aboutsummaryrefslogtreecommitdiff
path: root/docs/reference/logLik.mkinfit.html
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2019-04-10 10:17:35 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2019-04-10 10:17:35 +0200
commit194659fcaccdd1ee37851725b8c72e99daa3a8cf (patch)
treeedbbebe8956000b9eb725ca425b91e051571ec02 /docs/reference/logLik.mkinfit.html
parent5814be02f286ce96d6cff8d698aea6844e4025f1 (diff)
Adapt tests, vignettes and examples
- Write the NEWS - Static documentation rebuilt by pkgdown - Adapt mkinerrmin - Fix (hopefully all) remaining problems in mkinfit
Diffstat (limited to 'docs/reference/logLik.mkinfit.html')
-rw-r--r--docs/reference/logLik.mkinfit.html51
1 files changed, 11 insertions, 40 deletions
diff --git a/docs/reference/logLik.mkinfit.html b/docs/reference/logLik.mkinfit.html
index fc4193cb..0184d573 100644
--- a/docs/reference/logLik.mkinfit.html
+++ b/docs/reference/logLik.mkinfit.html
@@ -33,23 +33,12 @@
<meta property="og:title" content="Calculated the log-likelihood of a fitted mkinfit object — logLik.mkinfit" />
<meta property="og:description" content="This function simply calculates the product of the likelihood densities
- calculated using dnorm, i.e. assuming normal distribution.
+ calculated using dnorm, i.e. assuming normal distribution,
+ with of the mean predicted by the degradation model, and the
+ standard deviation predicted by the error model.
The total number of estimated parameters returned with the value
of the likelihood is calculated as the sum of fitted degradation
- model parameters and the fitted error model parameters.
-For the case of unweighted least squares fitting, we calculate one
- constant standard deviation from the residuals using sd
- and add one to the number of fitted degradation model parameters.
-For the case of manual weighting, we use the weight given for each
- observation as standard deviation in calculating its likelihood
- and the total number of estimated parameters is equal to the
- number of fitted degradation model parameters.
-In the case of iterative reweighting, the variances obtained by this
- procedure are used in the likelihood calculations, and the number of
- estimated parameters is obtained by the number of degradation model
- parameters plus the number of variance model parameters, i.e. the number of
- observed variables if the reweighting method is &quot;obs&quot;, and two if the
- reweighting method is &quot;tc&quot;." />
+ model parameters and the fitted error model parameters." />
<meta name="twitter:card" content="summary" />
@@ -80,7 +69,7 @@ In the case of iterative reweighting, the variances obtained by this
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">0.9.48.1</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">0.9.49.4</span>
</span>
</div>
@@ -146,23 +135,12 @@ In the case of iterative reweighting, the variances obtained by this
<div class="ref-description">
<p>This function simply calculates the product of the likelihood densities
- calculated using <code><a href='https://www.rdocumentation.org/packages/stats/topics/Normal'>dnorm</a></code>, i.e. assuming normal distribution.</p>
+ calculated using <code><a href='https://www.rdocumentation.org/packages/stats/topics/Normal'>dnorm</a></code>, i.e. assuming normal distribution,
+ with of the mean predicted by the degradation model, and the
+ standard deviation predicted by the error model.</p>
<p>The total number of estimated parameters returned with the value
of the likelihood is calculated as the sum of fitted degradation
model parameters and the fitted error model parameters.</p>
-<p>For the case of unweighted least squares fitting, we calculate one
- constant standard deviation from the residuals using <code><a href='https://www.rdocumentation.org/packages/stats/topics/sd'>sd</a></code>
- and add one to the number of fitted degradation model parameters.</p>
-<p>For the case of manual weighting, we use the weight given for each
- observation as standard deviation in calculating its likelihood
- and the total number of estimated parameters is equal to the
- number of fitted degradation model parameters.</p>
-<p>In the case of iterative reweighting, the variances obtained by this
- procedure are used in the likelihood calculations, and the number of
- estimated parameters is obtained by the number of degradation model
- parameters plus the number of variance model parameters, i.e. the number of
- observed variables if the reweighting method is "obs", and two if the
- reweighting method is "tc".</p>
</div>
@@ -199,17 +177,10 @@ In the case of iterative reweighting, the variances obtained by this
<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"m1"</span>),
<span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>)
)</div><div class='output co'>#&gt; <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'> <span class='no'>d_t</span> <span class='kw'>&lt;-</span> <span class='no'>FOCUS_2006_D</span>
- <span class='no'>d_t</span>[<span class='fl'>23</span>:<span class='fl'>24</span>, <span class='st'>"value"</span>] <span class='kw'>&lt;-</span> <span class='fu'><a href='https://www.rdocumentation.org/packages/base/topics/c'>c</a></span>(<span class='fl'>NA</span>, <span class='fl'>NA</span>) <span class='co'># can't cope with zero values at the moment</span>
- <span class='no'>f_nw</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>sfo_sfo</span>, <span class='no'>d_t</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) <span class='co'># no weighting (weights are unity)</span>
- <span class='no'>f_obs</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>sfo_sfo</span>, <span class='no'>d_t</span>, <span class='kw'>reweight.method</span> <span class='kw'>=</span> <span class='st'>"obs"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
- <span class='no'>f_tc</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>sfo_sfo</span>, <span class='no'>d_t</span>, <span class='kw'>reweight.method</span> <span class='kw'>=</span> <span class='st'>"tc"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
- <span class='no'>d_t</span>$<span class='no'>err</span> <span class='kw'>&lt;-</span> <span class='no'>d_t</span>$<span class='no'>value</span> <span class='co'># Manual weighting assuming sigma ~ y</span>
- <span class='no'>f_man</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>sfo_sfo</span>, <span class='no'>d_t</span>, <span class='kw'>err</span> <span class='kw'>=</span> <span class='st'>"err"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
- <span class='fu'><a href='https://www.rdocumentation.org/packages/stats/topics/AIC'>AIC</a></span>(<span class='no'>f_nw</span>, <span class='no'>f_obs</span>, <span class='no'>f_tc</span>, <span class='no'>f_man</span>)</div><div class='output co'>#&gt; df AIC
-#&gt; f_nw 5 204.4619
+ <span class='no'>f_nw</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>sfo_sfo</span>, <span class='no'>d_t</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>) <span class='co'># no weighting (weights are unity)</span></div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'> <span class='no'>f_obs</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>sfo_sfo</span>, <span class='no'>d_t</span>, <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='st'>"obs"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'> <span class='no'>f_tc</span> <span class='kw'>&lt;-</span> <span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>sfo_sfo</span>, <span class='no'>d_t</span>, <span class='kw'>error_model</span> <span class='kw'>=</span> <span class='st'>"tc"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='output co'>#&gt; <span class='warning'>Warning: Observations with value of zero were removed from the data</span></div><div class='input'> <span class='fu'><a href='https://www.rdocumentation.org/packages/stats/topics/AIC'>AIC</a></span>(<span class='no'>f_nw</span>, <span class='no'>f_obs</span>, <span class='no'>f_tc</span>)</div><div class='output co'>#&gt; df AIC
+#&gt; f_nw 5 204.4486
#&gt; f_obs 6 205.8727
-#&gt; f_tc 6 143.8773
-#&gt; f_man 4 291.8000</div><div class='input'> </div></pre>
+#&gt; f_tc 6 141.9656</div><div class='input'> </div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="sidebar">
<h2>Contents</h2>

Contact - Imprint