gt; |.....................| -0.9164 | -1.343 | 1.788 | -1.794 |
+#&gt; |.....................| -0.9231 | -0.5623 | -0.9445 | -1.114 |
+#&gt; |.....................| -0.6009 | -0.8731 | -1.020 | -0.2689 |
+#&gt; | U| 466.69584 | 92.37 | -6.039 | -0.9478 | -2.079 |
+#&gt; |.....................| -4.529 | 0.2480 | 1.935 | 0.03180 |
+#&gt; |.....................| 0.8099 | 0.06752 | 0.6815 | 0.6857 |
+#&gt; |.....................| 1.499 | 0.9544 | 0.7377 | 1.940 |
+#&gt; | X|<span style='font-weight: bold;'> 466.69584</span> | 92.37 | 0.002384 | 0.2793 | 0.1251 |
+#&gt; |.....................| 0.01079 | 0.5617 | 1.935 | 0.03180 |
+#&gt; |.....................| 0.8099 | 0.06752 | 0.6815 | 0.6857 |
+#&gt; |.....................| 1.499 | 0.9544 | 0.7377 | 1.940 |
+#&gt; | F| Forward Diff. | -3.069 | -0.001275 | -0.2861 | -0.04975 |
+#&gt; |.....................| 0.01387 | -0.05203 | -0.3437 | -0.7173 |
+#&gt; |.....................| -0.2694 | -0.1778 | 0.5026 | 0.8511 |
+#&gt; |.....................| -0.9213 | -0.7376 | -0.9765 | -0.1682 |
+#&gt; |<span style='font-weight: bold;'> 138</span>| 466.68962 | 1.016 | -1.839 | -0.9764 | -0.8159 |
+#&gt; |.....................| -0.9167 | -1.342 | 1.790 | -1.793 |
+#&gt; |.....................| -0.9191 | -0.5597 | -0.9461 | -1.115 |
+#&gt; |.....................| -0.6002 | -0.8712 | -1.018 | -0.2680 |
+#&gt; | U| 466.68962 | 92.46 | -6.039 | -0.9488 | -2.078 |
+#&gt; |.....................| -4.529 | 0.2485 | 1.936 | 0.03184 |
+#&gt; |.....................| 0.8115 | 0.06760 | 0.6803 | 0.6854 |
+#&gt; |.....................| 1.499 | 0.9562 | 0.7392 | 1.941 |
+#&gt; | X|<span style='font-weight: bold;'> 466.68962</span> | 92.46 | 0.002385 | 0.2791 | 0.1251 |
+#&gt; |.....................| 0.01079 | 0.5618 | 1.936 | 0.03184 |
+#&gt; |.....................| 0.8115 | 0.06760 | 0.6803 | 0.6854 |
+#&gt; |.....................| 1.499 | 0.9562 | 0.7392 | 1.941 |
+#&gt; | F| Forward Diff. | 6.342 | 0.001592 | -0.2787 | -0.05882 |
+#&gt; |.....................| 0.004933 | -0.02534 | -0.4440 | -0.5467 |
+#&gt; |.....................| -0.1484 | -0.03146 | 0.4648 | -1.264 |
+#&gt; |.....................| -0.3607 | -0.2274 | -0.5157 | -0.1312 |
+#&gt; |<span style='font-weight: bold;'> 139</span>| 466.68314 | 1.015 | -1.839 | -0.9751 | -0.8151 |
+#&gt; |.....................| -0.9166 | -1.339 | 1.792 | -1.792 |
+#&gt; |.....................| -0.9160 | -0.5585 | -0.9470 | -1.115 |
+#&gt; |.....................| -0.5998 | -0.8691 | -1.016 | -0.2676 |
+#&gt; | U| 466.68314 | 92.36 | -6.039 | -0.9476 | -2.077 |
+#&gt; |.....................| -4.529 | 0.2501 | 1.937 | 0.03187 |
+#&gt; |.....................| 0.8128 | 0.06763 | 0.6797 | 0.6853 |
+#&gt; |.....................| 1.500 | 0.9582 | 0.7404 | 1.942 |
+#&gt; | X|<span style='font-weight: bold;'> 466.68314</span> | 92.36 | 0.002385 | 0.2794 | 0.1252 |
+#&gt; |.....................| 0.01079 | 0.5622 | 1.937 | 0.03187 |
+#&gt; |.....................| 0.8128 | 0.06763 | 0.6797 | 0.6853 |
+#&gt; |.....................| 1.500 | 0.9582 | 0.7404 | 1.942 |
+#&gt; | F| Forward Diff. | -4.258 |-0.0003497 | -0.2788 | -0.03383 |
+#&gt; |.....................| 0.01408 | 0.02647 | -0.2857 | -0.5956 |
+#&gt; |.....................| -0.05089 | 0.05050 | 0.4395 | 0.8187 |
+#&gt; |.....................| -0.2669 | -0.06868 | -0.3694 | -0.1159 |
+#&gt; |<span style='font-weight: bold;'> 140</span>| 466.67997 | 1.015 | -1.839 | -0.9739 | -0.8142 |
+#&gt; |.....................| -0.9180 | -1.339 | 1.794 | -1.790 |
+#&gt; |.....................| -0.9137 | -0.5623 | -0.9494 | -1.116 |
+#&gt; |.....................| -0.6002 | -0.8690 | -1.016 | -0.2664 |
+#&gt; | U| 466.67997 | 92.38 | -6.039 | -0.9465 | -2.077 |
+#&gt; |.....................| -4.531 | 0.2499 | 1.938 | 0.03191 |
+#&gt; |.....................| 0.8138 | 0.06752 | 0.6779 | 0.6846 |
+#&gt; |.....................| 1.499 | 0.9583 | 0.7410 | 1.943 |
+#&gt; | X|<span style='font-weight: bold;'> 466.67997</span> | 92.38 | 0.002385 | 0.2796 | 0.1254 |
+#&gt; |.....................| 0.01078 | 0.5622 | 1.938 | 0.03191 |
+#&gt; |.....................| 0.8138 | 0.06752 | 0.6779 | 0.6846 |
+#&gt; |.....................| 1.499 | 0.9583 | 0.7410 | 1.943 |
+#&gt; | M| Mixed Diff. | -1.882 |-7.391e+04 | -0.2259 | -0.03295 |
+#&gt; |.....................| 0.005718 | 0.01130 | -0.3842 | -0.4930 |
+#&gt; |.....................| -0.04972 | -0.05953 | 0.5251 | -1.398 |
+#&gt; |.....................| -0.3564 | -0.08212 | -0.3242 | -0.1008 |
+#&gt; |<span style='font-weight: bold;'> 141</span>| 466.67997 | 1.015 | -1.839 | -0.9739 | -0.8142 |
+#&gt; |.....................| -0.9180 | -1.339 | 1.794 | -1.790 |
+#&gt; |.....................| -0.9137 | -0.5623 | -0.9494 | -1.116 |
+#&gt; |.....................| -0.6002 | -0.8690 | -1.016 | -0.2664 |
+#&gt; | U| 466.67997 | 92.38 | -6.039 | -0.9465 | -2.077 |
+#&gt; |.....................| -4.531 | 0.2499 | 1.938 | 0.03191 |
+#&gt; |.....................| 0.8138 | 0.06752 | 0.6779 | 0.6846 |
+#&gt; |.....................| 1.499 | 0.9583 | 0.7410 | 1.943 |
+#&gt; | X|<span style='font-weight: bold;'> 466.67997</span> | 92.38 | 0.002385 | 0.2796 | 0.1254 |
+#&gt; |.....................| 0.01078 | 0.5622 | 1.938 | 0.03191 |
+#&gt; |.....................| 0.8138 | 0.06752 | 0.6779 | 0.6846 |
+#&gt; |.....................| 1.499 | 0.9583 | 0.7410 | 1.943 |
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
+<span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span>
+ <span class='va'>f_nlmixr_sfo_sfo_focei_const</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_fomc_sfo_focei_const</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_dfop_sfo_focei_const</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_fomc_sfo_saem_obs</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_fomc_sfo_focei_obs</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_dfop_sfo_saem_obs</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_dfop_sfo_focei_obs</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_fomc_sfo_focei_tc</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_dfop_sfo_focei_tc</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_fomc_sfo_saem_obs_tc</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_dfop_sfo_saem_obs_tc</span><span class='op'>$</span><span class='va'>nm</span>,
+ <span class='va'>f_nlmixr_dfop_sfo_focei_obs_tc</span><span class='op'>$</span><span class='va'>nm</span>
+<span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; df AIC
+#&gt; f_nlmixr_sfo_sfo_focei_const$nm 9 1082.4605
+#&gt; f_nlmixr_fomc_sfo_focei_const$nm 11 814.4261
+#&gt; f_nlmixr_dfop_sfo_focei_const$nm 13 870.2659
+#&gt; f_nlmixr_fomc_sfo_saem_obs$nm 12 788.8373
+#&gt; f_nlmixr_fomc_sfo_focei_obs$nm 12 794.5194
+#&gt; f_nlmixr_dfop_sfo_saem_obs$nm 14 815.0797
+#&gt; f_nlmixr_dfop_sfo_focei_obs$nm 14 834.8474
+#&gt; f_nlmixr_fomc_sfo_focei_tc$nm 12 812.3296
+#&gt; f_nlmixr_dfop_sfo_focei_tc$nm 14 819.4103
+#&gt; f_nlmixr_fomc_sfo_saem_obs_tc$nm 14 814.4248
+#&gt; f_nlmixr_fomc_sfo_focei_obs_tc$nm 14 787.4355
+#&gt; f_nlmixr_dfop_sfo_saem_obs_tc$nm 16 828.5143
+#&gt; f_nlmixr_dfop_sfo_focei_obs_tc$nm 16 811.1191</div><div class='input'><span class='co'># Currently, FOMC-SFO with two-component error by variable fitted by focei gives the</span>
+<span class='co'># lowest AIC</span>
+<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span><span class='op'>)</span>
+</div><div class='img'><img src='nlmixr.mmkin-2.png' alt='' width='700' height='433' /></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; nlmixr version used for fitting: 2.0.5
+#&gt; mkin version used for pre-fitting: 1.1.0
+#&gt; R version used for fitting: 4.1.2
+#&gt; Date of fit: Tue Jan 11 19:40:06 2022
+#&gt; Date of summary: Tue Jan 11 19:41:47 2022
+#&gt;
+#&gt; Equations:
+#&gt; d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
+#&gt; d_A1/dt = + f_parent_to_A1 * (alpha/beta) * 1/((time/beta) + 1) *
+#&gt; parent - k_A1 * A1
+#&gt;
+#&gt; Data:
+#&gt; 170 observations of 2 variable(s) grouped in 5 datasets
+#&gt;
+#&gt; Degradation model predictions using RxODE
+#&gt;
+#&gt; Fitted in 17.79 s
+#&gt;
+#&gt; Variance model: Two-component variance unique to each observed variable
+#&gt;
+#&gt; Mean of starting values for individual parameters:
+#&gt; parent_0 log_k_A1 f_parent_qlogis log_alpha log_beta
+#&gt; 93.1168 -5.3034 -0.9442 -0.1065 2.2909
+#&gt;
+#&gt; Mean of starting values for error model parameters:
+#&gt; sigma_low_parent rsd_high_parent sigma_low_A1 rsd_high_A1
+#&gt; 1.15958 0.03005 1.15958 0.03005
+#&gt;
+#&gt; Fixed degradation parameter values:
+#&gt; None
+#&gt;
+#&gt; Results:
+#&gt;
+#&gt; Likelihood calculated by focei
+#&gt; AIC BIC logLik
+#&gt; 787.4 831.3 -379.7
+#&gt;
+#&gt; Optimised parameters:
+#&gt; est. lower upper
+#&gt; parent_0 93.6717 91.2552 96.0882
+#&gt; log_k_A1 -6.3199 -8.4468 -4.1930
+#&gt; f_parent_qlogis -1.0089 -1.3823 -0.6356
+#&gt; log_alpha -0.1616 -0.6624 0.3392
+#&gt; log_beta 2.2088 1.6800 2.7376
+#&gt;
+#&gt; Correlation:
+#&gt; prnt_0 lg__A1 f_prn_ lg_lph
+#&gt; log_k_A1 0.372
+#&gt; f_parent_qlogis -0.786 -0.409
+#&gt; log_alpha 0.336 0.942 -0.306
+#&gt; log_beta -0.399 -0.759 0.248 -0.555
+#&gt;
+#&gt; Random effects (omega):
+#&gt; eta.parent_0 eta.log_k_A1 eta.f_parent_qlogis eta.log_alpha
+#&gt; eta.parent_0 4.391 0.000 0.0000 0.0000
+#&gt; eta.log_k_A1 0.000 6.402 0.0000 0.0000
+#&gt; eta.f_parent_qlogis 0.000 0.000 0.1584 0.0000
+#&gt; eta.log_alpha 0.000 0.000 0.0000 0.3381
+#&gt; eta.log_beta 0.000 0.000 0.0000 0.0000
+#&gt; eta.log_beta
+#&gt; eta.parent_0 0.000
+#&gt; eta.log_k_A1 0.000
+#&gt; eta.f_parent_qlogis 0.000
+#&gt; eta.log_alpha 0.000
+#&gt; eta.log_beta 0.358
+#&gt;
+#&gt; Variance model:
+#&gt; sigma_low_parent rsd_high_parent sigma_low_A1 rsd_high_A1
+#&gt; 2.35616 0.00153 0.63564 0.08639
+#&gt;
+#&gt; Backtransformed parameters:
+#&gt; est. lower upper
+#&gt; parent_0 93.6717 9.126e+01 96.0882
+#&gt; k_A1 0.0018 2.146e-04 0.0151
+#&gt; f_parent_to_A1 0.2672 2.006e-01 0.3462
+#&gt; alpha 0.8508 5.156e-01 1.4038
+#&gt; beta 9.1049 5.366e+00 15.4499
+#&gt;
+#&gt; Resulting formation fractions:
+#&gt; ff
+#&gt; parent_A1 0.2672
+#&gt; parent_sink 0.7328
+#&gt;
+#&gt; Estimated disappearance times:
+#&gt; DT50 DT90 DT50back
+#&gt; parent 11.46 127.3 38.31
+#&gt; A1 385.05 1279.1 NA</div><div class='input'><span class='co'># }</span>
+</div></pre>
+ </div>
+ <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
+ <nav id="toc" data-toggle="toc" class="sticky-top">
+ <h2 data-toc-skip>Contents</h2>
+ </nav>
+ </div>
+</div>
+
+
+ <footer>
+ <div class="copyright">
+ <p>Developed by Johannes Ranke.</p>
+</div>
+
+<div class="pkgdown">
+ <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
+</div>
+
+ </footer>
+ </div>
+
+
+
+
+ </body>
+</html>
+
+
diff --git a/docs/dev/reference/nobs.mkinfit.html b/docs/dev/reference/nobs.mkinfit.html
index 621eb622..0b6c963c 100644
--- a/docs/dev/reference/nobs.mkinfit.html
+++ b/docs/dev/reference/nobs.mkinfit.html
@@ -72,7 +72,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -121,7 +121,7 @@
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/parms.html b/docs/dev/reference/parms.html
index ba0e89bb..9f6f4225 100644
--- a/docs/dev/reference/parms.html
+++ b/docs/dev/reference/parms.html
@@ -74,7 +74,7 @@ considering the error structure that was assumed for the fit." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -123,7 +123,7 @@ considering the error structure that was assumed for the fit." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -219,10 +219,10 @@ such matrices is returned.</p>
#&gt;
#&gt; $DFOP
#&gt; Dataset 7
-#&gt; parent_0 91.058971597
+#&gt; parent_0 91.058971589
#&gt; k1 0.044946770
#&gt; k2 0.002868336
-#&gt; g 0.526942414
+#&gt; g 0.526942415
#&gt; sigma 2.221302196
#&gt; </div><div class='input'><span class='fu'>parms</span><span class='op'>(</span><span class='va'>fits</span><span class='op'>)</span>
</div><div class='output co'>#&gt; $SFO
@@ -233,17 +233,17 @@ such matrices is returned.</p>
#&gt;
#&gt; $FOMC
#&gt; Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10
-#&gt; parent_0 95.558575 92.6837649 90.719787 98.383939 94.8481458
+#&gt; parent_0 95.558575 92.6837649 90.719787 98.383939 94.8481459
#&gt; alpha 1.338667 0.4967832 1.639099 1.074460 0.2805272
#&gt; beta 13.033315 14.1451255 5.007077 4.397126 6.9052224
#&gt; sigma 1.847671 1.9167519 1.066063 3.146056 1.6222778
#&gt;
#&gt; $DFOP
#&gt; Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10
-#&gt; parent_0 96.55213663 91.058971597 90.34509493 98.14858820 94.311323733
+#&gt; parent_0 96.55213663 91.058971589 90.34509493 98.14858820 94.311323734
#&gt; k1 0.21954588 0.044946770 0.41232288 0.31697588 0.080663857
#&gt; k2 0.02957934 0.002868336 0.07581766 0.03260384 0.003425417
-#&gt; g 0.44845068 0.526942414 0.66091967 0.65322767 0.342652880
+#&gt; g 0.44845068 0.526942415 0.66091967 0.65322767 0.342652880
#&gt; sigma 1.35690468 2.221302196 1.34169076 2.87159846 1.942067831
#&gt; </div><div class='input'><span class='fu'>parms</span><span class='op'>(</span><span class='va'>fits</span>, transformed <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
</div><div class='output co'>#&gt; $SFO
diff --git a/docs/dev/reference/plot.mixed.mmkin-1.png b/docs/dev/reference/plot.mixed.mmkin-1.png
index 5cb33214..be3c664a 100644
--- a/docs/dev/reference/plot.mixed.mmkin-1.png
+++ b/docs/dev/reference/plot.mixed.mmkin-1.png
Binary files differ
diff --git a/docs/dev/reference/plot.mixed.mmkin-2.png b/docs/dev/reference/plot.mixed.mmkin-2.png
index c0d67204..b0e43b11 100644
--- a/docs/dev/reference/plot.mixed.mmkin-2.png
+++ b/docs/dev/reference/plot.mixed.mmkin-2.png
Binary files differ
diff --git a/docs/dev/reference/plot.mixed.mmkin-3.png b/docs/dev/reference/plot.mixed.mmkin-3.png
index 5e00afe6..7e2876b3 100644
--- a/docs/dev/reference/plot.mixed.mmkin-3.png
+++ b/docs/dev/reference/plot.mixed.mmkin-3.png
Binary files differ
diff --git a/docs/dev/reference/plot.mixed.mmkin-4.png b/docs/dev/reference/plot.mixed.mmkin-4.png
index 6a5f3b9c..945c4d41 100644
--- a/docs/dev/reference/plot.mixed.mmkin-4.png
+++ b/docs/dev/reference/plot.mixed.mmkin-4.png
Binary files differ
diff --git a/docs/dev/reference/plot.mixed.mmkin.html b/docs/dev/reference/plot.mixed.mmkin.html
index 55c411e7..69345b2f 100644
--- a/docs/dev/reference/plot.mixed.mmkin.html
+++ b/docs/dev/reference/plot.mixed.mmkin.html
@@ -72,7 +72,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
</span>
</div>
@@ -157,11 +157,13 @@
xlim <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/range.html'>range</a></span><span class='op'>(</span><span class='va'>x</span><span class='op'>$</span><span class='va'>data</span><span class='op'>$</span><span class='va'>time</span><span class='op'>)</span>,
resplot <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"predicted"</span>, <span class='st'>"time"</span><span class='op'>)</span>,
pred_over <span class='op'>=</span> <span class='cn'>NULL</span>,
+ test_log_parms <span class='op'>=</span> <span class='cn'>FALSE</span>,
+ conf.level <span class='op'>=</span> <span class='fl'>0.6</span>,
ymax <span class='op'>=</span> <span class='st'>"auto"</span>,
maxabs <span class='op'>=</span> <span class='st'>"auto"</span>,
ncol.legend <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/ifelse.html'>ifelse</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>&lt;=</span> <span class='fl'>3</span>, <span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>+</span> <span class='fl'>1</span>, <span class='fu'><a href='https://rdrr.io/r/base/ifelse.html'>ifelse</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>&lt;=</span> <span class='fl'>8</span>, <span class='fl'>3</span>, <span class='fl'>4</span><span class='op'>)</span><span class='op'>)</span>,
nrow.legend <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/Round.html'>ceiling</a></span><span class='op'>(</span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>+</span> <span class='fl'>1</span><span class='op'>)</span><span class='op'>/</span><span class='va'>ncol.legend</span><span class='op'>)</span>,
- rel.height.legend <span class='op'>=</span> <span class='fl'>0.03</span> <span class='op'>+</span> <span class='fl'>0.08</span> <span class='op'>*</span> <span class='va'>nrow.legend</span>,
+ rel.height.legend <span class='op'>=</span> <span class='fl'>0.02</span> <span class='op'>+</span> <span class='fl'>0.07</span> <span class='op'>*</span> <span class='va'>nrow.legend</span>,
rel.height.bottom <span class='op'>=</span> <span class='fl'>1.1</span>,
pch_ds <span class='op'>=</span> <span class='fl'>1</span><span class='op'>:</span><span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span>,
col_ds <span class='op'>=</span> <span class='va'>pch_ds</span> <span class='op'>+</span> <span class='fl'>1</span>,
@@ -212,6 +214,16 @@ predicted values?</p></td>
from <a href='mkinpredict.html'>mkinpredict</a> with a compatible <a href='mkinmod.html'>mkinmod</a>.</p></td>
</tr>
<tr>
+ <th>test_log_parms</th>
+ <td><p>Passed to <a href='mean_degparms.html'>mean_degparms</a> in the case of an
+<a href='mixed.html'>mixed.mmkin</a> object</p></td>
+ </tr>
+ <tr>
+ <th>conf.level</th>
+ <td><p>Passed to <a href='mean_degparms.html'>mean_degparms</a> in the case of an
+<a href='mixed.html'>mixed.mmkin</a> object</p></td>
+ </tr>
+ <tr>
<th>ymax</th>
<td><p>Vector of maximum y axis values</p></td>
</tr>
@@ -278,23 +290,24 @@ corresponding model prediction lines for the different datasets.</p></td>
</div><div class='img'><img src='plot.mixed.mmkin-1.png' alt='' width='700' height='433' /></div><div class='input'>
<span class='co'># For this fit we need to increase pnlsMaxiter, and we increase the</span>
<span class='co'># tolerance in order to speed up the fit for this example evaluation</span>
+<span class='co'># It still takes 20 seconds to run</span>
<span class='va'>f_nlme</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f</span>, control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>pnlsMaxIter <span class='op'>=</span> <span class='fl'>120</span>, tolerance <span class='op'>=</span> <span class='fl'>1e-3</span><span class='op'>)</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme</span><span class='op'>)</span>
</div><div class='img'><img src='plot.mixed.mmkin-2.png' alt='' width='700' height='433' /></div><div class='input'>
<span class='va'>f_saem</span> <span class='op'>&lt;-</span> <span class='fu'><a href='saem.html'>saem</a></span><span class='op'>(</span><span class='va'>f</span>, transformations <span class='op'>=</span> <span class='st'>"saemix"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Running main SAEM algorithm
-#&gt; [1] "Mon Dec 21 05:58:23 2020"
-#&gt; ....
-#&gt; Minimisation finished
-#&gt; [1] "Mon Dec 21 05:58:30 2020"</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem</span><span class='op'>)</span>
-</div><div class='img'><img src='plot.mixed.mmkin-3.png' alt='' width='700' height='433' /></div><div class='input'>
+</div><div class='output co'>#&gt; <span class='error'>Error in saem(f, transformations = "saemix"): unused argument (transformations = "saemix")</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in plot(f_saem): object 'f_saem' not found</span></div><div class='input'>
+<span class='va'>f_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>dfop_sfo</span><span class='op'>)</span>, <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span><span class='op'>)</span>
+<span class='va'>f_nlmix</span> <span class='op'>&lt;-</span> <span class='fu'>nlmix</span><span class='op'>(</span><span class='va'>f_obs</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in nlmix(f_obs): could not find function "nlmix"</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlmix</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in plot(f_nlmix): object 'f_nlmix' not found</span></div><div class='input'>
<span class='co'># We can overlay the two variants if we generate predictions</span>
<span class='va'>pred_nlme</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinpredict.html'>mkinpredict</a></span><span class='op'>(</span><span class='va'>dfop_sfo</span>,
<span class='va'>f_nlme</span><span class='op'>$</span><span class='va'>bparms.optim</span><span class='op'>[</span><span class='op'>-</span><span class='fl'>1</span><span class='op'>]</span>,
<span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='va'>f_nlme</span><span class='op'>$</span><span class='va'>bparms.optim</span><span class='op'>[[</span><span class='fl'>1</span><span class='op'>]</span><span class='op'>]</span>, A1 <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span>,
<span class='fu'><a href='https://rdrr.io/r/base/seq.html'>seq</a></span><span class='op'>(</span><span class='fl'>0</span>, <span class='fl'>180</span>, by <span class='op'>=</span> <span class='fl'>0.2</span><span class='op'>)</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem</span>, pred_over <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>nlme <span class='op'>=</span> <span class='va'>pred_nlme</span><span class='op'>)</span><span class='op'>)</span>
-</div><div class='img'><img src='plot.mixed.mmkin-4.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># }</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in plot(f_saem, pred_over = list(nlme = pred_nlme)): object 'f_saem' not found</span></div><div class='input'><span class='co'># }</span>
</div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
diff --git a/docs/dev/reference/plot.mkinfit-2.png b/docs/dev/reference/plot.mkinfit-2.png
index 376c812f..a11d1680 100644
--- a/docs/dev/reference/plot.mkinfit-2.png
+++ b/docs/dev/reference/plot.mkinfit-2.png
Binary files differ
diff --git a/docs/dev/reference/plot.mkinfit-5.png b/docs/dev/reference/plot.mkinfit-5.png
index bc44de88..6631aa68 100644
--- a/docs/dev/reference/plot.mkinfit-5.png
+++ b/docs/dev/reference/plot.mkinfit-5.png
Binary files differ
diff --git a/docs/dev/reference/plot.mkinfit-6.png b/docs/dev/reference/plot.mkinfit-6.png
index eb8cbd92..946b20c5 100644
--- a/docs/dev/reference/plot.mkinfit-6.png
+++ b/docs/dev/reference/plot.mkinfit-6.png
Binary files differ
diff --git a/docs/dev/reference/plot.mkinfit-7.png b/docs/dev/reference/plot.mkinfit-7.png
index 92a664f4..10807ea8 100644
--- a/docs/dev/reference/plot.mkinfit-7.png
+++ b/docs/dev/reference/plot.mkinfit-7.png
Binary files differ
diff --git a/docs/dev/reference/plot.mkinfit.html b/docs/dev/reference/plot.mkinfit.html
index c5bfb528..c5249ecd 100644
--- a/docs/dev/reference/plot.mkinfit.html
+++ b/docs/dev/reference/plot.mkinfit.html
@@ -74,7 +74,7 @@ observed data together with the solution of the fitted model." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
diff --git a/docs/dev/reference/plot.mmkin-1.png b/docs/dev/reference/plot.mmkin-1.png
index f12b7907..647dfb8a 100644
--- a/docs/dev/reference/plot.mmkin-1.png
+++ b/docs/dev/reference/plot.mmkin-1.png
Binary files differ
diff --git a/docs/dev/reference/plot.mmkin-2.png b/docs/dev/reference/plot.mmkin-2.png
index e3127554..1bc1c9db 100644
--- a/docs/dev/reference/plot.mmkin-2.png
+++ b/docs/dev/reference/plot.mmkin-2.png
Binary files differ
diff --git a/docs/dev/reference/plot.mmkin-3.png b/docs/dev/reference/plot.mmkin-3.png
index 5448976e..50d6ffac 100644
--- a/docs/dev/reference/plot.mmkin-3.png
+++ b/docs/dev/reference/plot.mmkin-3.png
Binary files differ
diff --git a/docs/dev/reference/plot.mmkin-4.png b/docs/dev/reference/plot.mmkin-4.png
index 9a25fc50..e049fa16 100644
--- a/docs/dev/reference/plot.mmkin-4.png
+++ b/docs/dev/reference/plot.mmkin-4.png
Binary files differ
diff --git a/docs/dev/reference/plot.mmkin-5.png b/docs/dev/reference/plot.mmkin-5.png
index 82b422b5..2421995b 100644
--- a/docs/dev/reference/plot.mmkin-5.png
+++ b/docs/dev/reference/plot.mmkin-5.png
Binary files differ
diff --git a/docs/dev/reference/plot.mmkin.html b/docs/dev/reference/plot.mmkin.html
index ee80c6e4..9ca0df94 100644
--- a/docs/dev/reference/plot.mmkin.html
+++ b/docs/dev/reference/plot.mmkin.html
@@ -76,7 +76,7 @@ the fit of at least one model to the same dataset is shown." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
diff --git a/docs/dev/reference/plot.nafta.html b/docs/dev/reference/plot.nafta.html
index 9fc59f94..c24fba99 100644
--- a/docs/dev/reference/plot.nafta.html
+++ b/docs/dev/reference/plot.nafta.html
@@ -73,7 +73,7 @@ function (SFO, then IORE, then DFOP)." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ function (SFO, then IORE, then DFOP)." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
diff --git a/docs/dev/reference/reexports.html b/docs/dev/reference/reexports.html
index f12a2690..4fe5164b 100644
--- a/docs/dev/reference/reexports.html
+++ b/docs/dev/reference/reexports.html
@@ -45,7 +45,9 @@ below to see their documentation.
lmtestlrtest
- nlmenlme
+ nlmeintervals, nlme
+
+ nlmixrnlmixr
" />
@@ -79,7 +81,7 @@ below to see their documentation.
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
</span>
</div>
@@ -128,7 +130,7 @@ below to see their documentation.
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -146,7 +148,7 @@ below to see their documentation.
<div class="col-md-9 contents">
<div class="page-header">
<h1>Objects exported from other packages</h1>
- <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/lrtest.mkinfit.R'><code>R/lrtest.mkinfit.R</code></a>, <a href='https://github.com/jranke/mkin/blob/master/R/nlme.mmkin.R'><code>R/nlme.mmkin.R</code></a></small>
+ <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/intervals.R'><code>R/intervals.R</code></a>, <a href='https://github.com/jranke/mkin/blob/master/R/lrtest.mkinfit.R'><code>R/lrtest.mkinfit.R</code></a>, <a href='https://github.com/jranke/mkin/blob/master/R/nlme.mmkin.R'><code>R/nlme.mmkin.R</code></a>, and 1 more</small>
<div class="hidden name"><code>reexports.Rd</code></div>
</div>
@@ -156,7 +158,9 @@ below to see their documentation.</p>
<dl>
<dt>lmtest</dt><dd><p><code><a href='https://rdrr.io/pkg/lmtest/man/lrtest.html'>lrtest</a></code></p></dd>
- <dt>nlme</dt><dd><p><code><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></code></p></dd>
+ <dt>nlme</dt><dd><p><code><a href='https://rdrr.io/pkg/nlme/man/intervals.html'>intervals</a></code>, <code><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></code></p></dd>
+
+ <dt>nlmixr</dt><dd><p><code><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></code></p></dd>
</dl>
</div>
diff --git a/docs/dev/reference/residuals.mkinfit.html b/docs/dev/reference/residuals.mkinfit.html
index 95114dae..3f518ab7 100644
--- a/docs/dev/reference/residuals.mkinfit.html
+++ b/docs/dev/reference/residuals.mkinfit.html
@@ -72,7 +72,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -121,7 +121,7 @@
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -175,7 +175,7 @@ standard deviation obtained from the fitted error model?</p></td>
</div><div class='output co'>#&gt; [1] 0.09726374 -0.13912142 -0.15351210 0.73388322 -0.08657004 -0.93204702
#&gt; [7] -0.03269080 1.45347823 -0.88423697</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/residuals.html'>residuals</a></span><span class='op'>(</span><span class='va'>f</span>, standardized <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
</div><div class='output co'>#&gt; [1] 0.13969917 -0.19981904 -0.22048826 1.05407091 -0.12433989 -1.33869208
-#&gt; [7] -0.04695354 2.08761977 -1.27002287</div></pre>
+#&gt; [7] -0.04695355 2.08761977 -1.27002287</div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top">
diff --git a/docs/dev/reference/saem-1.png b/docs/dev/reference/saem-1.png
index 2df248bb..0e87d741 100644
--- a/docs/dev/reference/saem-1.png
+++ b/docs/dev/reference/saem-1.png
Binary files differ
diff --git a/docs/dev/reference/saem-2.png b/docs/dev/reference/saem-2.png
index d4a2c1be..456a4c58 100644
--- a/docs/dev/reference/saem-2.png
+++ b/docs/dev/reference/saem-2.png
Binary files differ
diff --git a/docs/dev/reference/saem-3.png b/docs/dev/reference/saem-3.png
index 6a32cda1..27d43e53 100644
--- a/docs/dev/reference/saem-3.png
+++ b/docs/dev/reference/saem-3.png
Binary files differ
diff --git a/docs/dev/reference/saem-4.png b/docs/dev/reference/saem-4.png
index bf24d6b0..5c089bbc 100644
--- a/docs/dev/reference/saem-4.png
+++ b/docs/dev/reference/saem-4.png
Binary files differ
diff --git a/docs/dev/reference/saem-5.png b/docs/dev/reference/saem-5.png
index 6e6e0f91..d22e7285 100644
--- a/docs/dev/reference/saem-5.png
+++ b/docs/dev/reference/saem-5.png
Binary files differ
diff --git a/docs/dev/reference/saem.html b/docs/dev/reference/saem.html
index 59589378..83a62359 100644
--- a/docs/dev/reference/saem.html
+++ b/docs/dev/reference/saem.html
@@ -74,7 +74,7 @@ Expectation Maximisation algorithm (SAEM)." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
</span>
</div>
@@ -158,9 +158,13 @@ Expectation Maximisation algorithm (SAEM).</p>
<span class='va'>object</span>,
transformations <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"mkin"</span>, <span class='st'>"saemix"</span><span class='op'>)</span>,
degparms_start <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/numeric.html'>numeric</a></span><span class='op'>(</span><span class='op'>)</span>,
+ test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span>,
+ conf.level <span class='op'>=</span> <span class='fl'>0.6</span>,
solution_type <span class='op'>=</span> <span class='st'>"auto"</span>,
- control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>displayProgress <span class='op'>=</span> <span class='cn'>FALSE</span>, print <span class='op'>=</span> <span class='cn'>FALSE</span>, save <span class='op'>=</span> <span class='cn'>FALSE</span>, save.graphs <span class='op'>=</span>
- <span class='cn'>FALSE</span><span class='op'>)</span>,
+ nbiter.saemix <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>300</span>, <span class='fl'>100</span><span class='op'>)</span>,
+ control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>displayProgress <span class='op'>=</span> <span class='cn'>FALSE</span>, print <span class='op'>=</span> <span class='cn'>FALSE</span>, nbiter.saemix <span class='op'>=</span> <span class='va'>nbiter.saemix</span>,
+ save <span class='op'>=</span> <span class='cn'>FALSE</span>, save.graphs <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>,
+ fail_with_errors <span class='op'>=</span> <span class='cn'>TRUE</span>,
verbose <span class='op'>=</span> <span class='cn'>FALSE</span>,
quiet <span class='op'>=</span> <span class='cn'>FALSE</span>,
<span class='va'>...</span>
@@ -174,6 +178,7 @@ Expectation Maximisation algorithm (SAEM).</p>
solution_type <span class='op'>=</span> <span class='st'>"auto"</span>,
transformations <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"mkin"</span>, <span class='st'>"saemix"</span><span class='op'>)</span>,
degparms_start <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/numeric.html'>numeric</a></span><span class='op'>(</span><span class='op'>)</span>,
+ test_log_parms <span class='op'>=</span> <span class='cn'>FALSE</span>,
verbose <span class='op'>=</span> <span class='cn'>FALSE</span>,
<span class='va'>...</span>
<span class='op'>)</span>
@@ -206,13 +211,35 @@ SFO or DFOP is used for the parent and there is either no metabolite or one.</p>
be used to override the starting values obtained from the 'mmkin' object.</p></td>
</tr>
<tr>
+ <th>test_log_parms</th>
+ <td><p>If TRUE, an attempt is made to use more robust starting
+values for population parameters fitted as log parameters in mkin (like
+rate constants) by only considering rate constants that pass the t-test
+when calculating mean degradation parameters using <a href='mean_degparms.html'>mean_degparms</a>.</p></td>
+ </tr>
+ <tr>
+ <th>conf.level</th>
+ <td><p>Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'.</p></td>
+ </tr>
+ <tr>
<th>solution_type</th>
<td><p>Possibility to specify the solution type in case the
automatic choice is not desired</p></td>
</tr>
<tr>
+ <th>nbiter.saemix</th>
+ <td><p>Convenience option to increase the number of
+iterations</p></td>
+ </tr>
+ <tr>
<th>control</th>
- <td><p>Passed to <a href='https://rdrr.io/pkg/saemix/man/saemix.html'>saemix::saemix</a></p></td>
+ <td><p>Passed to <a href='https://rdrr.io/pkg/saemix/man/saemix.html'>saemix::saemix</a>.</p></td>
+ </tr>
+ <tr>
+ <th>fail_with_errors</th>
+ <td><p>Should a failure to compute standard errors
+from the inverse of the Fisher Information Matrix be a failure?</p></td>
</tr>
<tr>
<th>verbose</th>
@@ -260,75 +287,29 @@ using <a href='mmkin.html'>mmkin</a>.</p>
<span class='va'>f_mmkin_parent_p0_fixed</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='st'>"FOMC"</span>, <span class='va'>ds</span>,
state.ini <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fl'>100</span><span class='op'>)</span>, fixed_initials <span class='op'>=</span> <span class='st'>"parent"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='va'>f_saem_p0_fixed</span> <span class='op'>&lt;-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent_p0_fixed</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Running main SAEM algorithm
-#&gt; [1] "Mon Jan 25 14:41:42 2021"
-#&gt; ....
-#&gt; Minimisation finished
-#&gt; [1] "Mon Jan 25 14:41:43 2021"</div><div class='input'>
+</div><div class='output co'>#&gt; <span class='warning'>Warning: argument is not a function</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='error'>Error in rxModelVars_(obj): Not compatible with STRSXP: [type=NULL].</span></div><div class='input'>
<span class='va'>f_mmkin_parent</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"FOMC"</span>, <span class='st'>"DFOP"</span><span class='op'>)</span>, <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='va'>f_saem_sfo</span> <span class='op'>&lt;-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='op'>]</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Running main SAEM algorithm
-#&gt; [1] "Mon Jan 25 14:41:45 2021"
-#&gt; ....
-#&gt; Minimisation finished
-#&gt; [1] "Mon Jan 25 14:41:46 2021"</div><div class='input'><span class='va'>f_saem_fomc</span> <span class='op'>&lt;-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Running main SAEM algorithm
-#&gt; [1] "Mon Jan 25 14:41:47 2021"
-#&gt; ....
-#&gt; Minimisation finished
-#&gt; [1] "Mon Jan 25 14:41:49 2021"</div><div class='input'><span class='va'>f_saem_dfop</span> <span class='op'>&lt;-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"DFOP"</span>, <span class='op'>]</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Running main SAEM algorithm
-#&gt; [1] "Mon Jan 25 14:41:49 2021"
-#&gt; ....
-#&gt; Minimisation finished
-#&gt; [1] "Mon Jan 25 14:41:52 2021"</div><div class='input'>
+</div><div class='output co'>#&gt; <span class='warning'>Warning: argument is not a function</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='error'>Error in rxModelVars_(obj): Not compatible with STRSXP: [type=NULL].</span></div><div class='input'><span class='va'>f_saem_fomc</span> <span class='op'>&lt;-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='warning'>Warning: argument is not a function</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='error'>Error in rxModelVars_(obj): Not compatible with STRSXP: [type=NULL].</span></div><div class='input'><span class='va'>f_saem_dfop</span> <span class='op'>&lt;-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"DFOP"</span>, <span class='op'>]</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='warning'>Warning: argument is not a function</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='error'>Error in rxModelVars_(obj): Not compatible with STRSXP: [type=NULL].</span></div><div class='input'>
<span class='co'># The returned saem.mmkin object contains an SaemixObject, therefore we can use</span>
<span class='co'># functions from saemix</span>
<span class='kw'><a href='https://rdrr.io/r/base/library.html'>library</a></span><span class='op'>(</span><span class='va'>saemix</span><span class='op'>)</span>
</div><div class='output co'>#&gt; <span class='message'>Package saemix, version 3.1.9000</span>
-#&gt; <span class='message'> please direct bugs, questions and feedback to emmanuelle.comets@inserm.fr</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/compare.saemix.html'>compare.saemix</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='va'>f_saem_sfo</span><span class='op'>$</span><span class='va'>so</span>, <span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, <span class='va'>f_saem_dfop</span><span class='op'>$</span><span class='va'>so</span><span class='op'>)</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in compare.saemix(list(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so)): 'compare.saemix' requires at least two models.</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, plot.type <span class='op'>=</span> <span class='st'>"convergence"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Plotting convergence plots</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, plot.type <span class='op'>=</span> <span class='st'>"individual.fit"</span><span class='op'>)</span>
-</div><div class='img'><img src='saem-1.png' alt='' width='700' height='433' /></div><div class='output co'>#&gt; Plotting individual fits</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, plot.type <span class='op'>=</span> <span class='st'>"npde"</span><span class='op'>)</span>
-</div><div class='img'><img src='saem-2.png' alt='' width='700' height='433' /></div><div class='output co'>#&gt; Simulating data using nsim = 1000 simulated datasets
-#&gt; Computing WRES and npde .
-#&gt; Plotting npde</div><div class='img'><img src='saem-3.png' alt='' width='700' height='433' /></div><div class='output co'>#&gt; ---------------------------------------------
-#&gt; Distribution of npde:
-#&gt; mean= -0.01528 (SE= 0.098 )
-#&gt; variance= 0.862 (SE= 0.13 )
-#&gt; skewness= 0.5016
-#&gt; kurtosis= 1.18
-#&gt; ---------------------------------------------
-#&gt;
-#&gt; Statistical tests
-#&gt; Wilcoxon signed rank test : 0.679
-#&gt; Fisher variance test : 0.36
-#&gt; SW test of normality : 0.0855 .
-#&gt; Global adjusted p-value : 0.257
-#&gt; ---
-#&gt; Signif. codes: '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
-#&gt; ---------------------------------------------</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, plot.type <span class='op'>=</span> <span class='st'>"vpc"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Performing simulations under the model.
-#&gt; Plotting VPC
-#&gt; Method used for VPC: binning by quantiles on X , dividing into the following intervals
-#&gt; Interval Centered.On
-#&gt; 1 (-1,3] 1.3
-#&gt; 2 (3,8] 7.4
-#&gt; 3 (8,14] 13.2
-#&gt; 4 (14,21] 20.5
-#&gt; 5 (21,37.7] 29.5
-#&gt; 6 (37.7,60] 50.4
-#&gt; 7 (60,90] 76.6
-#&gt; 8 (90,120] 109.0
-#&gt; 9 (120,180] 156.0 </div><div class='img'><img src='saem-4.png' alt='' width='700' height='433' /></div><div class='input'>
+#&gt; <span class='message'> please direct bugs, questions and feedback to emmanuelle.comets@inserm.fr</span></div><div class='output co'>#&gt; <span class='message'></span>
+#&gt; <span class='message'>Attaching package: ‘saemix’</span></div><div class='output co'>#&gt; <span class='message'>The following object is masked from ‘package:RxODE’:</span>
+#&gt; <span class='message'></span>
+#&gt; <span class='message'> phi</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/compare.saemix.html'>compare.saemix</a></span><span class='op'>(</span><span class='va'>f_saem_sfo</span><span class='op'>$</span><span class='va'>so</span>, <span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, <span class='va'>f_saem_dfop</span><span class='op'>$</span><span class='va'>so</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in compare.saemix(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so): object 'f_saem_sfo' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, plot.type <span class='op'>=</span> <span class='st'>"convergence"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'f_saem_fomc' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, plot.type <span class='op'>=</span> <span class='st'>"individual.fit"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'f_saem_fomc' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, plot.type <span class='op'>=</span> <span class='st'>"npde"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'f_saem_fomc' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, plot.type <span class='op'>=</span> <span class='st'>"vpc"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'f_saem_fomc' not found</span></div><div class='input'>
<span class='va'>f_mmkin_parent_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span>
<span class='va'>f_saem_fomc_tc</span> <span class='op'>&lt;-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin_parent_tc</span><span class='op'>[</span><span class='st'>"FOMC"</span>, <span class='op'>]</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Running main SAEM algorithm
-#&gt; [1] "Mon Jan 25 14:41:55 2021"
-#&gt; ....
-#&gt; Minimisation finished
-#&gt; [1] "Mon Jan 25 14:42:00 2021"</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/compare.saemix.html'>compare.saemix</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, <span class='va'>f_saem_fomc_tc</span><span class='op'>$</span><span class='va'>so</span><span class='op'>)</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in compare.saemix(list(f_saem_fomc$so, f_saem_fomc_tc$so)): 'compare.saemix' requires at least two models.</span></div><div class='input'>
+</div><div class='output co'>#&gt; <span class='warning'>Warning: argument is not a function</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='error'>Error in rxModelVars_(obj): Not compatible with STRSXP: [type=NULL].</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/compare.saemix.html'>compare.saemix</a></span><span class='op'>(</span><span class='va'>f_saem_fomc</span><span class='op'>$</span><span class='va'>so</span>, <span class='va'>f_saem_fomc_tc</span><span class='op'>$</span><span class='va'>so</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in compare.saemix(f_saem_fomc$so, f_saem_fomc_tc$so): object 'f_saem_fomc' not found</span></div><div class='input'>
<span class='va'>sfo_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,
A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span>
</div><div class='output co'>#&gt; <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='va'>fomc_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"FOMC"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,
@@ -345,314 +326,12 @@ using <a href='mmkin.html'>mmkin</a>.</p>
<span class='co'># When using the analytical solutions written for mkin this took around</span>
<span class='co'># four minutes</span>
<span class='va'>f_saem_sfo_sfo</span> <span class='op'>&lt;-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Running main SAEM algorithm
-#&gt; [1] "Mon Jan 25 14:42:02 2021"
-#&gt; ....
-#&gt; Minimisation finished
-#&gt; [1] "Mon Jan 25 14:42:07 2021"</div><div class='input'><span class='va'>f_saem_dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Running main SAEM algorithm
-#&gt; [1] "Mon Jan 25 14:42:08 2021"
-#&gt; ....
-#&gt; Minimisation finished
-#&gt; [1] "Mon Jan 25 14:42:17 2021"</div><div class='input'><span class='co'># We can use print, plot and summary methods to check the results</span>
+</div><div class='output co'>#&gt; <span class='warning'>Warning: argument is not a function</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='error'>Error in rxModelVars_(obj): Not compatible with STRSXP: [type=NULL].</span></div><div class='input'><span class='va'>f_saem_dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'>saem</span><span class='op'>(</span><span class='va'>f_mmkin</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='warning'>Warning: argument is not a function</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='error'>Error in rxModelVars_(obj): Not compatible with STRSXP: [type=NULL].</span></div><div class='input'><span class='co'># We can use print, plot and summary methods to check the results</span>
<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_saem_dfop_sfo</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Kinetic nonlinear mixed-effects model fit by SAEM
-#&gt; Structural model:
-#&gt; d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
-#&gt; time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
-#&gt; * parent
-#&gt; d_A1/dt = + f_parent_to_A1 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
-#&gt; * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
-#&gt; exp(-k2 * time))) * parent - k_A1 * A1
-#&gt;
-#&gt; Data:
-#&gt; 170 observations of 2 variable(s) grouped in 5 datasets
-#&gt;
-#&gt; Likelihood computed by importance sampling
-#&gt; AIC BIC logLik
-#&gt; 841.6 836.5 -407.8
-#&gt;
-#&gt; Fitted parameters:
-#&gt; estimate lower upper
-#&gt; parent_0 93.76647 91.15312 96.3798
-#&gt; log_k_A1 -6.13235 -8.45788 -3.8068
-#&gt; f_parent_qlogis -0.97364 -1.36940 -0.5779
-#&gt; log_k1 -2.53176 -3.80372 -1.2598
-#&gt; log_k2 -3.58667 -5.29524 -1.8781
-#&gt; g_qlogis 0.01238 -1.07968 1.1044
-#&gt; Var.parent_0 7.61106 -3.34955 18.5717
-#&gt; Var.log_k_A1 4.64679 -2.73133 12.0249
-#&gt; Var.f_parent_qlogis 0.19693 -0.05498 0.4488
-#&gt; Var.log_k1 2.01717 -0.51980 4.5542
-#&gt; Var.log_k2 3.63412 -0.92964 8.1979
-#&gt; Var.g_qlogis 0.20045 -0.97425 1.3751
-#&gt; a.1 1.88335 1.66636 2.1004
-#&gt; SD.parent_0 2.75881 0.77234 4.7453
-#&gt; SD.log_k_A1 2.15564 0.44429 3.8670
-#&gt; SD.f_parent_qlogis 0.44377 0.15994 0.7276
-#&gt; SD.log_k1 1.42027 0.52714 2.3134
-#&gt; SD.log_k2 1.90634 0.70934 3.1033
-#&gt; SD.g_qlogis 0.44771 -0.86417 1.7596</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_dfop_sfo</span><span class='op'>)</span>
-</div><div class='img'><img src='saem-5.png' alt='' width='700' height='433' /></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_saem_dfop_sfo</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; saemix version used for fitting: 3.1.9000
-#&gt; mkin version used for pre-fitting: 0.9.50.4
-#&gt; R version used for fitting: 4.0.3
-#&gt; Date of fit: Mon Jan 25 14:42:18 2021
-#&gt; Date of summary: Mon Jan 25 14:42:18 2021
-#&gt;
-#&gt; Equations:
-#&gt; d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
-#&gt; time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
-#&gt; * parent
-#&gt; d_A1/dt = + f_parent_to_A1 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
-#&gt; * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
-#&gt; exp(-k2 * time))) * parent - k_A1 * A1
-#&gt;
-#&gt; Data:
-#&gt; 170 observations of 2 variable(s) grouped in 5 datasets
-#&gt;
-#&gt; Model predictions using solution type analytical
-#&gt;
-#&gt; Fitted in 9.954 s using 300, 100 iterations
-#&gt;
-#&gt; Variance model: Constant variance
-#&gt;
-#&gt; Mean of starting values for individual parameters:
-#&gt; parent_0 log_k_A1 f_parent_qlogis log_k1 log_k2
-#&gt; 93.8102 -9.7647 -0.9711 -1.8799 -4.2708
-#&gt; g_qlogis
-#&gt; 0.1356
-#&gt;
-#&gt; Fixed degradation parameter values:
-#&gt; None
-#&gt;
-#&gt; Results:
-#&gt;
-#&gt; Likelihood computed by importance sampling
-#&gt; AIC BIC logLik
-#&gt; 841.6 836.5 -407.8
-#&gt;
-#&gt; Optimised parameters:
-#&gt; est. lower upper
-#&gt; parent_0 93.76647 91.153 96.3798
-#&gt; log_k_A1 -6.13235 -8.458 -3.8068
-#&gt; f_parent_qlogis -0.97364 -1.369 -0.5779
-#&gt; log_k1 -2.53176 -3.804 -1.2598
-#&gt; log_k2 -3.58667 -5.295 -1.8781
-#&gt; g_qlogis 0.01238 -1.080 1.1044
-#&gt;
-#&gt; Correlation:
-#&gt; prnt_0 lg__A1 f_prn_ log_k1 log_k2
-#&gt; log_k_A1 -0.013
-#&gt; f_parent_qlogis -0.025 0.050
-#&gt; log_k1 0.030 0.000 -0.005
-#&gt; log_k2 0.010 0.005 -0.003 0.032
-#&gt; g_qlogis -0.063 -0.015 0.010 -0.167 -0.177
-#&gt;
-#&gt; Random effects:
-#&gt; est. lower upper
-#&gt; SD.parent_0 2.7588 0.7723 4.7453
-#&gt; SD.log_k_A1 2.1556 0.4443 3.8670
-#&gt; SD.f_parent_qlogis 0.4438 0.1599 0.7276
-#&gt; SD.log_k1 1.4203 0.5271 2.3134
-#&gt; SD.log_k2 1.9063 0.7093 3.1033
-#&gt; SD.g_qlogis 0.4477 -0.8642 1.7596
-#&gt;
-#&gt; Variance model:
-#&gt; est. lower upper
-#&gt; a.1 1.883 1.666 2.1
-#&gt;
-#&gt; Backtransformed parameters:
-#&gt; est. lower upper
-#&gt; parent_0 93.766473 9.115e+01 96.37983
-#&gt; k_A1 0.002171 2.122e-04 0.02222
-#&gt; f_parent_to_A1 0.274156 2.027e-01 0.35942
-#&gt; k1 0.079519 2.229e-02 0.28371
-#&gt; k2 0.027691 5.015e-03 0.15288
-#&gt; g 0.503095 2.536e-01 0.75109
-#&gt;
-#&gt; Resulting formation fractions:
-#&gt; ff
-#&gt; parent_A1 0.2742
-#&gt; parent_sink 0.7258
-#&gt;
-#&gt; Estimated disappearance times:
-#&gt; DT50 DT90 DT50back DT50_k1 DT50_k2
-#&gt; parent 14.11 59.53 17.92 8.717 25.03
-#&gt; A1 319.21 1060.38 NA NA NA
-#&gt;
-#&gt; Data:
-#&gt; ds name time observed predicted residual std standardized
-#&gt; Dataset 6 parent 0 97.2 95.79523 -1.40477 1.883 -0.745888
-#&gt; Dataset 6 parent 0 96.4 95.79523 -0.60477 1.883 -0.321114
-#&gt; Dataset 6 parent 3 71.1 71.32042 0.22042 1.883 0.117035
-#&gt; Dataset 6 parent 3 69.2 71.32042 2.12042 1.883 1.125873
-#&gt; Dataset 6 parent 6 58.1 56.45256 -1.64744 1.883 -0.874739
-#&gt; Dataset 6 parent 6 56.6 56.45256 -0.14744 1.883 -0.078288
-#&gt; Dataset 6 parent 10 44.4 44.48523 0.08523 1.883 0.045256
-#&gt; Dataset 6 parent 10 43.4 44.48523 1.08523 1.883 0.576224
-#&gt; Dataset 6 parent 20 33.3 29.75774 -3.54226 1.883 -1.880826
-#&gt; Dataset 6 parent 20 29.2 29.75774 0.55774 1.883 0.296141
-#&gt; Dataset 6 parent 34 17.6 19.35710 1.75710 1.883 0.932966
-#&gt; Dataset 6 parent 34 18.0 19.35710 1.35710 1.883 0.720578
-#&gt; Dataset 6 parent 55 10.5 10.48443 -0.01557 1.883 -0.008266
-#&gt; Dataset 6 parent 55 9.3 10.48443 1.18443 1.883 0.628895
-#&gt; Dataset 6 parent 90 4.5 3.78622 -0.71378 1.883 -0.378995
-#&gt; Dataset 6 parent 90 4.7 3.78622 -0.91378 1.883 -0.485188
-#&gt; Dataset 6 parent 112 3.0 1.99608 -1.00392 1.883 -0.533048
-#&gt; Dataset 6 parent 112 3.4 1.99608 -1.40392 1.883 -0.745435
-#&gt; Dataset 6 parent 132 2.3 1.11539 -1.18461 1.883 -0.628990
-#&gt; Dataset 6 parent 132 2.7 1.11539 -1.58461 1.883 -0.841377
-#&gt; Dataset 6 A1 3 4.3 4.66132 0.36132 1.883 0.191849
-#&gt; Dataset 6 A1 3 4.6 4.66132 0.06132 1.883 0.032559
-#&gt; Dataset 6 A1 6 7.0 7.41087 0.41087 1.883 0.218157
-#&gt; Dataset 6 A1 6 7.2 7.41087 0.21087 1.883 0.111964
-#&gt; Dataset 6 A1 10 8.2 9.50878 1.30878 1.883 0.694921
-#&gt; Dataset 6 A1 10 8.0 9.50878 1.50878 1.883 0.801114
-#&gt; Dataset 6 A1 20 11.0 11.69902 0.69902 1.883 0.371157
-#&gt; Dataset 6 A1 20 13.7 11.69902 -2.00098 1.883 -1.062455
-#&gt; Dataset 6 A1 34 11.5 12.67784 1.17784 1.883 0.625396
-#&gt; Dataset 6 A1 34 12.7 12.67784 -0.02216 1.883 -0.011765
-#&gt; Dataset 6 A1 55 14.9 12.78556 -2.11444 1.883 -1.122701
-#&gt; Dataset 6 A1 55 14.5 12.78556 -1.71444 1.883 -0.910314
-#&gt; Dataset 6 A1 90 12.1 11.52954 -0.57046 1.883 -0.302898
-#&gt; Dataset 6 A1 90 12.3 11.52954 -0.77046 1.883 -0.409092
-#&gt; Dataset 6 A1 112 9.9 10.43825 0.53825 1.883 0.285793
-#&gt; Dataset 6 A1 112 10.2 10.43825 0.23825 1.883 0.126503
-#&gt; Dataset 6 A1 132 8.8 9.42830 0.62830 1.883 0.333609
-#&gt; Dataset 6 A1 132 7.8 9.42830 1.62830 1.883 0.864577
-#&gt; Dataset 7 parent 0 93.6 90.91477 -2.68523 1.883 -1.425772
-#&gt; Dataset 7 parent 0 92.3 90.91477 -1.38523 1.883 -0.735514
-#&gt; Dataset 7 parent 3 87.0 84.76874 -2.23126 1.883 -1.184726
-#&gt; Dataset 7 parent 3 82.2 84.76874 2.56874 1.883 1.363919
-#&gt; Dataset 7 parent 7 74.0 77.62735 3.62735 1.883 1.926003
-#&gt; Dataset 7 parent 7 73.9 77.62735 3.72735 1.883 1.979100
-#&gt; Dataset 7 parent 14 64.2 67.52266 3.32266 1.883 1.764224
-#&gt; Dataset 7 parent 14 69.5 67.52266 -1.97734 1.883 -1.049904
-#&gt; Dataset 7 parent 30 54.0 52.41949 -1.58051 1.883 -0.839202
-#&gt; Dataset 7 parent 30 54.6 52.41949 -2.18051 1.883 -1.157783
-#&gt; Dataset 7 parent 60 41.1 39.36582 -1.73418 1.883 -0.920794
-#&gt; Dataset 7 parent 60 38.4 39.36582 0.96582 1.883 0.512818
-#&gt; Dataset 7 parent 90 32.5 33.75388 1.25388 1.883 0.665771
-#&gt; Dataset 7 parent 90 35.5 33.75388 -1.74612 1.883 -0.927132
-#&gt; Dataset 7 parent 120 28.1 30.41716 2.31716 1.883 1.230335
-#&gt; Dataset 7 parent 120 29.0 30.41716 1.41716 1.883 0.752464
-#&gt; Dataset 7 parent 180 26.5 25.66046 -0.83954 1.883 -0.445767
-#&gt; Dataset 7 parent 180 27.6 25.66046 -1.93954 1.883 -1.029832
-#&gt; Dataset 7 A1 3 3.9 2.69355 -1.20645 1.883 -0.640585
-#&gt; Dataset 7 A1 3 3.1 2.69355 -0.40645 1.883 -0.215811
-#&gt; Dataset 7 A1 7 6.9 5.81807 -1.08193 1.883 -0.574470
-#&gt; Dataset 7 A1 7 6.6 5.81807 -0.78193 1.883 -0.415180
-#&gt; Dataset 7 A1 14 10.4 10.22529 -0.17471 1.883 -0.092767
-#&gt; Dataset 7 A1 14 8.3 10.22529 1.92529 1.883 1.022265
-#&gt; Dataset 7 A1 30 14.4 16.75484 2.35484 1.883 1.250345
-#&gt; Dataset 7 A1 30 13.7 16.75484 3.05484 1.883 1.622022
-#&gt; Dataset 7 A1 60 22.1 22.22540 0.12540 1.883 0.066583
-#&gt; Dataset 7 A1 60 22.3 22.22540 -0.07460 1.883 -0.039610
-#&gt; Dataset 7 A1 90 27.5 24.38799 -3.11201 1.883 -1.652376
-#&gt; Dataset 7 A1 90 25.4 24.38799 -1.01201 1.883 -0.537344
-#&gt; Dataset 7 A1 120 28.0 25.53294 -2.46706 1.883 -1.309927
-#&gt; Dataset 7 A1 120 26.6 25.53294 -1.06706 1.883 -0.566572
-#&gt; Dataset 7 A1 180 25.8 26.94943 1.14943 1.883 0.610309
-#&gt; Dataset 7 A1 180 25.3 26.94943 1.64943 1.883 0.875793
-#&gt; Dataset 8 parent 0 91.9 91.53246 -0.36754 1.883 -0.195151
-#&gt; Dataset 8 parent 0 90.8 91.53246 0.73246 1.883 0.388914
-#&gt; Dataset 8 parent 1 64.9 67.73197 2.83197 1.883 1.503686
-#&gt; Dataset 8 parent 1 66.2 67.73197 1.53197 1.883 0.813428
-#&gt; Dataset 8 parent 3 43.5 41.58448 -1.91552 1.883 -1.017081
-#&gt; Dataset 8 parent 3 44.1 41.58448 -2.51552 1.883 -1.335661
-#&gt; Dataset 8 parent 8 18.3 19.62286 1.32286 1.883 0.702395
-#&gt; Dataset 8 parent 8 18.1 19.62286 1.52286 1.883 0.808589
-#&gt; Dataset 8 parent 14 10.2 10.77819 0.57819 1.883 0.306999
-#&gt; Dataset 8 parent 14 10.8 10.77819 -0.02181 1.883 -0.011582
-#&gt; Dataset 8 parent 27 4.9 3.26977 -1.63023 1.883 -0.865599
-#&gt; Dataset 8 parent 27 3.3 3.26977 -0.03023 1.883 -0.016051
-#&gt; Dataset 8 parent 48 1.6 0.48024 -1.11976 1.883 -0.594557
-#&gt; Dataset 8 parent 48 1.5 0.48024 -1.01976 1.883 -0.541460
-#&gt; Dataset 8 parent 70 1.1 0.06438 -1.03562 1.883 -0.549881
-#&gt; Dataset 8 parent 70 0.9 0.06438 -0.83562 1.883 -0.443688
-#&gt; Dataset 8 A1 1 9.6 7.61539 -1.98461 1.883 -1.053761
-#&gt; Dataset 8 A1 1 7.7 7.61539 -0.08461 1.883 -0.044923
-#&gt; Dataset 8 A1 3 15.0 15.47954 0.47954 1.883 0.254622
-#&gt; Dataset 8 A1 3 15.1 15.47954 0.37954 1.883 0.201525
-#&gt; Dataset 8 A1 8 21.2 20.22616 -0.97384 1.883 -0.517076
-#&gt; Dataset 8 A1 8 21.1 20.22616 -0.87384 1.883 -0.463979
-#&gt; Dataset 8 A1 14 19.7 20.00067 0.30067 1.883 0.159645
-#&gt; Dataset 8 A1 14 18.9 20.00067 1.10067 1.883 0.584419
-#&gt; Dataset 8 A1 27 17.5 16.38142 -1.11858 1.883 -0.593929
-#&gt; Dataset 8 A1 27 15.9 16.38142 0.48142 1.883 0.255619
-#&gt; Dataset 8 A1 48 9.5 10.25357 0.75357 1.883 0.400123
-#&gt; Dataset 8 A1 48 9.8 10.25357 0.45357 1.883 0.240833
-#&gt; Dataset 8 A1 70 6.2 5.95728 -0.24272 1.883 -0.128878
-#&gt; Dataset 8 A1 70 6.1 5.95728 -0.14272 1.883 -0.075781
-#&gt; Dataset 9 parent 0 99.8 97.47274 -2.32726 1.883 -1.235697
-#&gt; Dataset 9 parent 0 98.3 97.47274 -0.82726 1.883 -0.439246
-#&gt; Dataset 9 parent 1 77.1 79.72257 2.62257 1.883 1.392500
-#&gt; Dataset 9 parent 1 77.2 79.72257 2.52257 1.883 1.339404
-#&gt; Dataset 9 parent 3 59.0 56.26497 -2.73503 1.883 -1.452212
-#&gt; Dataset 9 parent 3 58.1 56.26497 -1.83503 1.883 -0.974342
-#&gt; Dataset 9 parent 8 27.4 31.66985 4.26985 1.883 2.267151
-#&gt; Dataset 9 parent 8 29.2 31.66985 2.46985 1.883 1.311410
-#&gt; Dataset 9 parent 14 19.1 22.39789 3.29789 1.883 1.751071
-#&gt; Dataset 9 parent 14 29.6 22.39789 -7.20211 1.883 -3.824090
-#&gt; Dataset 9 parent 27 10.1 14.21758 4.11758 1.883 2.186301
-#&gt; Dataset 9 parent 27 18.2 14.21758 -3.98242 1.883 -2.114537
-#&gt; Dataset 9 parent 48 4.5 7.27921 2.77921 1.883 1.475671
-#&gt; Dataset 9 parent 48 9.1 7.27921 -1.82079 1.883 -0.966780
-#&gt; Dataset 9 parent 70 2.3 3.61470 1.31470 1.883 0.698065
-#&gt; Dataset 9 parent 70 2.9 3.61470 0.71470 1.883 0.379485
-#&gt; Dataset 9 parent 91 2.0 1.85303 -0.14697 1.883 -0.078038
-#&gt; Dataset 9 parent 91 1.8 1.85303 0.05303 1.883 0.028155
-#&gt; Dataset 9 parent 120 2.0 0.73645 -1.26355 1.883 -0.670906
-#&gt; Dataset 9 parent 120 2.2 0.73645 -1.46355 1.883 -0.777099
-#&gt; Dataset 9 A1 1 4.2 3.87843 -0.32157 1.883 -0.170743
-#&gt; Dataset 9 A1 1 3.9 3.87843 -0.02157 1.883 -0.011453
-#&gt; Dataset 9 A1 3 7.4 8.90535 1.50535 1.883 0.799291
-#&gt; Dataset 9 A1 3 7.9 8.90535 1.00535 1.883 0.533807
-#&gt; Dataset 9 A1 8 14.5 13.75172 -0.74828 1.883 -0.397312
-#&gt; Dataset 9 A1 8 13.7 13.75172 0.05172 1.883 0.027462
-#&gt; Dataset 9 A1 14 14.2 14.97541 0.77541 1.883 0.411715
-#&gt; Dataset 9 A1 14 12.2 14.97541 2.77541 1.883 1.473650
-#&gt; Dataset 9 A1 27 13.7 14.94728 1.24728 1.883 0.662266
-#&gt; Dataset 9 A1 27 13.2 14.94728 1.74728 1.883 0.927750
-#&gt; Dataset 9 A1 48 13.6 13.66078 0.06078 1.883 0.032272
-#&gt; Dataset 9 A1 48 15.4 13.66078 -1.73922 1.883 -0.923470
-#&gt; Dataset 9 A1 70 10.4 11.84899 1.44899 1.883 0.769365
-#&gt; Dataset 9 A1 70 11.6 11.84899 0.24899 1.883 0.132204
-#&gt; Dataset 9 A1 91 10.0 10.09177 0.09177 1.883 0.048727
-#&gt; Dataset 9 A1 91 9.5 10.09177 0.59177 1.883 0.314211
-#&gt; Dataset 9 A1 120 9.1 7.91379 -1.18621 1.883 -0.629841
-#&gt; Dataset 9 A1 120 9.0 7.91379 -1.08621 1.883 -0.576745
-#&gt; Dataset 10 parent 0 96.1 93.65257 -2.44743 1.883 -1.299505
-#&gt; Dataset 10 parent 0 94.3 93.65257 -0.64743 1.883 -0.343763
-#&gt; Dataset 10 parent 8 73.9 77.85906 3.95906 1.883 2.102132
-#&gt; Dataset 10 parent 8 73.9 77.85906 3.95906 1.883 2.102132
-#&gt; Dataset 10 parent 14 69.4 70.17143 0.77143 1.883 0.409606
-#&gt; Dataset 10 parent 14 73.1 70.17143 -2.92857 1.883 -1.554974
-#&gt; Dataset 10 parent 21 65.6 63.99188 -1.60812 1.883 -0.853862
-#&gt; Dataset 10 parent 21 65.3 63.99188 -1.30812 1.883 -0.694572
-#&gt; Dataset 10 parent 41 55.9 54.64292 -1.25708 1.883 -0.667467
-#&gt; Dataset 10 parent 41 54.4 54.64292 0.24292 1.883 0.128985
-#&gt; Dataset 10 parent 63 47.0 49.61303 2.61303 1.883 1.387433
-#&gt; Dataset 10 parent 63 49.3 49.61303 0.31303 1.883 0.166207
-#&gt; Dataset 10 parent 91 44.7 45.17807 0.47807 1.883 0.253839
-#&gt; Dataset 10 parent 91 46.7 45.17807 -1.52193 1.883 -0.808096
-#&gt; Dataset 10 parent 120 42.1 41.27970 -0.82030 1.883 -0.435552
-#&gt; Dataset 10 parent 120 41.3 41.27970 -0.02030 1.883 -0.010778
-#&gt; Dataset 10 A1 8 3.3 3.99294 0.69294 1.883 0.367929
-#&gt; Dataset 10 A1 8 3.4 3.99294 0.59294 1.883 0.314832
-#&gt; Dataset 10 A1 14 3.9 5.92756 2.02756 1.883 1.076570
-#&gt; Dataset 10 A1 14 2.9 5.92756 3.02756 1.883 1.607538
-#&gt; Dataset 10 A1 21 6.4 7.47313 1.07313 1.883 0.569799
-#&gt; Dataset 10 A1 21 7.2 7.47313 0.27313 1.883 0.145025
-#&gt; Dataset 10 A1 41 9.1 9.76819 0.66819 1.883 0.354786
-#&gt; Dataset 10 A1 41 8.5 9.76819 1.26819 1.883 0.673367
-#&gt; Dataset 10 A1 63 11.7 10.94733 -0.75267 1.883 -0.399643
-#&gt; Dataset 10 A1 63 12.0 10.94733 -1.05267 1.883 -0.558933
-#&gt; Dataset 10 A1 91 13.3 11.93773 -1.36227 1.883 -0.723321
-#&gt; Dataset 10 A1 91 13.2 11.93773 -1.26227 1.883 -0.670224
-#&gt; Dataset 10 A1 120 14.3 12.77666 -1.52334 1.883 -0.808847
-#&gt; Dataset 10 A1 120 12.1 12.77666 0.67666 1.883 0.359282</div><div class='input'>
+</div><div class='output co'>#&gt; <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'print': object 'f_saem_dfop_sfo' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saem_dfop_sfo</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'plot': object 'f_saem_dfop_sfo' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_saem_dfop_sfo</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'f_saem_dfop_sfo' not found</span></div><div class='input'>
<span class='co'># The following takes about 6 minutes</span>
<span class='co'>#f_saem_dfop_sfo_deSolve &lt;- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve",</span>
<span class='co'># control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))</span>
diff --git a/docs/dev/reference/schaefer07_complex_case-1.png b/docs/dev/reference/schaefer07_complex_case-1.png
index 16e657dd..96aab2dc 100644
--- a/docs/dev/reference/schaefer07_complex_case-1.png
+++ b/docs/dev/reference/schaefer07_complex_case-1.png
Binary files differ
diff --git a/docs/dev/reference/schaefer07_complex_case.html b/docs/dev/reference/schaefer07_complex_case.html
index 83555b99..4ccad5c4 100644
--- a/docs/dev/reference/schaefer07_complex_case.html
+++ b/docs/dev/reference/schaefer07_complex_case.html
@@ -74,7 +74,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -123,7 +123,7 @@
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -186,15 +186,15 @@
</div><div class='img'><img src='schaefer07_complex_case-1.png' alt='' width='700' height='433' /></div><div class='input'> <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span>
</div><div class='output co'>#&gt; $ff
#&gt; parent_A1 parent_B1 parent_C1 parent_sink A1_A2 A1_sink
-#&gt; 0.3809620 0.1954665 0.4235715 0.0000000 0.4479662 0.5520338
+#&gt; 0.3809620 0.1954667 0.4235713 0.0000000 0.4479619 0.5520381
#&gt;
#&gt; $distimes
#&gt; DT50 DT90
#&gt; parent 13.95078 46.34350
-#&gt; A1 49.75343 165.27731
-#&gt; B1 37.26912 123.80533
-#&gt; C1 11.23131 37.30959
-#&gt; A2 28.50569 94.69386
+#&gt; A1 49.75342 165.27728
+#&gt; B1 37.26908 123.80520
+#&gt; C1 11.23131 37.30961
+#&gt; A2 28.50624 94.69567
#&gt; </div><div class='input'> <span class='co'># }</span>
<span class='co'># Compare with the results obtained in the original publication</span>
<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>schaefer07_complex_results</span><span class='op'>)</span>
diff --git a/docs/dev/reference/sigma_twocomp-1.png b/docs/dev/reference/sigma_twocomp-1.png
index 21db3145..6e61684e 100644
--- a/docs/dev/reference/sigma_twocomp-1.png
+++ b/docs/dev/reference/sigma_twocomp-1.png
Binary files differ
diff --git a/docs/dev/reference/sigma_twocomp.html b/docs/dev/reference/sigma_twocomp.html
index 8212e480..b7d295b2 100644
--- a/docs/dev/reference/sigma_twocomp.html
+++ b/docs/dev/reference/sigma_twocomp.html
@@ -73,7 +73,7 @@ dependence of the measured value \(y\):" />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@ dependence of the measured value \(y\):" />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -188,6 +188,10 @@ Additive, Multiplicative, and Mixed Analytical Errors. Clinical Chemistry
24(11), 1895-1898.</p>
<p>Rocke, David M. and Lorenzato, Stefan (1995) A two-component model for
measurement error in analytical chemistry. Technometrics 37(2), 176-184.</p>
+<p>Ranke J and Meinecke S (2019) Error Models for the Kinetic Evaluation of Chemical
+Degradation Data. <em>Environments</em> 6(12) 124
+doi: <a href='https://doi.org/10.3390/environments6120124'>10.3390/environments6120124</a>
+.</p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><div class='input'><span class='va'>times</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>0</span>, <span class='fl'>1</span>, <span class='fl'>3</span>, <span class='fl'>7</span>, <span class='fl'>14</span>, <span class='fl'>28</span>, <span class='fl'>60</span>, <span class='fl'>90</span>, <span class='fl'>120</span><span class='op'>)</span>
diff --git a/docs/dev/reference/summary.mkinfit.html b/docs/dev/reference/summary.mkinfit.html
index f314dfa8..494731e9 100644
--- a/docs/dev/reference/summary.mkinfit.html
+++ b/docs/dev/reference/summary.mkinfit.html
@@ -76,7 +76,7 @@ values." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -125,7 +125,7 @@ values." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -236,17 +236,17 @@ EC Document Reference Sanco/10058/2005 version 2.0, 434 pp,
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><div class='input'>
<span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span>, <span class='va'>FOCUS_2006_A</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; mkin version used for fitting: 0.9.50.4
+</div><div class='output co'>#&gt; mkin version used for fitting: 1.0.3.9000
#&gt; R version used for fitting: 4.0.3
-#&gt; Date of fit: Mon Nov 30 16:01:20 2020
-#&gt; Date of summary: Mon Nov 30 16:01:20 2020
+#&gt; Date of fit: Mon Feb 15 17:13:09 2021
+#&gt; Date of summary: Mon Feb 15 17:13:09 2021
#&gt;
#&gt; Equations:
#&gt; d_parent/dt = - k_parent * parent
#&gt;
#&gt; Model predictions using solution type analytical
#&gt;
-#&gt; Fitted using 131 model solutions performed in 0.028 s
+#&gt; Fitted using 131 model solutions performed in 0.027 s
#&gt;
#&gt; Error model: Constant variance
#&gt;
diff --git a/docs/dev/reference/summary.nlme.mmkin.html b/docs/dev/reference/summary.nlme.mmkin.html
index 2aeadc46..b2f6624a 100644
--- a/docs/dev/reference/summary.nlme.mmkin.html
+++ b/docs/dev/reference/summary.nlme.mmkin.html
@@ -76,7 +76,7 @@ endpoints such as formation fractions and DT50 values. Optionally
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -125,7 +125,7 @@ endpoints such as formation fractions and DT50 values. Optionally
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -263,12 +263,12 @@ José Pinheiro and Douglas Bates for the components inherited from nlme</p>
<span class='va'>f_mmkin</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='va'>ds_sfo_syn</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>, cores <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span>
</div><div class='output co'>#&gt; <span class='warning'>Warning: Optimisation did not converge:</span>
#&gt; <span class='warning'>iteration limit reached without convergence (10)</span></div><div class='input'><span class='va'>f_nlme</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_mmkin</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlme</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; nlme version used for fitting: 3.1.150.1
-#&gt; mkin version used for pre-fitting: 0.9.50.4
+</div><div class='output co'>#&gt; <span class='warning'>Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlme</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; nlme version used for fitting: 3.1.152
+#&gt; mkin version used for pre-fitting: 1.0.3.9000
#&gt; R version used for fitting: 4.0.3
-#&gt; Date of fit: Mon Nov 30 16:01:23 2020
-#&gt; Date of summary: Mon Nov 30 16:01:23 2020
+#&gt; Date of fit: Mon Feb 15 17:13:12 2021
+#&gt; Date of summary: Mon Feb 15 17:13:12 2021
#&gt;
#&gt; Equations:
#&gt; d_parent/dt = - k_parent * parent
@@ -278,148 +278,146 @@ José Pinheiro and Douglas Bates for the components inherited from nlme</p>
#&gt;
#&gt; Model predictions using solution type analytical
#&gt;
-#&gt; Fitted in 0.996 s using 6 iterations
+#&gt; Fitted in 0.544 s using 4 iterations
#&gt;
#&gt; Variance model: Two-component variance function
#&gt;
#&gt; Mean of starting values for individual parameters:
#&gt; parent_0 log_k_parent
-#&gt; 101.568773 -4.454103
+#&gt; 101.569 -4.454
#&gt;
#&gt; Fixed degradation parameter values:
#&gt; None
#&gt;
#&gt; Results:
#&gt;
-#&gt; AIC BIC logLik
-#&gt; 586.4159 603.9145 -286.2079
+#&gt; AIC BIC logLik
+#&gt; 584.5 599.5 -286.2
#&gt;
#&gt; Optimised, transformed parameters with symmetric confidence intervals:
#&gt; lower est. upper
-#&gt; parent_0 99.360 101.593 103.825
-#&gt; log_k_parent -4.979 -4.451 -3.924
+#&gt; parent_0 99.371 101.592 103.814
+#&gt; log_k_parent -4.973 -4.449 -3.926
#&gt;
#&gt; Correlation:
#&gt; prnt_0
-#&gt; log_k_parent 0.155
+#&gt; log_k_parent 0.051
#&gt;
#&gt; Random effects:
#&gt; Formula: list(parent_0 ~ 1, log_k_parent ~ 1)
#&gt; Level: ds
-#&gt; Structure: General positive-definite, Log-Cholesky parametrization
-#&gt; StdDev Corr
-#&gt; parent_0 0.2624248 prnt_0
-#&gt; log_k_parent 0.5907146 0.999
-#&gt; Residual 1.0000000
+#&gt; Structure: Diagonal
+#&gt; parent_0 log_k_parent Residual
+#&gt; StdDev: 6.924e-05 0.5863 1
#&gt;
#&gt; Variance function:
#&gt; Structure: Constant plus proportion of variance covariate
#&gt; Formula: ~fitted(.)
#&gt; Parameter estimates:
-#&gt; const prop
-#&gt; 6.56706e-24 7.89583e-02
+#&gt; const prop
+#&gt; 0.0001208853 0.0789968036
#&gt;
#&gt; Backtransformed parameters with asymmetric confidence intervals:
#&gt; lower est. upper
-#&gt; parent_0 99.360213 101.59280 103.82539
-#&gt; k_parent 0.006883 0.01166 0.01976
+#&gt; parent_0 99.370882 101.59243 103.81398
+#&gt; k_parent 0.006923 0.01168 0.01972
#&gt;
#&gt; Estimated disappearance times:
#&gt; DT50 DT90
-#&gt; parent 59.44 197.4
+#&gt; parent 59.32 197.1
#&gt;
#&gt; Data:
#&gt; ds name time observed predicted residual std standardized
-#&gt; ds 1 parent 0 104.1 101.417 2.68283 8.0077 0.335030
-#&gt; ds 1 parent 0 105.0 101.417 3.58283 8.0077 0.447422
-#&gt; ds 1 parent 1 98.5 100.624 -2.12400 7.9451 -0.267334
-#&gt; ds 1 parent 1 96.1 100.624 -4.52400 7.9451 -0.569407
-#&gt; ds 1 parent 3 101.9 99.056 2.84379 7.8213 0.363595
-#&gt; ds 1 parent 3 85.2 99.056 -13.85621 7.8213 -1.771597
-#&gt; ds 1 parent 7 99.1 95.994 3.10646 7.5795 0.409850
-#&gt; ds 1 parent 7 93.0 95.994 -2.99354 7.5795 -0.394953
-#&gt; ds 1 parent 14 88.1 90.860 -2.75997 7.1741 -0.384710
-#&gt; ds 1 parent 14 84.1 90.860 -6.75997 7.1741 -0.942268
-#&gt; ds 1 parent 28 80.2 81.402 -1.20174 6.4273 -0.186973
-#&gt; ds 1 parent 28 91.3 81.402 9.89826 6.4273 1.540024
-#&gt; ds 1 parent 60 65.1 63.316 1.78361 4.9994 0.356767
-#&gt; ds 1 parent 60 65.8 63.316 2.48361 4.9994 0.496785
-#&gt; ds 1 parent 90 47.8 50.029 -2.22862 3.9502 -0.564182
-#&gt; ds 1 parent 90 53.5 50.029 3.47138 3.9502 0.878792
-#&gt; ds 1 parent 120 37.6 39.529 -1.92946 3.1212 -0.618182
-#&gt; ds 1 parent 120 39.3 39.529 -0.22946 3.1212 -0.073516
-#&gt; ds 2 parent 0 107.9 101.711 6.18875 8.0309 0.770613
-#&gt; ds 2 parent 0 102.1 101.711 0.38875 8.0309 0.048406
-#&gt; ds 2 parent 1 103.8 100.174 3.62597 7.9096 0.458428
-#&gt; ds 2 parent 1 108.6 100.174 8.42597 7.9096 1.065287
-#&gt; ds 2 parent 3 91.0 97.169 -6.16895 7.6723 -0.804055
-#&gt; ds 2 parent 3 84.9 97.169 -12.26895 7.6723 -1.599124
-#&gt; ds 2 parent 7 79.3 91.427 -12.12652 7.2189 -1.679833
-#&gt; ds 2 parent 7 100.9 91.427 9.47348 7.2189 1.312320
-#&gt; ds 2 parent 14 77.3 82.182 -4.88174 6.4889 -0.752318
-#&gt; ds 2 parent 14 83.5 82.182 1.31826 6.4889 0.203155
-#&gt; ds 2 parent 28 66.8 66.402 0.39792 5.2430 0.075895
-#&gt; ds 2 parent 28 63.3 66.402 -3.10208 5.2430 -0.591662
-#&gt; ds 2 parent 60 40.8 40.789 0.01138 3.2206 0.003532
-#&gt; ds 2 parent 60 44.8 40.789 4.01138 3.2206 1.245537
-#&gt; ds 2 parent 90 27.8 25.830 1.97002 2.0395 0.965937
-#&gt; ds 2 parent 90 27.0 25.830 1.17002 2.0395 0.573682
-#&gt; ds 2 parent 120 15.2 16.357 -1.15721 1.2915 -0.895991
-#&gt; ds 2 parent 120 15.5 16.357 -0.85721 1.2915 -0.663710
-#&gt; ds 3 parent 0 97.7 101.907 -4.20726 8.0464 -0.522873
-#&gt; ds 3 parent 0 88.2 101.907 -13.70726 8.0464 -1.703521
-#&gt; ds 3 parent 1 109.9 99.522 10.37805 7.8581 1.320685
-#&gt; ds 3 parent 1 97.8 99.522 -1.72195 7.8581 -0.219130
-#&gt; ds 3 parent 3 100.5 94.918 5.58248 7.4945 0.744875
-#&gt; ds 3 parent 3 77.4 94.918 -17.51752 7.4945 -2.337375
-#&gt; ds 3 parent 7 78.3 86.338 -8.03788 6.8171 -1.179077
-#&gt; ds 3 parent 7 90.3 86.338 3.96212 6.8171 0.581204
-#&gt; ds 3 parent 14 76.0 73.147 2.85281 5.7756 0.493944
-#&gt; ds 3 parent 14 79.1 73.147 5.95281 5.7756 1.030687
-#&gt; ds 3 parent 28 46.0 52.504 -6.50373 4.1456 -1.568826
-#&gt; ds 3 parent 28 53.4 52.504 0.89627 4.1456 0.216197
-#&gt; ds 3 parent 60 25.1 24.605 0.49461 1.9428 0.254586
-#&gt; ds 3 parent 60 21.4 24.605 -3.20539 1.9428 -1.649882
-#&gt; ds 3 parent 90 11.0 12.090 -1.09046 0.9546 -1.142271
-#&gt; ds 3 parent 90 14.2 12.090 2.10954 0.9546 2.209770
-#&gt; ds 3 parent 120 5.8 5.941 -0.14094 0.4691 -0.300464
-#&gt; ds 3 parent 120 6.1 5.941 0.15906 0.4691 0.339077
-#&gt; ds 4 parent 0 95.3 101.177 -5.87672 7.9887 -0.735625
-#&gt; ds 4 parent 0 102.0 101.177 0.82328 7.9887 0.103056
-#&gt; ds 4 parent 1 104.4 100.716 3.68438 7.9523 0.463307
-#&gt; ds 4 parent 1 105.4 100.716 4.68438 7.9523 0.589057
-#&gt; ds 4 parent 3 113.7 99.800 13.90026 7.8800 1.763989
-#&gt; ds 4 parent 3 82.3 99.800 -17.49974 7.8800 -2.220774
-#&gt; ds 4 parent 7 98.1 97.993 0.10713 7.7374 0.013846
-#&gt; ds 4 parent 7 87.8 97.993 -10.19287 7.7374 -1.317359
-#&gt; ds 4 parent 14 97.9 94.909 2.99079 7.4939 0.399098
-#&gt; ds 4 parent 14 104.8 94.909 9.89079 7.4939 1.319851
-#&gt; ds 4 parent 28 85.0 89.030 -4.02995 7.0297 -0.573279
-#&gt; ds 4 parent 28 77.2 89.030 -11.82995 7.0297 -1.682864
-#&gt; ds 4 parent 60 82.2 76.923 5.27690 6.0737 0.868808
-#&gt; ds 4 parent 60 86.1 76.923 9.17690 6.0737 1.510919
-#&gt; ds 4 parent 90 70.5 67.073 3.42743 5.2959 0.647182
-#&gt; ds 4 parent 90 61.7 67.073 -5.37257 5.2959 -1.014470
-#&gt; ds 4 parent 120 60.0 58.483 1.51654 4.6178 0.328416
-#&gt; ds 4 parent 120 56.4 58.483 -2.08346 4.6178 -0.451184
-#&gt; ds 5 parent 0 92.6 101.752 -9.15161 8.0341 -1.139091
-#&gt; ds 5 parent 0 116.5 101.752 14.74839 8.0341 1.835716
-#&gt; ds 5 parent 1 108.0 100.069 7.93112 7.9013 1.003778
-#&gt; ds 5 parent 1 104.9 100.069 4.83112 7.9013 0.611436
-#&gt; ds 5 parent 3 100.5 96.786 3.71355 7.6421 0.485934
-#&gt; ds 5 parent 3 89.5 96.786 -7.28645 7.6421 -0.953462
-#&gt; ds 5 parent 7 91.7 90.541 1.15895 7.1490 0.162114
-#&gt; ds 5 parent 7 95.1 90.541 4.55895 7.1490 0.637707
-#&gt; ds 5 parent 14 82.2 80.566 1.63437 6.3613 0.256923
-#&gt; ds 5 parent 14 84.5 80.566 3.93437 6.3613 0.618483
-#&gt; ds 5 parent 28 60.5 63.791 -3.29084 5.0368 -0.653357
-#&gt; ds 5 parent 28 72.8 63.791 9.00916 5.0368 1.788662
-#&gt; ds 5 parent 60 38.3 37.412 0.88840 2.9540 0.300748
-#&gt; ds 5 parent 60 40.7 37.412 3.28840 2.9540 1.113217
-#&gt; ds 5 parent 90 22.5 22.685 -0.18500 1.7912 -0.103287
-#&gt; ds 5 parent 90 20.8 22.685 -1.88500 1.7912 -1.052387
-#&gt; ds 5 parent 120 13.4 13.755 -0.35534 1.0861 -0.327173
-#&gt; ds 5 parent 120 13.8 13.755 0.04466 1.0861 0.041118</div><div class='input'>
+#&gt; ds 1 parent 0 104.1 101.592 2.50757 8.0255 0.312451
+#&gt; ds 1 parent 0 105.0 101.592 3.40757 8.0255 0.424594
+#&gt; ds 1 parent 1 98.5 100.796 -2.29571 7.9625 -0.288313
+#&gt; ds 1 parent 1 96.1 100.796 -4.69571 7.9625 -0.589725
+#&gt; ds 1 parent 3 101.9 99.221 2.67904 7.8381 0.341796
+#&gt; ds 1 parent 3 85.2 99.221 -14.02096 7.8381 -1.788812
+#&gt; ds 1 parent 7 99.1 96.145 2.95512 7.5951 0.389081
+#&gt; ds 1 parent 7 93.0 96.145 -3.14488 7.5951 -0.414065
+#&gt; ds 1 parent 14 88.1 90.989 -2.88944 7.1879 -0.401987
+#&gt; ds 1 parent 14 84.1 90.989 -6.88944 7.1879 -0.958480
+#&gt; ds 1 parent 28 80.2 81.493 -1.29305 6.4377 -0.200857
+#&gt; ds 1 parent 28 91.3 81.493 9.80695 6.4377 1.523364
+#&gt; ds 1 parent 60 65.1 63.344 1.75642 5.0039 0.351008
+#&gt; ds 1 parent 60 65.8 63.344 2.45642 5.0039 0.490898
+#&gt; ds 1 parent 90 47.8 50.018 -2.21764 3.9512 -0.561252
+#&gt; ds 1 parent 90 53.5 50.018 3.48236 3.9512 0.881335
+#&gt; ds 1 parent 120 37.6 39.495 -1.89515 3.1200 -0.607423
+#&gt; ds 1 parent 120 39.3 39.495 -0.19515 3.1200 -0.062549
+#&gt; ds 2 parent 0 107.9 101.592 6.30757 8.0255 0.785943
+#&gt; ds 2 parent 0 102.1 101.592 0.50757 8.0255 0.063245
+#&gt; ds 2 parent 1 103.8 100.058 3.74159 7.9043 0.473361
+#&gt; ds 2 parent 1 108.6 100.058 8.54159 7.9043 1.080626
+#&gt; ds 2 parent 3 91.0 97.060 -6.05952 7.6674 -0.790297
+#&gt; ds 2 parent 3 84.9 97.060 -12.15952 7.6674 -1.585874
+#&gt; ds 2 parent 7 79.3 91.329 -12.02867 7.2147 -1.667251
+#&gt; ds 2 parent 7 100.9 91.329 9.57133 7.2147 1.326647
+#&gt; ds 2 parent 14 77.3 82.102 -4.80185 6.4858 -0.740366
+#&gt; ds 2 parent 14 83.5 82.102 1.39815 6.4858 0.215571
+#&gt; ds 2 parent 28 66.8 66.351 0.44945 5.2415 0.085748
+#&gt; ds 2 parent 28 63.3 66.351 -3.05055 5.2415 -0.582002
+#&gt; ds 2 parent 60 40.8 40.775 0.02474 3.2211 0.007679
+#&gt; ds 2 parent 60 44.8 40.775 4.02474 3.2211 1.249485
+#&gt; ds 2 parent 90 27.8 25.832 1.96762 2.0407 0.964198
+#&gt; ds 2 parent 90 27.0 25.832 1.16762 2.0407 0.572171
+#&gt; ds 2 parent 120 15.2 16.366 -1.16561 1.2928 -0.901595
+#&gt; ds 2 parent 120 15.5 16.366 -0.86561 1.2928 -0.669547
+#&gt; ds 3 parent 0 97.7 101.592 -3.89243 8.0255 -0.485009
+#&gt; ds 3 parent 0 88.2 101.592 -13.39243 8.0255 -1.668739
+#&gt; ds 3 parent 1 109.9 99.218 10.68196 7.8379 1.362858
+#&gt; ds 3 parent 1 97.8 99.218 -1.41804 7.8379 -0.180921
+#&gt; ds 3 parent 3 100.5 94.634 5.86555 7.4758 0.784603
+#&gt; ds 3 parent 3 77.4 94.634 -17.23445 7.4758 -2.305360
+#&gt; ds 3 parent 7 78.3 86.093 -7.79273 6.8011 -1.145813
+#&gt; ds 3 parent 7 90.3 86.093 4.20727 6.8011 0.618620
+#&gt; ds 3 parent 14 76.0 72.958 3.04222 5.7634 0.527848
+#&gt; ds 3 parent 14 79.1 72.958 6.14222 5.7634 1.065722
+#&gt; ds 3 parent 28 46.0 52.394 -6.39404 4.1390 -1.544842
+#&gt; ds 3 parent 28 53.4 52.394 1.00596 4.1390 0.243046
+#&gt; ds 3 parent 60 25.1 24.582 0.51786 1.9419 0.266676
+#&gt; ds 3 parent 60 21.4 24.582 -3.18214 1.9419 -1.638664
+#&gt; ds 3 parent 90 11.0 12.092 -1.09202 0.9552 -1.143199
+#&gt; ds 3 parent 90 14.2 12.092 2.10798 0.9552 2.206776
+#&gt; ds 3 parent 120 5.8 5.948 -0.14810 0.4699 -0.315178
+#&gt; ds 3 parent 120 6.1 5.948 0.15190 0.4699 0.323282
+#&gt; ds 4 parent 0 95.3 101.592 -6.29243 8.0255 -0.784057
+#&gt; ds 4 parent 0 102.0 101.592 0.40757 8.0255 0.050784
+#&gt; ds 4 parent 1 104.4 101.125 3.27549 7.9885 0.410025
+#&gt; ds 4 parent 1 105.4 101.125 4.27549 7.9885 0.535205
+#&gt; ds 4 parent 3 113.7 100.195 13.50487 7.9151 1.706218
+#&gt; ds 4 parent 3 82.3 100.195 -17.89513 7.9151 -2.260886
+#&gt; ds 4 parent 7 98.1 98.362 -0.26190 7.7703 -0.033706
+#&gt; ds 4 parent 7 87.8 98.362 -10.56190 7.7703 -1.359270
+#&gt; ds 4 parent 14 97.9 95.234 2.66590 7.5232 0.354357
+#&gt; ds 4 parent 14 104.8 95.234 9.56590 7.5232 1.271521
+#&gt; ds 4 parent 28 85.0 89.274 -4.27372 7.0523 -0.606001
+#&gt; ds 4 parent 28 77.2 89.274 -12.07372 7.0523 -1.712017
+#&gt; ds 4 parent 60 82.2 77.013 5.18661 6.0838 0.852526
+#&gt; ds 4 parent 60 86.1 77.013 9.08661 6.0838 1.493571
+#&gt; ds 4 parent 90 70.5 67.053 3.44692 5.2970 0.650733
+#&gt; ds 4 parent 90 61.7 67.053 -5.35308 5.2970 -1.010591
+#&gt; ds 4 parent 120 60.0 58.381 1.61905 4.6119 0.351058
+#&gt; ds 4 parent 120 56.4 58.381 -1.98095 4.6119 -0.429530
+#&gt; ds 5 parent 0 92.6 101.592 -8.99243 8.0255 -1.120485
+#&gt; ds 5 parent 0 116.5 101.592 14.90757 8.0255 1.857531
+#&gt; ds 5 parent 1 108.0 99.914 8.08560 7.8929 1.024413
+#&gt; ds 5 parent 1 104.9 99.914 4.98560 7.8929 0.631655
+#&gt; ds 5 parent 3 100.5 96.641 3.85898 7.6343 0.505477
+#&gt; ds 5 parent 3 89.5 96.641 -7.14102 7.6343 -0.935382
+#&gt; ds 5 parent 7 91.7 90.412 1.28752 7.1423 0.180267
+#&gt; ds 5 parent 7 95.1 90.412 4.68752 7.1423 0.656304
+#&gt; ds 5 parent 14 82.2 80.463 1.73715 6.3563 0.273295
+#&gt; ds 5 parent 14 84.5 80.463 4.03715 6.3563 0.635141
+#&gt; ds 5 parent 28 60.5 63.728 -3.22788 5.0343 -0.641178
+#&gt; ds 5 parent 28 72.8 63.728 9.07212 5.0343 1.802062
+#&gt; ds 5 parent 60 38.3 37.399 0.90061 2.9544 0.304835
+#&gt; ds 5 parent 60 40.7 37.399 3.30061 2.9544 1.117174
+#&gt; ds 5 parent 90 22.5 22.692 -0.19165 1.7926 -0.106913
+#&gt; ds 5 parent 90 20.8 22.692 -1.89165 1.7926 -1.055273
+#&gt; ds 5 parent 120 13.4 13.768 -0.36790 1.0876 -0.338259
+#&gt; ds 5 parent 120 13.8 13.768 0.03210 1.0876 0.029517</div><div class='input'>
</div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
diff --git a/docs/dev/reference/summary.nlmixr.mmkin.html b/docs/dev/reference/summary.nlmixr.mmkin.html
new file mode 100644
index 00000000..891e26ea
--- /dev/null
+++ b/docs/dev/reference/summary.nlmixr.mmkin.html
@@ -0,0 +1,1022 @@
+<!-- Generated by pkgdown: do not edit by hand -->
+<!DOCTYPE html>
+<html lang="en">
+ <head>
+ <meta charset="utf-8">
+<meta http-equiv="X-UA-Compatible" content="IE=edge">
+<meta name="viewport" content="width=device-width, initial-scale=1.0">
+
+<title>Summary method for class "nlmixr.mmkin" — summary.nlmixr.mmkin • mkin</title>
+
+
+<!-- jquery -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
+<!-- Bootstrap -->
+
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" />
+
+<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
+
+<!-- bootstrap-toc -->
+<link rel="stylesheet" href="../bootstrap-toc.css">
+<script src="../bootstrap-toc.js"></script>
+
+<!-- Font Awesome icons -->
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" />
+
+<!-- clipboard.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script>
+
+<!-- headroom.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script>
+
+<!-- pkgdown -->
+<link href="../pkgdown.css" rel="stylesheet">
+<script src="../pkgdown.js"></script>
+
+
+
+
+<meta property="og:title" content="Summary method for class "nlmixr.mmkin" — summary.nlmixr.mmkin" />
+<meta property="og:description" content="Lists model equations, initial parameter values, optimised parameters
+for fixed effects (population), random effects (deviations from the
+population mean) and residual error model, as well as the resulting
+endpoints such as formation fractions and DT50 values. Optionally
+(default is FALSE), the data are listed in full." />
+
+
+<meta name="robots" content="noindex">
+
+<!-- mathjax -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
+
+<!--[if lt IE 9]>
+<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
+<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
+<![endif]-->
+
+
+
+ </head>
+
+ <body data-spy="scroll" data-target="#toc">
+ <div class="container template-reference-topic">
+ <header>
+ <div class="navbar navbar-default navbar-fixed-top" role="navigation">
+ <div class="container">
+ <div class="navbar-header">
+ <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
+ <span class="sr-only">Toggle navigation</span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ </button>
+ <span class="navbar-brand">
+ <a class="navbar-link" href="../index.html">mkin</a>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
+ </span>
+ </div>
+
+ <div id="navbar" class="navbar-collapse collapse">
+ <ul class="nav navbar-nav">
+ <li>
+ <a href="../reference/index.html">Functions and data</a>
+</li>
+<li class="dropdown">
+ <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
+ Articles
+
+ <span class="caret"></span>
+ </a>
+ <ul class="dropdown-menu" role="menu">
+ <li>
+ <a href="../articles/mkin.html">Introduction to mkin</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
+ </li>
+ <li>
+ <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
+ </li>
+ </ul>
+</li>
+<li>
+ <a href="../news/index.html">News</a>
+</li>
+ </ul>
+ <ul class="nav navbar-nav navbar-right">
+ <li>
+ <a href="https://github.com/jranke/mkin/">
+ <span class="fab fa-github fa-lg"></span>
+
+ </a>
+</li>
+ </ul>
+
+ </div><!--/.nav-collapse -->
+ </div><!--/.container -->
+</div><!--/.navbar -->
+
+
+
+ </header>
+
+<div class="row">
+ <div class="col-md-9 contents">
+ <div class="page-header">
+ <h1>Summary method for class "nlmixr.mmkin"</h1>
+ <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/summary.nlmixr.mmkin.R'><code>R/summary.nlmixr.mmkin.R</code></a></small>
+ <div class="hidden name"><code>summary.nlmixr.mmkin.Rd</code></div>
+ </div>
+
+ <div class="ref-description">
+ <p>Lists model equations, initial parameter values, optimised parameters
+for fixed effects (population), random effects (deviations from the
+population mean) and residual error model, as well as the resulting
+endpoints such as formation fractions and DT50 values. Optionally
+(default is FALSE), the data are listed in full.</p>
+ </div>
+
+ <pre class="usage"><span class='co'># S3 method for nlmixr.mmkin</span>
+<span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>object</span>, data <span class='op'>=</span> <span class='cn'>FALSE</span>, verbose <span class='op'>=</span> <span class='cn'>FALSE</span>, distimes <span class='op'>=</span> <span class='cn'>TRUE</span>, <span class='va'>...</span><span class='op'>)</span>
+
+<span class='co'># S3 method for summary.nlmixr.mmkin</span>
+<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>x</span>, digits <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/Extremes.html'>max</a></span><span class='op'>(</span><span class='fl'>3</span>, <span class='fu'><a href='https://rdrr.io/r/base/options.html'>getOption</a></span><span class='op'>(</span><span class='st'>"digits"</span><span class='op'>)</span> <span class='op'>-</span> <span class='fl'>3</span><span class='op'>)</span>, verbose <span class='op'>=</span> <span class='va'>x</span><span class='op'>$</span><span class='va'>verbose</span>, <span class='va'>...</span><span class='op'>)</span></pre>
+
+ <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
+ <table class="ref-arguments">
+ <colgroup><col class="name" /><col class="desc" /></colgroup>
+ <tr>
+ <th>object</th>
+ <td><p>an object of class <a href='nlmixr.mmkin.html'>nlmixr.mmkin</a></p></td>
+ </tr>
+ <tr>
+ <th>data</th>
+ <td><p>logical, indicating whether the full data should be included in
+the summary.</p></td>
+ </tr>
+ <tr>
+ <th>verbose</th>
+ <td><p>Should the summary be verbose?</p></td>
+ </tr>
+ <tr>
+ <th>distimes</th>
+ <td><p>logical, indicating whether DT50 and DT90 values should be
+included.</p></td>
+ </tr>
+ <tr>
+ <th>...</th>
+ <td><p>optional arguments passed to methods like <code>print</code>.</p></td>
+ </tr>
+ <tr>
+ <th>x</th>
+ <td><p>an object of class summary.nlmixr.mmkin</p></td>
+ </tr>
+ <tr>
+ <th>digits</th>
+ <td><p>Number of digits to use for printing</p></td>
+ </tr>
+ </table>
+
+ <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
+
+ <p>The summary function returns a list obtained in the fit, with at
+least the following additional components</p>
+<dt>nlmixrversion, mkinversion, Rversion</dt><dd><p>The nlmixr, mkin and R versions used</p></dd>
+<dt>date.fit, date.summary</dt><dd><p>The dates where the fit and the summary were
+produced</p></dd>
+<dt>diffs</dt><dd><p>The differential equations used in the degradation model</p></dd>
+<dt>use_of_ff</dt><dd><p>Was maximum or minimum use made of formation fractions</p></dd>
+<dt>data</dt><dd><p>The data</p></dd>
+<dt>confint_back</dt><dd><p>Backtransformed parameters, with confidence intervals if available</p></dd>
+<dt>ff</dt><dd><p>The estimated formation fractions derived from the fitted
+model.</p></dd>
+<dt>distimes</dt><dd><p>The DT50 and DT90 values for each observed variable.</p></dd>
+<dt>SFORB</dt><dd><p>If applicable, eigenvalues of SFORB components of the model.</p></dd>
+The print method is called for its side effect, i.e. printing the summary.
+
+ <h2 class="hasAnchor" id="author"><a class="anchor" href="#author"></a>Author</h2>
+
+ <p>Johannes Ranke for the mkin specific parts
+nlmixr authors for the parts inherited from nlmixr.</p>
+
+ <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
+ <pre class="examples"><div class='input'><span class='co'># Generate five datasets following DFOP-SFO kinetics</span>
+<span class='va'>sampling_times</span> <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>0</span>, <span class='fl'>1</span>, <span class='fl'>3</span>, <span class='fl'>7</span>, <span class='fl'>14</span>, <span class='fl'>28</span>, <span class='fl'>60</span>, <span class='fl'>90</span>, <span class='fl'>120</span><span class='op'>)</span>
+<span class='va'>dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='st'>"m1"</span><span class='op'>)</span>,
+ m1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+<span class='fu'><a href='https://rdrr.io/r/base/Random.html'>set.seed</a></span><span class='op'>(</span><span class='fl'>1234</span><span class='op'>)</span>
+<span class='va'>k1_in</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/Lognormal.html'>rlnorm</a></span><span class='op'>(</span><span class='fl'>5</span>, <span class='fu'><a href='https://rdrr.io/r/base/Log.html'>log</a></span><span class='op'>(</span><span class='fl'>0.1</span><span class='op'>)</span>, <span class='fl'>0.3</span><span class='op'>)</span>
+<span class='va'>k2_in</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/Lognormal.html'>rlnorm</a></span><span class='op'>(</span><span class='fl'>5</span>, <span class='fu'><a href='https://rdrr.io/r/base/Log.html'>log</a></span><span class='op'>(</span><span class='fl'>0.02</span><span class='op'>)</span>, <span class='fl'>0.3</span><span class='op'>)</span>
+<span class='va'>g_in</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/Logistic.html'>plogis</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/stats/Normal.html'>rnorm</a></span><span class='op'>(</span><span class='fl'>5</span>, <span class='fu'><a href='https://rdrr.io/r/stats/Logistic.html'>qlogis</a></span><span class='op'>(</span><span class='fl'>0.5</span><span class='op'>)</span>, <span class='fl'>0.3</span><span class='op'>)</span><span class='op'>)</span>
+<span class='va'>f_parent_to_m1_in</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/Logistic.html'>plogis</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/stats/Normal.html'>rnorm</a></span><span class='op'>(</span><span class='fl'>5</span>, <span class='fu'><a href='https://rdrr.io/r/stats/Logistic.html'>qlogis</a></span><span class='op'>(</span><span class='fl'>0.3</span><span class='op'>)</span>, <span class='fl'>0.3</span><span class='op'>)</span><span class='op'>)</span>
+<span class='va'>k_m1_in</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/stats/Lognormal.html'>rlnorm</a></span><span class='op'>(</span><span class='fl'>5</span>, <span class='fu'><a href='https://rdrr.io/r/base/Log.html'>log</a></span><span class='op'>(</span><span class='fl'>0.02</span><span class='op'>)</span>, <span class='fl'>0.3</span><span class='op'>)</span>
+
+<span class='va'>pred_dfop_sfo</span> <span class='op'>&lt;-</span> <span class='kw'>function</span><span class='op'>(</span><span class='va'>k1</span>, <span class='va'>k2</span>, <span class='va'>g</span>, <span class='va'>f_parent_to_m1</span>, <span class='va'>k_m1</span><span class='op'>)</span> <span class='op'>{</span>
+ <span class='fu'><a href='mkinpredict.html'>mkinpredict</a></span><span class='op'>(</span><span class='va'>dfop_sfo</span>,
+ <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>k1 <span class='op'>=</span> <span class='va'>k1</span>, k2 <span class='op'>=</span> <span class='va'>k2</span>, g <span class='op'>=</span> <span class='va'>g</span>, f_parent_to_m1 <span class='op'>=</span> <span class='va'>f_parent_to_m1</span>, k_m1 <span class='op'>=</span> <span class='va'>k_m1</span><span class='op'>)</span>,
+ <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fl'>100</span>, m1 <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span>,
+ <span class='va'>sampling_times</span><span class='op'>)</span>
+<span class='op'>}</span>
+
+<span class='va'>ds_mean_dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fl'>1</span><span class='op'>:</span><span class='fl'>5</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>{</span>
+ <span class='fu'><a href='mkinpredict.html'>mkinpredict</a></span><span class='op'>(</span><span class='va'>dfop_sfo</span>,
+ <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>k1 <span class='op'>=</span> <span class='va'>k1_in</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span>, k2 <span class='op'>=</span> <span class='va'>k2_in</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span>, g <span class='op'>=</span> <span class='va'>g_in</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span>,
+ f_parent_to_m1 <span class='op'>=</span> <span class='va'>f_parent_to_m1_in</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span>, k_m1 <span class='op'>=</span> <span class='va'>k_m1_in</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span><span class='op'>)</span>,
+ <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fl'>100</span>, m1 <span class='op'>=</span> <span class='fl'>0</span><span class='op'>)</span>,
+ <span class='va'>sampling_times</span><span class='op'>)</span>
+<span class='op'>}</span><span class='op'>)</span>
+<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>ds_mean_dfop_sfo</span><span class='op'>)</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span><span class='op'>(</span><span class='st'>"ds"</span>, <span class='fl'>1</span><span class='op'>:</span><span class='fl'>5</span><span class='op'>)</span>
+
+<span class='va'>ds_syn_dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>ds_mean_dfop_sfo</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='op'>{</span>
+ <span class='fu'><a href='add_err.html'>add_err</a></span><span class='op'>(</span><span class='va'>ds</span>,
+ sdfunc <span class='op'>=</span> <span class='kw'>function</span><span class='op'>(</span><span class='va'>value</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/MathFun.html'>sqrt</a></span><span class='op'>(</span><span class='fl'>1</span><span class='op'>^</span><span class='fl'>2</span> <span class='op'>+</span> <span class='va'>value</span><span class='op'>^</span><span class='fl'>2</span> <span class='op'>*</span> <span class='fl'>0.07</span><span class='op'>^</span><span class='fl'>2</span><span class='op'>)</span>,
+ n <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span><span class='op'>[[</span><span class='fl'>1</span><span class='op'>]</span><span class='op'>]</span>
+<span class='op'>}</span><span class='op'>)</span>
+
+<span class='co'># \dontrun{</span>
+<span class='co'># Evaluate using mmkin and nlmixr</span>
+<span class='va'>f_mmkin_dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='va'>dfop_sfo</span><span class='op'>)</span>, <span class='va'>ds_syn_dfop_sfo</span>,
+ quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>, cores <span class='op'>=</span> <span class='fl'>5</span><span class='op'>)</span>
+<span class='va'>f_saemix_dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'>mkin</span><span class='fu'>::</span><span class='fu'><a href='saem.html'>saem</a></span><span class='op'>(</span><span class='va'>f_mmkin_dfop_sfo</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; Running main SAEM algorithm
+#&gt; [1] "Tue Oct 5 17:27:02 2021"
+#&gt; ....
+#&gt; Minimisation finished
+#&gt; [1] "Tue Oct 5 17:27:13 2021"</div><div class='input'><span class='va'>f_nlme_dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'>mkin</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_mmkin_dfop_sfo</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='warning'>Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#&gt; <span class='warning'>Warning: Iteration 6, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_dfop_sfo</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; 1: 1.0127e+02 -3.8515e+00 -2.0719e+00 -3.7271e+00 -1.9335e+00 4.0311e-01 6.9594e+00 1.5021e-01 5.3947e-01 1.9686e-01 3.7429e-01 5.4209e-01 8.4121e+00 7.3391e-02 7.1185e+00 2.5869e-01
+#&gt; 2: 1.0136e+02 -3.8005e+00 -2.3424e+00 -4.0759e+00 -1.6475e+00 1.1598e-01 6.6115e+00 1.4406e-01 5.1249e-01 1.8701e-01 3.5786e-01 5.1499e-01 4.9102e+00 6.2829e-02 4.7230e+00 7.8901e-02
+#&gt; 3: 1.0126e+02 -4.0285e+00 -2.3629e+00 -4.1271e+00 -1.1733e+00 1.7634e-02 6.2809e+00 1.6892e-01 4.8687e-01 1.7766e-01 3.3997e-01 4.8924e-01 3.2256e+00 6.6693e-02 3.3261e+00 8.7190e-02
+#&gt; 4: 1.0105e+02 -4.0894e+00 -2.5516e+00 -4.1037e+00 -1.0816e+00 4.5377e-02 5.9668e+00 1.6048e-01 4.6252e-01 1.6878e-01 3.2297e-01 4.6478e-01 2.4343e+00 7.0557e-02 2.2610e+00 9.2498e-02
+#&gt; 5: 1.0101e+02 -4.1364e+00 -2.4605e+00 -4.0737e+00 -1.0920e+00 -4.7953e-03 5.9593e+00 1.5245e-01 4.3940e-01 1.8078e-01 3.0682e-01 5.4688e-01 1.7424e+00 7.4776e-02 1.5144e+00 1.0787e-01
+#&gt; 6: 1.0042e+02 -4.0933e+00 -2.4472e+00 -4.1090e+00 -9.7996e-01 -9.0472e-02 6.0175e+00 1.4483e-01 4.1743e-01 1.8824e-01 2.9148e-01 5.3033e-01 1.5545e+00 6.8588e-02 1.3401e+00 9.8865e-02
+#&gt; 7: 1.0078e+02 -4.0911e+00 -2.4335e+00 -4.0758e+00 -9.9422e-01 -7.8849e-02 6.6318e+00 1.3759e-01 3.9656e-01 1.7882e-01 2.7691e-01 5.0381e-01 1.3780e+00 6.9978e-02 1.1346e+00 9.6162e-02
+#&gt; 8: 1.0077e+02 -4.0196e+00 -2.4345e+00 -4.0444e+00 -9.3483e-01 -1.1032e-01 6.3002e+00 1.3071e-01 3.7673e-01 1.6988e-01 2.6306e-01 4.8191e-01 1.1774e+00 7.4232e-02 1.0270e+00 9.5616e-02
+#&gt; 9: 1.0118e+02 -4.0436e+00 -2.4649e+00 -4.0207e+00 -8.9829e-01 -1.7784e-01 5.9852e+00 1.2417e-01 3.5789e-01 1.6139e-01 2.4991e-01 5.5466e-01 1.1040e+00 7.1515e-02 1.0342e+00 9.3972e-02
+#&gt; 10: 1.0143e+02 -4.0523e+00 -2.3737e+00 -4.0184e+00 -9.1167e-01 -2.3828e-01 5.8520e+00 1.1797e-01 3.4196e-01 1.5332e-01 2.3741e-01 5.2849e-01 1.0510e+00 7.5719e-02 1.0638e+00 9.3973e-02
+#&gt; 11: 1.0119e+02 -4.0699e+00 -2.3680e+00 -4.0191e+00 -9.4858e-01 -1.7310e-01 6.9958e+00 1.1207e-01 3.6891e-01 1.4565e-01 2.2554e-01 5.0206e-01 1.0247e+00 7.5497e-02 1.0292e+00 9.3707e-02
+#&gt; 12: 1.0121e+02 -4.0189e+00 -2.4198e+00 -4.0139e+00 -9.1693e-01 -2.0613e-01 6.6460e+00 1.0646e-01 3.5046e-01 1.3837e-01 2.1427e-01 5.7696e-01 1.1046e+00 7.6090e-02 9.3689e-01 9.4115e-02
+#&gt; 13: 1.0083e+02 -4.0451e+00 -2.4395e+00 -4.0235e+00 -9.4535e-01 -1.4723e-01 6.3137e+00 1.0114e-01 3.3294e-01 1.3145e-01 2.0355e-01 5.4811e-01 1.0360e+00 7.3381e-02 9.7078e-01 9.1659e-02
+#&gt; 14: 1.0056e+02 -4.0401e+00 -2.4045e+00 -4.0054e+00 -9.4191e-01 -1.3928e-01 5.9980e+00 9.6084e-02 3.4934e-01 1.2488e-01 1.9338e-01 5.2071e-01 1.0303e+00 7.7118e-02 8.8372e-01 9.0469e-02
+#&gt; 15: 1.0070e+02 -4.0388e+00 -2.4210e+00 -4.0113e+00 -9.1136e-01 -1.2702e-01 5.6981e+00 9.1279e-02 3.3187e-01 1.1864e-01 1.8371e-01 4.9467e-01 1.0486e+00 7.2427e-02 7.8179e-01 9.1572e-02
+#&gt; 16: 1.0078e+02 -4.0175e+00 -2.4766e+00 -4.0191e+00 -9.0733e-01 -1.1952e-01 5.4132e+00 8.6716e-02 3.1528e-01 1.1270e-01 1.7452e-01 4.8928e-01 9.7799e-01 8.1464e-02 8.2935e-01 8.6520e-02
+#&gt; 17: 1.0069e+02 -4.0533e+00 -2.5110e+00 -4.0294e+00 -9.1841e-01 -6.8363e-03 5.1426e+00 8.2380e-02 2.9952e-01 1.0707e-01 1.6580e-01 4.6482e-01 9.1609e-01 8.1008e-02 8.1783e-01 8.8818e-02
+#&gt; 18: 99.9647 -4.0672 -2.5327 -4.0416 -0.9273 0.0097 4.8854 0.0783 0.2970 0.1280 0.1941 0.5053 0.9306 0.0764 0.8097 0.0881
+#&gt; 19: 1.0027e+02 -4.0667e+00 -2.4653e+00 -4.0579e+00 -9.2776e-01 3.0417e-02 4.6412e+00 7.4348e-02 3.3694e-01 1.2164e-01 1.8435e-01 5.1797e-01 9.7386e-01 7.4954e-02 7.9297e-01 8.9915e-02
+#&gt; 20: 1.0006e+02 -4.0935e+00 -2.4804e+00 -4.0721e+00 -9.3737e-01 1.9496e-02 4.4091e+00 7.0630e-02 3.3728e-01 1.2544e-01 1.7513e-01 6.0925e-01 1.0232e+00 7.4618e-02 7.9988e-01 8.9642e-02
+#&gt; 21: 1.0043e+02 -4.0542e+00 -2.5168e+00 -4.0623e+00 -9.1553e-01 3.9474e-02 4.1887e+00 6.7099e-02 3.4553e-01 1.1917e-01 1.6638e-01 6.0827e-01 1.0155e+00 8.0771e-02 7.8424e-01 8.6213e-02
+#&gt; 22: 1.0049e+02 -4.0449e+00 -2.5082e+00 -4.0849e+00 -9.2553e-01 4.5424e-02 3.9792e+00 6.3744e-02 3.2825e-01 1.2365e-01 1.5806e-01 5.8922e-01 8.2860e-01 8.3384e-02 8.2525e-01 8.9218e-02
+#&gt; 23: 1.0067e+02 -4.0411e+00 -2.5460e+00 -4.0736e+00 -9.2578e-01 5.2422e-02 3.7803e+00 6.0557e-02 3.1661e-01 1.2306e-01 1.5016e-01 5.8274e-01 9.3412e-01 8.0508e-02 8.1829e-01 8.6377e-02
+#&gt; 24: 1.0091e+02 -4.0314e+00 -2.5298e+00 -4.0566e+00 -8.9743e-01 3.7634e-02 3.5913e+00 5.7529e-02 3.5267e-01 1.2194e-01 1.4265e-01 5.5360e-01 9.6271e-01 7.6960e-02 8.8466e-01 8.5693e-02
+#&gt; 25: 1.0100e+02 -4.0442e+00 -2.5399e+00 -4.0568e+00 -8.9494e-01 1.7415e-02 3.4117e+00 5.4652e-02 3.3504e-01 1.2781e-01 1.3552e-01 5.2592e-01 9.6040e-01 7.7299e-02 8.9561e-01 8.6893e-02
+#&gt; 26: 1.0111e+02 -4.0354e+00 -2.5182e+00 -4.0899e+00 -9.0799e-01 7.6464e-02 4.8614e+00 5.1920e-02 3.1829e-01 1.2142e-01 1.3110e-01 4.9963e-01 9.6997e-01 7.4932e-02 8.2521e-01 9.3659e-02
+#&gt; 27: 1.0159e+02 -4.0653e+00 -2.4934e+00 -4.0803e+00 -9.5632e-01 2.8659e-03 4.6184e+00 4.9324e-02 3.0237e-01 1.1535e-01 1.4743e-01 4.7465e-01 9.4314e-01 7.7860e-02 8.9820e-01 8.8210e-02
+#&gt; 28: 1.0154e+02 -4.0487e+00 -2.4844e+00 -4.0511e+00 -9.6473e-01 -4.7382e-02 4.3874e+00 4.6858e-02 3.2049e-01 1.0958e-01 1.5243e-01 4.5091e-01 9.8808e-01 7.4786e-02 8.6833e-01 8.8720e-02
+#&gt; 29: 1.0144e+02 -4.0414e+00 -2.4105e+00 -4.0504e+00 -9.4039e-01 -3.6753e-02 4.1681e+00 4.4515e-02 3.2754e-01 1.0410e-01 1.4940e-01 4.2837e-01 9.5520e-01 7.8507e-02 8.2408e-01 8.5998e-02
+#&gt; 30: 1.0137e+02 -4.0292e+00 -2.4174e+00 -4.0382e+00 -9.3180e-01 -7.1482e-02 5.4636e+00 4.2289e-02 3.2074e-01 9.8896e-02 1.6877e-01 4.0695e-01 8.8153e-01 7.5106e-02 8.5239e-01 8.8266e-02
+#&gt; 31: 1.0105e+02 -4.0387e+00 -2.4368e+00 -4.0346e+00 -9.1098e-01 -5.4730e-02 5.1904e+00 4.0175e-02 3.0470e-01 9.3951e-02 1.6034e-01 3.8660e-01 8.7853e-01 8.0278e-02 8.7981e-01 8.6404e-02
+#&gt; 32: 1.0147e+02 -4.0435e+00 -2.4530e+00 -4.0365e+00 -9.1241e-01 -7.1281e-02 4.9309e+00 3.8166e-02 2.8947e-01 9.4694e-02 1.7475e-01 3.6727e-01 8.7005e-01 8.1398e-02 8.7784e-01 8.8976e-02
+#&gt; 33: 1.0144e+02 -4.0092e+00 -2.4279e+00 -4.0090e+00 -8.8656e-01 -1.4017e-01 5.2945e+00 3.6258e-02 2.9770e-01 1.0169e-01 1.6601e-01 3.4891e-01 9.2202e-01 7.8841e-02 8.7551e-01 8.4011e-02
+#&gt; 34: 1.0157e+02 -3.9839e+00 -2.4469e+00 -4.0180e+00 -8.3877e-01 -1.4664e-01 6.3506e+00 3.4445e-02 2.8282e-01 1.0831e-01 1.6850e-01 3.3146e-01 8.4403e-01 7.9056e-02 8.4620e-01 8.6363e-02
+#&gt; 35: 1.0149e+02 -3.9928e+00 -2.4771e+00 -4.0106e+00 -8.6974e-01 -1.4219e-01 6.2039e+00 3.2722e-02 2.8123e-01 1.1283e-01 1.6008e-01 3.1489e-01 9.1308e-01 7.8685e-02 7.8939e-01 8.7289e-02
+#&gt; 36: 1.0162e+02 -4.0099e+00 -2.4822e+00 -3.9880e+00 -8.7959e-01 -1.3237e-01 5.8937e+00 3.1086e-02 3.2200e-01 1.0719e-01 1.6077e-01 2.9914e-01 9.0821e-01 8.4066e-02 7.5559e-01 8.4838e-02
+#&gt; 37: 1.0102e+02 -3.9962e+00 -2.4852e+00 -3.9954e+00 -8.8307e-01 -9.2070e-02 5.5991e+00 2.9532e-02 3.3713e-01 1.0183e-01 1.5333e-01 2.8419e-01 8.3918e-01 8.5231e-02 7.6007e-01 8.9541e-02
+#&gt; 38: 1.0102e+02 -3.9987e+00 -2.5129e+00 -3.9833e+00 -8.7454e-01 -1.6469e-01 5.3191e+00 2.8055e-02 3.2027e-01 1.0792e-01 1.4707e-01 2.6998e-01 9.1490e-01 8.4715e-02 7.6778e-01 8.9241e-02
+#&gt; 39: 1.0054e+02 -3.9875e+00 -2.4301e+00 -3.9797e+00 -8.7222e-01 -1.9597e-01 7.3800e+00 2.6653e-02 3.0426e-01 1.0801e-01 1.4393e-01 2.5648e-01 9.5901e-01 7.8320e-02 8.1559e-01 9.2429e-02
+#&gt; 40: 1.0077e+02 -4.0057e+00 -2.4630e+00 -3.9849e+00 -8.6788e-01 -1.9606e-01 7.0110e+00 2.5320e-02 3.0385e-01 1.3164e-01 1.4567e-01 3.0284e-01 9.7123e-01 7.6328e-02 8.3681e-01 8.9349e-02
+#&gt; 41: 1.0069e+02 -4.0143e+00 -2.3805e+00 -3.9962e+00 -8.7503e-01 -1.8532e-01 6.6604e+00 2.4054e-02 3.0707e-01 1.4668e-01 1.5021e-01 3.0404e-01 1.0072e+00 7.3629e-02 9.4494e-01 8.4745e-02
+#&gt; 42: 1.0073e+02 -3.9861e+00 -2.4464e+00 -3.9919e+00 -8.7912e-01 -1.8435e-01 6.3274e+00 2.2851e-02 2.9171e-01 1.3935e-01 1.5080e-01 2.8883e-01 9.6502e-01 7.7470e-02 9.4221e-01 8.2459e-02
+#&gt; 43: 1.0104e+02 -3.9881e+00 -2.4156e+00 -3.9688e+00 -8.9448e-01 -2.3739e-01 6.0110e+00 2.1709e-02 2.7713e-01 1.3238e-01 1.5603e-01 2.7439e-01 9.7714e-01 7.1720e-02 8.5890e-01 8.6635e-02
+#&gt; 44: 1.0084e+02 -4.0117e+00 -2.4455e+00 -3.9753e+00 -8.8716e-01 -2.0112e-01 5.7105e+00 2.0623e-02 2.6327e-01 1.2741e-01 1.5200e-01 2.6067e-01 9.3289e-01 8.0543e-02 8.5055e-01 8.2921e-02
+#&gt; 45: 1.0071e+02 -3.9996e+00 -2.4359e+00 -3.9764e+00 -9.1082e-01 -2.4578e-01 5.4250e+00 1.9592e-02 2.5011e-01 1.3254e-01 1.6132e-01 2.8273e-01 9.5805e-01 7.7734e-02 7.8171e-01 8.4571e-02
+#&gt; 46: 1.0018e+02 -4.0077e+00 -2.4835e+00 -3.9739e+00 -8.6079e-01 -1.6592e-01 5.1537e+00 1.8613e-02 2.3760e-01 1.3830e-01 1.5392e-01 3.0295e-01 1.0931e+00 7.3274e-02 8.9544e-01 8.8388e-02
+#&gt; 47: 99.9834 -3.9991 -2.5292 -3.9863 -0.8820 -0.0796 4.8960 0.0177 0.2348 0.1376 0.1639 0.2878 0.9864 0.0837 0.9094 0.0832
+#&gt; 48: 99.9155 -4.0224 -2.5422 -3.9854 -0.8719 -0.0750 4.6512 0.0184 0.2251 0.1307 0.1596 0.2734 0.9841 0.0835 0.8696 0.0843
+#&gt; 49: 99.6136 -4.0397 -2.5172 -4.0115 -0.8774 -0.0922 5.2402 0.0175 0.2558 0.1242 0.1551 0.2597 0.9060 0.0816 0.8365 0.0869
+#&gt; 50: 99.4747 -4.0542 -2.4192 -3.9834 -0.9041 -0.1798 4.9782 0.0219 0.2695 0.1234 0.1474 0.2468 0.9269 0.0783 0.8593 0.0854
+#&gt; 51: 99.3401 -4.0386 -2.3951 -3.9661 -0.9181 -0.1887 4.7574 0.0213 0.2746 0.1522 0.1400 0.2344 0.9901 0.0781 0.8863 0.0928
+#&gt; 52: 99.7109 -4.0509 -2.4227 -3.9770 -0.9247 -0.1431 4.9004 0.0203 0.2688 0.1446 0.1330 0.2227 0.8999 0.0791 1.0265 0.0890
+#&gt; 53: 99.6496 -4.0397 -2.4398 -3.9752 -0.9193 -0.2119 5.1106 0.0193 0.2795 0.1527 0.1325 0.2116 0.8949 0.0788 0.9447 0.0872
+#&gt; 54: 99.9071 -4.0211 -2.3887 -3.9812 -0.9233 -0.1946 5.0887 0.0183 0.2763 0.1450 0.1365 0.2010 0.8793 0.0875 0.8643 0.0903
+#&gt; 55: 1.0012e+02 -4.0401e+00 -2.4203e+00 -3.9511e+00 -9.0712e-01 -2.5566e-01 5.7301e+00 1.7375e-02 2.7324e-01 1.3780e-01 1.6204e-01 1.9094e-01 9.7803e-01 7.6146e-02 9.0756e-01 8.7636e-02
+#&gt; 56: 1.0032e+02 -4.0207e+00 -2.4263e+00 -3.9533e+00 -8.7574e-01 -2.3076e-01 6.5321e+00 1.6507e-02 3.0821e-01 1.3091e-01 1.5394e-01 1.8139e-01 8.8520e-01 7.6350e-02 9.2796e-01 8.5283e-02
+#&gt; 57: 1.0028e+02 -4.0037e+00 -2.4301e+00 -3.9655e+00 -8.8472e-01 -1.8969e-01 9.8969e+00 1.5681e-02 2.9280e-01 1.2436e-01 1.4624e-01 1.7232e-01 9.2902e-01 7.4974e-02 8.9204e-01 8.4563e-02
+#&gt; 58: 1.0048e+02 -3.9928e+00 -2.4961e+00 -3.9709e+00 -9.0263e-01 -1.4516e-01 9.4021e+00 1.6151e-02 2.7816e-01 1.1814e-01 1.4165e-01 1.6370e-01 9.5145e-01 8.0233e-02 8.2896e-01 8.3498e-02
+#&gt; 59: 1.0060e+02 -4.0181e+00 -2.4963e+00 -3.9751e+00 -9.0684e-01 -1.1186e-01 8.9320e+00 1.9914e-02 3.0097e-01 1.1224e-01 1.4109e-01 1.5552e-01 9.9121e-01 7.3120e-02 8.6454e-01 8.2239e-02
+#&gt; 60: 1.0047e+02 -3.9976e+00 -2.4797e+00 -3.9780e+00 -8.9328e-01 -1.0814e-01 8.4854e+00 1.8918e-02 3.2275e-01 1.1591e-01 1.3404e-01 1.4774e-01 9.6968e-01 7.4984e-02 8.9831e-01 8.1655e-02
+#&gt; 61: 1.0040e+02 -4.0068e+00 -2.5217e+00 -3.9844e+00 -8.6447e-01 -1.0567e-01 8.0611e+00 1.7972e-02 3.1372e-01 1.1011e-01 1.2973e-01 1.4036e-01 9.1698e-01 7.8118e-02 9.1811e-01 8.4420e-02
+#&gt; 62: 1.0076e+02 -4.0080e+00 -2.4931e+00 -3.9623e+00 -8.9789e-01 -8.3896e-02 7.6580e+00 1.7073e-02 3.0460e-01 1.1254e-01 1.2324e-01 1.3334e-01 9.9032e-01 7.7618e-02 8.3808e-01 8.5031e-02
+#&gt; 63: 1.0064e+02 -4.0129e+00 -2.4731e+00 -3.9561e+00 -8.9103e-01 -8.8987e-02 7.2751e+00 1.6220e-02 2.8944e-01 1.1647e-01 1.4845e-01 1.2667e-01 1.0745e+00 7.6375e-02 8.4316e-01 8.6681e-02
+#&gt; 64: 1.0098e+02 -4.0094e+00 -2.4541e+00 -3.9604e+00 -9.1524e-01 -9.3413e-02 6.9114e+00 1.5409e-02 2.7497e-01 1.2065e-01 1.7095e-01 1.2034e-01 1.0963e+00 7.8304e-02 8.7104e-01 8.5727e-02
+#&gt; 65: 1.0070e+02 -4.0433e+00 -2.4793e+00 -3.9722e+00 -9.3012e-01 -6.5917e-02 6.5658e+00 1.4638e-02 2.7040e-01 1.1462e-01 1.9067e-01 1.1432e-01 9.7444e-01 8.4510e-02 8.7028e-01 8.6292e-02
+#&gt; 66: 1.0049e+02 -4.0656e+00 -2.4659e+00 -3.9898e+00 -9.4278e-01 -7.5929e-02 6.2375e+00 1.3906e-02 2.9347e-01 1.1997e-01 1.8114e-01 1.0860e-01 9.9830e-01 8.0902e-02 9.3551e-01 8.5261e-02
+#&gt; 67: 1.0046e+02 -4.0477e+00 -2.4685e+00 -3.9907e+00 -9.1503e-01 -9.8019e-02 5.9256e+00 1.3211e-02 3.2166e-01 1.1506e-01 1.7208e-01 1.0317e-01 8.6453e-01 9.0533e-02 8.3598e-01 8.6343e-02
+#&gt; 68: 1.0077e+02 -4.0575e+00 -2.4709e+00 -3.9523e+00 -9.2903e-01 -8.1099e-02 5.6294e+00 1.2818e-02 3.1005e-01 1.3665e-01 1.6347e-01 9.8015e-02 9.0181e-01 8.7058e-02 8.4937e-01 8.3248e-02
+#&gt; 69: 1.0086e+02 -4.0626e+00 -2.3922e+00 -3.9557e+00 -9.6741e-01 -3.5986e-02 5.3479e+00 1.2844e-02 3.3024e-01 1.2982e-01 1.5530e-01 9.3115e-02 9.8180e-01 8.3132e-02 8.6549e-01 8.8939e-02
+#&gt; 70: 1.0082e+02 -4.0640e+00 -2.4449e+00 -3.9787e+00 -9.5159e-01 -3.2904e-02 5.0805e+00 1.4346e-02 3.1373e-01 1.2333e-01 1.4754e-01 8.8459e-02 1.0129e+00 7.4856e-02 8.6688e-01 8.4769e-02
+#&gt; 71: 1.0072e+02 -4.0642e+00 -2.5069e+00 -3.9493e+00 -9.3453e-01 -4.4116e-02 4.8265e+00 1.3628e-02 3.0428e-01 1.2122e-01 1.4091e-01 8.4036e-02 1.0454e+00 7.7023e-02 8.9566e-01 8.1639e-02
+#&gt; 72: 1.0049e+02 -4.0609e+00 -2.4472e+00 -3.9669e+00 -9.3972e-01 -7.7498e-02 4.5852e+00 1.4441e-02 3.2552e-01 1.3911e-01 1.4144e-01 8.1899e-02 1.0114e+00 7.7019e-02 8.2312e-01 8.2494e-02
+#&gt; 73: 1.0022e+02 -4.0598e+00 -2.4410e+00 -3.9952e+00 -9.2810e-01 -1.1309e-01 4.3559e+00 1.3719e-02 3.3556e-01 1.3303e-01 1.4990e-01 1.1303e-01 9.6726e-01 7.6776e-02 8.6331e-01 8.3048e-02
+#&gt; 74: 1.0024e+02 -4.0628e+00 -2.4358e+00 -3.9977e+00 -9.1347e-01 -9.1966e-02 4.1381e+00 1.3033e-02 3.4332e-01 1.3418e-01 1.8099e-01 1.0738e-01 1.0158e+00 7.4697e-02 8.6366e-01 8.4370e-02
+#&gt; 75: 99.7847 -4.0500 -2.4401 -4.0018 -0.9252 -0.1013 4.4651 0.0124 0.3365 0.1399 0.1817 0.1020 1.0278 0.0779 0.9008 0.0841
+#&gt; 76: 99.9526 -4.0482 -2.4819 -3.9947 -0.9049 -0.0557 4.2419 0.0126 0.3248 0.1494 0.1726 0.1135 1.0493 0.0778 0.9341 0.0804
+#&gt; 77: 99.9982 -4.0184 -2.4951 -4.0043 -0.8927 -0.0688 5.2538 0.0120 0.3696 0.1419 0.1817 0.1078 1.0402 0.0839 0.9605 0.0848
+#&gt; 78: 1.0007e+02 -4.0210e+00 -2.4725e+00 -4.0040e+00 -8.9827e-01 2.3164e-03 6.4464e+00 1.1395e-02 3.7410e-01 1.3481e-01 2.0294e-01 1.0879e-01 9.7822e-01 8.7445e-02 9.9990e-01 8.2845e-02
+#&gt; 79: 99.3513 -4.0171 -2.5065 -4.0078 -0.8962 -0.0029 7.7527 0.0108 0.3554 0.1281 0.1928 0.1069 1.0455 0.0866 0.9982 0.0870
+#&gt; 80: 98.9945 -4.0172 -2.5412 -4.0341 -0.8891 -0.0187 9.8218 0.0103 0.3376 0.1217 0.1831 0.1457 0.9733 0.0894 1.0164 0.0832
+#&gt; 81: 99.0936 -4.0275 -2.5134 -4.0127 -0.8552 -0.0614 12.1567 0.0098 0.3494 0.1156 0.1740 0.1384 0.9509 0.0843 1.0171 0.0855
+#&gt; 82: 99.2481 -3.9996 -2.4945 -4.0011 -0.8914 -0.0492 11.5489 0.0128 0.3792 0.1098 0.1653 0.1315 0.9915 0.0818 1.0405 0.0928
+#&gt; 83: 99.6941 -3.9998 -2.4851 -3.9845 -0.8802 -0.0560 10.9714 0.0146 0.3602 0.1043 0.1570 0.1249 0.9934 0.0852 0.9707 0.0866
+#&gt; 84: 99.2185 -3.9920 -2.4843 -4.0051 -0.8546 -0.0642 10.4228 0.0153 0.3422 0.0991 0.1492 0.1187 0.9923 0.0833 0.9799 0.0873
+#&gt; 85: 98.8470 -3.9956 -2.4652 -4.0201 -0.8483 -0.0414 9.9017 0.0146 0.3251 0.0941 0.1417 0.1128 0.9732 0.0901 0.9035 0.0858
+#&gt; 86: 98.5012 -3.9841 -2.5148 -4.0250 -0.8408 -0.0551 9.4066 0.0148 0.3088 0.0962 0.1346 0.1071 0.8570 0.0932 0.8532 0.0896
+#&gt; 87: 99.0868 -4.0055 -2.5058 -4.0249 -0.8522 -0.0311 10.3528 0.0175 0.2934 0.1013 0.1411 0.1018 0.8802 0.0838 0.8849 0.0862
+#&gt; 88: 99.5158 -4.0031 -2.4437 -3.9866 -0.8894 -0.0963 9.9832 0.0167 0.3049 0.1030 0.1447 0.0967 0.9955 0.0834 0.8861 0.0893
+#&gt; 89: 99.5538 -4.0347 -2.4494 -4.0213 -0.8695 -0.0494 9.4841 0.0158 0.2897 0.0978 0.1543 0.0918 0.8597 0.0904 0.8959 0.0880
+#&gt; 90: 99.4422 -4.0453 -2.4398 -4.0114 -0.9279 -0.0745 9.8221 0.0150 0.2842 0.0929 0.1466 0.0944 0.9009 0.0871 0.8696 0.0924
+#&gt; 91: 98.8721 -4.0328 -2.4996 -4.0041 -0.8832 -0.0689 9.3310 0.0143 0.2700 0.0896 0.1444 0.1137 0.9567 0.0904 0.8680 0.0891
+#&gt; 92: 99.8390 -4.0418 -2.4914 -4.0182 -0.9279 -0.0460 10.9801 0.0136 0.2585 0.0949 0.1461 0.1210 1.0043 0.0908 0.8310 0.0939
+#&gt; 93: 1.0029e+02 -4.0313e+00 -2.4620e+00 -4.0187e+00 -8.9083e-01 -1.0908e-01 1.0431e+01 1.2890e-02 2.4559e-01 9.5757e-02 1.3878e-01 1.1565e-01 9.9174e-01 9.0056e-02 8.9538e-01 8.8925e-02
+#&gt; 94: 99.3285 -4.0295 -2.4523 -4.0235 -0.8828 -0.1190 10.9003 0.0137 0.2333 0.0915 0.1318 0.1212 1.0729 0.0779 0.9543 0.0907
+#&gt; 95: 99.4117 -4.0422 -2.3807 -4.0870 -0.8960 -0.0889 10.3553 0.0130 0.2216 0.0870 0.1253 0.1366 0.9127 0.0864 0.8901 0.0911
+#&gt; 96: 99.3348 -4.0401 -2.4009 -4.0698 -0.8730 -0.0622 9.8375 0.0123 0.2106 0.0826 0.1241 0.1297 0.8504 0.0836 0.9140 0.0881
+#&gt; 97: 99.4898 -4.0419 -2.4310 -4.0589 -0.8932 -0.0634 9.3456 0.0132 0.2000 0.0785 0.1224 0.1233 0.8770 0.0836 0.8715 0.0837
+#&gt; 98: 99.3750 -4.0704 -2.4353 -4.0616 -0.9333 -0.0846 8.8783 0.0136 0.1900 0.0746 0.1245 0.1171 0.8907 0.0838 0.9066 0.0832
+#&gt; 99: 99.6234 -4.0366 -2.3740 -4.0657 -0.9242 -0.0675 8.4344 0.0129 0.1805 0.0708 0.1182 0.1112 0.8814 0.0808 0.9511 0.0863
+#&gt; 100: 1.0025e+02 -4.0420e+00 -2.3557e+00 -4.0579e+00 -9.5051e-01 -6.3418e-02 8.0319e+00 1.2286e-02 1.7150e-01 6.7291e-02 1.1232e-01 1.0568e-01 8.5851e-01 8.7881e-02 8.9363e-01 8.5897e-02
+#&gt; 101: 1.0041e+02 -4.0461e+00 -2.3840e+00 -4.0384e+00 -9.3752e-01 -7.7594e-02 9.5649e+00 1.1672e-02 1.7509e-01 6.3926e-02 1.2760e-01 1.0039e-01 8.6733e-01 8.2748e-02 9.6277e-01 8.4274e-02
+#&gt; 102: 1.0095e+02 -4.0372e+00 -2.3633e+00 -4.0286e+00 -9.1961e-01 -6.5350e-02 1.1428e+01 1.1088e-02 1.8557e-01 6.0730e-02 1.3211e-01 9.5374e-02 9.3928e-01 8.0161e-02 9.7913e-01 8.4081e-02
+#&gt; 103: 1.0019e+02 -4.0236e+00 -2.4105e+00 -4.0337e+00 -9.1362e-01 -7.3859e-02 1.0856e+01 1.0534e-02 1.7629e-01 5.7693e-02 1.2695e-01 9.1362e-02 9.8491e-01 8.1430e-02 9.7682e-01 8.2250e-02
+#&gt; 104: 99.7755 -4.0280 -2.4452 -4.0197 -0.9112 -0.0810 11.0317 0.0100 0.1796 0.0548 0.1301 0.0868 0.9418 0.0816 0.9170 0.0806
+#&gt; 105: 1.0010e+02 -4.0418e+00 -2.4294e+00 -4.0225e+00 -9.1111e-01 -8.9920e-02 1.0480e+01 9.5070e-03 1.7060e-01 5.2068e-02 1.3987e-01 8.2454e-02 9.1944e-01 7.8110e-02 8.9266e-01 8.7228e-02
+#&gt; 106: 1.0025e+02 -4.0507e+00 -2.4134e+00 -4.0343e+00 -9.0244e-01 -8.4683e-02 1.3506e+01 9.0316e-03 1.6207e-01 4.9465e-02 1.5337e-01 7.8331e-02 9.9609e-01 8.4473e-02 8.7046e-01 8.5479e-02
+#&gt; 107: 1.0014e+02 -4.0468e+00 -2.3972e+00 -4.0196e+00 -9.3650e-01 -2.4087e-02 1.2830e+01 8.5801e-03 1.6027e-01 4.6992e-02 1.5429e-01 8.2493e-02 9.8959e-01 8.2626e-02 8.3427e-01 8.8197e-02
+#&gt; 108: 1.0114e+02 -4.0338e+00 -2.4307e+00 -4.0724e+00 -9.1363e-01 1.1952e-02 1.2189e+01 8.1511e-03 1.5563e-01 4.4854e-02 1.7315e-01 7.8368e-02 9.8589e-01 7.8130e-02 9.0460e-01 8.2870e-02
+#&gt; 109: 1.0066e+02 -4.0550e+00 -2.4094e+00 -4.0641e+00 -9.0945e-01 -1.5401e-03 1.3149e+01 7.7435e-03 1.4785e-01 4.2612e-02 1.7232e-01 7.4450e-02 1.0942e+00 7.4816e-02 9.1706e-01 8.5333e-02
+#&gt; 110: 1.0111e+02 -4.0266e+00 -2.4047e+00 -4.0646e+00 -9.0541e-01 -1.7212e-02 1.2492e+01 7.3563e-03 1.4046e-01 4.0481e-02 1.8132e-01 7.0727e-02 1.0508e+00 7.9457e-02 9.8990e-01 8.2975e-02
+#&gt; 111: 1.0155e+02 -4.0274e+00 -2.3645e+00 -4.0663e+00 -9.4902e-01 -1.8882e-02 1.1867e+01 8.7757e-03 1.4436e-01 3.8457e-02 1.7225e-01 6.7191e-02 1.0217e+00 7.7437e-02 9.9196e-01 8.1580e-02
+#&gt; 112: 1.0209e+02 -4.0230e+00 -2.3938e+00 -4.0375e+00 -9.5447e-01 -5.0888e-02 1.4321e+01 8.3370e-03 1.4863e-01 3.6534e-02 1.6778e-01 8.2186e-02 9.3085e-01 8.3291e-02 9.8775e-01 7.9492e-02
+#&gt; 113: 1.0188e+02 -4.0173e+00 -2.3804e+00 -4.0403e+00 -9.6152e-01 -7.7453e-02 1.3605e+01 7.9201e-03 1.5060e-01 3.4708e-02 1.7341e-01 8.4506e-02 9.0783e-01 8.7383e-02 9.4854e-01 8.2648e-02
+#&gt; 114: 1.0239e+02 -4.0081e+00 -2.3724e+00 -4.0332e+00 -9.4315e-01 -7.4933e-02 1.2925e+01 7.5241e-03 1.4307e-01 3.2972e-02 1.6695e-01 8.0281e-02 9.2775e-01 8.4314e-02 9.6195e-01 7.9448e-02
+#&gt; 115: 1.0199e+02 -4.0127e+00 -2.3773e+00 -4.0472e+00 -9.5157e-01 -2.0947e-02 1.2279e+01 7.4483e-03 1.3592e-01 3.1324e-02 1.6705e-01 7.6267e-02 9.4956e-01 7.6989e-02 1.0340e+00 8.5564e-02
+#&gt; 116: 1.0122e+02 -4.0264e+00 -2.4014e+00 -4.0509e+00 -9.1462e-01 -2.3511e-02 1.1665e+01 7.0759e-03 1.2912e-01 2.9757e-02 1.5870e-01 7.2453e-02 9.3580e-01 8.2952e-02 9.3341e-01 8.3302e-02
+#&gt; 117: 1.0112e+02 -4.0326e+00 -2.4093e+00 -4.0559e+00 -8.9743e-01 -2.0572e-02 1.1082e+01 6.7221e-03 1.2266e-01 2.8269e-02 1.5339e-01 6.8831e-02 9.0879e-01 8.4441e-02 9.1432e-01 8.0538e-02
+#&gt; 118: 1.0123e+02 -4.0411e+00 -2.4077e+00 -4.0556e+00 -9.2971e-01 -2.1885e-02 1.0528e+01 6.3860e-03 1.1653e-01 3.3123e-02 1.6947e-01 6.5389e-02 9.7140e-01 8.6671e-02 8.9874e-01 8.1670e-02
+#&gt; 119: 1.0098e+02 -4.0538e+00 -2.3515e+00 -4.0607e+00 -9.5433e-01 -7.5743e-02 1.0001e+01 6.0667e-03 1.1070e-01 3.1467e-02 1.8338e-01 6.2120e-02 9.1537e-01 8.4827e-02 9.2420e-01 8.2769e-02
+#&gt; 120: 1.0076e+02 -4.0573e+00 -2.3627e+00 -4.0329e+00 -9.3251e-01 -6.7669e-02 9.5011e+00 5.7634e-03 1.0517e-01 3.2868e-02 1.7422e-01 6.6096e-02 9.5247e-01 8.5343e-02 9.4678e-01 8.5335e-02
+#&gt; 121: 1.0085e+02 -4.0450e+00 -2.3478e+00 -4.0692e+00 -9.2333e-01 -9.8005e-03 9.0261e+00 5.4752e-03 9.9911e-02 3.1225e-02 1.6550e-01 7.1593e-02 8.5572e-01 8.8654e-02 1.0248e+00 8.0646e-02
+#&gt; 122: 1.0164e+02 -4.0325e+00 -2.3562e+00 -4.0680e+00 -9.4287e-01 -1.2103e-02 8.5748e+00 5.3493e-03 9.4915e-02 2.9663e-02 1.6347e-01 6.8014e-02 8.4872e-01 8.6803e-02 1.0282e+00 8.0381e-02
+#&gt; 123: 1.0184e+02 -4.0521e+00 -2.3504e+00 -4.0714e+00 -9.5966e-01 -9.1996e-05 8.1460e+00 5.0818e-03 9.8247e-02 3.0007e-02 1.7746e-01 6.4613e-02 9.7181e-01 8.0986e-02 9.8860e-01 8.0317e-02
+#&gt; 124: 1.0235e+02 -4.0674e+00 -2.3315e+00 -4.0874e+00 -9.9802e-01 3.8818e-02 7.7387e+00 4.8277e-03 9.3335e-02 2.8506e-02 1.7611e-01 6.8940e-02 9.7376e-01 7.6658e-02 9.9156e-01 8.4407e-02
+#&gt; 125: 1.0257e+02 -4.0718e+00 -2.3604e+00 -4.0627e+00 -1.0591e+00 2.4685e-02 7.3518e+00 4.5863e-03 8.8668e-02 3.0650e-02 1.8671e-01 6.5493e-02 1.0275e+00 8.2278e-02 1.0896e+00 8.0976e-02
+#&gt; 126: 1.0287e+02 -4.0691e+00 -2.3103e+00 -4.0552e+00 -1.0174e+00 2.1863e-02 7.5644e+00 4.3570e-03 1.0937e-01 2.9117e-02 1.7738e-01 6.2218e-02 9.2668e-01 7.9560e-02 9.5409e-01 8.4671e-02
+#&gt; 127: 1.0327e+02 -4.0528e+00 -2.3141e+00 -4.0522e+00 -1.0108e+00 4.4779e-03 7.1862e+00 4.1392e-03 1.2239e-01 2.7661e-02 1.6925e-01 5.9107e-02 9.1372e-01 7.9536e-02 9.9164e-01 8.2999e-02
+#&gt; 128: 1.0352e+02 -4.0496e+00 -2.2880e+00 -4.0496e+00 -1.0063e+00 -1.3248e-02 7.6721e+00 3.9613e-03 1.1627e-01 2.6278e-02 1.7517e-01 8.0231e-02 8.4407e-01 8.5078e-02 9.4382e-01 8.7530e-02
+#&gt; 129: 1.0345e+02 -4.0715e+00 -2.3090e+00 -4.0400e+00 -1.0276e+00 -1.8301e-02 8.2197e+00 3.7633e-03 1.1046e-01 2.7141e-02 1.9366e-01 7.6220e-02 9.3357e-01 8.2674e-02 9.7064e-01 8.6011e-02
+#&gt; 130: 1.0245e+02 -4.0787e+00 -2.3263e+00 -4.0106e+00 -1.0200e+00 -8.5976e-02 7.8087e+00 4.0830e-03 1.3607e-01 2.6631e-02 2.2700e-01 7.2409e-02 9.8233e-01 7.9348e-02 9.6780e-01 8.2658e-02
+#&gt; 131: 1.0217e+02 -4.0760e+00 -2.2525e+00 -4.0082e+00 -1.0099e+00 -1.6111e-01 7.4183e+00 3.8789e-03 1.3972e-01 2.5299e-02 2.2508e-01 6.8788e-02 1.0066e+00 7.8692e-02 9.4684e-01 8.4349e-02
+#&gt; 132: 1.0185e+02 -4.0792e+00 -2.2309e+00 -3.9996e+00 -9.8302e-01 -2.2504e-01 7.0474e+00 4.0356e-03 1.3743e-01 2.4034e-02 2.1383e-01 7.7346e-02 9.4225e-01 7.9110e-02 9.5160e-01 8.4398e-02
+#&gt; 133: 1.0135e+02 -4.0818e+00 -2.2219e+00 -4.0054e+00 -9.7264e-01 -1.8912e-01 7.1932e+00 3.8338e-03 1.3056e-01 2.2833e-02 2.0314e-01 7.6769e-02 1.0031e+00 8.5400e-02 1.0034e+00 8.4805e-02
+#&gt; 134: 1.0148e+02 -4.0782e+00 -2.2492e+00 -3.9886e+00 -9.5184e-01 -1.5049e-01 6.8336e+00 3.6422e-03 1.2403e-01 2.3398e-02 1.9298e-01 7.2931e-02 9.3696e-01 8.3566e-02 9.4742e-01 8.9137e-02
+#&gt; 135: 1.0145e+02 -4.0852e+00 -2.3062e+00 -4.0011e+00 -9.4444e-01 -1.6803e-01 6.4919e+00 3.4600e-03 1.1783e-01 2.2228e-02 1.8333e-01 6.9284e-02 9.4846e-01 8.3087e-02 9.7774e-01 8.2610e-02
+#&gt; 136: 1.0177e+02 -4.0861e+00 -2.2785e+00 -3.9890e+00 -9.9625e-01 -1.8938e-01 6.1673e+00 3.2870e-03 1.1752e-01 2.1116e-02 1.8815e-01 6.5820e-02 9.3634e-01 8.5255e-02 1.1001e+00 8.5332e-02
+#&gt; 137: 1.0200e+02 -4.0928e+00 -2.1946e+00 -3.9974e+00 -1.0098e+00 -1.8810e-01 5.8589e+00 3.1227e-03 1.2394e-01 2.1203e-02 1.7874e-01 7.2232e-02 1.0048e+00 7.3422e-02 1.0222e+00 8.3484e-02
+#&gt; 138: 1.0214e+02 -4.0820e+00 -2.2052e+00 -3.9737e+00 -1.0420e+00 -2.0594e-01 5.5660e+00 3.8937e-03 1.9164e-01 2.0143e-02 1.6980e-01 6.8621e-02 1.0126e+00 7.6106e-02 1.0780e+00 8.2960e-02
+#&gt; 139: 1.0249e+02 -4.0785e+00 -2.1649e+00 -3.9567e+00 -1.0095e+00 -2.8807e-01 5.2877e+00 3.6990e-03 1.8647e-01 1.9135e-02 1.6131e-01 6.5190e-02 1.0030e+00 7.9858e-02 1.0611e+00 8.4109e-02
+#&gt; 140: 1.0184e+02 -4.0847e+00 -2.1800e+00 -3.9565e+00 -9.9415e-01 -2.8869e-01 5.0233e+00 4.0857e-03 1.9502e-01 1.8179e-02 1.6676e-01 6.2879e-02 9.5962e-01 7.8117e-02 9.9649e-01 8.4914e-02
+#&gt; 141: 1.0195e+02 -4.1012e+00 -2.1831e+00 -3.9488e+00 -9.9515e-01 -3.1864e-01 4.7721e+00 3.8814e-03 1.8527e-01 1.7270e-02 1.6797e-01 6.1084e-02 9.0969e-01 8.2722e-02 1.0122e+00 8.2518e-02
+#&gt; 142: 1.0233e+02 -4.1139e+00 -2.1692e+00 -3.9542e+00 -1.0023e+00 -3.3242e-01 4.5335e+00 3.6873e-03 2.0662e-01 1.6406e-02 1.5957e-01 5.8030e-02 9.4761e-01 8.4629e-02 1.0342e+00 8.3954e-02
+#&gt; 143: 1.0217e+02 -4.1103e+00 -2.1380e+00 -3.9511e+00 -1.0300e+00 -2.5992e-01 5.2035e+00 4.7053e-03 1.9629e-01 1.5586e-02 1.5979e-01 5.5128e-02 8.9255e-01 7.9042e-02 1.0461e+00 8.6952e-02
+#&gt; 144: 1.0185e+02 -4.1335e+00 -2.1911e+00 -3.9650e+00 -1.0440e+00 -2.4451e-01 5.0998e+00 4.4700e-03 1.8648e-01 1.9590e-02 1.5534e-01 5.2372e-02 9.7863e-01 8.3932e-02 1.0197e+00 8.7673e-02
+#&gt; 145: 1.0242e+02 -4.1445e+00 -2.1203e+00 -3.9616e+00 -1.0426e+00 -2.7120e-01 4.8448e+00 4.2465e-03 1.7715e-01 1.8611e-02 1.4757e-01 4.9753e-02 1.0024e+00 8.4131e-02 1.0768e+00 8.5388e-02
+#&gt; 146: 1.0236e+02 -4.1519e+00 -2.1958e+00 -3.9779e+00 -9.8615e-01 -2.5863e-01 4.6026e+00 4.0718e-03 1.6829e-01 1.7680e-02 1.6407e-01 4.7266e-02 1.0740e+00 8.2413e-02 1.0706e+00 8.3410e-02
+#&gt; 147: 1.0251e+02 -4.1465e+00 -2.2042e+00 -3.9775e+00 -1.0317e+00 -2.2757e-01 4.3725e+00 3.8682e-03 1.5988e-01 1.6796e-02 1.7016e-01 4.4902e-02 9.7748e-01 8.3376e-02 1.0880e+00 8.1968e-02
+#&gt; 148: 1.0244e+02 -4.1432e+00 -2.1786e+00 -3.9792e+00 -1.0442e+00 -2.2002e-01 4.9671e+00 3.6748e-03 1.5189e-01 1.5956e-02 2.2196e-01 4.2657e-02 1.0412e+00 7.8051e-02 1.1051e+00 8.1618e-02
+#&gt; 149: 1.0219e+02 -4.1384e+00 -2.2318e+00 -3.9757e+00 -1.0438e+00 -2.4124e-01 4.7187e+00 3.4910e-03 1.4429e-01 1.6061e-02 2.1086e-01 4.0524e-02 1.0082e+00 8.0377e-02 1.1455e+00 8.0545e-02
+#&gt; 150: 1.0264e+02 -4.1498e+00 -2.2352e+00 -3.9915e+00 -1.0669e+00 -2.1255e-01 4.4828e+00 3.3165e-03 1.3708e-01 1.7218e-02 2.0032e-01 3.8498e-02 9.5031e-01 8.7248e-02 9.8770e-01 8.3250e-02
+#&gt; 151: 1.0250e+02 -4.1365e+00 -2.1876e+00 -3.9939e+00 -1.0568e+00 -1.8159e-01 4.2587e+00 3.1507e-03 1.3022e-01 1.7383e-02 1.9030e-01 3.6573e-02 9.6938e-01 8.0203e-02 1.0578e+00 8.3430e-02
+#&gt; 152: 1.0256e+02 -4.1370e+00 -2.2238e+00 -4.0047e+00 -1.0406e+00 -1.8764e-01 1.9609e+00 1.4191e-03 1.1882e-01 1.7924e-02 1.6889e-01 4.1216e-02 9.1972e-01 7.8573e-02 1.0717e+00 8.0882e-02
+#&gt; 153: 1.0219e+02 -4.1299e+00 -2.2139e+00 -3.9917e+00 -9.9964e-01 -2.0505e-01 1.8258e+00 1.0432e-03 8.4660e-02 2.1446e-02 1.7634e-01 3.5573e-02 9.3702e-01 8.4860e-02 1.0145e+00 8.3329e-02
+#&gt; 154: 1.0199e+02 -4.1354e+00 -2.2231e+00 -3.9779e+00 -1.0155e+00 -2.2573e-01 2.6463e+00 5.8153e-04 8.8101e-02 2.3167e-02 1.6103e-01 3.3874e-02 9.5360e-01 8.6215e-02 9.5723e-01 8.4603e-02
+#&gt; 155: 1.0234e+02 -4.1239e+00 -2.2137e+00 -3.9802e+00 -1.0070e+00 -2.3158e-01 2.9697e+00 6.6709e-04 1.1190e-01 2.0949e-02 1.8298e-01 3.1557e-02 9.2910e-01 8.2509e-02 9.8680e-01 8.5206e-02
+#&gt; 156: 1.0253e+02 -4.1269e+00 -2.2370e+00 -3.9682e+00 -1.0420e+00 -2.1219e-01 2.7267e+00 6.8451e-04 8.9651e-02 2.4380e-02 1.6613e-01 3.4846e-02 9.3608e-01 8.7506e-02 9.0446e-01 8.1755e-02
+#&gt; 157: 1.0265e+02 -4.1241e+00 -2.2179e+00 -3.9676e+00 -1.0308e+00 -2.2480e-01 2.1278e+00 4.9811e-04 6.7161e-02 1.9758e-02 1.5607e-01 4.4198e-02 9.4162e-01 8.7311e-02 9.9147e-01 7.9857e-02
+#&gt; 158: 1.0239e+02 -4.1219e+00 -2.1615e+00 -3.9781e+00 -1.0384e+00 -2.6750e-01 2.5310e+00 4.8270e-04 6.5662e-02 1.8085e-02 1.7665e-01 4.4020e-02 8.8632e-01 8.6004e-02 1.0425e+00 8.2894e-02
+#&gt; 159: 1.0270e+02 -4.1204e+00 -2.1837e+00 -3.9530e+00 -1.0587e+00 -2.5809e-01 3.4348e+00 5.6788e-04 6.5500e-02 1.9540e-02 1.8629e-01 4.0730e-02 9.5079e-01 8.2399e-02 9.9316e-01 8.3381e-02
+#&gt; 160: 1.0282e+02 -4.1223e+00 -2.1325e+00 -3.9734e+00 -1.0068e+00 -2.8751e-01 3.9652e+00 7.6565e-04 8.5246e-02 1.7068e-02 1.7587e-01 3.0778e-02 9.1802e-01 8.0158e-02 9.9642e-01 8.1564e-02
+#&gt; 161: 1.0330e+02 -4.1180e+00 -2.1879e+00 -3.9743e+00 -1.0268e+00 -2.8812e-01 4.9153e+00 5.8033e-04 8.0457e-02 1.8555e-02 1.7312e-01 3.3941e-02 8.6920e-01 8.2509e-02 9.5632e-01 8.1798e-02
+#&gt; 162: 1.0335e+02 -4.1182e+00 -2.2089e+00 -3.9566e+00 -1.0409e+00 -2.7390e-01 3.6169e+00 2.8392e-04 1.0776e-01 1.9589e-02 1.6479e-01 2.8481e-02 8.8603e-01 8.7799e-02 9.5197e-01 7.9563e-02
+#&gt; 163: 1.0294e+02 -4.1181e+00 -2.2025e+00 -3.9462e+00 -9.9783e-01 -3.0753e-01 3.7234e+00 1.6293e-04 9.6922e-02 2.4842e-02 1.9367e-01 3.1473e-02 9.0380e-01 9.1697e-02 9.4394e-01 8.2786e-02
+#&gt; 164: 1.0246e+02 -4.1155e+00 -2.2157e+00 -3.9736e+00 -9.9866e-01 -2.9356e-01 3.9439e+00 1.9405e-04 1.0404e-01 2.8435e-02 1.9043e-01 3.1239e-02 8.9853e-01 8.9427e-02 9.2586e-01 8.3170e-02
+#&gt; 165: 1.0204e+02 -4.1117e+00 -2.2133e+00 -3.9674e+00 -1.0079e+00 -2.6996e-01 3.0774e+00 1.6591e-04 7.0005e-02 2.8285e-02 2.0813e-01 2.4574e-02 8.9719e-01 9.1629e-02 9.8242e-01 8.3692e-02
+#&gt; 166: 1.0207e+02 -4.1164e+00 -2.2192e+00 -3.9893e+00 -1.0354e+00 -2.7396e-01 1.8145e+00 8.4168e-05 9.0739e-02 2.7410e-02 2.1403e-01 2.4311e-02 8.9386e-01 9.2727e-02 9.4636e-01 8.4238e-02
+#&gt; 167: 1.0187e+02 -4.1149e+00 -2.2185e+00 -3.9708e+00 -1.0036e+00 -2.5751e-01 1.5355e+00 4.0974e-05 9.9346e-02 2.2030e-02 2.1916e-01 2.6726e-02 9.1055e-01 8.1030e-02 1.0098e+00 7.9180e-02
+#&gt; 168: 1.0172e+02 -4.1167e+00 -2.2673e+00 -3.9702e+00 -9.8388e-01 -2.1404e-01 1.4836e+00 2.7779e-05 7.7509e-02 2.9513e-02 1.9543e-01 3.4526e-02 1.0152e+00 8.1248e-02 9.7482e-01 8.0746e-02
+#&gt; 169: 1.0175e+02 -4.1171e+00 -2.2634e+00 -3.9701e+00 -9.5962e-01 -2.4130e-01 1.4263e+00 4.7370e-05 5.0986e-02 2.8211e-02 2.2554e-01 3.9909e-02 9.8519e-01 7.8842e-02 1.0023e+00 8.5684e-02
+#&gt; 170: 1.0177e+02 -4.1189e+00 -2.2417e+00 -3.9834e+00 -1.0059e+00 -2.6551e-01 9.9010e-01 3.7247e-05 4.2517e-02 2.9791e-02 1.8705e-01 4.2435e-02 9.6604e-01 8.8427e-02 9.6699e-01 8.3986e-02
+#&gt; 171: 1.0182e+02 -4.1187e+00 -2.2464e+00 -3.9953e+00 -9.8154e-01 -2.5146e-01 7.4179e-01 3.2420e-05 5.0690e-02 3.0483e-02 1.7888e-01 6.3177e-02 9.2784e-01 8.4814e-02 1.0018e+00 8.4070e-02
+#&gt; 172: 1.0184e+02 -4.1178e+00 -2.2483e+00 -4.0009e+00 -1.0096e+00 -2.2636e-01 9.6710e-01 2.6981e-05 3.1321e-02 2.7772e-02 1.9767e-01 7.4969e-02 9.9720e-01 8.1434e-02 9.5483e-01 8.3419e-02
+#&gt; 173: 1.0160e+02 -4.1183e+00 -2.2513e+00 -3.9920e+00 -9.8456e-01 -2.0144e-01 4.9964e-01 2.1222e-05 4.1909e-02 2.8101e-02 2.1163e-01 1.2811e-01 9.6384e-01 8.0352e-02 9.2496e-01 8.2328e-02
+#&gt; 174: 1.0159e+02 -4.1179e+00 -2.2334e+00 -4.0068e+00 -1.0316e+00 -2.0656e-01 4.6608e-01 1.8044e-05 4.4647e-02 2.8273e-02 2.0083e-01 1.2780e-01 9.4612e-01 8.3630e-02 8.9385e-01 8.3930e-02
+#&gt; 175: 1.0159e+02 -4.1182e+00 -2.2567e+00 -3.9972e+00 -1.0299e+00 -1.6534e-01 4.5228e-01 2.0060e-05 8.5751e-02 2.5343e-02 1.7864e-01 8.6977e-02 9.5795e-01 7.8867e-02 8.9213e-01 8.4362e-02
+#&gt; 176: 1.0159e+02 -4.1183e+00 -2.2109e+00 -3.9983e+00 -1.0210e+00 -2.0879e-01 5.3694e-01 2.0264e-05 1.2835e-01 2.5563e-02 1.9469e-01 6.0808e-02 9.1537e-01 7.8520e-02 9.3355e-01 8.3608e-02
+#&gt; 177: 1.0155e+02 -4.1193e+00 -2.2587e+00 -3.9825e+00 -1.0180e+00 -1.6859e-01 4.4935e-01 3.0321e-05 1.3509e-01 2.4979e-02 2.0113e-01 6.3617e-02 9.7277e-01 7.8515e-02 9.2667e-01 8.5309e-02
+#&gt; 178: 1.0158e+02 -4.1196e+00 -2.2679e+00 -4.0231e+00 -1.0143e+00 -1.6084e-01 6.7629e-01 3.2855e-05 6.8816e-02 2.7808e-02 1.8944e-01 8.1814e-02 8.8319e-01 8.0114e-02 9.5183e-01 8.2195e-02
+#&gt; 179: 1.0166e+02 -4.1190e+00 -2.2764e+00 -3.9875e+00 -1.0061e+00 -1.8260e-01 7.1129e-01 3.8250e-05 7.5489e-02 2.4148e-02 1.8082e-01 7.1172e-02 9.1387e-01 8.0813e-02 9.6660e-01 8.2457e-02
+#&gt; 180: 1.0179e+02 -4.1202e+00 -2.2848e+00 -3.9974e+00 -9.9825e-01 -2.0277e-01 5.5755e-01 2.8041e-05 8.6779e-02 2.7193e-02 1.8826e-01 6.5133e-02 8.8812e-01 8.2655e-02 9.2100e-01 7.9919e-02
+#&gt; 181: 1.0176e+02 -4.1200e+00 -2.2704e+00 -3.9954e+00 -1.0194e+00 -1.6896e-01 4.3842e-01 2.2428e-05 7.4093e-02 3.0526e-02 2.3473e-01 1.0537e-01 9.2303e-01 8.2141e-02 9.2941e-01 8.4699e-02
+#&gt; 182: 1.0182e+02 -4.1211e+00 -2.3159e+00 -4.0259e+00 -1.0162e+00 -1.2876e-01 3.4993e-01 1.5716e-05 5.9887e-02 2.6422e-02 2.1757e-01 1.0488e-01 9.1725e-01 9.4143e-02 9.7674e-01 8.8668e-02
+#&gt; 183: 1.0184e+02 -4.1216e+00 -2.2985e+00 -4.0278e+00 -1.0136e+00 -1.3154e-01 2.6456e-01 1.2552e-05 5.7149e-02 3.2712e-02 2.0632e-01 1.5501e-01 9.2464e-01 8.5394e-02 8.8699e-01 8.4279e-02
+#&gt; 184: 1.0172e+02 -4.1212e+00 -2.2726e+00 -4.0189e+00 -1.0280e+00 -1.2967e-01 3.0582e-01 7.5239e-06 8.2812e-02 2.9556e-02 1.9725e-01 1.3753e-01 9.0862e-01 8.1319e-02 9.0031e-01 8.3491e-02
+#&gt; 185: 1.0178e+02 -4.1208e+00 -2.2858e+00 -4.0272e+00 -1.0063e+00 -1.6155e-01 3.0856e-01 4.5894e-06 8.8870e-02 2.5817e-02 1.9251e-01 1.0670e-01 9.1157e-01 7.7834e-02 9.6258e-01 7.8990e-02
+#&gt; 186: 1.0198e+02 -4.1208e+00 -2.2682e+00 -4.0401e+00 -9.8523e-01 -1.1556e-01 2.4761e-01 3.2640e-06 7.5614e-02 2.1067e-02 1.9085e-01 9.0045e-02 8.5090e-01 8.6621e-02 1.0145e+00 8.1864e-02
+#&gt; 187: 1.0197e+02 -4.1208e+00 -2.2788e+00 -4.0281e+00 -1.0066e+00 -1.0149e-01 2.0460e-01 4.5073e-06 7.8797e-02 2.3861e-02 2.0725e-01 7.9771e-02 9.6253e-01 8.2363e-02 9.3855e-01 8.3939e-02
+#&gt; 188: 1.0196e+02 -4.1207e+00 -2.3105e+00 -4.0149e+00 -1.0217e+00 -9.0603e-02 2.2178e-01 3.6903e-06 8.9793e-02 2.1775e-02 1.9248e-01 8.2415e-02 9.4078e-01 8.1247e-02 9.1756e-01 8.2786e-02
+#&gt; 189: 1.0202e+02 -4.1204e+00 -2.2702e+00 -4.0430e+00 -1.0032e+00 -1.1308e-01 2.2944e-01 3.5141e-06 7.8575e-02 2.4885e-02 2.0968e-01 8.2380e-02 9.5115e-01 8.1619e-02 9.2134e-01 8.9958e-02
+#&gt; 190: 1.0195e+02 -4.1207e+00 -2.3126e+00 -4.0312e+00 -1.0154e+00 -6.3842e-02 2.5129e-01 2.6517e-06 4.2267e-02 2.2084e-02 1.9361e-01 7.0492e-02 9.3985e-01 8.5817e-02 9.3893e-01 8.7011e-02
+#&gt; 191: 1.0203e+02 -4.1206e+00 -2.2758e+00 -4.0290e+00 -1.0102e+00 -3.1042e-02 1.7935e-01 3.4489e-06 5.7444e-02 2.3544e-02 1.9651e-01 7.9509e-02 9.5213e-01 8.2030e-02 1.0054e+00 8.7523e-02
+#&gt; 192: 1.0199e+02 -4.1205e+00 -2.2969e+00 -4.0329e+00 -1.0364e+00 -8.3705e-02 1.5785e-01 3.5081e-06 7.4305e-02 2.2992e-02 1.9662e-01 7.7684e-02 9.2601e-01 8.3027e-02 9.8642e-01 8.3428e-02
+#&gt; 193: 1.0196e+02 -4.1205e+00 -2.2661e+00 -4.0513e+00 -9.9271e-01 -4.6516e-02 1.2084e-01 2.6911e-06 6.8360e-02 3.5444e-02 1.9649e-01 7.5188e-02 9.1949e-01 7.9194e-02 1.0046e+00 8.5964e-02
+#&gt; 194: 1.0198e+02 -4.1207e+00 -2.2817e+00 -4.0520e+00 -9.9852e-01 -8.4466e-02 1.3596e-01 1.5511e-06 6.5142e-02 4.1562e-02 1.9137e-01 9.6992e-02 9.6709e-01 7.6757e-02 9.7566e-01 8.3784e-02
+#&gt; 195: 1.0200e+02 -4.1207e+00 -2.3076e+00 -4.0637e+00 -1.0028e+00 -7.2489e-02 1.0942e-01 1.6451e-06 6.1364e-02 4.6242e-02 1.9470e-01 9.3546e-02 9.9614e-01 8.1292e-02 9.7814e-01 8.1909e-02
+#&gt; 196: 1.0194e+02 -4.1205e+00 -2.2970e+00 -4.0482e+00 -9.8816e-01 -6.8493e-02 1.1918e-01 1.2629e-06 4.2775e-02 3.6925e-02 2.3565e-01 7.7784e-02 8.9524e-01 9.2250e-02 9.8003e-01 8.2408e-02
+#&gt; 197: 1.0199e+02 -4.1205e+00 -2.3075e+00 -4.0418e+00 -1.0196e+00 -6.8458e-02 1.7674e-01 7.5205e-07 5.2125e-02 2.9288e-02 2.1892e-01 8.4416e-02 8.9857e-01 9.1154e-02 1.0377e+00 8.3604e-02
+#&gt; 198: 1.0197e+02 -4.1206e+00 -2.3051e+00 -4.0367e+00 -1.0252e+00 -6.9200e-02 9.1625e-02 6.6068e-07 4.7665e-02 2.8907e-02 1.8679e-01 7.5787e-02 9.0272e-01 8.8077e-02 9.2929e-01 8.0385e-02
+#&gt; 199: 1.0192e+02 -4.1204e+00 -2.3163e+00 -4.0506e+00 -1.0152e+00 -5.3872e-02 6.8196e-02 5.5789e-07 6.0471e-02 3.1730e-02 2.0053e-01 6.8557e-02 9.0478e-01 8.5910e-02 9.3814e-01 8.2211e-02
+#&gt; 200: 1.0195e+02 -4.1205e+00 -2.3141e+00 -4.0728e+00 -1.0010e+00 -2.5675e-03 6.5235e-02 6.9762e-07 5.8458e-02 2.8504e-02 2.0377e-01 4.9513e-02 8.5640e-01 8.6640e-02 9.5731e-01 8.4390e-02
+#&gt; 201: 1.0195e+02 -4.1205e+00 -2.3106e+00 -4.0774e+00 -9.9012e-01 5.1724e-03 5.1225e-02 5.4222e-07 6.0577e-02 3.3554e-02 2.0505e-01 4.4738e-02 8.8073e-01 8.5488e-02 9.6928e-01 8.4895e-02
+#&gt; 202: 1.0194e+02 -4.1205e+00 -2.3078e+00 -4.0767e+00 -9.9283e-01 3.9328e-03 4.5461e-02 4.8520e-07 6.7405e-02 3.4599e-02 2.1312e-01 4.6664e-02 9.0528e-01 8.4189e-02 9.8043e-01 8.5266e-02
+#&gt; 203: 1.0193e+02 -4.1205e+00 -2.3029e+00 -4.0790e+00 -9.8990e-01 -9.1380e-03 4.7128e-02 5.0468e-07 6.8524e-02 3.6050e-02 2.1378e-01 5.1774e-02 9.0923e-01 8.4899e-02 9.8928e-01 8.4613e-02
+#&gt; 204: 1.0192e+02 -4.1205e+00 -2.3080e+00 -4.0760e+00 -9.8833e-01 -1.2434e-02 4.8184e-02 4.9472e-07 6.4152e-02 3.5604e-02 2.0954e-01 5.1354e-02 9.1294e-01 8.5219e-02 9.8301e-01 8.4374e-02
+#&gt; 205: 1.0192e+02 -4.1205e+00 -2.3100e+00 -4.0712e+00 -9.9253e-01 -2.3365e-02 4.5888e-02 5.0564e-07 5.9894e-02 3.5053e-02 2.0322e-01 5.4423e-02 9.0925e-01 8.5899e-02 9.8418e-01 8.3421e-02
+#&gt; 206: 1.0192e+02 -4.1205e+00 -2.3095e+00 -4.0715e+00 -9.9721e-01 -2.6262e-02 4.3985e-02 5.1954e-07 5.8681e-02 3.4539e-02 2.0202e-01 5.8248e-02 9.1301e-01 8.5459e-02 9.8621e-01 8.3465e-02
+#&gt; 207: 1.0192e+02 -4.1205e+00 -2.3179e+00 -4.0731e+00 -9.9906e-01 -2.3191e-02 4.3649e-02 5.3824e-07 5.7537e-02 3.4790e-02 2.0220e-01 6.0242e-02 9.1783e-01 8.5307e-02 9.8436e-01 8.3111e-02
+#&gt; 208: 1.0191e+02 -4.1205e+00 -2.3238e+00 -4.0734e+00 -9.9920e-01 -1.9434e-02 4.3223e-02 5.3831e-07 5.7908e-02 3.4909e-02 2.0126e-01 6.0353e-02 9.2010e-01 8.5244e-02 9.8002e-01 8.2975e-02
+#&gt; 209: 1.0191e+02 -4.1205e+00 -2.3279e+00 -4.0726e+00 -1.0053e+00 -1.5390e-02 4.1064e-02 5.3171e-07 5.8749e-02 3.4510e-02 1.9942e-01 6.3063e-02 9.3192e-01 8.4436e-02 9.8298e-01 8.3187e-02
+#&gt; 210: 1.0191e+02 -4.1205e+00 -2.3310e+00 -4.0705e+00 -1.0061e+00 -1.3507e-02 3.8265e-02 5.2762e-07 5.9344e-02 3.3374e-02 1.9612e-01 6.7006e-02 9.3199e-01 8.4573e-02 9.8382e-01 8.3227e-02
+#&gt; 211: 1.0191e+02 -4.1205e+00 -2.3383e+00 -4.0683e+00 -1.0043e+00 -1.3973e-02 3.6076e-02 5.2584e-07 6.1568e-02 3.2369e-02 1.9504e-01 6.9982e-02 9.4179e-01 8.4625e-02 9.9145e-01 8.3067e-02
+#&gt; 212: 1.0192e+02 -4.1204e+00 -2.3396e+00 -4.0662e+00 -1.0055e+00 -1.8011e-02 3.4746e-02 5.4375e-07 6.2747e-02 3.1588e-02 1.9405e-01 7.2360e-02 9.4525e-01 8.4466e-02 9.9581e-01 8.2952e-02
+#&gt; 213: 1.0192e+02 -4.1204e+00 -2.3407e+00 -4.0649e+00 -1.0066e+00 -2.1077e-02 3.4708e-02 5.5843e-07 6.1940e-02 3.0715e-02 1.9382e-01 7.4602e-02 9.4611e-01 8.4322e-02 9.9397e-01 8.2717e-02
+#&gt; 214: 1.0192e+02 -4.1204e+00 -2.3392e+00 -4.0648e+00 -1.0076e+00 -2.3417e-02 3.4282e-02 5.8157e-07 6.1893e-02 3.0158e-02 1.9322e-01 7.8942e-02 9.5250e-01 8.3922e-02 9.9723e-01 8.2793e-02
+#&gt; 215: 1.0192e+02 -4.1204e+00 -2.3410e+00 -4.0645e+00 -1.0087e+00 -2.1950e-02 3.5820e-02 6.0691e-07 6.2032e-02 2.9890e-02 1.9172e-01 8.3774e-02 9.5617e-01 8.3280e-02 1.0003e+00 8.2881e-02
+#&gt; 216: 1.0192e+02 -4.1203e+00 -2.3425e+00 -4.0628e+00 -1.0069e+00 -2.4268e-02 3.7597e-02 6.4187e-07 6.1733e-02 2.9353e-02 1.9092e-01 8.8150e-02 9.5834e-01 8.3091e-02 1.0027e+00 8.2753e-02
+#&gt; 217: 1.0192e+02 -4.1203e+00 -2.3439e+00 -4.0613e+00 -1.0064e+00 -2.4197e-02 3.9291e-02 6.5775e-07 6.2318e-02 2.8903e-02 1.8958e-01 9.0470e-02 9.5766e-01 8.3234e-02 1.0020e+00 8.2707e-02
+#&gt; 218: 1.0191e+02 -4.1203e+00 -2.3441e+00 -4.0619e+00 -1.0065e+00 -2.2460e-02 4.0043e-02 6.4921e-07 6.2280e-02 2.8349e-02 1.8800e-01 9.4476e-02 9.5499e-01 8.3416e-02 1.0036e+00 8.2628e-02
+#&gt; 219: 1.0191e+02 -4.1203e+00 -2.3437e+00 -4.0624e+00 -1.0066e+00 -1.9698e-02 3.9735e-02 6.3365e-07 6.2264e-02 2.7720e-02 1.8768e-01 9.7275e-02 9.4994e-01 8.3350e-02 1.0047e+00 8.2572e-02
+#&gt; 220: 1.0191e+02 -4.1203e+00 -2.3447e+00 -4.0630e+00 -1.0070e+00 -1.5871e-02 4.0198e-02 6.3507e-07 6.1981e-02 2.7259e-02 1.8786e-01 9.9168e-02 9.4781e-01 8.3355e-02 1.0046e+00 8.2752e-02
+#&gt; 221: 1.0191e+02 -4.1203e+00 -2.3459e+00 -4.0638e+00 -1.0069e+00 -1.4298e-02 4.0161e-02 6.2865e-07 6.2113e-02 2.7201e-02 1.8810e-01 1.0163e-01 9.4863e-01 8.3154e-02 1.0042e+00 8.2670e-02
+#&gt; 222: 1.0191e+02 -4.1203e+00 -2.3472e+00 -4.0646e+00 -1.0064e+00 -1.0921e-02 4.0310e-02 6.2450e-07 6.2436e-02 2.6979e-02 1.8736e-01 1.0306e-01 9.4914e-01 8.3081e-02 1.0050e+00 8.2757e-02
+#&gt; 223: 1.0191e+02 -4.1203e+00 -2.3478e+00 -4.0650e+00 -1.0063e+00 -1.1053e-02 3.9741e-02 6.1973e-07 6.2918e-02 2.6636e-02 1.8806e-01 1.0506e-01 9.4996e-01 8.2927e-02 1.0054e+00 8.2579e-02
+#&gt; 224: 1.0191e+02 -4.1203e+00 -2.3478e+00 -4.0653e+00 -1.0061e+00 -1.0324e-02 3.9480e-02 6.1421e-07 6.4180e-02 2.6403e-02 1.8833e-01 1.0733e-01 9.4750e-01 8.2697e-02 1.0033e+00 8.2517e-02
+#&gt; 225: 1.0191e+02 -4.1203e+00 -2.3479e+00 -4.0654e+00 -1.0060e+00 -1.0650e-02 3.9188e-02 6.0959e-07 6.3862e-02 2.6122e-02 1.8815e-01 1.0786e-01 9.4504e-01 8.2833e-02 1.0002e+00 8.2398e-02
+#&gt; 226: 1.0192e+02 -4.1204e+00 -2.3469e+00 -4.0657e+00 -1.0052e+00 -1.0205e-02 3.9129e-02 6.0577e-07 6.4045e-02 2.5875e-02 1.8762e-01 1.0921e-01 9.4663e-01 8.2599e-02 9.9857e-01 8.2472e-02
+#&gt; 227: 1.0192e+02 -4.1203e+00 -2.3467e+00 -4.0658e+00 -1.0053e+00 -1.0189e-02 3.8797e-02 6.0837e-07 6.5125e-02 2.5679e-02 1.8721e-01 1.1060e-01 9.4729e-01 8.2470e-02 9.9802e-01 8.2753e-02
+#&gt; 228: 1.0192e+02 -4.1204e+00 -2.3469e+00 -4.0657e+00 -1.0054e+00 -1.0575e-02 3.8741e-02 6.0738e-07 6.5467e-02 2.5448e-02 1.8548e-01 1.1134e-01 9.4840e-01 8.2580e-02 9.9829e-01 8.2888e-02
+#&gt; 229: 1.0192e+02 -4.1204e+00 -2.3479e+00 -4.0650e+00 -1.0056e+00 -1.1215e-02 3.9360e-02 6.0182e-07 6.4817e-02 2.5237e-02 1.8448e-01 1.1090e-01 9.5039e-01 8.2625e-02 9.9900e-01 8.2896e-02
+#&gt; 230: 1.0192e+02 -4.1204e+00 -2.3482e+00 -4.0652e+00 -1.0060e+00 -9.9775e-03 3.9501e-02 5.9385e-07 6.4132e-02 2.5093e-02 1.8510e-01 1.1122e-01 9.4938e-01 8.2763e-02 9.9961e-01 8.2886e-02
+#&gt; 231: 1.0192e+02 -4.1204e+00 -2.3479e+00 -4.0654e+00 -1.0070e+00 -8.9509e-03 3.9907e-02 5.9290e-07 6.3744e-02 2.4829e-02 1.8560e-01 1.1062e-01 9.4790e-01 8.2872e-02 1.0022e+00 8.2955e-02
+#&gt; 232: 1.0192e+02 -4.1204e+00 -2.3484e+00 -4.0657e+00 -1.0081e+00 -6.9066e-03 4.0738e-02 5.7862e-07 6.3242e-02 2.4729e-02 1.8626e-01 1.0975e-01 9.4866e-01 8.2846e-02 1.0036e+00 8.3065e-02
+#&gt; 233: 1.0191e+02 -4.1204e+00 -2.3487e+00 -4.0660e+00 -1.0080e+00 -5.1163e-03 4.0708e-02 5.7326e-07 6.2392e-02 2.4475e-02 1.8701e-01 1.0932e-01 9.4816e-01 8.2933e-02 1.0059e+00 8.3155e-02
+#&gt; 234: 1.0191e+02 -4.1204e+00 -2.3500e+00 -4.0660e+00 -1.0077e+00 -4.0637e-03 4.1065e-02 5.6885e-07 6.1938e-02 2.4418e-02 1.8673e-01 1.0923e-01 9.5001e-01 8.3005e-02 1.0080e+00 8.3207e-02
+#&gt; 235: 1.0191e+02 -4.1204e+00 -2.3526e+00 -4.0653e+00 -1.0074e+00 -3.6541e-03 4.1151e-02 5.6498e-07 6.2228e-02 2.4447e-02 1.8667e-01 1.0995e-01 9.5059e-01 8.3101e-02 1.0055e+00 8.3101e-02
+#&gt; 236: 1.0191e+02 -4.1204e+00 -2.3540e+00 -4.0648e+00 -1.0078e+00 -4.0127e-03 4.0966e-02 5.7047e-07 6.1779e-02 2.4457e-02 1.8777e-01 1.0971e-01 9.4919e-01 8.3203e-02 1.0044e+00 8.3078e-02
+#&gt; 237: 1.0191e+02 -4.1204e+00 -2.3528e+00 -4.0645e+00 -1.0078e+00 -4.4251e-03 4.0491e-02 5.6811e-07 6.1507e-02 2.4421e-02 1.8827e-01 1.1047e-01 9.4870e-01 8.3149e-02 1.0031e+00 8.3008e-02
+#&gt; 238: 1.0190e+02 -4.1204e+00 -2.3517e+00 -4.0647e+00 -1.0076e+00 -5.2540e-03 3.9988e-02 5.6832e-07 6.1612e-02 2.4262e-02 1.8801e-01 1.1019e-01 9.4737e-01 8.3172e-02 1.0037e+00 8.2959e-02
+#&gt; 239: 1.0190e+02 -4.1204e+00 -2.3509e+00 -4.0650e+00 -1.0089e+00 -5.1598e-03 3.9373e-02 5.6396e-07 6.1635e-02 2.4040e-02 1.8812e-01 1.1055e-01 9.4885e-01 8.3140e-02 1.0053e+00 8.2956e-02
+#&gt; 240: 1.0190e+02 -4.1204e+00 -2.3515e+00 -4.0643e+00 -1.0095e+00 -4.5817e-03 3.9031e-02 5.5929e-07 6.2233e-02 2.3840e-02 1.8766e-01 1.1014e-01 9.5018e-01 8.3172e-02 1.0066e+00 8.2937e-02
+#&gt; 241: 1.0190e+02 -4.1204e+00 -2.3524e+00 -4.0642e+00 -1.0097e+00 -3.9061e-03 3.8686e-02 5.5496e-07 6.3349e-02 2.3663e-02 1.8759e-01 1.1046e-01 9.4922e-01 8.3162e-02 1.0064e+00 8.2940e-02
+#&gt; 242: 1.0190e+02 -4.1204e+00 -2.3535e+00 -4.0642e+00 -1.0092e+00 -2.9411e-03 3.8674e-02 5.5359e-07 6.3930e-02 2.3604e-02 1.8742e-01 1.1027e-01 9.4748e-01 8.3177e-02 1.0052e+00 8.2955e-02
+#&gt; 243: 1.0190e+02 -4.1204e+00 -2.3551e+00 -4.0642e+00 -1.0089e+00 -1.6071e-03 3.8635e-02 5.4669e-07 6.4141e-02 2.3570e-02 1.8666e-01 1.1022e-01 9.4770e-01 8.3208e-02 1.0048e+00 8.2962e-02
+#&gt; 244: 1.0190e+02 -4.1204e+00 -2.3566e+00 -4.0645e+00 -1.0093e+00 -7.0474e-04 3.8502e-02 5.4194e-07 6.4399e-02 2.3591e-02 1.8627e-01 1.0938e-01 9.4615e-01 8.3402e-02 1.0043e+00 8.2891e-02
+#&gt; 245: 1.0189e+02 -4.1204e+00 -2.3575e+00 -4.0649e+00 -1.0093e+00 1.3351e-03 3.8372e-02 5.4266e-07 6.4935e-02 2.3511e-02 1.8609e-01 1.0840e-01 9.4586e-01 8.3393e-02 1.0041e+00 8.2835e-02
+#&gt; 246: 1.0189e+02 -4.1204e+00 -2.3595e+00 -4.0655e+00 -1.0085e+00 4.2316e-03 3.8487e-02 5.4393e-07 6.5284e-02 2.3457e-02 1.8581e-01 1.0811e-01 9.4656e-01 8.3372e-02 1.0036e+00 8.2746e-02
+#&gt; 247: 1.0189e+02 -4.1204e+00 -2.3608e+00 -4.0659e+00 -1.0081e+00 6.1314e-03 3.8249e-02 5.4752e-07 6.5440e-02 2.3455e-02 1.8584e-01 1.0706e-01 9.4795e-01 8.3330e-02 1.0025e+00 8.2710e-02
+#&gt; 248: 1.0189e+02 -4.1204e+00 -2.3617e+00 -4.0662e+00 -1.0084e+00 8.1978e-03 3.8017e-02 5.4713e-07 6.5853e-02 2.3439e-02 1.8637e-01 1.0634e-01 9.4748e-01 8.3377e-02 1.0016e+00 8.2677e-02
+#&gt; 249: 1.0189e+02 -4.1204e+00 -2.3633e+00 -4.0667e+00 -1.0085e+00 9.8011e-03 3.7934e-02 5.5069e-07 6.6442e-02 2.3533e-02 1.8652e-01 1.0606e-01 9.4761e-01 8.3449e-02 1.0009e+00 8.2712e-02
+#&gt; 250: 1.0189e+02 -4.1204e+00 -2.3644e+00 -4.0668e+00 -1.0087e+00 1.0992e-02 3.8199e-02 5.5486e-07 6.6746e-02 2.3638e-02 1.8739e-01 1.0611e-01 9.4838e-01 8.3442e-02 9.9958e-01 8.2692e-02
+#&gt; 251: 1.0189e+02 -4.1204e+00 -2.3644e+00 -4.0671e+00 -1.0097e+00 1.2215e-02 3.8648e-02 5.5448e-07 6.6916e-02 2.3592e-02 1.8753e-01 1.0607e-01 9.4773e-01 8.3511e-02 9.9919e-01 8.2701e-02
+#&gt; 252: 1.0189e+02 -4.1204e+00 -2.3645e+00 -4.0671e+00 -1.0100e+00 1.2881e-02 3.8792e-02 5.5615e-07 6.7323e-02 2.3559e-02 1.8811e-01 1.0641e-01 9.4665e-01 8.3575e-02 9.9809e-01 8.2743e-02
+#&gt; 253: 1.0189e+02 -4.1204e+00 -2.3646e+00 -4.0675e+00 -1.0100e+00 1.3605e-02 3.9013e-02 5.5568e-07 6.7625e-02 2.3432e-02 1.8825e-01 1.0688e-01 9.4424e-01 8.3598e-02 9.9825e-01 8.2702e-02
+#&gt; 254: 1.0189e+02 -4.1204e+00 -2.3642e+00 -4.0677e+00 -1.0101e+00 1.3119e-02 3.8838e-02 5.5231e-07 6.7802e-02 2.3429e-02 1.8849e-01 1.0680e-01 9.4281e-01 8.3706e-02 9.9829e-01 8.2631e-02
+#&gt; 255: 1.0189e+02 -4.1204e+00 -2.3627e+00 -4.0679e+00 -1.0104e+00 1.2490e-02 3.8574e-02 5.4955e-07 6.8395e-02 2.3368e-02 1.8890e-01 1.0661e-01 9.4101e-01 8.3756e-02 9.9798e-01 8.2674e-02
+#&gt; 256: 1.0189e+02 -4.1204e+00 -2.3615e+00 -4.0677e+00 -1.0102e+00 1.1525e-02 3.8502e-02 5.4764e-07 6.8824e-02 2.3405e-02 1.8912e-01 1.0649e-01 9.4109e-01 8.3709e-02 9.9811e-01 8.2698e-02
+#&gt; 257: 1.0189e+02 -4.1204e+00 -2.3604e+00 -4.0673e+00 -1.0104e+00 1.0381e-02 3.8286e-02 5.4694e-07 6.9020e-02 2.3338e-02 1.8925e-01 1.0614e-01 9.4075e-01 8.3695e-02 9.9738e-01 8.2689e-02
+#&gt; 258: 1.0189e+02 -4.1204e+00 -2.3591e+00 -4.0670e+00 -1.0103e+00 8.9559e-03 3.7972e-02 5.4665e-07 6.9077e-02 2.3267e-02 1.8919e-01 1.0590e-01 9.4089e-01 8.3618e-02 9.9742e-01 8.2681e-02
+#&gt; 259: 1.0189e+02 -4.1204e+00 -2.3585e+00 -4.0669e+00 -1.0099e+00 8.6011e-03 3.7874e-02 5.4788e-07 6.9455e-02 2.3264e-02 1.8885e-01 1.0519e-01 9.3952e-01 8.3583e-02 9.9610e-01 8.2650e-02
+#&gt; 260: 1.0189e+02 -4.1204e+00 -2.3584e+00 -4.0666e+00 -1.0098e+00 8.0471e-03 3.7771e-02 5.5294e-07 7.0269e-02 2.3292e-02 1.8877e-01 1.0442e-01 9.3898e-01 8.3519e-02 9.9504e-01 8.2641e-02
+#&gt; 261: 1.0189e+02 -4.1204e+00 -2.3583e+00 -4.0664e+00 -1.0100e+00 7.9344e-03 3.7597e-02 5.5650e-07 7.1087e-02 2.3370e-02 1.8867e-01 1.0399e-01 9.3810e-01 8.3488e-02 9.9419e-01 8.2673e-02
+#&gt; 262: 1.0189e+02 -4.1204e+00 -2.3575e+00 -4.0662e+00 -1.0106e+00 7.2123e-03 3.7203e-02 5.5375e-07 7.1794e-02 2.3393e-02 1.8855e-01 1.0356e-01 9.3773e-01 8.3458e-02 9.9406e-01 8.2739e-02
+#&gt; 263: 1.0189e+02 -4.1204e+00 -2.3564e+00 -4.0659e+00 -1.0112e+00 6.6044e-03 3.6977e-02 5.5306e-07 7.2290e-02 2.3475e-02 1.8847e-01 1.0316e-01 9.3744e-01 8.3383e-02 9.9341e-01 8.2818e-02
+#&gt; 264: 1.0189e+02 -4.1204e+00 -2.3549e+00 -4.0657e+00 -1.0118e+00 6.0119e-03 3.6749e-02 5.5152e-07 7.2896e-02 2.3530e-02 1.8849e-01 1.0277e-01 9.3658e-01 8.3443e-02 9.9248e-01 8.2877e-02
+#&gt; 265: 1.0189e+02 -4.1204e+00 -2.3545e+00 -4.0655e+00 -1.0121e+00 5.6547e-03 3.6562e-02 5.4816e-07 7.3238e-02 2.3560e-02 1.8863e-01 1.0269e-01 9.3597e-01 8.3434e-02 9.9139e-01 8.2879e-02
+#&gt; 266: 1.0189e+02 -4.1204e+00 -2.3545e+00 -4.0651e+00 -1.0121e+00 5.0995e-03 3.6357e-02 5.4458e-07 7.3522e-02 2.3561e-02 1.8883e-01 1.0270e-01 9.3607e-01 8.3407e-02 9.9133e-01 8.2857e-02
+#&gt; 267: 1.0189e+02 -4.1204e+00 -2.3541e+00 -4.0648e+00 -1.0122e+00 4.0105e-03 3.6306e-02 5.4160e-07 7.3833e-02 2.3499e-02 1.8889e-01 1.0317e-01 9.3624e-01 8.3359e-02 9.9151e-01 8.2865e-02
+#&gt; 268: 1.0189e+02 -4.1204e+00 -2.3530e+00 -4.0646e+00 -1.0122e+00 3.0925e-03 3.6248e-02 5.3845e-07 7.4663e-02 2.3413e-02 1.8895e-01 1.0371e-01 9.3624e-01 8.3277e-02 9.9210e-01 8.2909e-02
+#&gt; 269: 1.0189e+02 -4.1204e+00 -2.3518e+00 -4.0643e+00 -1.0123e+00 2.0507e-03 3.6181e-02 5.3602e-07 7.5442e-02 2.3291e-02 1.8886e-01 1.0397e-01 9.3581e-01 8.3260e-02 9.9238e-01 8.2898e-02
+#&gt; 270: 1.0189e+02 -4.1204e+00 -2.3513e+00 -4.0640e+00 -1.0127e+00 1.3309e-03 3.5900e-02 5.3234e-07 7.6677e-02 2.3220e-02 1.8860e-01 1.0367e-01 9.3573e-01 8.3250e-02 9.9169e-01 8.2904e-02
+#&gt; 271: 1.0189e+02 -4.1204e+00 -2.3514e+00 -4.0637e+00 -1.0129e+00 1.1237e-03 3.5608e-02 5.3092e-07 7.7065e-02 2.3102e-02 1.8826e-01 1.0384e-01 9.3645e-01 8.3228e-02 9.9173e-01 8.2896e-02
+#&gt; 272: 1.0189e+02 -4.1204e+00 -2.3510e+00 -4.0639e+00 -1.0134e+00 9.7855e-04 3.5328e-02 5.3100e-07 7.7173e-02 2.3014e-02 1.8817e-01 1.0367e-01 9.3538e-01 8.3266e-02 9.9139e-01 8.2943e-02
+#&gt; 273: 1.0189e+02 -4.1204e+00 -2.3501e+00 -4.0643e+00 -1.0133e+00 1.1275e-03 3.5187e-02 5.3298e-07 7.7467e-02 2.2923e-02 1.8793e-01 1.0344e-01 9.3474e-01 8.3194e-02 9.9249e-01 8.2973e-02
+#&gt; 274: 1.0189e+02 -4.1204e+00 -2.3498e+00 -4.0643e+00 -1.0134e+00 1.4524e-03 3.4996e-02 5.3407e-07 7.7929e-02 2.2819e-02 1.8837e-01 1.0316e-01 9.3399e-01 8.3168e-02 9.9307e-01 8.2981e-02
+#&gt; 275: 1.0189e+02 -4.1204e+00 -2.3500e+00 -4.0641e+00 -1.0136e+00 1.3605e-03 3.4786e-02 5.3269e-07 7.8177e-02 2.2747e-02 1.8855e-01 1.0305e-01 9.3319e-01 8.3205e-02 9.9277e-01 8.2938e-02
+#&gt; 276: 1.0189e+02 -4.1204e+00 -2.3504e+00 -4.0641e+00 -1.0136e+00 1.5273e-03 3.4581e-02 5.3172e-07 7.8495e-02 2.2764e-02 1.8824e-01 1.0297e-01 9.3267e-01 8.3223e-02 9.9204e-01 8.2884e-02
+#&gt; 277: 1.0189e+02 -4.1204e+00 -2.3506e+00 -4.0643e+00 -1.0133e+00 1.2961e-03 3.4373e-02 5.2917e-07 7.8721e-02 2.2791e-02 1.8801e-01 1.0288e-01 9.3253e-01 8.3185e-02 9.9192e-01 8.2854e-02
+#&gt; 278: 1.0189e+02 -4.1204e+00 -2.3508e+00 -4.0643e+00 -1.0129e+00 1.1750e-03 3.4396e-02 5.2693e-07 7.8999e-02 2.2787e-02 1.8793e-01 1.0278e-01 9.3279e-01 8.3113e-02 9.9144e-01 8.2856e-02
+#&gt; 279: 1.0189e+02 -4.1204e+00 -2.3507e+00 -4.0642e+00 -1.0126e+00 1.2755e-03 3.4381e-02 5.2405e-07 7.9351e-02 2.2804e-02 1.8779e-01 1.0255e-01 9.3319e-01 8.3049e-02 9.9099e-01 8.2875e-02
+#&gt; 280: 1.0189e+02 -4.1204e+00 -2.3507e+00 -4.0641e+00 -1.0127e+00 6.3408e-04 3.4519e-02 5.2180e-07 7.9825e-02 2.2801e-02 1.8775e-01 1.0292e-01 9.3349e-01 8.2970e-02 9.9076e-01 8.2918e-02
+#&gt; 281: 1.0189e+02 -4.1204e+00 -2.3508e+00 -4.0639e+00 -1.0124e+00 6.2438e-04 3.4782e-02 5.1859e-07 8.0328e-02 2.2816e-02 1.8757e-01 1.0299e-01 9.3299e-01 8.3025e-02 9.9050e-01 8.2897e-02
+#&gt; 282: 1.0189e+02 -4.1205e+00 -2.3511e+00 -4.0641e+00 -1.0122e+00 1.1770e-03 3.4754e-02 5.1798e-07 8.0649e-02 2.2836e-02 1.8766e-01 1.0297e-01 9.3351e-01 8.2989e-02 9.9171e-01 8.2893e-02
+#&gt; 283: 1.0189e+02 -4.1205e+00 -2.3519e+00 -4.0644e+00 -1.0120e+00 2.1716e-03 3.4711e-02 5.1567e-07 8.0910e-02 2.2836e-02 1.8774e-01 1.0270e-01 9.3288e-01 8.3029e-02 9.9246e-01 8.2853e-02
+#&gt; 284: 1.0189e+02 -4.1205e+00 -2.3524e+00 -4.0647e+00 -1.0115e+00 2.6623e-03 3.4646e-02 5.1350e-07 8.1153e-02 2.2950e-02 1.8775e-01 1.0277e-01 9.3238e-01 8.2990e-02 9.9212e-01 8.2836e-02
+#&gt; 285: 1.0189e+02 -4.1205e+00 -2.3531e+00 -4.0649e+00 -1.0116e+00 3.7830e-03 3.4626e-02 5.1216e-07 8.1058e-02 2.3007e-02 1.8782e-01 1.0270e-01 9.3232e-01 8.3017e-02 9.9094e-01 8.2829e-02
+#&gt; 286: 1.0189e+02 -4.1205e+00 -2.3539e+00 -4.0651e+00 -1.0111e+00 5.1752e-03 3.4599e-02 5.0989e-07 8.0970e-02 2.3004e-02 1.8757e-01 1.0254e-01 9.3280e-01 8.3006e-02 9.9130e-01 8.2818e-02
+#&gt; 287: 1.0189e+02 -4.1205e+00 -2.3541e+00 -4.0654e+00 -1.0112e+00 6.3747e-03 3.4592e-02 5.0930e-07 8.1117e-02 2.2959e-02 1.8756e-01 1.0222e-01 9.3212e-01 8.3146e-02 9.9183e-01 8.2863e-02
+#&gt; 288: 1.0189e+02 -4.1205e+00 -2.3540e+00 -4.0656e+00 -1.0115e+00 6.5668e-03 3.4598e-02 5.0976e-07 8.1125e-02 2.2895e-02 1.8782e-01 1.0183e-01 9.3310e-01 8.3169e-02 9.9404e-01 8.2836e-02
+#&gt; 289: 1.0189e+02 -4.1205e+00 -2.3539e+00 -4.0658e+00 -1.0119e+00 7.3521e-03 3.4525e-02 5.1097e-07 8.1097e-02 2.2869e-02 1.8753e-01 1.0126e-01 9.3336e-01 8.3244e-02 9.9435e-01 8.2833e-02
+#&gt; 290: 1.0189e+02 -4.1205e+00 -2.3539e+00 -4.0659e+00 -1.0122e+00 7.5226e-03 3.4377e-02 5.0846e-07 8.1212e-02 2.2831e-02 1.8724e-01 1.0073e-01 9.3292e-01 8.3261e-02 9.9415e-01 8.2837e-02
+#&gt; 291: 1.0189e+02 -4.1205e+00 -2.3536e+00 -4.0659e+00 -1.0122e+00 7.2889e-03 3.4263e-02 5.0823e-07 8.1182e-02 2.2801e-02 1.8711e-01 1.0056e-01 9.3309e-01 8.3300e-02 9.9427e-01 8.2805e-02
+#&gt; 292: 1.0189e+02 -4.1205e+00 -2.3531e+00 -4.0659e+00 -1.0123e+00 7.1827e-03 3.4146e-02 5.0825e-07 8.1696e-02 2.2760e-02 1.8703e-01 1.0039e-01 9.3324e-01 8.3306e-02 9.9379e-01 8.2784e-02
+#&gt; 293: 1.0189e+02 -4.1205e+00 -2.3528e+00 -4.0660e+00 -1.0125e+00 7.7142e-03 3.4126e-02 5.0971e-07 8.2026e-02 2.2705e-02 1.8721e-01 1.0036e-01 9.3316e-01 8.3316e-02 9.9357e-01 8.2756e-02
+#&gt; 294: 1.0188e+02 -4.1204e+00 -2.3529e+00 -4.0663e+00 -1.0126e+00 8.5146e-03 3.4314e-02 5.0823e-07 8.2197e-02 2.2608e-02 1.8743e-01 1.0009e-01 9.3356e-01 8.3308e-02 9.9367e-01 8.2719e-02
+#&gt; 295: 1.0188e+02 -4.1204e+00 -2.3532e+00 -4.0666e+00 -1.0123e+00 9.2199e-03 3.4472e-02 5.0839e-07 8.2550e-02 2.2529e-02 1.8745e-01 9.9731e-02 9.3393e-01 8.3255e-02 9.9373e-01 8.2686e-02
+#&gt; 296: 1.0188e+02 -4.1204e+00 -2.3537e+00 -4.0667e+00 -1.0121e+00 9.7869e-03 3.4678e-02 5.0983e-07 8.3059e-02 2.2497e-02 1.8729e-01 9.9260e-02 9.3395e-01 8.3198e-02 9.9300e-01 8.2681e-02
+#&gt; 297: 1.0188e+02 -4.1204e+00 -2.3540e+00 -4.0670e+00 -1.0118e+00 1.0166e-02 3.4957e-02 5.1049e-07 8.3080e-02 2.2448e-02 1.8710e-01 9.8969e-02 9.3321e-01 8.3178e-02 9.9255e-01 8.2663e-02
+#&gt; 298: 1.0188e+02 -4.1204e+00 -2.3544e+00 -4.0673e+00 -1.0117e+00 1.0649e-02 3.5259e-02 5.1103e-07 8.3179e-02 2.2383e-02 1.8704e-01 9.8442e-02 9.3227e-01 8.3199e-02 9.9266e-01 8.2646e-02
+#&gt; 299: 1.0188e+02 -4.1204e+00 -2.3542e+00 -4.0676e+00 -1.0117e+00 1.0927e-02 3.5438e-02 5.1128e-07 8.3068e-02 2.2378e-02 1.8699e-01 9.8203e-02 9.3263e-01 8.3138e-02 9.9353e-01 8.2671e-02
+#&gt; 300: 1.0188e+02 -4.1204e+00 -2.3544e+00 -4.0678e+00 -1.0116e+00 1.1083e-02 3.5694e-02 5.1107e-07 8.2896e-02 2.2344e-02 1.8733e-01 9.7775e-02 9.3179e-01 8.3124e-02 9.9379e-01 8.2657e-02
+#&gt; 301: 1.0188e+02 -4.1204e+00 -2.3542e+00 -4.0680e+00 -1.0115e+00 1.0992e-02 3.5896e-02 5.1262e-07 8.2816e-02 2.2349e-02 1.8753e-01 9.7431e-02 9.3209e-01 8.3086e-02 9.9388e-01 8.2674e-02
+#&gt; 302: 1.0188e+02 -4.1204e+00 -2.3540e+00 -4.0681e+00 -1.0113e+00 1.0410e-02 3.6050e-02 5.1256e-07 8.2817e-02 2.2308e-02 1.8734e-01 9.7153e-02 9.3221e-01 8.3073e-02 9.9402e-01 8.2670e-02
+#&gt; 303: 1.0188e+02 -4.1204e+00 -2.3540e+00 -4.0681e+00 -1.0112e+00 1.0301e-02 3.6150e-02 5.1127e-07 8.2826e-02 2.2325e-02 1.8730e-01 9.6656e-02 9.3192e-01 8.3040e-02 9.9393e-01 8.2665e-02
+#&gt; 304: 1.0188e+02 -4.1204e+00 -2.3536e+00 -4.0681e+00 -1.0113e+00 1.0235e-02 3.6393e-02 5.1176e-07 8.2606e-02 2.2353e-02 1.8724e-01 9.6171e-02 9.3161e-01 8.3068e-02 9.9361e-01 8.2698e-02
+#&gt; 305: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0683e+00 -1.0112e+00 9.9655e-03 3.6369e-02 5.1442e-07 8.2520e-02 2.2378e-02 1.8707e-01 9.5656e-02 9.3113e-01 8.3109e-02 9.9338e-01 8.2731e-02
+#&gt; 306: 1.0188e+02 -4.1204e+00 -2.3531e+00 -4.0684e+00 -1.0110e+00 9.9701e-03 3.6346e-02 5.1546e-07 8.2789e-02 2.2360e-02 1.8702e-01 9.5116e-02 9.3102e-01 8.3065e-02 9.9405e-01 8.2761e-02
+#&gt; 307: 1.0188e+02 -4.1204e+00 -2.3530e+00 -4.0684e+00 -1.0112e+00 1.0194e-02 3.6300e-02 5.1196e-07 8.3035e-02 2.2381e-02 1.8704e-01 9.4760e-02 9.3082e-01 8.3003e-02 9.9410e-01 8.2779e-02
+#&gt; 308: 1.0189e+02 -4.1204e+00 -2.3530e+00 -4.0685e+00 -1.0109e+00 9.9531e-03 3.6400e-02 5.1140e-07 8.3511e-02 2.2334e-02 1.8726e-01 9.4494e-02 9.3151e-01 8.2910e-02 9.9484e-01 8.2760e-02
+#&gt; 309: 1.0188e+02 -4.1204e+00 -2.3530e+00 -4.0685e+00 -1.0107e+00 1.0089e-02 3.6382e-02 5.1081e-07 8.3917e-02 2.2276e-02 1.8728e-01 9.4285e-02 9.3133e-01 8.2875e-02 9.9545e-01 8.2757e-02
+#&gt; 310: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0685e+00 -1.0105e+00 1.0805e-02 3.6375e-02 5.1041e-07 8.4245e-02 2.2246e-02 1.8753e-01 9.3894e-02 9.3052e-01 8.2899e-02 9.9500e-01 8.2743e-02
+#&gt; 311: 1.0188e+02 -4.1204e+00 -2.3534e+00 -4.0685e+00 -1.0103e+00 1.1449e-02 3.6311e-02 5.0884e-07 8.4434e-02 2.2231e-02 1.8783e-01 9.3542e-02 9.3039e-01 8.2864e-02 9.9458e-01 8.2733e-02
+#&gt; 312: 1.0188e+02 -4.1204e+00 -2.3535e+00 -4.0685e+00 -1.0102e+00 1.2173e-02 3.6373e-02 5.0821e-07 8.4730e-02 2.2176e-02 1.8769e-01 9.3317e-02 9.2982e-01 8.2916e-02 9.9438e-01 8.2740e-02
+#&gt; 313: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0688e+00 -1.0103e+00 1.2812e-02 3.6558e-02 5.0751e-07 8.5211e-02 2.2131e-02 1.8754e-01 9.3387e-02 9.2962e-01 8.2892e-02 9.9458e-01 8.2741e-02
+#&gt; 314: 1.0188e+02 -4.1204e+00 -2.3534e+00 -4.0690e+00 -1.0103e+00 1.3241e-02 3.6680e-02 5.0887e-07 8.5667e-02 2.2079e-02 1.8772e-01 9.3442e-02 9.2941e-01 8.2947e-02 9.9511e-01 8.2743e-02
+#&gt; 315: 1.0188e+02 -4.1204e+00 -2.3534e+00 -4.0691e+00 -1.0104e+00 1.3699e-02 3.6924e-02 5.0965e-07 8.5865e-02 2.2028e-02 1.8766e-01 9.3264e-02 9.2904e-01 8.2986e-02 9.9543e-01 8.2763e-02
+#&gt; 316: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0693e+00 -1.0103e+00 1.4121e-02 3.7218e-02 5.1041e-07 8.6216e-02 2.2076e-02 1.8773e-01 9.3035e-02 9.2917e-01 8.3013e-02 9.9486e-01 8.2782e-02
+#&gt; 317: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0694e+00 -1.0102e+00 1.4588e-02 3.7304e-02 5.0994e-07 8.6513e-02 2.2128e-02 1.8773e-01 9.2766e-02 9.2943e-01 8.3025e-02 9.9441e-01 8.2779e-02
+#&gt; 318: 1.0188e+02 -4.1204e+00 -2.3534e+00 -4.0693e+00 -1.0101e+00 1.4714e-02 3.7538e-02 5.0773e-07 8.6801e-02 2.2128e-02 1.8767e-01 9.2698e-02 9.2907e-01 8.3052e-02 9.9378e-01 8.2780e-02
+#&gt; 319: 1.0187e+02 -4.1204e+00 -2.3533e+00 -4.0692e+00 -1.0099e+00 1.4582e-02 3.7563e-02 5.0550e-07 8.6669e-02 2.2135e-02 1.8775e-01 9.2604e-02 9.2925e-01 8.3042e-02 9.9356e-01 8.2773e-02
+#&gt; 320: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0690e+00 -1.0102e+00 1.4511e-02 3.7580e-02 5.0281e-07 8.6617e-02 2.2121e-02 1.8780e-01 9.2508e-02 9.3001e-01 8.3032e-02 9.9322e-01 8.2780e-02
+#&gt; 321: 1.0187e+02 -4.1204e+00 -2.3534e+00 -4.0688e+00 -1.0100e+00 1.4288e-02 3.7624e-02 5.0172e-07 8.6311e-02 2.2115e-02 1.8783e-01 9.2445e-02 9.3011e-01 8.3054e-02 9.9288e-01 8.2772e-02
+#&gt; 322: 1.0187e+02 -4.1204e+00 -2.3532e+00 -4.0687e+00 -1.0098e+00 1.3834e-02 3.7497e-02 5.0086e-07 8.6187e-02 2.2111e-02 1.8791e-01 9.2699e-02 9.3037e-01 8.3069e-02 9.9284e-01 8.2773e-02
+#&gt; 323: 1.0187e+02 -4.1204e+00 -2.3524e+00 -4.0683e+00 -1.0097e+00 1.2977e-02 3.7420e-02 4.9925e-07 8.6082e-02 2.2084e-02 1.8818e-01 9.3123e-02 9.3036e-01 8.3012e-02 9.9265e-01 8.2813e-02
+#&gt; 324: 1.0187e+02 -4.1204e+00 -2.3523e+00 -4.0682e+00 -1.0096e+00 1.2679e-02 3.7420e-02 4.9836e-07 8.5721e-02 2.2071e-02 1.8829e-01 9.3535e-02 9.3062e-01 8.3011e-02 9.9241e-01 8.2827e-02
+#&gt; 325: 1.0187e+02 -4.1204e+00 -2.3520e+00 -4.0680e+00 -1.0094e+00 1.2196e-02 3.7298e-02 4.9735e-07 8.5411e-02 2.2028e-02 1.8848e-01 9.3706e-02 9.3043e-01 8.3020e-02 9.9256e-01 8.2826e-02
+#&gt; 326: 1.0187e+02 -4.1204e+00 -2.3517e+00 -4.0678e+00 -1.0091e+00 1.1924e-02 3.7185e-02 4.9661e-07 8.5453e-02 2.1983e-02 1.8830e-01 9.3688e-02 9.3050e-01 8.2996e-02 9.9284e-01 8.2806e-02
+#&gt; 327: 1.0187e+02 -4.1204e+00 -2.3516e+00 -4.0677e+00 -1.0090e+00 1.1449e-02 3.7155e-02 4.9755e-07 8.5761e-02 2.1967e-02 1.8819e-01 9.3936e-02 9.3052e-01 8.2912e-02 9.9245e-01 8.2806e-02
+#&gt; 328: 1.0187e+02 -4.1204e+00 -2.3514e+00 -4.0675e+00 -1.0089e+00 1.0758e-02 3.7146e-02 4.9892e-07 8.6019e-02 2.1971e-02 1.8806e-01 9.4361e-02 9.3070e-01 8.2833e-02 9.9182e-01 8.2840e-02
+#&gt; 329: 1.0187e+02 -4.1204e+00 -2.3515e+00 -4.0672e+00 -1.0087e+00 1.0256e-02 3.7342e-02 5.0019e-07 8.5965e-02 2.1989e-02 1.8796e-01 9.4614e-02 9.3067e-01 8.2818e-02 9.9159e-01 8.2858e-02
+#&gt; 330: 1.0187e+02 -4.1204e+00 -2.3520e+00 -4.0670e+00 -1.0086e+00 1.0021e-02 3.7376e-02 4.9911e-07 8.6124e-02 2.1978e-02 1.8796e-01 9.4836e-02 9.3036e-01 8.2819e-02 9.9148e-01 8.2866e-02
+#&gt; 331: 1.0187e+02 -4.1204e+00 -2.3521e+00 -4.0668e+00 -1.0086e+00 9.5790e-03 3.7296e-02 4.9753e-07 8.6122e-02 2.1951e-02 1.8782e-01 9.5042e-02 9.3064e-01 8.2783e-02 9.9196e-01 8.2863e-02
+#&gt; 332: 1.0187e+02 -4.1204e+00 -2.3523e+00 -4.0667e+00 -1.0085e+00 9.2971e-03 3.7221e-02 4.9729e-07 8.6215e-02 2.1952e-02 1.8787e-01 9.5082e-02 9.3103e-01 8.2782e-02 9.9224e-01 8.2861e-02
+#&gt; 333: 1.0187e+02 -4.1204e+00 -2.3524e+00 -4.0667e+00 -1.0084e+00 9.2591e-03 3.7097e-02 4.9556e-07 8.6302e-02 2.1922e-02 1.8792e-01 9.5155e-02 9.3058e-01 8.2798e-02 9.9202e-01 8.2831e-02
+#&gt; 334: 1.0187e+02 -4.1204e+00 -2.3528e+00 -4.0667e+00 -1.0082e+00 9.5799e-03 3.6997e-02 4.9398e-07 8.6409e-02 2.1911e-02 1.8792e-01 9.5231e-02 9.3035e-01 8.2810e-02 9.9157e-01 8.2803e-02
+#&gt; 335: 1.0187e+02 -4.1204e+00 -2.3529e+00 -4.0667e+00 -1.0080e+00 9.5724e-03 3.6912e-02 4.9206e-07 8.6310e-02 2.1923e-02 1.8791e-01 9.5379e-02 9.3054e-01 8.2759e-02 9.9143e-01 8.2776e-02
+#&gt; 336: 1.0187e+02 -4.1204e+00 -2.3525e+00 -4.0667e+00 -1.0082e+00 9.5794e-03 3.6983e-02 4.9255e-07 8.6282e-02 2.1882e-02 1.8789e-01 9.5422e-02 9.3064e-01 8.2705e-02 9.9138e-01 8.2778e-02
+#&gt; 337: 1.0187e+02 -4.1204e+00 -2.3525e+00 -4.0669e+00 -1.0083e+00 1.0008e-02 3.6943e-02 4.9278e-07 8.6483e-02 2.1844e-02 1.8794e-01 9.5240e-02 9.2981e-01 8.2753e-02 9.9100e-01 8.2774e-02
+#&gt; 338: 1.0187e+02 -4.1204e+00 -2.3525e+00 -4.0669e+00 -1.0084e+00 1.0297e-02 3.6869e-02 4.9309e-07 8.6547e-02 2.1803e-02 1.8808e-01 9.5094e-02 9.2978e-01 8.2764e-02 9.9113e-01 8.2759e-02
+#&gt; 339: 1.0187e+02 -4.1204e+00 -2.3528e+00 -4.0669e+00 -1.0083e+00 1.0465e-02 3.6822e-02 4.9257e-07 8.6779e-02 2.1769e-02 1.8813e-01 9.5062e-02 9.3020e-01 8.2702e-02 9.9135e-01 8.2750e-02
+#&gt; 340: 1.0187e+02 -4.1204e+00 -2.3531e+00 -4.0668e+00 -1.0083e+00 1.0321e-02 3.6733e-02 4.9228e-07 8.7033e-02 2.1721e-02 1.8827e-01 9.4862e-02 9.3062e-01 8.2698e-02 9.9195e-01 8.2729e-02
+#&gt; 341: 1.0187e+02 -4.1204e+00 -2.3531e+00 -4.0670e+00 -1.0085e+00 1.0501e-02 3.6671e-02 4.9236e-07 8.7297e-02 2.1733e-02 1.8820e-01 9.4558e-02 9.3121e-01 8.2677e-02 9.9238e-01 8.2713e-02
+#&gt; 342: 1.0187e+02 -4.1204e+00 -2.3534e+00 -4.0670e+00 -1.0085e+00 1.0818e-02 3.6715e-02 4.9084e-07 8.7450e-02 2.1726e-02 1.8801e-01 9.4252e-02 9.3160e-01 8.2657e-02 9.9232e-01 8.2708e-02
+#&gt; 343: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0670e+00 -1.0087e+00 1.1046e-02 3.6784e-02 4.8872e-07 8.7718e-02 2.1718e-02 1.8799e-01 9.3887e-02 9.3187e-01 8.2645e-02 9.9225e-01 8.2722e-02
+#&gt; 344: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0670e+00 -1.0087e+00 1.0652e-02 3.6736e-02 4.8852e-07 8.7725e-02 2.1730e-02 1.8792e-01 9.3731e-02 9.3202e-01 8.2618e-02 9.9218e-01 8.2712e-02
+#&gt; 345: 1.0187e+02 -4.1204e+00 -2.3536e+00 -4.0669e+00 -1.0090e+00 1.0445e-02 3.6714e-02 4.8690e-07 8.7782e-02 2.1751e-02 1.8798e-01 9.3450e-02 9.3223e-01 8.2582e-02 9.9239e-01 8.2706e-02
+#&gt; 346: 1.0187e+02 -4.1204e+00 -2.3536e+00 -4.0668e+00 -1.0089e+00 1.0173e-02 3.6743e-02 4.8656e-07 8.7733e-02 2.1810e-02 1.8814e-01 9.3151e-02 9.3257e-01 8.2575e-02 9.9181e-01 8.2708e-02
+#&gt; 347: 1.0187e+02 -4.1205e+00 -2.3532e+00 -4.0668e+00 -1.0089e+00 9.9457e-03 3.6808e-02 4.8756e-07 8.7948e-02 2.1819e-02 1.8813e-01 9.3040e-02 9.3255e-01 8.2599e-02 9.9124e-01 8.2727e-02
+#&gt; 348: 1.0187e+02 -4.1205e+00 -2.3534e+00 -4.0667e+00 -1.0090e+00 9.8498e-03 3.6967e-02 4.8883e-07 8.7998e-02 2.1841e-02 1.8820e-01 9.3180e-02 9.3259e-01 8.2612e-02 9.9148e-01 8.2750e-02
+#&gt; 349: 1.0187e+02 -4.1205e+00 -2.3535e+00 -4.0668e+00 -1.0091e+00 9.6211e-03 3.6891e-02 4.8867e-07 8.8006e-02 2.1930e-02 1.8819e-01 9.3390e-02 9.3232e-01 8.2612e-02 9.9073e-01 8.2738e-02
+#&gt; 350: 1.0187e+02 -4.1205e+00 -2.3534e+00 -4.0669e+00 -1.0090e+00 9.7176e-03 3.6813e-02 4.8925e-07 8.7923e-02 2.1964e-02 1.8820e-01 9.3434e-02 9.3224e-01 8.2600e-02 9.9031e-01 8.2734e-02
+#&gt; 351: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0669e+00 -1.0090e+00 9.6652e-03 3.6769e-02 4.8873e-07 8.7985e-02 2.2046e-02 1.8814e-01 9.3529e-02 9.3220e-01 8.2558e-02 9.8978e-01 8.2728e-02
+#&gt; 352: 1.0187e+02 -4.1204e+00 -2.3536e+00 -4.0669e+00 -1.0089e+00 9.8745e-03 3.6732e-02 4.8969e-07 8.8016e-02 2.2094e-02 1.8799e-01 9.3644e-02 9.3168e-01 8.2577e-02 9.8913e-01 8.2722e-02
+#&gt; 353: 1.0187e+02 -4.1204e+00 -2.3537e+00 -4.0669e+00 -1.0088e+00 9.7530e-03 3.6700e-02 4.9008e-07 8.7949e-02 2.2116e-02 1.8798e-01 9.3769e-02 9.3165e-01 8.2559e-02 9.8871e-01 8.2711e-02
+#&gt; 354: 1.0187e+02 -4.1204e+00 -2.3538e+00 -4.0667e+00 -1.0089e+00 9.4103e-03 3.6653e-02 4.9045e-07 8.7894e-02 2.2118e-02 1.8793e-01 9.3872e-02 9.3188e-01 8.2551e-02 9.8887e-01 8.2692e-02
+#&gt; 355: 1.0187e+02 -4.1204e+00 -2.3540e+00 -4.0666e+00 -1.0088e+00 9.1684e-03 3.6536e-02 4.9125e-07 8.7920e-02 2.2107e-02 1.8812e-01 9.4123e-02 9.3223e-01 8.2517e-02 9.8893e-01 8.2687e-02
+#&gt; 356: 1.0187e+02 -4.1204e+00 -2.3542e+00 -4.0664e+00 -1.0086e+00 8.9025e-03 3.6431e-02 4.9325e-07 8.7949e-02 2.2110e-02 1.8827e-01 9.4135e-02 9.3252e-01 8.2503e-02 9.8907e-01 8.2649e-02
+#&gt; 357: 1.0187e+02 -4.1204e+00 -2.3542e+00 -4.0663e+00 -1.0085e+00 8.6757e-03 3.6417e-02 4.9505e-07 8.8052e-02 2.2096e-02 1.8848e-01 9.4192e-02 9.3281e-01 8.2490e-02 9.8957e-01 8.2624e-02
+#&gt; 358: 1.0187e+02 -4.1204e+00 -2.3542e+00 -4.0661e+00 -1.0084e+00 8.1812e-03 3.6349e-02 4.9610e-07 8.8344e-02 2.2104e-02 1.8844e-01 9.4129e-02 9.3294e-01 8.2493e-02 9.8977e-01 8.2614e-02
+#&gt; 359: 1.0187e+02 -4.1204e+00 -2.3541e+00 -4.0659e+00 -1.0083e+00 8.0905e-03 3.6475e-02 4.9675e-07 8.8647e-02 2.2116e-02 1.8831e-01 9.4146e-02 9.3322e-01 8.2473e-02 9.8978e-01 8.2622e-02
+#&gt; 360: 1.0187e+02 -4.1204e+00 -2.3542e+00 -4.0657e+00 -1.0082e+00 7.8390e-03 3.6468e-02 4.9649e-07 8.8981e-02 2.2120e-02 1.8815e-01 9.4249e-02 9.3361e-01 8.2430e-02 9.8997e-01 8.2616e-02
+#&gt; 361: 1.0187e+02 -4.1204e+00 -2.3545e+00 -4.0656e+00 -1.0083e+00 7.9104e-03 3.6434e-02 4.9737e-07 8.9447e-02 2.2133e-02 1.8808e-01 9.4085e-02 9.3387e-01 8.2426e-02 9.9025e-01 8.2616e-02
+#&gt; 362: 1.0187e+02 -4.1204e+00 -2.3547e+00 -4.0655e+00 -1.0087e+00 7.6341e-03 3.6428e-02 4.9748e-07 8.9872e-02 2.2148e-02 1.8805e-01 9.4025e-02 9.3407e-01 8.2456e-02 9.9070e-01 8.2609e-02
+#&gt; 363: 1.0187e+02 -4.1204e+00 -2.3546e+00 -4.0653e+00 -1.0087e+00 7.2351e-03 3.6392e-02 4.9842e-07 9.0125e-02 2.2179e-02 1.8818e-01 9.4157e-02 9.3437e-01 8.2439e-02 9.9051e-01 8.2626e-02
+#&gt; 364: 1.0187e+02 -4.1204e+00 -2.3543e+00 -4.0651e+00 -1.0089e+00 6.7851e-03 3.6303e-02 4.9890e-07 9.0448e-02 2.2189e-02 1.8831e-01 9.4432e-02 9.3513e-01 8.2433e-02 9.9051e-01 8.2655e-02
+#&gt; 365: 1.0187e+02 -4.1204e+00 -2.3538e+00 -4.0650e+00 -1.0089e+00 6.2935e-03 3.6267e-02 4.9829e-07 9.0718e-02 2.2204e-02 1.8818e-01 9.4507e-02 9.3580e-01 8.2387e-02 9.9049e-01 8.2678e-02
+#&gt; 366: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0649e+00 -1.0088e+00 5.8910e-03 3.6339e-02 4.9911e-07 9.0727e-02 2.2231e-02 1.8801e-01 9.4683e-02 9.3567e-01 8.2359e-02 9.8997e-01 8.2681e-02
+#&gt; 367: 1.0187e+02 -4.1204e+00 -2.3533e+00 -4.0649e+00 -1.0088e+00 5.8610e-03 3.6366e-02 5.0123e-07 9.0732e-02 2.2245e-02 1.8793e-01 9.4666e-02 9.3556e-01 8.2339e-02 9.8945e-01 8.2691e-02
+#&gt; 368: 1.0187e+02 -4.1204e+00 -2.3531e+00 -4.0650e+00 -1.0088e+00 6.1043e-03 3.6424e-02 5.0107e-07 9.0729e-02 2.2248e-02 1.8780e-01 9.4599e-02 9.3554e-01 8.2315e-02 9.8903e-01 8.2705e-02
+#&gt; 369: 1.0187e+02 -4.1204e+00 -2.3530e+00 -4.0650e+00 -1.0088e+00 6.1767e-03 3.6436e-02 5.0046e-07 9.0617e-02 2.2226e-02 1.8787e-01 9.4410e-02 9.3504e-01 8.2361e-02 9.8843e-01 8.2694e-02
+#&gt; 370: 1.0187e+02 -4.1204e+00 -2.3528e+00 -4.0651e+00 -1.0088e+00 6.2532e-03 3.6467e-02 5.0024e-07 9.0741e-02 2.2223e-02 1.8794e-01 9.4288e-02 9.3472e-01 8.2374e-02 9.8781e-01 8.2703e-02
+#&gt; 371: 1.0186e+02 -4.1204e+00 -2.3525e+00 -4.0652e+00 -1.0088e+00 6.2117e-03 3.6465e-02 4.9964e-07 9.0904e-02 2.2220e-02 1.8788e-01 9.4310e-02 9.3470e-01 8.2367e-02 9.8730e-01 8.2731e-02
+#&gt; 372: 1.0186e+02 -4.1204e+00 -2.3524e+00 -4.0651e+00 -1.0089e+00 6.1363e-03 3.6367e-02 5.0037e-07 9.1177e-02 2.2230e-02 1.8783e-01 9.4288e-02 9.3496e-01 8.2365e-02 9.8699e-01 8.2729e-02
+#&gt; 373: 1.0186e+02 -4.1204e+00 -2.3523e+00 -4.0650e+00 -1.0089e+00 6.0384e-03 3.6353e-02 5.0195e-07 9.1402e-02 2.2219e-02 1.8764e-01 9.4343e-02 9.3478e-01 8.2430e-02 9.8641e-01 8.2747e-02
+#&gt; 374: 1.0186e+02 -4.1204e+00 -2.3523e+00 -4.0650e+00 -1.0091e+00 5.9821e-03 3.6377e-02 5.0424e-07 9.1532e-02 2.2243e-02 1.8761e-01 9.4219e-02 9.3466e-01 8.2418e-02 9.8614e-01 8.2735e-02
+#&gt; 375: 1.0186e+02 -4.1204e+00 -2.3524e+00 -4.0649e+00 -1.0091e+00 5.8843e-03 3.6358e-02 5.0568e-07 9.1556e-02 2.2250e-02 1.8768e-01 9.4173e-02 9.3432e-01 8.2413e-02 9.8592e-01 8.2728e-02
+#&gt; 376: 1.0186e+02 -4.1204e+00 -2.3526e+00 -4.0649e+00 -1.0090e+00 5.7256e-03 3.6406e-02 5.0673e-07 9.1590e-02 2.2260e-02 1.8765e-01 9.4159e-02 9.3417e-01 8.2400e-02 9.8565e-01 8.2701e-02
+#&gt; 377: 1.0186e+02 -4.1204e+00 -2.3527e+00 -4.0647e+00 -1.0091e+00 5.2782e-03 3.6397e-02 5.0740e-07 9.1564e-02 2.2263e-02 1.8765e-01 9.4084e-02 9.3434e-01 8.2395e-02 9.8563e-01 8.2680e-02
+#&gt; 378: 1.0186e+02 -4.1204e+00 -2.3524e+00 -4.0646e+00 -1.0091e+00 4.8184e-03 3.6478e-02 5.0759e-07 9.1590e-02 2.2213e-02 1.8766e-01 9.4162e-02 9.3432e-01 8.2353e-02 9.8595e-01 8.2681e-02
+#&gt; 379: 1.0186e+02 -4.1204e+00 -2.3521e+00 -4.0646e+00 -1.0089e+00 4.4861e-03 3.6557e-02 5.0710e-07 9.1595e-02 2.2159e-02 1.8767e-01 9.3894e-02 9.3395e-01 8.2341e-02 9.8636e-01 8.2671e-02
+#&gt; 380: 1.0186e+02 -4.1204e+00 -2.3517e+00 -4.0644e+00 -1.0089e+00 3.9799e-03 3.6543e-02 5.0682e-07 9.1532e-02 2.2143e-02 1.8768e-01 9.3854e-02 9.3372e-01 8.2331e-02 9.8640e-01 8.2678e-02
+#&gt; 381: 1.0186e+02 -4.1204e+00 -2.3515e+00 -4.0643e+00 -1.0089e+00 3.6269e-03 3.6531e-02 5.0770e-07 9.1364e-02 2.2157e-02 1.8768e-01 9.3897e-02 9.3383e-01 8.2326e-02 9.8630e-01 8.2675e-02
+#&gt; 382: 1.0186e+02 -4.1204e+00 -2.3513e+00 -4.0643e+00 -1.0090e+00 3.1691e-03 3.6469e-02 5.0860e-07 9.1318e-02 2.2188e-02 1.8767e-01 9.3787e-02 9.3433e-01 8.2306e-02 9.8643e-01 8.2670e-02
+#&gt; 383: 1.0186e+02 -4.1204e+00 -2.3508e+00 -4.0642e+00 -1.0090e+00 2.6209e-03 3.6416e-02 5.0893e-07 9.1374e-02 2.2165e-02 1.8759e-01 9.3654e-02 9.3443e-01 8.2289e-02 9.8663e-01 8.2672e-02
+#&gt; 384: 1.0186e+02 -4.1204e+00 -2.3505e+00 -4.0640e+00 -1.0090e+00 2.1556e-03 3.6403e-02 5.0834e-07 9.1550e-02 2.2148e-02 1.8750e-01 9.3422e-02 9.3444e-01 8.2277e-02 9.8639e-01 8.2670e-02
+#&gt; 385: 1.0186e+02 -4.1204e+00 -2.3505e+00 -4.0638e+00 -1.0089e+00 1.7048e-03 3.6391e-02 5.0788e-07 9.1717e-02 2.2160e-02 1.8746e-01 9.3178e-02 9.3457e-01 8.2261e-02 9.8616e-01 8.2636e-02
+#&gt; 386: 1.0186e+02 -4.1204e+00 -2.3504e+00 -4.0637e+00 -1.0089e+00 1.4309e-03 3.6372e-02 5.0847e-07 9.1895e-02 2.2157e-02 1.8754e-01 9.2918e-02 9.3439e-01 8.2246e-02 9.8601e-01 8.2617e-02
+#&gt; 387: 1.0186e+02 -4.1204e+00 -2.3505e+00 -4.0636e+00 -1.0089e+00 1.3524e-03 3.6446e-02 5.0896e-07 9.2022e-02 2.2182e-02 1.8768e-01 9.2684e-02 9.3470e-01 8.2216e-02 9.8593e-01 8.2620e-02
+#&gt; 388: 1.0186e+02 -4.1204e+00 -2.3506e+00 -4.0635e+00 -1.0089e+00 1.2887e-03 3.6478e-02 5.0904e-07 9.2117e-02 2.2174e-02 1.8761e-01 9.2506e-02 9.3463e-01 8.2221e-02 9.8563e-01 8.2609e-02
+#&gt; 389: 1.0186e+02 -4.1204e+00 -2.3505e+00 -4.0635e+00 -1.0089e+00 1.2044e-03 3.6479e-02 5.0969e-07 9.2068e-02 2.2180e-02 1.8751e-01 9.2308e-02 9.3438e-01 8.2241e-02 9.8516e-01 8.2592e-02
+#&gt; 390: 1.0186e+02 -4.1204e+00 -2.3506e+00 -4.0635e+00 -1.0087e+00 1.1442e-03 3.6497e-02 5.0878e-07 9.1995e-02 2.2156e-02 1.8744e-01 9.2169e-02 9.3410e-01 8.2257e-02 9.8511e-01 8.2581e-02
+#&gt; 391: 1.0186e+02 -4.1204e+00 -2.3508e+00 -4.0635e+00 -1.0089e+00 1.0925e-03 3.6454e-02 5.0876e-07 9.1945e-02 2.2177e-02 1.8739e-01 9.1989e-02 9.3439e-01 8.2254e-02 9.8472e-01 8.2579e-02
+#&gt; 392: 1.0186e+02 -4.1204e+00 -2.3506e+00 -4.0633e+00 -1.0091e+00 7.9940e-04 3.6417e-02 5.0874e-07 9.1956e-02 2.2185e-02 1.8730e-01 9.1977e-02 9.3422e-01 8.2244e-02 9.8463e-01 8.2589e-02
+#&gt; 393: 1.0186e+02 -4.1204e+00 -2.3504e+00 -4.0632e+00 -1.0093e+00 4.2112e-04 3.6433e-02 5.0843e-07 9.1868e-02 2.2211e-02 1.8739e-01 9.2106e-02 9.3464e-01 8.2217e-02 9.8458e-01 8.2594e-02
+#&gt; 394: 1.0186e+02 -4.1204e+00 -2.3502e+00 -4.0631e+00 -1.0093e+00 1.4926e-04 3.6534e-02 5.0862e-07 9.1713e-02 2.2244e-02 1.8735e-01 9.2105e-02 9.3454e-01 8.2239e-02 9.8410e-01 8.2601e-02
+#&gt; 395: 1.0186e+02 -4.1204e+00 -2.3499e+00 -4.0630e+00 -1.0095e+00 5.2506e-05 3.6667e-02 5.0955e-07 9.1548e-02 2.2269e-02 1.8733e-01 9.2151e-02 9.3450e-01 8.2256e-02 9.8389e-01 8.2612e-02
+#&gt; 396: 1.0186e+02 -4.1204e+00 -2.3497e+00 -4.0630e+00 -1.0097e+00 1.6581e-05 3.6789e-02 5.1002e-07 9.1431e-02 2.2299e-02 1.8742e-01 9.2120e-02 9.3450e-01 8.2252e-02 9.8367e-01 8.2620e-02
+#&gt; 397: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0629e+00 -1.0098e+00 -5.0310e-05 3.6860e-02 5.0949e-07 9.1311e-02 2.2323e-02 1.8738e-01 9.2130e-02 9.3467e-01 8.2250e-02 9.8388e-01 8.2628e-02
+#&gt; 398: 1.0186e+02 -4.1205e+00 -2.3494e+00 -4.0629e+00 -1.0097e+00 -1.4918e-04 3.6902e-02 5.0935e-07 9.1211e-02 2.2330e-02 1.8747e-01 9.2144e-02 9.3478e-01 8.2260e-02 9.8420e-01 8.2632e-02
+#&gt; 399: 1.0186e+02 -4.1205e+00 -2.3497e+00 -4.0628e+00 -1.0097e+00 -2.2152e-04 3.6932e-02 5.0927e-07 9.1209e-02 2.2377e-02 1.8750e-01 9.2136e-02 9.3481e-01 8.2286e-02 9.8431e-01 8.2622e-02
+#&gt; 400: 1.0186e+02 -4.1205e+00 -2.3499e+00 -4.0629e+00 -1.0097e+00 3.2878e-05 3.6943e-02 5.0892e-07 9.1092e-02 2.2388e-02 1.8752e-01 9.2072e-02 9.3534e-01 8.2276e-02 9.8472e-01 8.2615e-02
+#&gt; 401: 1.0186e+02 -4.1205e+00 -2.3501e+00 -4.0630e+00 -1.0097e+00 2.6776e-04 3.6950e-02 5.0860e-07 9.1038e-02 2.2395e-02 1.8740e-01 9.1911e-02 9.3515e-01 8.2331e-02 9.8459e-01 8.2615e-02
+#&gt; 402: 1.0186e+02 -4.1205e+00 -2.3502e+00 -4.0632e+00 -1.0097e+00 3.9988e-04 3.6912e-02 5.0849e-07 9.0944e-02 2.2401e-02 1.8737e-01 9.1701e-02 9.3494e-01 8.2353e-02 9.8479e-01 8.2609e-02
+#&gt; 403: 1.0186e+02 -4.1205e+00 -2.3503e+00 -4.0633e+00 -1.0098e+00 4.9714e-04 3.6935e-02 5.0805e-07 9.0895e-02 2.2404e-02 1.8741e-01 9.1609e-02 9.3444e-01 8.2372e-02 9.8505e-01 8.2638e-02
+#&gt; 404: 1.0186e+02 -4.1205e+00 -2.3504e+00 -4.0633e+00 -1.0100e+00 5.8465e-04 3.6978e-02 5.0889e-07 9.0862e-02 2.2453e-02 1.8746e-01 9.1650e-02 9.3491e-01 8.2364e-02 9.8484e-01 8.2653e-02
+#&gt; 405: 1.0186e+02 -4.1205e+00 -2.3505e+00 -4.0634e+00 -1.0099e+00 5.5970e-04 3.6999e-02 5.0964e-07 9.0930e-02 2.2480e-02 1.8742e-01 9.1823e-02 9.3458e-01 8.2371e-02 9.8465e-01 8.2670e-02
+#&gt; 406: 1.0186e+02 -4.1205e+00 -2.3507e+00 -4.0634e+00 -1.0098e+00 5.4464e-04 3.7123e-02 5.1046e-07 9.1008e-02 2.2478e-02 1.8749e-01 9.1930e-02 9.3449e-01 8.2361e-02 9.8440e-01 8.2666e-02
+#&gt; 407: 1.0186e+02 -4.1205e+00 -2.3506e+00 -4.0634e+00 -1.0097e+00 3.5564e-04 3.7226e-02 5.0978e-07 9.0891e-02 2.2469e-02 1.8751e-01 9.2130e-02 9.3444e-01 8.2380e-02 9.8462e-01 8.2660e-02
+#&gt; 408: 1.0186e+02 -4.1205e+00 -2.3506e+00 -4.0635e+00 -1.0097e+00 3.8362e-04 3.7354e-02 5.0967e-07 9.0892e-02 2.2461e-02 1.8747e-01 9.2230e-02 9.3453e-01 8.2363e-02 9.8466e-01 8.2661e-02
+#&gt; 409: 1.0186e+02 -4.1205e+00 -2.3505e+00 -4.0635e+00 -1.0097e+00 2.6671e-04 3.7473e-02 5.0928e-07 9.0894e-02 2.2519e-02 1.8751e-01 9.2243e-02 9.3447e-01 8.2347e-02 9.8449e-01 8.2667e-02
+#&gt; 410: 1.0186e+02 -4.1205e+00 -2.3506e+00 -4.0634e+00 -1.0098e+00 1.7963e-04 3.7438e-02 5.0981e-07 9.0898e-02 2.2600e-02 1.8764e-01 9.2237e-02 9.3502e-01 8.2320e-02 9.8430e-01 8.2663e-02
+#&gt; 411: 1.0186e+02 -4.1205e+00 -2.3506e+00 -4.0634e+00 -1.0098e+00 1.0085e-04 3.7381e-02 5.0970e-07 9.0820e-02 2.2618e-02 1.8767e-01 9.2103e-02 9.3480e-01 8.2324e-02 9.8427e-01 8.2652e-02
+#&gt; 412: 1.0186e+02 -4.1205e+00 -2.3508e+00 -4.0633e+00 -1.0097e+00 1.9452e-04 3.7315e-02 5.0984e-07 9.0784e-02 2.2605e-02 1.8772e-01 9.2118e-02 9.3504e-01 8.2314e-02 9.8431e-01 8.2636e-02
+#&gt; 413: 1.0186e+02 -4.1205e+00 -2.3508e+00 -4.0632e+00 -1.0097e+00 1.8432e-04 3.7243e-02 5.0946e-07 9.0798e-02 2.2604e-02 1.8765e-01 9.2206e-02 9.3499e-01 8.2299e-02 9.8426e-01 8.2636e-02
+#&gt; 414: 1.0186e+02 -4.1205e+00 -2.3505e+00 -4.0632e+00 -1.0097e+00 2.1744e-04 3.7203e-02 5.0880e-07 9.0769e-02 2.2604e-02 1.8757e-01 9.2403e-02 9.3516e-01 8.2279e-02 9.8414e-01 8.2659e-02
+#&gt; 415: 1.0186e+02 -4.1205e+00 -2.3505e+00 -4.0633e+00 -1.0097e+00 1.9330e-04 3.7197e-02 5.0896e-07 9.0657e-02 2.2618e-02 1.8764e-01 9.2565e-02 9.3514e-01 8.2264e-02 9.8435e-01 8.2655e-02
+#&gt; 416: 1.0186e+02 -4.1205e+00 -2.3501e+00 -4.0634e+00 -1.0097e+00 2.1450e-04 3.7144e-02 5.0882e-07 9.0762e-02 2.2645e-02 1.8761e-01 9.2614e-02 9.3511e-01 8.2277e-02 9.8415e-01 8.2669e-02
+#&gt; 417: 1.0186e+02 -4.1205e+00 -2.3498e+00 -4.0634e+00 -1.0099e+00 1.0737e-04 3.7092e-02 5.0932e-07 9.0804e-02 2.2631e-02 1.8754e-01 9.2581e-02 9.3509e-01 8.2284e-02 9.8430e-01 8.2667e-02
+#&gt; 418: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0633e+00 -1.0099e+00 2.4734e-05 3.7061e-02 5.0972e-07 9.0913e-02 2.2624e-02 1.8736e-01 9.2572e-02 9.3482e-01 8.2275e-02 9.8413e-01 8.2682e-02
+#&gt; 419: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0633e+00 -1.0099e+00 -3.9197e-05 3.7070e-02 5.1000e-07 9.1084e-02 2.2644e-02 1.8727e-01 9.2636e-02 9.3494e-01 8.2259e-02 9.8382e-01 8.2673e-02
+#&gt; 420: 1.0186e+02 -4.1205e+00 -2.3494e+00 -4.0633e+00 -1.0098e+00 -1.2434e-04 3.7103e-02 5.1037e-07 9.1152e-02 2.2631e-02 1.8733e-01 9.2862e-02 9.3515e-01 8.2244e-02 9.8388e-01 8.2656e-02
+#&gt; 421: 1.0186e+02 -4.1205e+00 -2.3494e+00 -4.0632e+00 -1.0097e+00 -1.5440e-04 3.7123e-02 5.1205e-07 9.1233e-02 2.2626e-02 1.8744e-01 9.2935e-02 9.3523e-01 8.2241e-02 9.8360e-01 8.2652e-02
+#&gt; 422: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0633e+00 -1.0095e+00 -8.9184e-05 3.7182e-02 5.1296e-07 9.1123e-02 2.2617e-02 1.8749e-01 9.2915e-02 9.3509e-01 8.2276e-02 9.8367e-01 8.2637e-02
+#&gt; 423: 1.0186e+02 -4.1205e+00 -2.3497e+00 -4.0634e+00 -1.0095e+00 6.7469e-05 3.7194e-02 5.1323e-07 9.1083e-02 2.2642e-02 1.8739e-01 9.3097e-02 9.3529e-01 8.2270e-02 9.8367e-01 8.2642e-02
+#&gt; 424: 1.0186e+02 -4.1205e+00 -2.3498e+00 -4.0635e+00 -1.0094e+00 1.5970e-04 3.7258e-02 5.1292e-07 9.0998e-02 2.2667e-02 1.8730e-01 9.3311e-02 9.3525e-01 8.2262e-02 9.8362e-01 8.2648e-02
+#&gt; 425: 1.0186e+02 -4.1205e+00 -2.3499e+00 -4.0636e+00 -1.0095e+00 2.7004e-04 3.7298e-02 5.1307e-07 9.0839e-02 2.2665e-02 1.8744e-01 9.3429e-02 9.3497e-01 8.2282e-02 9.8395e-01 8.2657e-02
+#&gt; 426: 1.0186e+02 -4.1205e+00 -2.3499e+00 -4.0636e+00 -1.0094e+00 3.9201e-04 3.7303e-02 5.1305e-07 9.0647e-02 2.2675e-02 1.8743e-01 9.3523e-02 9.3477e-01 8.2314e-02 9.8371e-01 8.2655e-02
+#&gt; 427: 1.0186e+02 -4.1205e+00 -2.3496e+00 -4.0636e+00 -1.0093e+00 2.9359e-04 3.7366e-02 5.1245e-07 9.0630e-02 2.2673e-02 1.8738e-01 9.3813e-02 9.3495e-01 8.2291e-02 9.8368e-01 8.2653e-02
+#&gt; 428: 1.0186e+02 -4.1204e+00 -2.3496e+00 -4.0635e+00 -1.0094e+00 2.5099e-04 3.7411e-02 5.1144e-07 9.0647e-02 2.2674e-02 1.8732e-01 9.3993e-02 9.3493e-01 8.2273e-02 9.8373e-01 8.2652e-02
+#&gt; 429: 1.0186e+02 -4.1204e+00 -2.3495e+00 -4.0635e+00 -1.0095e+00 2.4723e-04 3.7543e-02 5.1084e-07 9.0600e-02 2.2677e-02 1.8723e-01 9.4269e-02 9.3518e-01 8.2286e-02 9.8396e-01 8.2659e-02
+#&gt; 430: 1.0186e+02 -4.1204e+00 -2.3494e+00 -4.0635e+00 -1.0096e+00 2.7711e-04 3.7579e-02 5.1022e-07 9.0496e-02 2.2679e-02 1.8708e-01 9.4484e-02 9.3525e-01 8.2309e-02 9.8433e-01 8.2672e-02
+#&gt; 431: 1.0186e+02 -4.1204e+00 -2.3494e+00 -4.0634e+00 -1.0095e+00 1.3934e-05 3.7631e-02 5.0908e-07 9.0378e-02 2.2671e-02 1.8708e-01 9.4770e-02 9.3528e-01 8.2302e-02 9.8470e-01 8.2682e-02
+#&gt; 432: 1.0186e+02 -4.1204e+00 -2.3495e+00 -4.0633e+00 -1.0096e+00 -8.9401e-05 3.7677e-02 5.0861e-07 9.0278e-02 2.2654e-02 1.8702e-01 9.4882e-02 9.3518e-01 8.2318e-02 9.8488e-01 8.2667e-02
+#&gt; 433: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0633e+00 -1.0096e+00 -3.6841e-04 3.7706e-02 5.0854e-07 9.0108e-02 2.2652e-02 1.8703e-01 9.5039e-02 9.3487e-01 8.2331e-02 9.8494e-01 8.2669e-02
+#&gt; 434: 1.0186e+02 -4.1205e+00 -2.3493e+00 -4.0632e+00 -1.0096e+00 -4.3399e-04 3.7671e-02 5.0796e-07 9.0036e-02 2.2661e-02 1.8701e-01 9.5122e-02 9.3474e-01 8.2331e-02 9.8474e-01 8.2675e-02
+#&gt; 435: 1.0186e+02 -4.1205e+00 -2.3491e+00 -4.0632e+00 -1.0096e+00 -6.1398e-04 3.7654e-02 5.0727e-07 8.9940e-02 2.2664e-02 1.8691e-01 9.5242e-02 9.3451e-01 8.2346e-02 9.8466e-01 8.2677e-02
+#&gt; 436: 1.0186e+02 -4.1205e+00 -2.3487e+00 -4.0632e+00 -1.0094e+00 -7.2148e-04 3.7647e-02 5.0649e-07 8.9838e-02 2.2661e-02 1.8694e-01 9.5465e-02 9.3429e-01 8.2365e-02 9.8475e-01 8.2683e-02
+#&gt; 437: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0632e+00 -1.0093e+00 -1.1480e-03 3.7613e-02 5.0662e-07 8.9719e-02 2.2674e-02 1.8698e-01 9.5631e-02 9.3419e-01 8.2380e-02 9.8490e-01 8.2684e-02
+#&gt; 438: 1.0186e+02 -4.1204e+00 -2.3482e+00 -4.0631e+00 -1.0092e+00 -1.5547e-03 3.7583e-02 5.0753e-07 8.9612e-02 2.2680e-02 1.8703e-01 9.5913e-02 9.3413e-01 8.2394e-02 9.8523e-01 8.2678e-02
+#&gt; 439: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0630e+00 -1.0093e+00 -1.9392e-03 3.7463e-02 5.0769e-07 8.9410e-02 2.2706e-02 1.8706e-01 9.6149e-02 9.3392e-01 8.2425e-02 9.8512e-01 8.2670e-02
+#&gt; 440: 1.0186e+02 -4.1205e+00 -2.3482e+00 -4.0629e+00 -1.0094e+00 -2.1940e-03 3.7360e-02 5.0743e-07 8.9245e-02 2.2742e-02 1.8710e-01 9.6213e-02 9.3400e-01 8.2445e-02 9.8490e-01 8.2676e-02
+#&gt; 441: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0629e+00 -1.0095e+00 -2.3414e-03 3.7297e-02 5.0838e-07 8.9137e-02 2.2806e-02 1.8721e-01 9.6155e-02 9.3405e-01 8.2450e-02 9.8470e-01 8.2684e-02
+#&gt; 442: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0628e+00 -1.0095e+00 -2.6378e-03 3.7241e-02 5.0923e-07 8.9066e-02 2.2846e-02 1.8727e-01 9.6135e-02 9.3389e-01 8.2465e-02 9.8454e-01 8.2686e-02
+#&gt; 443: 1.0186e+02 -4.1205e+00 -2.3482e+00 -4.0627e+00 -1.0094e+00 -2.8716e-03 3.7214e-02 5.1026e-07 8.9128e-02 2.2901e-02 1.8740e-01 9.6077e-02 9.3386e-01 8.2444e-02 9.8421e-01 8.2692e-02
+#&gt; 444: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0627e+00 -1.0092e+00 -2.9147e-03 3.7196e-02 5.1104e-07 8.9190e-02 2.2985e-02 1.8744e-01 9.5999e-02 9.3390e-01 8.2424e-02 9.8381e-01 8.2696e-02
+#&gt; 445: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0626e+00 -1.0090e+00 -2.9638e-03 3.7251e-02 5.1283e-07 8.9335e-02 2.3004e-02 1.8756e-01 9.5788e-02 9.3382e-01 8.2416e-02 9.8347e-01 8.2683e-02
+#&gt; 446: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0627e+00 -1.0090e+00 -2.8796e-03 3.7331e-02 5.1479e-07 8.9470e-02 2.3017e-02 1.8762e-01 9.5656e-02 9.3368e-01 8.2405e-02 9.8325e-01 8.2680e-02
+#&gt; 447: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0628e+00 -1.0091e+00 -2.7695e-03 3.7473e-02 5.1656e-07 8.9568e-02 2.3030e-02 1.8757e-01 9.5575e-02 9.3379e-01 8.2386e-02 9.8306e-01 8.2690e-02
+#&gt; 448: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0629e+00 -1.0091e+00 -2.6293e-03 3.7498e-02 5.1814e-07 8.9776e-02 2.3052e-02 1.8762e-01 9.5422e-02 9.3373e-01 8.2372e-02 9.8274e-01 8.2685e-02
+#&gt; 449: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0628e+00 -1.0092e+00 -2.5640e-03 3.7542e-02 5.1867e-07 8.9888e-02 2.3056e-02 1.8763e-01 9.5364e-02 9.3400e-01 8.2365e-02 9.8239e-01 8.2691e-02
+#&gt; 450: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0628e+00 -1.0093e+00 -2.5816e-03 3.7622e-02 5.1849e-07 9.0050e-02 2.3061e-02 1.8765e-01 9.5274e-02 9.3435e-01 8.2341e-02 9.8235e-01 8.2699e-02
+#&gt; 451: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0627e+00 -1.0094e+00 -2.4837e-03 3.7631e-02 5.1931e-07 9.0177e-02 2.3053e-02 1.8766e-01 9.5103e-02 9.3459e-01 8.2322e-02 9.8226e-01 8.2715e-02
+#&gt; 452: 1.0186e+02 -4.1205e+00 -2.3482e+00 -4.0627e+00 -1.0094e+00 -2.4156e-03 3.7606e-02 5.1901e-07 9.0333e-02 2.3047e-02 1.8763e-01 9.4959e-02 9.3485e-01 8.2289e-02 9.8210e-01 8.2713e-02
+#&gt; 453: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0627e+00 -1.0093e+00 -2.4619e-03 3.7552e-02 5.1874e-07 9.0495e-02 2.3066e-02 1.8761e-01 9.4960e-02 9.3485e-01 8.2293e-02 9.8178e-01 8.2703e-02
+#&gt; 454: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0627e+00 -1.0092e+00 -2.4816e-03 3.7514e-02 5.1835e-07 9.0606e-02 2.3073e-02 1.8754e-01 9.4896e-02 9.3491e-01 8.2277e-02 9.8154e-01 8.2696e-02
+#&gt; 455: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0627e+00 -1.0092e+00 -2.3708e-03 3.7457e-02 5.1742e-07 9.0715e-02 2.3099e-02 1.8756e-01 9.4804e-02 9.3481e-01 8.2272e-02 9.8122e-01 8.2688e-02
+#&gt; 456: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0627e+00 -1.0093e+00 -2.2313e-03 3.7409e-02 5.1680e-07 9.0906e-02 2.3131e-02 1.8743e-01 9.4814e-02 9.3476e-01 8.2261e-02 9.8108e-01 8.2694e-02
+#&gt; 457: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0628e+00 -1.0095e+00 -2.1182e-03 3.7342e-02 5.1630e-07 9.0986e-02 2.3158e-02 1.8733e-01 9.4843e-02 9.3488e-01 8.2244e-02 9.8094e-01 8.2700e-02
+#&gt; 458: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0628e+00 -1.0095e+00 -1.9242e-03 3.7244e-02 5.1605e-07 9.1085e-02 2.3168e-02 1.8720e-01 9.4820e-02 9.3509e-01 8.2228e-02 9.8093e-01 8.2703e-02
+#&gt; 459: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0629e+00 -1.0095e+00 -1.7643e-03 3.7203e-02 5.1566e-07 9.1179e-02 2.3175e-02 1.8715e-01 9.4809e-02 9.3516e-01 8.2216e-02 9.8087e-01 8.2690e-02
+#&gt; 460: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0629e+00 -1.0094e+00 -1.5479e-03 3.7151e-02 5.1547e-07 9.1211e-02 2.3155e-02 1.8712e-01 9.4703e-02 9.3539e-01 8.2201e-02 9.8100e-01 8.2683e-02
+#&gt; 461: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0630e+00 -1.0095e+00 -1.4993e-03 3.7111e-02 5.1446e-07 9.1225e-02 2.3159e-02 1.8705e-01 9.4569e-02 9.3555e-01 8.2183e-02 9.8078e-01 8.2680e-02
+#&gt; 462: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0629e+00 -1.0094e+00 -1.4890e-03 3.7056e-02 5.1361e-07 9.1446e-02 2.3158e-02 1.8694e-01 9.4494e-02 9.3557e-01 8.2171e-02 9.8058e-01 8.2688e-02
+#&gt; 463: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0629e+00 -1.0094e+00 -1.3999e-03 3.6996e-02 5.1319e-07 9.1659e-02 2.3176e-02 1.8695e-01 9.4436e-02 9.3570e-01 8.2153e-02 9.8053e-01 8.2686e-02
+#&gt; 464: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0630e+00 -1.0095e+00 -1.1544e-03 3.6949e-02 5.1300e-07 9.1885e-02 2.3162e-02 1.8688e-01 9.4378e-02 9.3599e-01 8.2134e-02 9.8051e-01 8.2694e-02
+#&gt; 465: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0630e+00 -1.0097e+00 -9.7372e-04 3.6943e-02 5.1235e-07 9.2014e-02 2.3136e-02 1.8692e-01 9.4288e-02 9.3605e-01 8.2141e-02 9.8053e-01 8.2693e-02
+#&gt; 466: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0630e+00 -1.0097e+00 -9.2442e-04 3.6916e-02 5.1246e-07 9.2074e-02 2.3132e-02 1.8688e-01 9.4254e-02 9.3590e-01 8.2131e-02 9.8016e-01 8.2691e-02
+#&gt; 467: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0631e+00 -1.0098e+00 -8.2540e-04 3.6928e-02 5.1340e-07 9.2164e-02 2.3141e-02 1.8690e-01 9.4382e-02 9.3620e-01 8.2106e-02 9.7996e-01 8.2705e-02
+#&gt; 468: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0631e+00 -1.0097e+00 -7.3368e-04 3.6925e-02 5.1395e-07 9.2218e-02 2.3136e-02 1.8695e-01 9.4504e-02 9.3629e-01 8.2094e-02 9.7985e-01 8.2716e-02
+#&gt; 469: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0630e+00 -1.0096e+00 -7.4343e-04 3.6891e-02 5.1401e-07 9.2204e-02 2.3114e-02 1.8700e-01 9.4639e-02 9.3643e-01 8.2078e-02 9.7996e-01 8.2709e-02
+#&gt; 470: 1.0186e+02 -4.1205e+00 -2.3482e+00 -4.0630e+00 -1.0096e+00 -7.8250e-04 3.6874e-02 5.1370e-07 9.2209e-02 2.3083e-02 1.8702e-01 9.4728e-02 9.3646e-01 8.2073e-02 9.7989e-01 8.2703e-02
+#&gt; 471: 1.0186e+02 -4.1205e+00 -2.3480e+00 -4.0629e+00 -1.0095e+00 -1.0440e-03 3.6843e-02 5.1358e-07 9.2194e-02 2.3062e-02 1.8710e-01 9.4741e-02 9.3649e-01 8.2082e-02 9.8003e-01 8.2701e-02
+#&gt; 472: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0629e+00 -1.0096e+00 -9.5438e-04 3.6869e-02 5.1330e-07 9.2176e-02 2.3050e-02 1.8712e-01 9.4766e-02 9.3666e-01 8.2080e-02 9.7996e-01 8.2691e-02
+#&gt; 473: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0630e+00 -1.0096e+00 -8.2178e-04 3.6877e-02 5.1283e-07 9.2191e-02 2.3021e-02 1.8703e-01 9.4747e-02 9.3670e-01 8.2072e-02 9.8007e-01 8.2693e-02
+#&gt; 474: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0630e+00 -1.0096e+00 -7.0189e-04 3.6927e-02 5.1196e-07 9.2195e-02 2.2989e-02 1.8702e-01 9.4746e-02 9.3669e-01 8.2054e-02 9.8029e-01 8.2689e-02
+#&gt; 475: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0630e+00 -1.0095e+00 -7.1989e-04 3.6993e-02 5.1125e-07 9.2159e-02 2.2963e-02 1.8700e-01 9.4813e-02 9.3681e-01 8.2051e-02 9.8027e-01 8.2680e-02
+#&gt; 476: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0629e+00 -1.0096e+00 -7.1806e-04 3.7018e-02 5.1105e-07 9.2091e-02 2.2933e-02 1.8696e-01 9.4837e-02 9.3713e-01 8.2067e-02 9.8033e-01 8.2674e-02
+#&gt; 477: 1.0186e+02 -4.1205e+00 -2.3479e+00 -4.0630e+00 -1.0097e+00 -7.3438e-04 3.6986e-02 5.1121e-07 9.2046e-02 2.2909e-02 1.8698e-01 9.4809e-02 9.3743e-01 8.2059e-02 9.8045e-01 8.2693e-02
+#&gt; 478: 1.0186e+02 -4.1205e+00 -2.3478e+00 -4.0630e+00 -1.0096e+00 -7.9338e-04 3.6912e-02 5.1224e-07 9.2056e-02 2.2881e-02 1.8698e-01 9.4791e-02 9.3757e-01 8.2042e-02 9.8072e-01 8.2682e-02
+#&gt; 479: 1.0186e+02 -4.1205e+00 -2.3476e+00 -4.0629e+00 -1.0096e+00 -8.6158e-04 3.6882e-02 5.1284e-07 9.2159e-02 2.2867e-02 1.8694e-01 9.4774e-02 9.3749e-01 8.2051e-02 9.8088e-01 8.2679e-02
+#&gt; 480: 1.0186e+02 -4.1205e+00 -2.3474e+00 -4.0629e+00 -1.0096e+00 -1.1334e-03 3.6851e-02 5.1423e-07 9.2253e-02 2.2869e-02 1.8696e-01 9.4820e-02 9.3751e-01 8.2063e-02 9.8097e-01 8.2693e-02
+#&gt; 481: 1.0186e+02 -4.1205e+00 -2.3470e+00 -4.0629e+00 -1.0096e+00 -1.2444e-03 3.6785e-02 5.1490e-07 9.2397e-02 2.2853e-02 1.8694e-01 9.4838e-02 9.3770e-01 8.2031e-02 9.8124e-01 8.2707e-02
+#&gt; 482: 1.0186e+02 -4.1205e+00 -2.3467e+00 -4.0629e+00 -1.0095e+00 -1.3612e-03 3.6750e-02 5.1658e-07 9.2440e-02 2.2842e-02 1.8683e-01 9.4800e-02 9.3786e-01 8.2041e-02 9.8107e-01 8.2719e-02
+#&gt; 483: 1.0186e+02 -4.1205e+00 -2.3467e+00 -4.0628e+00 -1.0096e+00 -1.5168e-03 3.6783e-02 5.1708e-07 9.2590e-02 2.2804e-02 1.8674e-01 9.4804e-02 9.3790e-01 8.2042e-02 9.8116e-01 8.2719e-02
+#&gt; 484: 1.0186e+02 -4.1205e+00 -2.3466e+00 -4.0628e+00 -1.0097e+00 -1.5218e-03 3.6848e-02 5.1669e-07 9.2717e-02 2.2775e-02 1.8670e-01 9.4940e-02 9.3798e-01 8.2028e-02 9.8106e-01 8.2719e-02
+#&gt; 485: 1.0186e+02 -4.1205e+00 -2.3464e+00 -4.0628e+00 -1.0097e+00 -1.4177e-03 3.6867e-02 5.1615e-07 9.2806e-02 2.2765e-02 1.8669e-01 9.5018e-02 9.3816e-01 8.2020e-02 9.8090e-01 8.2721e-02
+#&gt; 486: 1.0186e+02 -4.1205e+00 -2.3462e+00 -4.0628e+00 -1.0098e+00 -1.5257e-03 3.6968e-02 5.1513e-07 9.3019e-02 2.2762e-02 1.8663e-01 9.5111e-02 9.3816e-01 8.2013e-02 9.8071e-01 8.2732e-02
+#&gt; 487: 1.0186e+02 -4.1205e+00 -2.3460e+00 -4.0628e+00 -1.0097e+00 -1.7055e-03 3.7021e-02 5.1446e-07 9.3161e-02 2.2732e-02 1.8652e-01 9.5373e-02 9.3832e-01 8.1997e-02 9.8078e-01 8.2737e-02
+#&gt; 488: 1.0186e+02 -4.1205e+00 -2.3459e+00 -4.0628e+00 -1.0097e+00 -1.8502e-03 3.7069e-02 5.1391e-07 9.3282e-02 2.2741e-02 1.8641e-01 9.5414e-02 9.3818e-01 8.2001e-02 9.8064e-01 8.2738e-02
+#&gt; 489: 1.0186e+02 -4.1205e+00 -2.3458e+00 -4.0628e+00 -1.0097e+00 -1.9091e-03 3.7017e-02 5.1291e-07 9.3286e-02 2.2738e-02 1.8639e-01 9.5453e-02 9.3808e-01 8.1991e-02 9.8047e-01 8.2728e-02
+#&gt; 490: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0628e+00 -1.0097e+00 -1.8766e-03 3.6969e-02 5.1220e-07 9.3297e-02 2.2728e-02 1.8635e-01 9.5468e-02 9.3793e-01 8.1988e-02 9.8034e-01 8.2726e-02
+#&gt; 491: 1.0186e+02 -4.1205e+00 -2.3457e+00 -4.0627e+00 -1.0097e+00 -1.7736e-03 3.6915e-02 5.1153e-07 9.3298e-02 2.2716e-02 1.8634e-01 9.5548e-02 9.3772e-01 8.2005e-02 9.8025e-01 8.2722e-02
+#&gt; 492: 1.0186e+02 -4.1205e+00 -2.3457e+00 -4.0627e+00 -1.0097e+00 -1.7747e-03 3.6877e-02 5.1077e-07 9.3336e-02 2.2697e-02 1.8635e-01 9.5593e-02 9.3778e-01 8.2001e-02 9.8013e-01 8.2725e-02
+#&gt; 493: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0628e+00 -1.0094e+00 -1.6324e-03 3.6857e-02 5.1020e-07 9.3348e-02 2.2668e-02 1.8636e-01 9.5735e-02 9.3764e-01 8.1984e-02 9.8019e-01 8.2723e-02
+#&gt; 494: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0629e+00 -1.0094e+00 -1.5393e-03 3.6842e-02 5.1022e-07 9.3359e-02 2.2649e-02 1.8637e-01 9.5812e-02 9.3739e-01 8.1982e-02 9.8033e-01 8.2708e-02
+#&gt; 495: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0629e+00 -1.0094e+00 -1.5166e-03 3.6841e-02 5.1004e-07 9.3321e-02 2.2642e-02 1.8640e-01 9.5849e-02 9.3716e-01 8.1979e-02 9.8016e-01 8.2700e-02
+#&gt; 496: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0630e+00 -1.0095e+00 -1.4947e-03 3.6841e-02 5.0969e-07 9.3236e-02 2.2646e-02 1.8640e-01 9.5916e-02 9.3719e-01 8.1963e-02 9.8028e-01 8.2702e-02
+#&gt; 497: 1.0186e+02 -4.1205e+00 -2.3457e+00 -4.0629e+00 -1.0094e+00 -1.4507e-03 3.6827e-02 5.0937e-07 9.3185e-02 2.2663e-02 1.8638e-01 9.5991e-02 9.3707e-01 8.1954e-02 9.8047e-01 8.2718e-02
+#&gt; 498: 1.0186e+02 -4.1205e+00 -2.3459e+00 -4.0630e+00 -1.0094e+00 -1.2569e-03 3.6805e-02 5.0854e-07 9.3089e-02 2.2677e-02 1.8634e-01 9.5931e-02 9.3719e-01 8.1952e-02 9.8051e-01 8.2718e-02
+#&gt; 499: 1.0186e+02 -4.1205e+00 -2.3460e+00 -4.0630e+00 -1.0093e+00 -1.0466e-03 3.6769e-02 5.0789e-07 9.3029e-02 2.2690e-02 1.8631e-01 9.5862e-02 9.3729e-01 8.1956e-02 9.8046e-01 8.2731e-02
+#&gt; 500: 1.0186e+02 -4.1205e+00 -2.3464e+00 -4.0630e+00 -1.0093e+00 -7.3346e-04 3.6766e-02 5.0769e-07 9.3093e-02 2.2701e-02 1.8633e-01 9.5687e-02 9.3739e-01 8.1977e-02 9.8039e-01 8.2728e-02</div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='co'># The following takes a very long time but gives</span>
+<span class='va'>f_nlmixr_dfop_sfo_focei</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_dfop_sfo</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
+#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; | #| Objective Fun | parent_0 | log_k_m1 |f_parent_qlogis | log_k1 |
+#&gt; |.....................| log_k2 | g_qlogis | sigma_low | rsd_high |
+#&gt; |.....................| o1 | o2 | o3 | o4 |
+#&gt; <span style='text-decoration: underline;'>|.....................| o5 | o6 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 1</span>| 496.98032 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#&gt; |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8950 | -0.9012 |...........|...........|</span>
+#&gt; | U| 496.98032 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 496.98032</span> | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | G| Gill Diff. | 57.10 | -0.1453 | -0.1275 | 0.2854 |
+#&gt; |.....................| -0.6156 | 0.007043 | -23.49 | -32.87 |
+#&gt; |.....................| 3.669 | -17.46 | -13.05 | -13.08 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -16.16 | -9.766 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 2</span>| 3094.8373 | 0.2572 | -0.9978 | -0.9392 | -0.9714 |
+#&gt; |.....................| -0.9920 | -0.9233 | -0.6037 | -0.4942 |
+#&gt; |.....................| -0.9579 | -0.6658 | -0.7293 | -0.7310 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.6848 | -0.7742 |...........|...........|</span>
+#&gt; | U| 3094.8373 | 26.15 | -4.052 | -0.9415 | -2.363 |
+#&gt; |.....................| -4.062 | -0.01133 | 0.8386 | 0.08074 |
+#&gt; |.....................| 0.6445 | 1.946 | 1.477 | 1.348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.794 | 1.297 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 3094.8373</span> | 26.15 | 0.01739 | 0.2806 | 0.09412 |
+#&gt; |.....................| 0.01721 | 0.4972 | 0.8386 | 0.08074 |
+#&gt; |.....................| 0.6445 | 1.946 | 1.477 | 1.348 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.794 | 1.297 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 3</span>| 557.60681 | 0.9257 | -0.9995 | -0.9407 | -0.9680 |
+#&gt; |.....................| -0.9992 | -0.9232 | -0.8787 | -0.8790 |
+#&gt; |.....................| -0.9150 | -0.8703 | -0.8821 | -0.8842 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8739 | -0.8885 |...........|...........|</span>
+#&gt; | U| 557.60681 | 94.11 | -4.053 | -0.9430 | -2.360 |
+#&gt; |.....................| -4.069 | -0.01133 | 0.7386 | 0.06794 |
+#&gt; |.....................| 0.6735 | 1.622 | 1.284 | 1.172 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.513 | 1.165 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 557.60681</span> | 94.11 | 0.01736 | 0.2803 | 0.09444 |
+#&gt; |.....................| 0.01709 | 0.4972 | 0.7386 | 0.06794 |
+#&gt; |.....................| 0.6735 | 1.622 | 1.284 | 1.172 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.513 | 1.165 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 4</span>| 543.47785 | 0.9926 | -0.9997 | -0.9408 | -0.9677 |
+#&gt; |.....................| -0.9999 | -0.9232 | -0.9062 | -0.9175 |
+#&gt; |.....................| -0.9107 | -0.8907 | -0.8974 | -0.8995 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8929 | -0.9000 |...........|...........|</span>
+#&gt; | U| 543.47785 | 100.9 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7286 | 0.06666 |
+#&gt; |.....................| 0.6764 | 1.589 | 1.264 | 1.154 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.485 | 1.152 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 543.47785</span> | 100.9 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7286 | 0.06666 |
+#&gt; |.....................| 0.6764 | 1.589 | 1.264 | 1.154 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.485 | 1.152 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 5</span>| 544.09017 | 0.9993 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9089 | -0.9213 |
+#&gt; |.....................| -0.9103 | -0.8928 | -0.8990 | -0.9010 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8948 | -0.9011 |...........|...........|</span>
+#&gt; | U| 544.09017 | 101.6 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7276 | 0.06654 |
+#&gt; |.....................| 0.6767 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 544.09017</span> | 101.6 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7276 | 0.06654 |
+#&gt; |.....................| 0.6767 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 6</span>| 544.17109 | 0.9999 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#&gt; |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8949 | -0.9012 |...........|...........|</span>
+#&gt; | U| 544.17109 | 101.6 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 544.17109</span> | 101.6 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 7</span>| 544.17937 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#&gt; |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8950 | -0.9012 |...........|...........|</span>
+#&gt; | U| 544.17937 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 544.17937</span> | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 8</span>| 544.18025 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#&gt; |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8950 | -0.9012 |...........|...........|</span>
+#&gt; | U| 544.18025 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 544.18025</span> | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 9</span>| 544.18033 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#&gt; |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8950 | -0.9012 |...........|...........|</span>
+#&gt; | U| 544.18033 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 544.18033</span> | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 10</span>| 544.18034 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#&gt; |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8950 | -0.9012 |...........|...........|</span>
+#&gt; | U| 544.18034 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 544.18034</span> | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 11</span>| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#&gt; |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8950 | -0.9012 |...........|...........|</span>
+#&gt; | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 544.18036</span> | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 12</span>| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#&gt; |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8950 | -0.9012 |...........|...........|</span>
+#&gt; | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 544.18036</span> | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 13</span>| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#&gt; |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8950 | -0.9012 |...........|...........|</span>
+#&gt; | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 544.18036</span> | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 14</span>| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#&gt; |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8950 | -0.9012 |...........|...........|</span>
+#&gt; | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 544.18036</span> | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 15</span>| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#&gt; |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8950 | -0.9012 |...........|...........|</span>
+#&gt; | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 544.18036</span> | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 16</span>| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#&gt; |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8950 | -0.9012 |...........|...........|</span>
+#&gt; | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 544.18036</span> | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; |<span style='font-weight: bold;'> 17</span>| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#&gt; |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#&gt; |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#&gt; <span style='text-decoration: underline;'>|.....................| -0.8950 | -0.9012 |...........|...........|</span>
+#&gt; | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#&gt; |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; | X|<span style='font-weight: bold;'> 544.18036</span> | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#&gt; |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#&gt; |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#&gt; <span style='text-decoration: underline;'>|.....................| 1.482 | 1.151 |...........|...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f_nlmixr_dfop_sfo_saem</span><span class='op'>$</span><span class='va'>nm</span>, <span class='va'>f_nlmixr_dfop_sfo_focei</span><span class='op'>$</span><span class='va'>nm</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; df AIC
+#&gt; f_nlmixr_dfop_sfo_saem$nm 16 Inf
+#&gt; f_nlmixr_dfop_sfo_focei$nm 14 886.4573</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlmixr_dfop_sfo_sfo</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'f_nlmixr_dfop_sfo_sfo' not found</span></div><div class='input'><span class='co'># }</span>
+
+</div></pre>
+ </div>
+ <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
+ <nav id="toc" data-toggle="toc" class="sticky-top">
+ <h2 data-toc-skip>Contents</h2>
+ </nav>
+ </div>
+</div>
+
+
+ <footer>
+ <div class="copyright">
+ <p>Developed by Johannes Ranke.</p>
+</div>
+
+<div class="pkgdown">
+ <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
+</div>
+
+ </footer>
+ </div>
+
+
+
+
+ </body>
+</html>
+
+
diff --git a/docs/dev/reference/summary.saem.mmkin.html b/docs/dev/reference/summary.saem.mmkin.html
index 722415fb..fe537320 100644
--- a/docs/dev/reference/summary.saem.mmkin.html
+++ b/docs/dev/reference/summary.saem.mmkin.html
@@ -76,7 +76,7 @@ endpoints such as formation fractions and DT50 values. Optionally
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
</span>
</div>
@@ -259,272 +259,8 @@ saemix authors for the parts inherited from saemix.</p>
<span class='va'>f_mmkin_dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='va'>dfop_sfo</span><span class='op'>)</span>, <span class='va'>ds_syn_dfop_sfo</span>,
quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>, cores <span class='op'>=</span> <span class='fl'>5</span><span class='op'>)</span>
<span class='va'>f_saem_dfop_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='saem.html'>saem</a></span><span class='op'>(</span><span class='va'>f_mmkin_dfop_sfo</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Running main SAEM algorithm
-#&gt; [1] "Mon Jan 11 12:42:40 2021"
-#&gt; ....
-#&gt; Minimisation finished
-#&gt; [1] "Mon Jan 11 12:42:53 2021"</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_saem_dfop_sfo</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; saemix version used for fitting: 3.1.9000
-#&gt; mkin version used for pre-fitting: 0.9.50.4
-#&gt; R version used for fitting: 4.0.3
-#&gt; Date of fit: Mon Jan 11 12:42:54 2021
-#&gt; Date of summary: Mon Jan 11 12:42:54 2021
-#&gt;
-#&gt; Equations:
-#&gt; d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
-#&gt; time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
-#&gt; * parent
-#&gt; d_m1/dt = + f_parent_to_m1 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
-#&gt; * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
-#&gt; exp(-k2 * time))) * parent - k_m1 * m1
-#&gt;
-#&gt; Data:
-#&gt; 171 observations of 2 variable(s) grouped in 5 datasets
-#&gt;
-#&gt; Model predictions using solution type analytical
-#&gt;
-#&gt; Fitted in 13.298 s using 300, 100 iterations
-#&gt;
-#&gt; Variance model: Two-component variance function
-#&gt;
-#&gt; Mean of starting values for individual parameters:
-#&gt; parent_0 log_k_m1 f_parent_qlogis log_k1 log_k2
-#&gt; 101.65645 -4.05368 -0.94311 -2.35943 -4.07006
-#&gt; g_qlogis
-#&gt; -0.01133
-#&gt;
-#&gt; Fixed degradation parameter values:
-#&gt; None
-#&gt;
-#&gt; Results:
-#&gt;
-#&gt; Likelihood computed by importance sampling
-#&gt; AIC BIC logLik
-#&gt; 830 824.5 -401
-#&gt;
-#&gt; Optimised parameters:
-#&gt; est. lower upper
-#&gt; parent_0 101.4423 97.862 105.0224
-#&gt; log_k_m1 -4.0703 -4.191 -3.9495
-#&gt; f_parent_qlogis -0.9539 -1.313 -0.5949
-#&gt; log_k1 -2.9724 -3.811 -2.1342
-#&gt; log_k2 -3.4977 -4.206 -2.7895
-#&gt; g_qlogis -0.0449 -1.116 1.0262
-#&gt;
-#&gt; Correlation:
-#&gt; prnt_0 lg_k_1 f_prn_ log_k1 log_k2
-#&gt; log_k_m1 -0.207
-#&gt; f_parent_qlogis -0.148 0.202
-#&gt; log_k1 0.040 -0.038 -0.022
-#&gt; log_k2 0.022 -0.015 -0.009 0.001
-#&gt; g_qlogis -0.012 0.005 0.011 -0.173 -0.130
-#&gt;
-#&gt; Random effects:
-#&gt; est. lower upper
-#&gt; SD.parent_0 2.88564 -0.5163 6.2876
-#&gt; SD.log_k_m1 0.08502 -0.0427 0.2127
-#&gt; SD.f_parent_qlogis 0.38857 0.1350 0.6421
-#&gt; SD.log_k1 0.92338 0.3296 1.5172
-#&gt; SD.log_k2 0.78644 0.2817 1.2912
-#&gt; SD.g_qlogis 0.34614 -0.8727 1.5650
-#&gt;
-#&gt; Variance model:
-#&gt; est. lower upper
-#&gt; a.1 0.65859 0.49250 0.82469
-#&gt; b.1 0.06411 0.05006 0.07817
-#&gt;
-#&gt; Backtransformed parameters:
-#&gt; est. lower upper
-#&gt; parent_0 101.44231 97.86220 105.02241
-#&gt; k_m1 0.01707 0.01513 0.01926
-#&gt; f_parent_to_m1 0.27811 0.21201 0.35551
-#&gt; k1 0.05118 0.02213 0.11834
-#&gt; k2 0.03027 0.01491 0.06145
-#&gt; g 0.48878 0.24675 0.73618
-#&gt;
-#&gt; Resulting formation fractions:
-#&gt; ff
-#&gt; parent_m1 0.2781
-#&gt; parent_sink 0.7219
-#&gt;
-#&gt; Estimated disappearance times:
-#&gt; DT50 DT90 DT50back DT50_k1 DT50_k2
-#&gt; parent 17.53 61.64 18.55 13.54 22.9
-#&gt; m1 40.60 134.88 NA NA NA
-#&gt;
-#&gt; Data:
-#&gt; ds name time observed predicted residual std standardized
-#&gt; ds 1 parent 0 89.8 9.869e+01 8.894553 6.3618 1.398124
-#&gt; ds 1 parent 0 104.1 9.869e+01 -5.405447 6.3618 -0.849676
-#&gt; ds 1 parent 1 88.7 9.413e+01 5.426448 6.0706 0.893897
-#&gt; ds 1 parent 1 95.5 9.413e+01 -1.373552 6.0706 -0.226265
-#&gt; ds 1 parent 3 81.8 8.576e+01 3.961821 5.5377 0.715422
-#&gt; ds 1 parent 3 94.5 8.576e+01 -8.738179 5.5377 -1.577932
-#&gt; ds 1 parent 7 71.5 7.168e+01 0.184828 4.6429 0.039809
-#&gt; ds 1 parent 7 70.3 7.168e+01 1.384828 4.6429 0.298270
-#&gt; ds 1 parent 14 54.2 5.351e+01 -0.688235 3.4934 -0.197008
-#&gt; ds 1 parent 14 49.6 5.351e+01 3.911765 3.4934 1.119747
-#&gt; ds 1 parent 28 31.5 3.209e+01 0.590445 2.1603 0.273322
-#&gt; ds 1 parent 28 28.8 3.209e+01 3.290445 2.1603 1.523177
-#&gt; ds 1 parent 60 12.1 1.272e+01 0.618158 1.0481 0.589761
-#&gt; ds 1 parent 60 13.6 1.272e+01 -0.881842 1.0481 -0.841332
-#&gt; ds 1 parent 90 6.2 6.085e+00 -0.115212 0.7655 -0.150512
-#&gt; ds 1 parent 90 8.3 6.085e+00 -2.215212 0.7655 -2.893953
-#&gt; ds 1 parent 120 2.2 3.009e+00 0.809439 0.6863 1.179470
-#&gt; ds 1 parent 120 2.4 3.009e+00 0.609439 0.6863 0.888041
-#&gt; ds 1 m1 1 0.3 1.129e+00 0.828817 0.6626 1.250938
-#&gt; ds 1 m1 1 0.2 1.129e+00 0.928817 0.6626 1.401869
-#&gt; ds 1 m1 3 2.2 3.141e+00 0.940880 0.6887 1.366187
-#&gt; ds 1 m1 3 3.0 3.141e+00 0.140880 0.6887 0.204562
-#&gt; ds 1 m1 7 6.5 6.326e+00 -0.174162 0.7735 -0.225175
-#&gt; ds 1 m1 7 5.0 6.326e+00 1.325838 0.7735 1.714181
-#&gt; ds 1 m1 14 10.2 9.883e+00 -0.317417 0.9139 -0.347326
-#&gt; ds 1 m1 14 9.5 9.883e+00 0.382583 0.9139 0.418631
-#&gt; ds 1 m1 28 12.2 1.251e+01 0.309856 1.0378 0.298572
-#&gt; ds 1 m1 28 13.4 1.251e+01 -0.890144 1.0378 -0.857726
-#&gt; ds 1 m1 60 11.8 1.086e+01 -0.940009 0.9584 -0.980812
-#&gt; ds 1 m1 60 13.2 1.086e+01 -2.340009 0.9584 -2.441581
-#&gt; ds 1 m1 90 6.6 7.823e+00 1.222977 0.8278 1.477332
-#&gt; ds 1 m1 90 9.3 7.823e+00 -1.477023 0.8278 -1.784214
-#&gt; ds 1 m1 120 3.5 5.315e+00 1.815201 0.7415 2.447906
-#&gt; ds 1 m1 120 5.4 5.315e+00 -0.084799 0.7415 -0.114356
-#&gt; ds 2 parent 0 118.0 1.031e+02 -14.876736 6.6443 -2.239038
-#&gt; ds 2 parent 0 99.8 1.031e+02 3.323264 6.6443 0.500171
-#&gt; ds 2 parent 1 90.2 9.757e+01 7.371379 6.2902 1.171891
-#&gt; ds 2 parent 1 94.6 9.757e+01 2.971379 6.2902 0.472386
-#&gt; ds 2 parent 3 96.1 8.788e+01 -8.222746 5.6724 -1.449599
-#&gt; ds 2 parent 3 78.4 8.788e+01 9.477254 5.6724 1.670758
-#&gt; ds 2 parent 7 77.9 7.293e+01 -4.972272 4.7218 -1.053054
-#&gt; ds 2 parent 7 77.7 7.293e+01 -4.772272 4.7218 -1.010697
-#&gt; ds 2 parent 14 56.0 5.602e+01 0.016773 3.6513 0.004594
-#&gt; ds 2 parent 14 54.7 5.602e+01 1.316773 3.6513 0.360633
-#&gt; ds 2 parent 28 36.6 3.855e+01 1.945779 2.5575 0.760803
-#&gt; ds 2 parent 28 36.8 3.855e+01 1.745779 2.5575 0.682603
-#&gt; ds 2 parent 60 22.1 2.101e+01 -1.086693 1.4996 -0.724663
-#&gt; ds 2 parent 60 24.7 2.101e+01 -3.686693 1.4996 -2.458475
-#&gt; ds 2 parent 90 12.4 1.246e+01 0.058759 1.0353 0.056757
-#&gt; ds 2 parent 90 10.8 1.246e+01 1.658759 1.0353 1.602256
-#&gt; ds 2 parent 120 6.8 7.406e+00 0.606226 0.8119 0.746659
-#&gt; ds 2 parent 120 7.9 7.406e+00 -0.493774 0.8119 -0.608157
-#&gt; ds 2 m1 1 1.3 1.438e+00 0.138236 0.6650 0.207869
-#&gt; ds 2 m1 3 3.7 3.879e+00 0.178617 0.7040 0.253726
-#&gt; ds 2 m1 3 4.7 3.879e+00 -0.821383 0.7040 -1.166780
-#&gt; ds 2 m1 7 8.1 7.389e+00 -0.710951 0.8113 -0.876337
-#&gt; ds 2 m1 7 7.9 7.389e+00 -0.510951 0.8113 -0.629812
-#&gt; ds 2 m1 14 10.1 1.069e+01 0.593533 0.9507 0.624328
-#&gt; ds 2 m1 14 10.3 1.069e+01 0.393533 0.9507 0.413951
-#&gt; ds 2 m1 28 10.7 1.240e+01 1.703647 1.0325 1.649956
-#&gt; ds 2 m1 28 12.2 1.240e+01 0.203647 1.0325 0.197229
-#&gt; ds 2 m1 60 10.7 1.055e+01 -0.147672 0.9442 -0.156405
-#&gt; ds 2 m1 60 12.5 1.055e+01 -1.947672 0.9442 -2.062848
-#&gt; ds 2 m1 90 9.1 8.010e+00 -1.090041 0.8351 -1.305210
-#&gt; ds 2 m1 90 7.4 8.010e+00 0.609959 0.8351 0.730362
-#&gt; ds 2 m1 120 6.1 5.793e+00 -0.306797 0.7561 -0.405759
-#&gt; ds 2 m1 120 4.5 5.793e+00 1.293203 0.7561 1.710347
-#&gt; ds 3 parent 0 106.2 1.035e+02 -2.712344 6.6675 -0.406801
-#&gt; ds 3 parent 0 106.9 1.035e+02 -3.412344 6.6675 -0.511788
-#&gt; ds 3 parent 1 107.4 9.548e+01 -11.924044 6.1566 -1.936801
-#&gt; ds 3 parent 1 96.1 9.548e+01 -0.624044 6.1566 -0.101362
-#&gt; ds 3 parent 3 79.4 8.246e+01 3.056105 5.3274 0.573662
-#&gt; ds 3 parent 3 82.6 8.246e+01 -0.143895 5.3274 -0.027010
-#&gt; ds 3 parent 7 63.9 6.489e+01 0.991141 4.2122 0.235304
-#&gt; ds 3 parent 7 62.4 6.489e+01 2.491141 4.2122 0.591416
-#&gt; ds 3 parent 14 51.0 4.869e+01 -2.306824 3.1906 -0.723013
-#&gt; ds 3 parent 14 47.1 4.869e+01 1.593176 3.1906 0.499338
-#&gt; ds 3 parent 28 36.1 3.480e+01 -1.304261 2.3260 -0.560722
-#&gt; ds 3 parent 28 36.6 3.480e+01 -1.804261 2.3260 -0.775679
-#&gt; ds 3 parent 60 20.1 1.988e+01 -0.221952 1.4346 -0.154719
-#&gt; ds 3 parent 60 19.8 1.988e+01 0.078048 1.4346 0.054406
-#&gt; ds 3 parent 90 11.3 1.194e+01 0.642458 1.0099 0.636132
-#&gt; ds 3 parent 90 10.7 1.194e+01 1.242458 1.0099 1.230224
-#&gt; ds 3 parent 120 8.2 7.176e+00 -1.023847 0.8034 -1.274423
-#&gt; ds 3 parent 120 7.3 7.176e+00 -0.123847 0.8034 -0.154158
-#&gt; ds 3 m1 0 0.8 8.527e-13 -0.800000 0.6586 -1.214712
-#&gt; ds 3 m1 1 1.8 1.856e+00 0.055925 0.6693 0.083562
-#&gt; ds 3 m1 1 2.3 1.856e+00 -0.444075 0.6693 -0.663537
-#&gt; ds 3 m1 3 4.2 4.780e+00 0.580164 0.7264 0.798676
-#&gt; ds 3 m1 3 4.1 4.780e+00 0.680164 0.7264 0.936340
-#&gt; ds 3 m1 7 6.8 8.410e+00 1.609920 0.8512 1.891455
-#&gt; ds 3 m1 7 10.1 8.410e+00 -1.690080 0.8512 -1.985633
-#&gt; ds 3 m1 14 11.4 1.098e+01 -0.424444 0.9638 -0.440389
-#&gt; ds 3 m1 14 12.8 1.098e+01 -1.824444 0.9638 -1.892979
-#&gt; ds 3 m1 28 11.5 1.142e+01 -0.079336 0.9848 -0.080558
-#&gt; ds 3 m1 28 10.6 1.142e+01 0.820664 0.9848 0.833311
-#&gt; ds 3 m1 60 7.5 9.110e+00 1.610231 0.8803 1.829222
-#&gt; ds 3 m1 60 8.6 9.110e+00 0.510231 0.8803 0.579622
-#&gt; ds 3 m1 90 7.3 6.799e+00 -0.501085 0.7898 -0.634463
-#&gt; ds 3 m1 90 8.1 6.799e+00 -1.301085 0.7898 -1.647404
-#&gt; ds 3 m1 120 5.3 4.868e+00 -0.431505 0.7288 -0.592064
-#&gt; ds 3 m1 120 3.8 4.868e+00 1.068495 0.7288 1.466073
-#&gt; ds 4 parent 0 104.7 9.926e+01 -5.444622 6.3975 -0.851049
-#&gt; ds 4 parent 0 88.3 9.926e+01 10.955378 6.3975 1.712436
-#&gt; ds 4 parent 1 94.2 9.618e+01 1.978413 6.2013 0.319030
-#&gt; ds 4 parent 1 94.6 9.618e+01 1.578413 6.2013 0.254527
-#&gt; ds 4 parent 3 78.1 9.037e+01 12.268550 5.8311 2.103985
-#&gt; ds 4 parent 3 96.5 9.037e+01 -6.131450 5.8311 -1.051508
-#&gt; ds 4 parent 7 76.2 7.999e+01 3.794958 5.1708 0.733918
-#&gt; ds 4 parent 7 77.8 7.999e+01 2.194958 5.1708 0.424489
-#&gt; ds 4 parent 14 70.8 6.518e+01 -5.624996 4.2301 -1.329742
-#&gt; ds 4 parent 14 67.3 6.518e+01 -2.124996 4.2301 -0.502346
-#&gt; ds 4 parent 28 43.1 4.462e+01 1.517860 2.9354 0.517085
-#&gt; ds 4 parent 28 45.1 4.462e+01 -0.482140 2.9354 -0.164249
-#&gt; ds 4 parent 60 21.3 2.130e+01 -0.003305 1.5159 -0.002180
-#&gt; ds 4 parent 60 23.5 2.130e+01 -2.203305 1.5159 -1.453435
-#&gt; ds 4 parent 90 11.8 1.180e+01 0.002834 1.0032 0.002825
-#&gt; ds 4 parent 90 12.1 1.180e+01 -0.297166 1.0032 -0.296226
-#&gt; ds 4 parent 120 7.0 6.868e+00 -0.132251 0.7922 -0.166937
-#&gt; ds 4 parent 120 6.2 6.868e+00 0.667749 0.7922 0.842879
-#&gt; ds 4 m1 0 1.6 0.000e+00 -1.600000 0.6586 -2.429424
-#&gt; ds 4 m1 1 0.9 6.826e-01 -0.217363 0.6600 -0.329315
-#&gt; ds 4 m1 3 3.7 1.935e+00 -1.765082 0.6702 -2.633768
-#&gt; ds 4 m1 3 2.0 1.935e+00 -0.065082 0.6702 -0.097112
-#&gt; ds 4 m1 7 3.6 4.035e+00 0.434805 0.7076 0.614501
-#&gt; ds 4 m1 7 3.8 4.035e+00 0.234805 0.7076 0.331845
-#&gt; ds 4 m1 14 7.1 6.652e+00 -0.448187 0.7846 -0.571220
-#&gt; ds 4 m1 14 6.6 6.652e+00 0.051813 0.7846 0.066036
-#&gt; ds 4 m1 28 9.5 9.156e+00 -0.343805 0.8822 -0.389696
-#&gt; ds 4 m1 28 9.3 9.156e+00 -0.143805 0.8822 -0.163000
-#&gt; ds 4 m1 60 8.3 8.848e+00 0.547762 0.8692 0.630185
-#&gt; ds 4 m1 60 9.0 8.848e+00 -0.152238 0.8692 -0.175146
-#&gt; ds 4 m1 90 6.6 6.674e+00 0.073979 0.7854 0.094194
-#&gt; ds 4 m1 90 7.7 6.674e+00 -1.026021 0.7854 -1.306390
-#&gt; ds 4 m1 120 3.7 4.668e+00 0.967537 0.7234 1.337503
-#&gt; ds 4 m1 120 3.5 4.668e+00 1.167537 0.7234 1.613979
-#&gt; ds 5 parent 0 110.4 1.022e+02 -8.170986 6.5872 -1.240433
-#&gt; ds 5 parent 0 112.1 1.022e+02 -9.870986 6.5872 -1.498509
-#&gt; ds 5 parent 1 93.5 9.513e+01 1.630764 6.1346 0.265832
-#&gt; ds 5 parent 1 91.0 9.513e+01 4.130764 6.1346 0.673359
-#&gt; ds 5 parent 3 71.0 8.296e+01 11.964279 5.3597 2.232268
-#&gt; ds 5 parent 3 89.7 8.296e+01 -6.735721 5.3597 -1.256735
-#&gt; ds 5 parent 7 60.4 6.495e+01 4.547441 4.2157 1.078684
-#&gt; ds 5 parent 7 59.1 6.495e+01 5.847441 4.2157 1.387053
-#&gt; ds 5 parent 14 56.5 4.626e+01 -10.241319 3.0380 -3.371047
-#&gt; ds 5 parent 14 47.0 4.626e+01 -0.741319 3.0380 -0.244014
-#&gt; ds 5 parent 28 30.2 3.026e+01 0.058478 2.0487 0.028544
-#&gt; ds 5 parent 28 23.9 3.026e+01 6.358478 2.0487 3.103661
-#&gt; ds 5 parent 60 17.0 1.792e+01 0.919046 1.3242 0.694024
-#&gt; ds 5 parent 60 18.7 1.792e+01 -0.780954 1.3242 -0.589742
-#&gt; ds 5 parent 90 11.3 1.187e+01 0.573917 1.0066 0.570144
-#&gt; ds 5 parent 90 11.9 1.187e+01 -0.026083 1.0066 -0.025912
-#&gt; ds 5 parent 120 9.0 7.898e+00 -1.102089 0.8307 -1.326622
-#&gt; ds 5 parent 120 8.1 7.898e+00 -0.202089 0.8307 -0.243261
-#&gt; ds 5 m1 0 0.7 -1.421e-14 -0.700000 0.6586 -1.062873
-#&gt; ds 5 m1 1 3.0 3.144e+00 0.143526 0.6887 0.208390
-#&gt; ds 5 m1 1 2.6 3.144e+00 0.543526 0.6887 0.789161
-#&gt; ds 5 m1 3 5.1 8.390e+00 3.290265 0.8504 3.869277
-#&gt; ds 5 m1 3 7.5 8.390e+00 0.890265 0.8504 1.046932
-#&gt; ds 5 m1 7 16.5 1.566e+01 -0.841368 1.2007 -0.700751
-#&gt; ds 5 m1 7 19.0 1.566e+01 -3.341368 1.2007 -2.782928
-#&gt; ds 5 m1 14 22.9 2.188e+01 -1.017753 1.5498 -0.656687
-#&gt; ds 5 m1 14 23.2 2.188e+01 -1.317753 1.5498 -0.850257
-#&gt; ds 5 m1 28 22.2 2.386e+01 1.655914 1.6652 0.994399
-#&gt; ds 5 m1 28 24.4 2.386e+01 -0.544086 1.6652 -0.326731
-#&gt; ds 5 m1 60 15.5 1.859e+01 3.091124 1.3618 2.269915
-#&gt; ds 5 m1 60 19.8 1.859e+01 -1.208876 1.3618 -0.887718
-#&gt; ds 5 m1 90 14.9 1.372e+01 -1.176815 1.0990 -1.070784
-#&gt; ds 5 m1 90 14.2 1.372e+01 -0.476815 1.0990 -0.433854
-#&gt; ds 5 m1 120 10.9 9.961e+00 -0.938796 0.9174 -1.023332
-#&gt; ds 5 m1 120 10.4 9.961e+00 -0.438796 0.9174 -0.478308</div><div class='input'><span class='co'># }</span>
+</div><div class='output co'>#&gt; <span class='warning'>Warning: argument is not a function</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='error'>Error in rxModelVars_(obj): Not compatible with STRSXP: [type=NULL].</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_saem_dfop_sfo</span>, data <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'f_saem_dfop_sfo' not found</span></div><div class='input'><span class='co'># }</span>
</div></pre>
</div>
diff --git a/docs/dev/reference/synthetic_data_for_UBA_2014-1.png b/docs/dev/reference/synthetic_data_for_UBA_2014-1.png
index 351b21aa..89975db5 100644
--- a/docs/dev/reference/synthetic_data_for_UBA_2014-1.png
+++ b/docs/dev/reference/synthetic_data_for_UBA_2014-1.png
Binary files differ
diff --git a/docs/dev/reference/synthetic_data_for_UBA_2014.html b/docs/dev/reference/synthetic_data_for_UBA_2014.html
index 1edc7c1e..33a0ace2 100644
--- a/docs/dev/reference/synthetic_data_for_UBA_2014.html
+++ b/docs/dev/reference/synthetic_data_for_UBA_2014.html
@@ -87,7 +87,7 @@ Compare also the code in the example section to see the degradation models." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -136,7 +136,7 @@ Compare also the code in the example section to see the degradation models." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -297,10 +297,10 @@ Compare also the code in the example section to see the degradation models." />
quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span>
</div><div class='img'><img src='synthetic_data_for_UBA_2014-1.png' alt='' width='700' height='433' /></div><div class='input'> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; mkin version used for fitting: 0.9.50.4
+</div><div class='output co'>#&gt; mkin version used for fitting: 1.0.3.9000
#&gt; R version used for fitting: 4.0.3
-#&gt; Date of fit: Mon Nov 30 16:01:42 2020
-#&gt; Date of summary: Mon Nov 30 16:01:42 2020
+#&gt; Date of fit: Mon Feb 15 17:13:29 2021
+#&gt; Date of summary: Mon Feb 15 17:13:29 2021
#&gt;
#&gt; Equations:
#&gt; d_parent/dt = - k_parent * parent
@@ -309,7 +309,7 @@ Compare also the code in the example section to see the degradation models." />
#&gt;
#&gt; Model predictions using solution type deSolve
#&gt;
-#&gt; Fitted using 822 model solutions performed in 0.652 s
+#&gt; Fitted using 833 model solutions performed in 0.649 s
#&gt;
#&gt; Error model: Constant variance
#&gt;
@@ -361,15 +361,15 @@ Compare also the code in the example section to see the degradation models." />
#&gt; log_k_M2 2.819e-02 7.166e-02 -3.929e-01 1.000e+00 -2.658e-01
#&gt; f_parent_qlogis -4.624e-01 -5.682e-01 7.478e-01 -2.658e-01 1.000e+00
#&gt; f_M1_qlogis 1.614e-01 4.102e-01 -8.109e-01 5.419e-01 -8.605e-01
-#&gt; sigma -7.941e-08 -9.143e-09 -1.268e-08 5.947e-08 5.657e-08
+#&gt; sigma -2.900e-08 -8.030e-09 -2.741e-08 3.938e-08 -2.681e-08
#&gt; f_M1_qlogis sigma
-#&gt; parent_0 1.614e-01 -7.941e-08
-#&gt; log_k_parent 4.102e-01 -9.143e-09
-#&gt; log_k_M1 -8.109e-01 -1.268e-08
-#&gt; log_k_M2 5.419e-01 5.947e-08
-#&gt; f_parent_qlogis -8.605e-01 5.657e-08
-#&gt; f_M1_qlogis 1.000e+00 -2.382e-10
-#&gt; sigma -2.382e-10 1.000e+00
+#&gt; parent_0 1.614e-01 -2.900e-08
+#&gt; log_k_parent 4.102e-01 -8.030e-09
+#&gt; log_k_M1 -8.109e-01 -2.741e-08
+#&gt; log_k_M2 5.419e-01 3.938e-08
+#&gt; f_parent_qlogis -8.605e-01 -2.681e-08
+#&gt; f_M1_qlogis 1.000e+00 4.971e-08
+#&gt; sigma 4.971e-08 1.000e+00
#&gt;
#&gt; Backtransformed parameters:
#&gt; Confidence intervals for internally transformed parameters are asymmetric.
@@ -416,7 +416,7 @@ Compare also the code in the example section to see the degradation models." />
#&gt; 7 parent 0.3 5.772e-01 -0.27717
#&gt; 14 parent 3.5 3.264e-03 3.49674
#&gt; 28 parent 3.2 1.045e-07 3.20000
-#&gt; 90 parent 0.6 9.532e-10 0.60000
+#&gt; 90 parent 0.6 9.530e-10 0.60000
#&gt; 120 parent 3.5 -5.940e-10 3.50000
#&gt; 1 M1 36.4 3.479e+01 1.61088
#&gt; 1 M1 37.4 3.479e+01 2.61088
@@ -427,7 +427,7 @@ Compare also the code in the example section to see the degradation models." />
#&gt; 14 M1 5.8 1.995e+00 3.80469
#&gt; 14 M1 1.2 1.995e+00 -0.79531
#&gt; 60 M1 0.5 2.111e-06 0.50000
-#&gt; 90 M1 3.2 -9.671e-10 3.20000
+#&gt; 90 M1 3.2 -9.670e-10 3.20000
#&gt; 120 M1 1.5 7.670e-10 1.50000
#&gt; 120 M1 0.6 7.670e-10 0.60000
#&gt; 1 M2 4.8 4.455e+00 0.34517
diff --git a/docs/dev/reference/test_data_from_UBA_2014-1.png b/docs/dev/reference/test_data_from_UBA_2014-1.png
index 9e0afad2..7bf0bd0f 100644
--- a/docs/dev/reference/test_data_from_UBA_2014-1.png
+++ b/docs/dev/reference/test_data_from_UBA_2014-1.png
Binary files differ
diff --git a/docs/dev/reference/test_data_from_UBA_2014-2.png b/docs/dev/reference/test_data_from_UBA_2014-2.png
index e889efde..fc1f77e0 100644
--- a/docs/dev/reference/test_data_from_UBA_2014-2.png
+++ b/docs/dev/reference/test_data_from_UBA_2014-2.png
Binary files differ
diff --git a/docs/dev/reference/test_data_from_UBA_2014.html b/docs/dev/reference/test_data_from_UBA_2014.html
index 89ec3480..539b8287 100644
--- a/docs/dev/reference/test_data_from_UBA_2014.html
+++ b/docs/dev/reference/test_data_from_UBA_2014.html
@@ -73,7 +73,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -122,7 +122,7 @@
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -203,25 +203,25 @@
</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'> <span class='fu'><a href='plot.mkinfit.html'>plot_sep</a></span><span class='op'>(</span><span class='va'>f_soil</span>, lpos <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"topright"</span>, <span class='st'>"topright"</span>, <span class='st'>"topright"</span>, <span class='st'>"bottomright"</span><span class='op'>)</span><span class='op'>)</span>
</div><div class='img'><img src='test_data_from_UBA_2014-2.png' alt='' width='700' height='433' /></div><div class='input'> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>f_soil</span><span class='op'>)</span><span class='op'>$</span><span class='va'>bpar</span>
</div><div class='output co'>#&gt; Estimate se_notrans t value Pr(&gt;t) Lower
-#&gt; parent_0 76.55425649 0.859186399 89.1008710 1.113861e-26 74.755959406
+#&gt; parent_0 76.55425650 0.859186399 89.1008710 1.113861e-26 74.755959418
#&gt; k_parent 0.12081956 0.004601918 26.2541722 1.077359e-16 0.111561575
-#&gt; k_M1 0.84258614 0.806159820 1.0451850 1.545267e-01 0.113779670
-#&gt; k_M2 0.04210880 0.017083035 2.4649483 1.170188e-02 0.018013857
-#&gt; k_M3 0.01122918 0.007245855 1.5497385 6.885052e-02 0.002909431
-#&gt; f_parent_to_M1 0.32240200 0.240783909 1.3389682 9.819073e-02 NA
-#&gt; f_parent_to_M2 0.16099855 0.033691953 4.7785463 6.531137e-05 NA
-#&gt; f_M1_to_M3 0.27921507 0.269423745 1.0363417 1.565266e-01 0.022978220
-#&gt; f_M2_to_M3 0.55641253 0.595119954 0.9349586 1.807707e-01 0.008002509
+#&gt; k_M1 0.84258615 0.806160102 1.0451846 1.545268e-01 0.113779609
+#&gt; k_M2 0.04210880 0.017083034 2.4649483 1.170188e-02 0.018013857
+#&gt; k_M3 0.01122918 0.007245856 1.5497385 6.885052e-02 0.002909431
+#&gt; f_parent_to_M1 0.32240200 0.240783943 1.3389680 9.819076e-02 NA
+#&gt; f_parent_to_M2 0.16099855 0.033691952 4.7785464 6.531136e-05 NA
+#&gt; f_M1_to_M3 0.27921507 0.269423780 1.0363416 1.565267e-01 0.022978205
+#&gt; f_M2_to_M3 0.55641252 0.595119966 0.9349586 1.807707e-01 0.008002509
#&gt; sigma 1.14005399 0.149696423 7.6157731 1.727024e-07 0.826735778
#&gt; Upper
-#&gt; parent_0 78.35255357
+#&gt; parent_0 78.35255358
#&gt; k_parent 0.13084582
-#&gt; k_M1 6.23970352
+#&gt; k_M1 6.23970702
#&gt; k_M2 0.09843260
#&gt; k_M3 0.04333992
#&gt; f_parent_to_M1 NA
#&gt; f_parent_to_M2 NA
-#&gt; f_M1_to_M3 0.86450768
+#&gt; f_M1_to_M3 0.86450775
#&gt; f_M2_to_M3 0.99489895
#&gt; sigma 1.45337221</div><div class='input'> <span class='fu'><a href='mkinerrmin.html'>mkinerrmin</a></span><span class='op'>(</span><span class='va'>f_soil</span><span class='op'>)</span>
</div><div class='output co'>#&gt; err.min n.optim df
diff --git a/docs/dev/reference/tffm0.html b/docs/dev/reference/tffm0.html
new file mode 100644
index 00000000..c7b5b6de
--- /dev/null
+++ b/docs/dev/reference/tffm0.html
@@ -0,0 +1,226 @@
+<!-- Generated by pkgdown: do not edit by hand -->
+<!DOCTYPE html>
+<html lang="en">
+ <head>
+ <meta charset="utf-8">
+<meta http-equiv="X-UA-Compatible" content="IE=edge">
+<meta name="viewport" content="width=device-width, initial-scale=1.0">
+
+<title>Transform formation fractions as in the first published mkin version — tffm0 • mkin</title>
+
+
+<!-- jquery -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
+<!-- Bootstrap -->
+
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" />
+
+<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
+
+<!-- bootstrap-toc -->
+<link rel="stylesheet" href="../bootstrap-toc.css">
+<script src="../bootstrap-toc.js"></script>
+
+<!-- Font Awesome icons -->
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" />
+
+<!-- clipboard.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script>
+
+<!-- headroom.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script>
+
+<!-- pkgdown -->
+<link href="../pkgdown.css" rel="stylesheet">
+<script src="../pkgdown.js"></script>
+
+
+
+
+<meta property="og:title" content="Transform formation fractions as in the first published mkin version — tffm0" />
+<meta property="og:description" content="The transformed fractions can be restricted between 0 and 1 in model
+optimisations. Therefore this transformation was used originally in mkin. It
+was later replaced by the ilr transformation because the ilr transformed
+fractions can assumed to follow normal distribution. As the ilr
+transformation is not available in RxODE and can therefore not be used in
+the nlmixr modelling language, this transformation is currently used for
+translating mkin models with formation fractions to more than one target
+compartment for fitting with nlmixr in nlmixr_model. However,
+this implementation cannot be used there, as it is not accessible
+from RxODE." />
+
+
+<meta name="robots" content="noindex">
+
+<!-- mathjax -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
+
+<!--[if lt IE 9]>
+<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
+<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
+<![endif]-->
+
+
+
+ </head>
+
+ <body data-spy="scroll" data-target="#toc">
+ <div class="container template-reference-topic">
+ <header>
+ <div class="navbar navbar-default navbar-fixed-top" role="navigation">
+ <div class="container">
+ <div class="navbar-header">
+ <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
+ <span class="sr-only">Toggle navigation</span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ <span class="icon-bar"></span>
+ </button>
+ <span class="navbar-brand">
+ <a class="navbar-link" href="../index.html">mkin</a>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
+ </span>
+ </div>
+
+ <div id="navbar" class="navbar-collapse collapse">
+ <ul class="nav navbar-nav">
+ <li>
+ <a href="../reference/index.html">Functions and data</a>
+</li>
+<li class="dropdown">
+ <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
+ Articles
+
+ <span class="caret"></span>
+ </a>
+ <ul class="dropdown-menu" role="menu">
+ <li>
+ <a href="../articles/mkin.html">Introduction to mkin</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
+ </li>
+ <li>
+ <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
+ </li>
+ <li>
+ <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
+ </li>
+ <li>
+ <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
+ </li>
+ </ul>
+</li>
+<li>
+ <a href="../news/index.html">News</a>
+</li>
+ </ul>
+ <ul class="nav navbar-nav navbar-right">
+ <li>
+ <a href="https://github.com/jranke/mkin/">
+ <span class="fab fa-github fa-lg"></span>
+
+ </a>
+</li>
+ </ul>
+
+ </div><!--/.nav-collapse -->
+ </div><!--/.container -->
+</div><!--/.navbar -->
+
+
+
+ </header>
+
+<div class="row">
+ <div class="col-md-9 contents">
+ <div class="page-header">
+ <h1>Transform formation fractions as in the first published mkin version</h1>
+ <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/tffm0.R'><code>R/tffm0.R</code></a></small>
+ <div class="hidden name"><code>tffm0.Rd</code></div>
+ </div>
+
+ <div class="ref-description">
+ <p>The transformed fractions can be restricted between 0 and 1 in model
+optimisations. Therefore this transformation was used originally in mkin. It
+was later replaced by the <a href='ilr.html'>ilr</a> transformation because the ilr transformed
+fractions can assumed to follow normal distribution. As the ilr
+transformation is not available in <a href='https://nlmixrdevelopment.github.io/RxODE/reference/RxODE.html'>RxODE</a> and can therefore not be used in
+the nlmixr modelling language, this transformation is currently used for
+translating mkin models with formation fractions to more than one target
+compartment for fitting with nlmixr in <a href='nlmixr.mmkin.html'>nlmixr_model</a>. However,
+this implementation cannot be used there, as it is not accessible
+from RxODE.</p>
+ </div>
+
+ <pre class="usage"><span class='fu'>tffm0</span><span class='op'>(</span><span class='va'>ff</span><span class='op'>)</span>
+
+<span class='fu'>invtffm0</span><span class='op'>(</span><span class='va'>ff_trans</span><span class='op'>)</span></pre>
+
+ <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
+ <table class="ref-arguments">
+ <colgroup><col class="name" /><col class="desc" /></colgroup>
+ <tr>
+ <th>ff</th>
+ <td><p>Vector of untransformed formation fractions. The sum
+must be smaller or equal to one</p></td>
+ </tr>
+ <tr>
+ <th>ff_trans</th>
+ <td><p>Vector of transformed formation fractions that can be
+restricted to the interval from 0 to 1</p></td>
+ </tr>
+ </table>
+
+ <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
+
+ <p>A vector of the transformed formation fractions</p>
+<p>A vector of backtransformed formation fractions for natural use in degradation models</p>
+
+ <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
+ <pre class="examples"><div class='input'><span class='va'>ff_example</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>
+ <span class='fl'>0.10983681</span>, <span class='fl'>0.09035905</span>, <span class='fl'>0.08399383</span>
+<span class='op'>)</span>
+<span class='va'>ff_example_trans</span> <span class='op'>&lt;-</span> <span class='fu'>tffm0</span><span class='op'>(</span><span class='va'>ff_example</span><span class='op'>)</span>
+<span class='fu'>invtffm0</span><span class='op'>(</span><span class='va'>ff_example_trans</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; [1] 0.10983681 0.09035905 0.08399383</div></pre>
+ </div>
+ <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
+ <nav id="toc" data-toggle="toc" class="sticky-top">
+ <h2 data-toc-skip>Contents</h2>
+ </nav>
+ </div>
+</div>
+
+
+ <footer>
+ <div class="copyright">
+ <p>Developed by Johannes Ranke.</p>
+</div>
+
+<div class="pkgdown">
+ <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
+</div>
+
+ </footer>
+ </div>
+
+
+
+
+ </body>
+</html>
+
+
diff --git a/docs/dev/reference/transform_odeparms.html b/docs/dev/reference/transform_odeparms.html
index 46b66073..75d6a1f9 100644
--- a/docs/dev/reference/transform_odeparms.html
+++ b/docs/dev/reference/transform_odeparms.html
@@ -77,7 +77,7 @@ the ilr transformation is used." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -126,7 +126,7 @@ the ilr transformation is used." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>
@@ -231,50 +231,64 @@ This is no problem for the internal use in <a href='mkinfit.html'>mkinfit</a>.</
<pre class="examples"><div class='input'>
<span class='va'>SFO_SFO</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>
parent <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span>, to <span class='op'>=</span> <span class='st'>"m1"</span>, sink <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>,
- m1 <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span>
-<span class='va'>fit</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_2006_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='va'>fit.s</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span>
+ m1 <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span><span class='op'>)</span>, use_of_ff <span class='op'>=</span> <span class='st'>"min"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'>
+<span class='co'># Fit the model to the FOCUS example dataset D using defaults</span>
+<span class='va'>FOCUS_D</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>FOCUS_2006_D</span>, <span class='va'>value</span> <span class='op'>!=</span> <span class='fl'>0</span><span class='op'>)</span> <span class='co'># remove zero values to avoid warning</span>
+<span class='va'>fit</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+<span class='va'>fit.s</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>)</span>
<span class='co'># Transformed and backtransformed parameters</span>
<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.s</span><span class='op'>$</span><span class='va'>par</span>, <span class='fl'>3</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Estimate Std. Error Lower Upper
-#&gt; parent_0 99.5985 1.5702 96.404 102.79
-#&gt; log_k_parent -2.3157 0.0409 -2.399 -2.23
-#&gt; log_k_m1 -5.2475 0.1332 -5.518 -4.98
-#&gt; f_parent_qlogis 0.0579 0.0893 -0.124 0.24
-#&gt; sigma 3.1255 0.3585 2.396 3.85</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.s</span><span class='op'>$</span><span class='va'>bpar</span>, <span class='fl'>3</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; Estimate se_notrans t value Pr(&gt;t) Lower Upper
-#&gt; parent_0 99.59848 1.57022 63.43 2.30e-36 96.40383 102.7931
-#&gt; k_parent 0.09870 0.00403 24.47 4.96e-23 0.09082 0.1073
-#&gt; k_m1 0.00526 0.00070 7.51 6.16e-09 0.00401 0.0069
-#&gt; f_parent_to_m1 0.51448 0.02230 23.07 3.10e-22 0.46912 0.5596
-#&gt; sigma 3.12550 0.35852 8.72 2.24e-10 2.39609 3.8549</div><div class='input'>
+</div><div class='output co'>#&gt; Estimate Std. Error Lower Upper
+#&gt; parent_0 99.60 1.5702 96.40 102.79
+#&gt; log_k_parent_sink -3.04 0.0763 -3.19 -2.88
+#&gt; log_k_parent_m1 -2.98 0.0403 -3.06 -2.90
+#&gt; log_k_m1_sink -5.25 0.1332 -5.52 -4.98
+#&gt; sigma 3.13 0.3585 2.40 3.85</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.s</span><span class='op'>$</span><span class='va'>bpar</span>, <span class='fl'>3</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; Estimate se_notrans t value Pr(&gt;t) Lower Upper
+#&gt; parent_0 99.59848 1.57022 63.43 2.30e-36 96.40384 102.7931
+#&gt; k_parent_sink 0.04792 0.00365 13.11 6.13e-15 0.04103 0.0560
+#&gt; k_parent_m1 0.05078 0.00205 24.80 3.27e-23 0.04678 0.0551
+#&gt; k_m1_sink 0.00526 0.00070 7.51 6.16e-09 0.00401 0.0069
+#&gt; sigma 3.12550 0.35852 8.72 2.24e-10 2.39609 3.8549</div><div class='input'>
<span class='co'># \dontrun{</span>
-<span class='co'># Compare to the version without transforming rate parameters</span>
-<span class='va'>fit.2</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_2006_D</span>, transform_rates <span class='op'>=</span> <span class='cn'>FALSE</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='output co'>#&gt; <span class='error'>Error in if (cost &lt; cost.current) { assign("cost.current", cost, inherits = TRUE) if (!quiet) cat(ifelse(OLS, "Sum of squared residuals", "Negative log-likelihood"), " at call ", calls, ": ", signif(cost.current, 6), "\n", sep = "")}: missing value where TRUE/FALSE needed</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 0.006 0 0.005</span></div><div class='input'><span class='va'>fit.2.s</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.2</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'fit.2' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.2.s</span><span class='op'>$</span><span class='va'>par</span>, <span class='fl'>3</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'print': object 'fit.2.s' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.2.s</span><span class='op'>$</span><span class='va'>bpar</span>, <span class='fl'>3</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='error'>Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'print': object 'fit.2.s' not found</span></div><div class='input'><span class='co'># }</span>
+<span class='co'># Compare to the version without transforming rate parameters (does not work</span>
+<span class='co'># with analytical solution, we get NA values for m1 in predictions)</span>
+<span class='va'>fit.2</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO</span>, <span class='va'>FOCUS_D</span>, transform_rates <span class='op'>=</span> <span class='cn'>FALSE</span>,
+ solution_type <span class='op'>=</span> <span class='st'>"deSolve"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+<span class='va'>fit.2.s</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.2</span><span class='op'>)</span>
+<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.2.s</span><span class='op'>$</span><span class='va'>par</span>, <span class='fl'>3</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; Estimate Std. Error Lower Upper
+#&gt; parent_0 99.59848 1.57022 96.40384 1.03e+02
+#&gt; k_parent_sink 0.04792 0.00365 0.04049 5.54e-02
+#&gt; k_parent_m1 0.05078 0.00205 0.04661 5.49e-02
+#&gt; k_m1_sink 0.00526 0.00070 0.00384 6.69e-03
+#&gt; sigma 3.12550 0.35852 2.39609 3.85e+00</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.2.s</span><span class='op'>$</span><span class='va'>bpar</span>, <span class='fl'>3</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; Estimate se_notrans t value Pr(&gt;t) Lower Upper
+#&gt; parent_0 99.59848 1.57022 63.43 2.30e-36 96.40384 1.03e+02
+#&gt; k_parent_sink 0.04792 0.00365 13.11 6.13e-15 0.04049 5.54e-02
+#&gt; k_parent_m1 0.05078 0.00205 24.80 3.27e-23 0.04661 5.49e-02
+#&gt; k_m1_sink 0.00526 0.00070 7.51 6.16e-09 0.00384 6.69e-03
+#&gt; sigma 3.12550 0.35852 8.72 2.24e-10 2.39609 3.85e+00</div><div class='input'><span class='co'># }</span>
<span class='va'>initials</span> <span class='op'>&lt;-</span> <span class='va'>fit</span><span class='op'>$</span><span class='va'>start</span><span class='op'>$</span><span class='va'>value</span>
<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>initials</span><span class='op'>)</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/colnames.html'>rownames</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>$</span><span class='va'>start</span><span class='op'>)</span>
<span class='va'>transformed</span> <span class='op'>&lt;-</span> <span class='va'>fit</span><span class='op'>$</span><span class='va'>start_transformed</span><span class='op'>$</span><span class='va'>value</span>
<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>transformed</span><span class='op'>)</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/colnames.html'>rownames</a></span><span class='op'>(</span><span class='va'>fit</span><span class='op'>$</span><span class='va'>start_transformed</span><span class='op'>)</span>
<span class='fu'>transform_odeparms</span><span class='op'>(</span><span class='va'>initials</span>, <span class='va'>SFO_SFO</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; parent_0 log_k_parent log_k_m1 f_parent_qlogis
-#&gt; 100.750000 -2.302585 -2.301586 0.000000 </div><div class='input'><span class='fu'>backtransform_odeparms</span><span class='op'>(</span><span class='va'>transformed</span>, <span class='va'>SFO_SFO</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; parent_0 k_parent k_m1 f_parent_to_m1
-#&gt; 100.7500 0.1000 0.1001 0.5000 </div><div class='input'>
+</div><div class='output co'>#&gt; parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink
+#&gt; 100.750000 -2.302585 -2.301586 -2.300587 </div><div class='input'><span class='fu'>backtransform_odeparms</span><span class='op'>(</span><span class='va'>transformed</span>, <span class='va'>SFO_SFO</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; parent_0 k_parent_sink k_parent_m1 k_m1_sink
+#&gt; 100.7500 0.1000 0.1001 0.1002 </div><div class='input'>
<span class='co'># \dontrun{</span>
-<span class='co'># The case of formation fractions</span>
+<span class='co'># The case of formation fractions (this is now the default)</span>
<span class='va'>SFO_SFO.ff</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>
parent <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span>, to <span class='op'>=</span> <span class='st'>"m1"</span>, sink <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>,
m1 <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>type <span class='op'>=</span> <span class='st'>"SFO"</span><span class='op'>)</span>,
use_of_ff <span class='op'>=</span> <span class='st'>"max"</span><span class='op'>)</span>
</div><div class='output co'>#&gt; <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'>
-<span class='va'>fit.ff</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO.ff</span>, <span class='va'>FOCUS_2006_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='va'>fit.ff.s</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.ff</span><span class='op'>)</span>
+<span class='va'>fit.ff</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO.ff</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+<span class='va'>fit.ff.s</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.ff</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.ff.s</span><span class='op'>$</span><span class='va'>par</span>, <span class='fl'>3</span><span class='op'>)</span>
</div><div class='output co'>#&gt; Estimate Std. Error Lower Upper
#&gt; parent_0 99.5985 1.5702 96.404 102.79
@@ -299,8 +313,8 @@ This is no problem for the internal use in <a href='mkinfit.html'>mkinfit</a>.</
use_of_ff <span class='op'>=</span> <span class='st'>"max"</span><span class='op'>)</span>
</div><div class='output co'>#&gt; <span class='message'>Temporary DLL for differentials generated and loaded</span></div><div class='input'>
-<span class='va'>fit.ff.2</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO.ff.2</span>, <span class='va'>FOCUS_2006_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'><span class='va'>fit.ff.2.s</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.ff.2</span><span class='op'>)</span>
+<span class='va'>fit.ff.2</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span><span class='op'>(</span><span class='va'>SFO_SFO.ff.2</span>, <span class='va'>FOCUS_D</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
+<span class='va'>fit.ff.2.s</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/summary-methods.html'>summary</a></span><span class='op'>(</span><span class='va'>fit.ff.2</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>fit.ff.2.s</span><span class='op'>$</span><span class='va'>par</span>, <span class='fl'>3</span><span class='op'>)</span>
</div><div class='output co'>#&gt; Estimate Std. Error Lower Upper
#&gt; parent_0 84.79 3.012 78.67 90.91
diff --git a/docs/dev/reference/update.mkinfit-1.png b/docs/dev/reference/update.mkinfit-1.png
index 7d2f1bdb..df8473c1 100644
--- a/docs/dev/reference/update.mkinfit-1.png
+++ b/docs/dev/reference/update.mkinfit-1.png
Binary files differ
diff --git a/docs/dev/reference/update.mkinfit-2.png b/docs/dev/reference/update.mkinfit-2.png
index 8dcabcdc..13c99b44 100644
--- a/docs/dev/reference/update.mkinfit-2.png
+++ b/docs/dev/reference/update.mkinfit-2.png
Binary files differ
diff --git a/docs/dev/reference/update.mkinfit.html b/docs/dev/reference/update.mkinfit.html
index 10a93373..83f45028 100644
--- a/docs/dev/reference/update.mkinfit.html
+++ b/docs/dev/reference/update.mkinfit.html
@@ -75,7 +75,7 @@ override these starting values." />
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
+ <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
</span>
</div>
@@ -124,7 +124,7 @@ override these starting values." />
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
- <span class="fab fa fab fa-github fa-lg"></span>
+ <span class="fab fa-github fa-lg"></span>
</a>
</li>

Contact - Imprint